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underlying formalisms, which induces a straightforward way to compute the corresponding entail-
ments: by incorporating off-the-shelf QBF solvers it is possible to simulate within our framework
various kinds of preferential formalisms, among which are Priest’s logic LPm of reasoning with
minimal inconsistency, Batens’ adaptive logic ACLuNs2, Besnard and Schaub’s inference relation
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1. INTRODUCTION

Preferential reasoning was introduced by McCarthy [1980] and later by Shoham
[1987; 1988] as a generalization of the notion of circumscription. This is a common
method behind many general patterns of non-monotonic reasoning [Kraus et al.
1990; Lehmann and Magidor 1992; Makinson 1994], and it is often used as a tech-
nique for defining consequence relations that are paraconsistent [da Costa 1974],
i.e., formalisms in which inconsistent sets of premises do not entail any well-formed
formula whatsoever (see, e.g., [Arieli 2003; Arieli and Avron 1998; Avron and Lev
2001; Batens 2000; Besnard and Schaub 1996; Carnielli and Marcos 2002; Kifer
and Lozinskii 1992; Konieczny and Marquis 2002; Priest 1991; Schlechta 2000]).
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The essential idea behind preferential reasoning is that only a ‘preferred’ subset of
models of a given theory should be taken into consideration for making inferences
from that theory. The relevant models are determined by pre-defined conditions,
the satisfaction of which yields the exact kind of preference one wants to work with.

In this paper we introduce a uniform setting for representing a variety of prefer-
ential paraconsistent consequence relations. This setting is non-classical in nature,
since in the context of classical logic preferential semantics cannot help to overcome
the problem of trivial reasoning with contradictory theories (indeed, if a certain the-
ory has no two-valued models, then it has no preferred models as well). A useful way
of reasoning with contradictory classical theories is therefore by embedding them in
multiple-valued logics in general, and Belnap’s four-valued logic [1977a; 1977b] in
particular. The latter is particularly useful for reasoning with uncertainty (see e.g.
[Arieli and Avron 1998]) and it serves as the underlying multiple-valued semantics
in our case as well.

At the computational level, however, implementing paraconsistent reasoning based
on four-valued semantics poses important challenges. An effective implementation
of theorem provers for one of the existing proof systems for Belnap’s logic requires a
major effort. In order to handle this problem, and provide an efficient way of simu-
lating paraconsistent preferential entailments, we consider the following two-phased
approach:

(1) Encoding of the underlying multi-valued logic in terms of classical logic. For
this, we use signed theories , apparently first introduced by Besnard and Schaub
[1996; 1998] as syntax-independent paraconsistent reasoning systems. These
theories are obtained by polynomial-time transformations on the original the-
ories, which implies that preferential four-valued semantics can be effectively
implemented by standard theorem proving in two-valued logic (see also [Arieli
and Denecker 2003]).

(2) Representing preferences among the models of the theory by quantified Boolean

formulae (QBFs)1. The use of quantified propositional logic for knowledge
representation and reasoning was first proposed by Egly et al. [2000] and then
by Besnard et al. [2002; 2003; 2004], who considered the encoding of different
forms of nonmonotonic and paraconsistent reasoning by means of QBFs. One
important rationale of the QBF approach is that existing solvers can be readily
used as back-end tools for implementing the reasoning task at hand.

The outcome of our approach is a general represention platform that yields an
easy and natural way to handle the computational aspects of the underlying conse-
quence relations; by incorporating off-the-shelf computational models for processing
QBFs, such as QuBE [Giunchiglia et al. 2001], SEMPROP [Letz 2002], and DECIDE

[Rintanen 1999],2 it is possible to simulate a variety of non-monotonic and para-
consistent formalisms, such as Priest’s LPm [1989; 1991], Besnard and Schaub’s
inference relation |=n [1997], various kinds of bilattice-based pointwise preferential

1That is, propositional formulae extended with quantifiers ∀, ∃ over propositional variables; see
Section 5.2.
2For a list of QBF solvers, see: http://www.mrg.dist.unige.it/∼qube/qbflib/solvers.html. A
comprehensive evaluation of existing QBF solvers appears in [Le Berre et al. 2004].
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relations [Arieli and Avron 1996; 1998] and formula-preferential relations [Avron
and Lev 2001], consequence relations for reasoning with graded uncertainty (such
as the four-valued logics |=4

c , see [Arieli 2003]), and some adaptive logics (e.g.,
Batens’ ACLuNs2 [1989; 1998; 2000]). The main contribution of this paper is,
therefore, that it provides a simple nevertheless general way of representing and
reasoning with a variety of many-valued paraconsistent logics (including those that
are simulated in [Arieli and Denecker 2003] and [Besnard et al. 2003]).

The rest of this paper is organized as follows: in the next two sections we set-up
our framework. These sections describe, in particular, how to reason with signed
formulae in the context of four-valued semantics. Then we show how this frame-
work may be used for simulating paraconsistent non-monotonic reasoning in the
context of two-valued semantics: Section 4 shows how signed formulae may be used
in order to simulate a variety of basic (monotonic) consequence relations, and Sec-
tion 5 shows how preferential derivatives of these consequence relations may be
simulated within our framework by incorporating QBFs. In Section 6 we consider
some possible extensions of our setting and show how the basic definitions can be
generalized accordingly. Finally, in Section 7 we consider some related works and
in Section 8 we conclude.3

2. FOUR-VALUED SEMANTICS

The formalism that we consider here is based on four-valued semantics and a cor-
responding four-valued algebraic structure (denoted by FOUR), introduced by
Belnap [1977a; 1977b]. This structure is composed of four elements FOUR =
{t, f,⊥,⊤}, arranged in two lattice structures: one is the standard logical partial
order, ≤t, which intuitively reflects differences in the ‘measure of truth’ that every
value represents. According to this order, f is the minimal element, t is the maximal
one, and the other two elements ⊥ (intuitively representing partial information) and
⊤ (intuitively representing contradictory information) are intermediate values that
are incomparable. ({t, f,⊤,⊥},≤t) is a distributive lattice with an order reversing
involution ¬, for which ¬⊤=⊤ and ¬⊥=⊥. We shall denote the meet and the join
of this lattice by ∧ and ∨, respectively.

The other partial order, ≤k, is understood (again, intuitively) as reflecting dif-
ferences in the amount of knowledge or information that each truth value exhibits.
Again, ({t, f,⊤,⊥},≤k) is a lattice in which ⊥ is the minimal element, ⊤ is the
maximal element, and t, f are incomparable.

The elements of FOUR can be represented by pairs of two-valued components of
the lattice ({0, 1}, 0<1) as follows: t=(1, 0), f =(0, 1), ⊤=(1, 1), ⊥=(0, 0). One
way to intuitively understand this representation is that a truth value (x, y) of p
corresponds to the amount x of belief in p and the amount y of disbelief in p. The
following lemma expresses the partial orders and the basic operators of FOUR in
terms of this representation by pairs (see also Figure 1).

Lemma 2.1. [Ginsberg 1988] Let x, y, xi, yi ∈ {0, 1} (i = 1, 2). Then:

3This paper is a revised and extended version of [Arieli 2004].
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Fig. 1. FOUR

(1 ) (x1, y1) ≤t (x2, y2) iff x1≤x2 and y1≥y2,
(x1, y1) ≤k (x2, y2) iff x1≤x2 and y1≤y2.

(2 ) ¬(x, y) = (y, x),
(x1, y1) ∨ (x2, y2) = (x1 ∨ x2, y1 ∧ y2),
(x1, y1) ∧ (x2, y2) = (x1 ∧ x2, y1 ∨ y2).

The next step in using FOUR for reasoning is to choose its set of designated
elements. The obvious choice is D={t,⊤}, since both values intuitively represent
formulae known to be true. The set D has the property that a∧b∈D iff both a and
b are in D, while a∨b∈D iff at least one of a or b is in D, and so D is a prime filter
in FOUR. Note also that D = {(1, x) | x ∈ {0, 1}}.

From this point the various semantic and syntactic notions are defined on FOUR
as natural generalizations of similar classical notions:

—The underlying propositional language consists of an alphabet Σ of propositional
variables, propositional constants t and f, and logical symbols ¬,∧,∨. We denote
elements in Σ by p, q, r, formulae by ψ, φ, and sets of formulae by T , Ti. The
set of all atoms occurring in ψ is denoted by A(ψ). Similarly, A(T ) denotes the
union of all the sets A(ψ) s.t. ψ ∈ T .

—A valuation ν is a function that assigns a truth value from FOUR to each atomic
formula, and ν(t) = t, ν(f) = f . Any valuation is extended to complex formulae
in the obvious way: ν(¬ψ) = ¬ν(ψ), ν(ψ ∧ φ) = ν(ψ) ∧ ν(φ), and ν(ψ ∨ φ) =
ν(ψ) ∨ ν(φ). We will sometimes write ψ :b∈ν instead of ν(ψ)=b.

—A valuation ν satisfies ψ iff ν(ψ) ∈ D. A valuation that satisfies every formula
in T is a model of T . The set of models of T is denoted by mod(T ).

Note that in the four-valued context there are no tautologies in the propositional
language defined above. Thus, e.g., excluded middle is not valid, as ν(p ∨ ¬p) = ⊥
when ν(p) = ⊥. This implies that the definition of the material implication ψ → φ
as ¬ψ∨φ is not adequate for representing entailments. Instead, we use here the
following connective (see also [Arieli and Avron 1996; 1998; Besnard et al. 2003] and
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Footnote 5 below, for further justifications and other applications of this definition):

a ⊃ b =

{

t if a 6∈ D,

b otherwise.

Note that a ⊃ b = a → b when a, b ∈ {t, f}, and so the implication above is a
generalization of the material implication. Like the other binary connectives we
define ν(ψ ⊃ φ) = ν(ψ) ⊃ ν(φ). The propositional language extended with ⊃ is
denoted by L. As shown in [Arieli and Avron 1998], L is functionally complete for
FOUR.

Lemma 2.2. For x1, x2, y1, y2 ∈ {0, 1}, (x1, y1) ⊃ (x2, y2) = (¬x1 ∨ x2, x1 ∧ y2).

Proof. If x1 =1 then (x1, y1)∈D, and so (x1, y1)⊃ (x2, y2) = (x2, y2). If x1 =0
then (x1, y1) 6∈D, and so (x1, y1)⊃(x2, y2)=(1, 0). Both these cases are represented
by the equation that is specified in the lemma.

3. SIGNED FORMULAE

It is obvious that the representation of truth values in terms of pairs of two-valued
components, considered in the previous section, implies a similar way of representing
four-valued valuations; a four-valued valuation ν may be represented in terms of a
pair of two-valued components (ν1, ν2) by ν(p)= (ν1(p), ν2(p)). So if, for instance,
ν(p)= t, then ν1(p)=1 and ν2(p)=0. Note also that ν = (ν1, ν2) is a four-valued
model of T iff ν1(ψ) = 1 for every ψ ∈ T .

Definition 3.1. A signed alphabet Σ± is a set that consists of two symbols
p+, p− for each atom p of Σ. The language over Σ± is denoted by L±. Now,

—the two-valued valuation ν2 on Σ± that is induced by (or associated with) a
four-valued valuation ν4 = (ν1, ν2) on Σ, interprets p+ as ν1(p) and p− as ν2(p),

—the four-valued valuation ν4 on Σ that is induced by a two-valued valuation ν2

on Σ± is defined, for every atom p ∈ Σ, by ν4(p) = (ν2(p+), ν2(p−)).

In what follows we denote by ν2 a valuation into {0, 1}, and by ν4 a valuation
into {t, f,⊤,⊥}.

Definition 3.2. For p ∈ Σ and ψ, φ ∈ L, define the following formulae in L±:

τ1(p) = p+, τ2(p) = p−,

τ1(¬ψ) = τ2(ψ), τ2(¬ψ) = τ1(ψ),

τ1(ψ ∧ φ) = τ1(ψ) ∧ τ1(φ), τ2(ψ ∧ φ) = τ2(ψ) ∨ τ2(φ),

τ1(ψ ∨ φ) = τ1(ψ) ∨ τ1(φ), τ2(ψ ∨ φ) = τ2(ψ) ∧ τ2(φ),

τ1(ψ ⊃ φ) = ¬τ1(ψ) ∨ τ1(φ), τ2(ψ ⊃ φ) = τ1(ψ) ∧ τ2(φ).

Given a set T of formulae in L, we denote τi(T ) = {τi(ψ) | ψ ∈ T }, for i = 1, 2.

Example 3.3. Consider, e.g., the formula ψ = ¬(p ∨ ¬q) ∨ ¬q. Then,

τ1(ψ) = τ1(¬(p ∨ ¬q)) ∨ τ1(¬q) = τ2(p ∨ ¬q) ∨ τ2(q) =

= (τ2(p) ∧ τ2(¬q)) ∨ τ2(q) = (τ2(p) ∧ τ1(q)) ∨ τ2(q) =

= (p− ∧ q+) ∨ q−.
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We call τi(ψ) (i = 1, 2) the signed formulae that are obtained from ψ. Intuitively,
τ1(ψ) indicates whether ψ should be ‘at least true’ (i.e., it is assigned t or ⊤), and
τ2(ψ) indicates if ψ is ‘at least false’. In other words, if τ1(ψ) (respectively, τ2(ψ))
is true in the two-valued context, then ψ (respectively, ¬ψ) holds in the four-valued
context (cf. Corollaries 3.5 and 3.6).

Proposition 3.4. Let ψ ∈ L.

(1 ) If ν4 is induced by ν2, then ν4(ψ) =
(

ν2(τ1(ψ)), ν2(τ2(ψ))
)

.

(2 ) If ν2 is induced by ν4, then ν4(ψ) =
(

ν2(τ1(ψ)), ν2(τ2(ψ))
)

.

Proof. The proof of both parts is by induction on the structure of ψ. Consider,
first, part (1). For ψ = p we have ν4(p) =

(

ν2(p+), ν2(p−)
)

=
(

ν2(τ1(p)), ν
2(τ2(p))

)

.
Now, by Lemma 2.1,

• ψ = ¬φ: ν4(ψ) = ν4(¬φ) = ¬ν4(φ) = ¬
(

ν2(τ1(φ)), ν2(τ2(φ))
)

=
(

ν2(τ2(φ)), ν2(τ1(φ))
)

= (ν2(τ1(¬φ)), ν2(τ2(¬φ))
)

=
(

ν2(τ1(ψ)), ν2(τ2(ψ))
)

.

• ψ = φ1 ∨ φ2: ν4(ψ) = ν4(φ1 ∨ φ2) = ν4(φ1) ∨ ν4(φ2) =
(

ν2(τ1(φ1)), ν
2(τ2(φ1))

)

∨
(

ν2(τ1(φ2)), ν
2(τ2(φ2))

)

=
(

ν2(τ1(φ1)) ∨ ν2(τ1(φ2)) , ν
2(τ2(φ1)) ∧ ν2(τ2(φ2))

)

=
(

ν2(τ1(φ1) ∨ τ1(φ2)) , ν
2(τ2(φ1) ∧ τ2(φ2))

)

=
(

ν2(τ1(φ1 ∨ φ2)) , ν
2(τ2(φ1 ∨ φ2))

)

=
(

ν2(τ1(ψ)), ν2(τ2(ψ))
)

.

• ψ = φ1 ∧ φ2: similar (dual) to the case where ψ = φ1 ∨ φ2.

• ψ = φ1 ⊃ φ2: ν4(ψ) = ν4(φ1 ⊃ φ2) = ν4(φ1) ⊃ ν4(φ2) =
(

ν2(τ1(φ1)), ν
2(τ2(φ1))

)

⊃
(

ν2(τ1(φ2)), ν
2(τ2(φ2))

)

=

by Lemma 2.2,
(

¬ν2(τ1(φ1)) ∨ ν2(τ1(φ2)) , ν
2(τ1(φ1)) ∧ ν2(τ2(φ2))

)

=
(

ν2(¬τ1(φ1) ∨ τ1(φ2)) , ν
2(τ1(φ1) ∧ τ2(φ2))

)

=
(

ν2(τ1(φ1⊃ φ2)) , ν
2(τ2(φ1⊃ φ2))

)

=
(

ν2(τ1(ψ)) , ν2(τ2(ψ))
)

.

The proof of (2) is similar; we show here only the base step. Indeed, for atom
p, ν4(p) = (ν1(p), ν2(p)). Since ν2 is induced by ν4, ν2(p+) = ν1(p) and ν2(p−) =
ν2(p), thus ν4(p) =

(

ν2(p+), ν2(p−)
)

. By the definition of τ1,τ2, then, ν4(p) =
(

ν2(τ1(p)), ν
2(τ2(p))

)

.

Corollary 3.5. If ν2 is induced by ν4 or ν4 is induced by ν2, then for every
ψ ∈ L, ν2(τ1(ψ)) = 1 iff ν4(ψ) ≥k t, and ν2(τ2(ψ)) = 1 iff ν4(ψ) ≥k f .

Proof. ν4(ψ) ≥k t iff ν4(ψ) = (1, x) for some x ∈ {0, 1}, iff (Proposition 3.4)
ν2(τ1(ψ)) = 1. Similarly, ν4(ψ) ≥k f iff ν4(ψ) = (y, 1) for some y ∈ {0, 1}, iff
ν2(τ2(ψ)) = 1.
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The last corollary may be re-formulated as follows:

Corollary 3.6. If ν2 is induced by ν4 or ν4 is induced by ν2, then for every
ψ ∈ L, ν4 satisfies ψ iff ν2 satisfies τ1(ψ), and ν4 satisfies ¬ψ iff ν2 satisfies τ2(ψ).

The fact that a formula ψ should have a truth value x may thus be encoded by
a signed formula val(ψ, x) as follows:

Definition 3.7. For ψ ∈ L, define the following signed formulae in L±:

val(ψ, t) = τ1(ψ) ∧ ¬τ2(ψ), val(ψ, f) = ¬τ1(ψ) ∧ τ2(ψ),

val(ψ,⊤) = τ1(ψ) ∧ τ2(ψ), val(ψ,⊥) = ¬τ1(ψ) ∧ ¬τ2(ψ).

Given a set T of formulae in L, we denote D(T ) = {val(ψ, t) ∨ val(ψ,⊤) | ψ ∈ T }.

Proposition 3.8. In case that either ν2 is induced by ν4, or ν4 is induced by
ν2, we have that for every ψ ∈ L, ν4(ψ) = x iff ν2(val(ψ, x)) = 1.

Proof. This is another immediate consequence of Proposition 3.4. Consider,
e.g., x = ⊤. Then ν2(val(ψ,⊤)) = 1 iff ν2(τ1(ψ) ∧ τ2(ψ)) = 1, iff ν2(τ1(ψ)) = 1
and ν2(τ2(ψ)) = 1, iff (Proposition 3.4) ν4(ψ) = ⊤. The proof of the other cases is
similar.

The last results may be specified in terms of models of a given theory as follows:

Proposition 3.9. Let T be a set of formulae in L.

(1 ) The (two-valued) models of τ1(T ) are the same as those of D(T ).

(2 ) There is a one-to-one correspondence between the four-valued models of T and
the two-valued models of τ1(T ):
(a) ν4 is a model of T if the two-valued valuation that is associated with ν4 is

a model of τ1(T ), and
(b) ν2 is a model of τ1(T ) if the four-valued valuation that is associated with

ν2 is a model of T .
This is also the one-to-one correspondence between the four-valued models of T
and the two-valued models of D(T ).

Proof. A valuation ν4 is a model of T iff for every ψ ∈ T ν4(ψ) ∈ {t,⊤}, iff for
every ψ ∈ T ν4(ψ) ≥k t, iff (Corollary 3.5) for every ψ ∈ T ν2(τ1(ψ)) = 1, iff ν2

is a model of τ1(T ). Similarly, by Proposition 3.8, ν4 is a model of T iff for every
ψ ∈ T ν2(val(ψ, t)) = 1 or ν2(val(ψ,⊤)) = 1, iff ν2 is a model of D(T ). These
arguments easily imply both parts of the proposition.

4. USING SIGNED FORMULAE TO SIMULATE BASIC ENTAILMENTS

In the next two sections we show how the signed theories introduced above can
be used to simulate paraconsistent reasoning by classical entailments. In this sec-
tion we show how basic four-valued and three-valued consequence relations can
be defined in terms of a classical two-valued entailment of signed theories, and in
Section 5 we show that three-valued and four-valued preferential relations can be
defined in terms of a classical entailment for the signed theories, augmented with
quantified Boolean axioms.

ACM Transactions on Computational Logic, Vol. V, No. N, August 2005.
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In what follows we denote by |=2 the two-valued classical consequence relation
and by |=4 the four-valued counterpart, i.e., T |=4ψ if every four-valued model of T
is a four-valued model of ψ. By Proposition 3.9 we immediately have the following
theorem:

Theorem 4.1. T |=4 ψ iff τ1(T ) |=2 τ1(ψ) iff D(T ) |=2 D(ψ).

The theorem above implies, in particular, that one can simulate four-valued en-
tailment by two-valued entailment. It follows, therefore, that four-valued reasoning
may be implemented by two-valued theorem provers or SAT solvers. Moreover, as
τ1(T ) is obtained from T in polynomial time, Theorem 4.1 shows that four-valued
entailment in the context of Belnap’s logic is polynomially reducible to classical
entailment.4

Example 4.2. Let T1 = {p,¬p, q,¬p∨r,¬q∨s}. Then τ1(T1) = {p+, p−, q+, p−∨
r+, q− ∨ s+}. In this case, e.g., τ1(T1) 6|=2 r+ and τ1(T1) 6|=2 s+, so indeed T1 6|=4 r
and T1 6|=4 s (consider, e.g., a valuation that assigns ⊤ to p and q, and f to r and
s). Note also, that this example shows that |=4 is a paraconsistent consequence
relation, since (unlike classical logic), it is not the case that every formula is a
|=4-consequence of a classically inconsistent theory.

Consider now T2 = {p, ¬p, q, p ⊃ r, q ⊃ s}. Here, τ1(T2) = {p+, p−, q+, ¬p+ ∨
r+, ¬q+ ∨ s+}, and this time τ1(T2) |=2 r+ and τ1(T2) |=2 s+. This corresponds to
the fact that T2 |=4 r and T2 |=4 s.5

It is interesting to note that if the connective ⊃ does not appear in T , then
τ1(T ) (as well as D(T )) is a positive theory (i.e., a theory without negations). In
particular, then, Theorem 4.1 also implies the following well-known result:

Corollary 4.3. In positive propositional logic (i.e., w.r.t. the {∨,∧}-fragment
of the language), T |=4ψ iff T |=2ψ.

Proof. Follows from Theorem 4.1 and the fact that in the positive propositional
language, τ1(T ) is the same as T (using Σ± instead of Σ).

Theorem 4.1 also shows that some basic three-valued logics can be simulated in
our framework:

Definition 4.4. For a set T of formulae in L, denote

EM(T ) = {p ∨ ¬p | p ∈ A(T )}, EFQ(T ) = {(p ∧ ¬p) ⊃ f | p ∈ A(T )}.6

Corollary 4.5. Let T be a set of formulae in L and ψ a formula in L.

4See also [Arieli and Denecker 2003] for a similar result (for the language without ‘⊃’), obtained
by a different transformation.
5Note that T2 is obtained from T1 by using ⊃ instead of the material implication →, so this
example demonstrates the fact that in the four-valued setting Modus Ponens and the Deduction
Theorem are satisfied by ⊃ but not by →. This is another vindication to the claim that in the
four-valued setting the former connective is more suitable for representing entailment than the
latter.
6EM and EFQ stand for ‘excluded middle’ and ‘ex falso quodlibet sequitur’, respectively. Recall
that A(T ) is the set of atoms that appear in the formulae of T .

ACM Transactions on Computational Logic, Vol. V, No. N, August 2005.
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—Denote by |=3
LP the entailment relation of Priest’s three-valued logic LP [Priest

1989; 1991]. Then:

T |=3
LP ψ iff τ1(T ∪ EM(T )) |=2 τ1(ψ). 7

—Denote by |=3
Kl the entailment relation of Kleene’s three-valued logic [Kleene

1950]. Then:

T |=3
Kl ψ iff τ1(T ∪ EFQ(T )) |=2 τ1(ψ).

Proof. By Theorem 4.1 and the facts that T |=3
LP ψ iff T ,EM(T ) |=4 ψ, and

T |=3
Kl ψ iff T ,EFQ(T ) |=4 ψ (see [Arieli and Avron 1998]).

5. USING SIGNED QBFS TO SIMULATE PREFERENTIAL ENTAILMENTS

5.1 Preferential reasoning

Consider again the theory T1 = {p, ¬p, q, ¬p ∨ r, ¬q ∨ s} of Example 4.2. Intu-
itively, since the information about r is related to the inconsistent (thus unreliable)
information about p, we have that T1 6|=4 r. However, the fact that T1 6|=4 s seems
to be more controversial in this case, since the information about q and s is not
related to the cause of inconsistency in T1, and so applying classically valid rules
such as the Disjunctive Syllogism to {q,¬q ∨ s} for concluding s from T1 should be
justified here. In terms of Batens [1989; 1998], then, |=4 is not adaptive, since it
does not presuppose the consistency of all the assertions ‘unless and until proven
otherwise’. In other words, although it is possible to distinguish between a consis-
tent fragment and an inconsistent fragment of T1, it is not the case that assertions
that classically follow from the consistent fragment, and are not related to the in-
consistent fragment, are |=4-consequences of T1. Note, further, that s is not even
a |=4-consequence of the classically consistent subtheory {q,¬q ∨ s}, and so |=4 is
strictly weaker than classical logic (see also [Arieli and Avron 1996; 1998]). It is
well known that Priest’s |=3

LP (see Corollary 4.5) has the same drawback.

One way to overcome these shortcomings is to refine the underlying consequence
relations, and rather than taking into account all the models of the premises,
to consider only a subset of preferential models [McCarthy 1980; Shoham 1987;
1988] as relevant for making inferences. These models are determined according to
some preference conditions that can be specified syntactically by a set of (usually
second-order) propositions, or by order relations on the space of valuations (see,
e.g., [Makinson 1994] for a detailed discussion on preferential reasoning). We now
introduce a general setting for such order relations.

Definition 5.1. Let ν1 and ν2 be two valuations, Υ ⊆ FOUR, and ∆ a set of
formulae in L. ν1 is Υ-preferred to ν2 w.r.t. ∆ (notation: ν1 ≤∆

Υ ν2), if

{ψ ∈ ∆ | ν1(ψ) ∈ Υ} ⊆ {ψ ∈ ∆ | ν2(ψ) ∈ Υ}.

We denote by ν1 <
∆
Υ ν2 that ν1 ≤∆

Υ ν2 and ν2 6≤∆
Υ ν1.

Definition 5.2. Let T ,∆ be sets of formulae in L, and Υ ⊆ FOUR. A valuation
ν ∈ mod(T ) is a ≤∆

Υ-minimal model of T if there is no µ ∈ mod(T ) s.t. µ <∆
Υ ν.

7See [Arieli and Denecker 2003] and [Besnard et al. 2003, Theorem 2] for other representations of
Priest’s logic in terms of signed formulae.
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Table I. The four-valued models of T1

No. p q r s

1 ⊤ t ⊥ t

2 ⊤ t t t

3 ⊤ t f t

4 ⊤ t ⊤ t

5 ⊤ t ⊥ ⊤
6 ⊤ t t ⊤
7 ⊤ t f ⊤
8 ⊤ t ⊤ ⊤

No. p q r s

9 ⊤ ⊤ ⊥ ⊥
10 ⊤ ⊤ ⊥ t

11 ⊤ ⊤ ⊥ f

12 ⊤ ⊤ ⊥ ⊤
13 ⊤ ⊤ t ⊥
14 ⊤ ⊤ t t

15 ⊤ ⊤ t f

16 ⊤ ⊤ t ⊤

No. p q r s

17 ⊤ ⊤ f ⊥
18 ⊤ ⊤ f t

19 ⊤ ⊤ f f

20 ⊤ ⊤ f ⊤
21 ⊤ ⊤ ⊤ ⊥
22 ⊤ ⊤ ⊤ t

23 ⊤ ⊤ ⊤ f

24 ⊤ ⊤ ⊤ ⊤

Intuitively, ∆ represents the ‘abnormal formulae’ (see [Batens 1998]), and the pur-
pose is to minimize the Υ-assignments of the elements in ∆. In this respect, Defini-
tions 5.1 and 5.2 may be viewed as a generalization of preferential orders considered
elsewhere in the literature: when Υ consists of the designated elements, the order
relations of Definition 5.1 are called formula-preferential orders [Avron and Lev
2001]. When ∆ ⊆ Σ, these kinds of orders are called pointwise-preferential [Arieli
and Avron 1998; Avron and Lev 2001], and their minimal elements are the val-
uations with minimal set of atoms8 that are assigned values in Υ. In the later
case, Υ sometimes consists of ‘abnormal values’ (such as ⊤ or ⊥) that should be
assigned to as minimal number of atoms as possible. Note also that in the particu-
lar case where ∆ = T [respectively, where ∆ = A(T )], the purpose is to minimize
the Υ-assignments of the [atomic] formulae that appear in [some formulae of] the
premises.

Example 5.3. Consider again the set T1 = {p, ¬p, q, ¬p ∨ r, ¬q ∨ s} of Exam-
ple 4.2. The 24 four-valued models of T1 are listed in Table I.

Anomalous situations, such as the ones represented by ν21 and ν23 (see Table I),
are the reason that consequence relations like |=4 are ‘over-cautious’, and cause
counter-intuitive conclusions such as T1 6|=4 s, discussed at the beginning of this
section. Preferential reasoning avoids these anomalies by taking into account only
the most ‘plausible’ models of the premises. In this case, for instance, one could
take Υ = {⊤,⊥} as the set of ‘abnormal’ values (the assignments of which should
be minimized), or ∆ = {u ∧ ¬u | u ∈ Σ} as a set of abnormal formulae. With

these choices, and in the notations of Table I, the ≤
A(T1)
Υ -minimal models of T1 are

ν2 = {p : ⊤, q : t, r : t, s : t} and ν3 = {p : ⊤, q : t, r : f, s : t}. These are also the
≤∆

Υ-minimal models of T1, but only ν2 is a ≤T1

Υ -minimal model of T1 (note that

ν2 <
T1

Υ ν3, since ν3(¬p ∨ r) = ⊤ while ν2(¬p ∨ r) = t).

Definition 5.4. Let T ,∆ be sets of formulae in L, ψ a formula in L, and
Υ ⊆ FOUR. Then T |=4

(Υ,∆) ψ if every ≤∆
Υ-minimal (four-valued) model of T is a

(four-valued) model of ψ.

Example 5.3, continued. In the notations of Example 5.3,

T1 |=4
(Υ,∆) s, T1 |=4

(Υ,A(T1))
s, T1 |=4

(Υ,T1)
s,

T1 6|=4
(Υ,∆) r, T1 6|=4

(Υ,A(T1))
r, T1 |=4

(Υ,T1)
r.

8Where the minimum is taken with respect to set inclusion.
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It follows that the preferential relations considered here are indeed adaptive, and
although T1 6|=4 s, in all of them s is deducible from T1.

Again, Definition 5.4 includes a variety of preferential consequence relations,
many of which correspond to particular cases that were introduced elsewhere. Be-
fore considering ways to properly represent these consequence relations and show-
ing how this affects the computational feasibility of the corresponding reasoning
process, we list some specific (already investigated) relations among those of Defi-
nition 5.4:

Example 5.5. The following consequence relations are representable in terms
of Definition 5.4.

(1) Denote by |=3
LPm the consequence relation of Priest’s three-valued logic LPm

of minimal inconsistency [Priest 1989; 1991].9 Then:

T |=3
LPm ψ iff T ,EM(T ) |=4

({⊤},Σ) ψ

or, equivalently,

T |=3
LPm ψ iff T ,EM(T ) |=4

({⊤},∆) ψ

where ∆ = {p ∧ ¬p | p ∈ A(T )}. In fact, if we denote by |=3
({⊤},Σ) the three-

valued counterpart of |=4
({⊤},Σ),

10 then with the same ∆ we have,

T |=3
LPm ψ iff T |=3

({⊤},Σ) ψ iff T |=3
({⊤},∆) ψ.

The same pointwise consequence relations also simulate Batens’ adaptive logic
ACLuNs2 [Batens 1998].

(2) Arieli and Avron’s pointwise-preferential consequence relation for reasoning
with minimal inconsistency |=4

I1
[Arieli and Avron 1996; 1998] can be repre-

sented by the following pointwise consequence relation:

T |=4
I1
ψ iff T |=4

({⊤},Σ) ψ.

Similarly, the consequence relation |=4
I2

for reasoning with most classical mod-
els, introduced in the same papers, can be represented as follows:

T |=4
I2
ψ iff T |=4

({⊤,⊥},Σ) ψ.

(3) Besnard and Schaub’s three-valued formula-preferential consequence relation
|=n [Besnard and Schaub 1997] is represented by the following formula-preferential
relations:

T |=n ψ iff T ,EM(T ) |=4
({⊤},T ) ψ iff T |=3

({⊤},T ) ψ

where |=3
({⊤},T ) is the three-valued counterpart (i.e., without ⊥) of |=4

({⊤},T ).

(4) Given a set ∆ of formulae, denote by |=P Avron and Lev’s ∆-preferential
consequence relation that is based on the deterministic four-valued preferential

9In [Priest 1989; 1991] the language without ‘⊃’ is considered, but the results here hold for the
extended language as well.
10I.e., the same definition, but only with respect to {t, f,⊤}.
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system P = (|=4,≤∆
{⊤,t}) [Avron and Lev 2001].11 The intuition here is, again,

to consider models of the premises that satisfy a minimal amount of abnormal
formulae (in ∆). In our context, then, Υ is the set D = {⊤, t} of the designated
elements in FOUR, and so

T |=P ψ iff T |=4
({⊤,t},∆) ψ.

(5) Other preferential logics, such as Arieli and Avron’s consequence relation |=4
k

for preferring minimal knowledge [Arieli and Avron 1996; 1998] are also rep-
resentable by the consequence relations of Definition 5.4, using extended lan-
guages; see [Avron and Lev 2001] for the details.

5.2 QBFs and signed QBFs

In the following sections we show how the consequence relations that are obtained
from Definition 5.4 can be simulated by signed formulae and classical entailment.
In order to extend the technique of Section 4 (and the result of Theorem 4.1) to
preferential four-valued reasoning, we should express that a given interpretation is
minimal with respect to the underlying preference relation, i.e., to represent the
minimization conditions of Definition 5.2. This is accomplished by introducing
(signed) quantified Boolean formulae (QBFs) that encode the required axioms.

First, we extend the language L (respectively, L±) with universal and existential
quantifiers ∀, ∃ over propositional variables. Denote the extended language by LQ

(respectively, L±
Q

). The elements of LQ are called quantified Boolean formulae

(QBFs), and the elements of L±
Q

are called signed QBFs. QBFs and signed QBFs
are denoted here by the Greek letters Ψ,Φ, and sets of (signed) QBFs are denoted
by Γ. Intuitively, the meaning of a QBF of the form ∃p ∀q ψ is that there exists a
truth assignment of p such that for every truth assignment of q, ψ is true. Clearly,
every QBF is associated with a logically equivalent propositional formula, thus
QBFs can be seen as a conservative extension of classical propositional logic. Next
we formalize this intuition:

Consider a QBF Ψ over LQ. An occurrence of an atom p in Ψ is called free if it is
not in the scope of a quantifier Qp, for Q ∈ {∀, ∃}. Denote by Ψ[φ1/p1, . . . , φn/pn]
the uniform substitution of each free occurrence of a variable (atom) pi in Ψ by a
formula φi, for i=1, . . . , n. Now, the definition of a valuation can be extended to
QBFs as follows:

ν(¬ψ) = ¬ν(ψ),

ν(ψ ◦ φ) = ν(ψ) ◦ ν(φ), where ◦ ∈ {∧,∨,⊃},

ν(∀p ψ) = ν(ψ[t/p]) ∧ ν(ψ[f/p]),

ν(∃p ψ) = ν(ψ[t/p]) ∨ ν(ψ[f/p]).

As usual, we say that a (two-valued) valuation ν satisfies a QBF Ψ if ν(Ψ) = 1,
ν is a model of a set Γ of QBFs (notation: ν∈mod(Γ)) if ν satisfies every element

11In [Avron and Lev 2001] extensions to non-deterministic matrices are also considered, but we
shall not deal with this here.
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of Γ, and a QBF Ψ is (classically) entailed by Γ (notation: Γ |=2 Ψ) if every model
of Γ is also a model of Ψ.12

5.3 Preferential reasoning by signed QBFs

We are now ready to use signed QBFs for representing preferential reasoning. In
what follows T denotes a finite set of formulae in L, and T∧ denotes the conjunction
of the elements in T .

Definition 5.6. For Υ = {x1, . . . , xn} ⊆ FOUR, denote Υ(ψ) = val(ψ, x1) ∨
. . . ∨ val(ψ, xn).

Note 5.7. By Proposition 3.8, if ν2 is induced by ν4, or ν4 is induced by ν2,
then ν4(ψ) ∈ Υ iff ν2(Υ(ψ)) = 1.

Definition 5.8. A±(T ) = {p+ | p ∈ A(T )} ∪ {p− | p ∈ A(T )}.

Proposition 5.9. Let ∆ = {ψ1, . . . , ψk} and T be finite sets of formulae in
L, and let A±(T ∪ ∆) = {p1, . . . , pn}. Then ν4 is a ≤∆

Υ-minimal model of T iff
the two-valued valuation ν2 that is associated with ν4 is a model of τ1(T ) and the
following signed QBF, denoted Min(≤∆

Υ , T ):

∀ q1, . . . , qn

(

τ1(T∧)
[

q1/p1, . . . , qn/pn

]

→

(

k
∧

i=1

(

Υ(ψi)
[

q1/p1, . . . , qn/pn

]

→ Υ(ψi)
)

→

k
∧

i=1

(

Υ(ψi) → Υ(ψi)
[

q1/p1, . . . , qn/pn

]

))

)

.

Proof. By Proposition 3.9-(2), ν4 is a model of T iff ν2 is a model of τ1(T ).
It remains to show, then, that the fact that ν2 satisfies Min(≤∆

Υ , T ) is a necessary
and sufficient condition for assuring that ν4 is ≤∆

Υ-minimal among the models of
T . For this, denote by ({r1, . . . , rn} : µ1, {s1, . . . , sm} : µ2) a valuation that inter-
prets the symbols in {r1, . . . , rn} according to µ1 and the symbols in {s1, . . . , sm}
according to µ2. Now, suppose that µ4

1 and µ4
2 are two models of T . By Proposi-

tion 3.9-(2) and Note 5.7, µ4
1 ≤

∆
Υ µ4

2 iff ({r1, . . . , rn} : µ2
1, {s1, . . . , sn} : µ2

2) satisfies
∧k

i=1

(

Υ(ψi)
[

r1/p1, . . . , rn/pn

]

→ Υ(ψi)
[

s1/p1, . . . , sn/pn

])

, where µ2
1 and µ2

2

are the two-valued interpretations that are induced by (the four-valued interpre-
tations) µ4

1 and µ4
2, respectively. It follows, then, that ν2 satisfies Min(≤∆

Υ , T ) iff
for every valuation µ2 that satisfies τ1(T∧) (i.e., µ2∈mod(τ1(T )), if ({p1, . . . , pn} :

ν2, {q1, . . . , qn} : µ2) satisfies
∧k

i=1

(

Υ(ψi)
[

q1/p1, . . . , qn/pn

]

→ Υ(ψi)
)

then the

same valuation also satisfies
∧k

i=1

(

Υ(ψi) → Υ(ψi)
[

q1/p1, . . . , qn/pn

])

. Thus, ν2

satisfies Min(≤∆
Υ , T ) iff for every model µ4 of T , for which µ4 ≤∆

Υ ν4, it is also true
that ν4 ≤∆

Υ µ4. This means that ν2 satisfies Min(≤∆
Υ , T ) iff there is no model µ4 of

T s.t. µ4 <∆
Υ ν4, and so ν2 satisfies Min(≤∆

Υ , T ) iff ν4 is indeed ≤∆
Υ-minimal among

the models of T , as required.

12We refer to [Besnard et al. 2004] for a detailed description of quantified Boolean formulae,
including some historical remarks and relevant complexity issues.
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Note 5.10. As the QBF Min(≤∆
Υ , T ) of the last proposition expresses minimiza-

tion, it is clearly related to the notion of circumscription [McCarthy 1980], in which
second-order formulae are usually used for expressing minimization. Indeed, an al-
ternative way of regarding QBFs is as a particular class of second-order languages,
where predicates are restricted to arity 0. We refer to Section 7, and in particular
to Corollary 7.4, where we compare our approach to related works that use cir-
cumscription as the primary methods for encoding (multi-valued and preferential)
entailments.

Proposition 5.9 immediately implies the following theorem and corollary, applied
to finite sets T , ∆ of formulae in L.

Theorem 5.11. T |=4
(Υ,∆) ψ iff τ1(T ),Min(≤∆

Υ , T ) |=2 τ1(ψ).

Corollary 5.12. T |=4
(Υ,∆) ψ iff τ1(T∧) ∧ Min(≤∆

Υ , T ) → τ1(ψ) is valid in the
two-valued semantics.

Example 5.13. Let T = {p1,¬p1, p2}, Υ = {⊤}, and ∆ = A(T ) = {p1, p2}. In
this case, for every p ∈ Σ, Υ(p) = p+ ∧ p−. Thus,

Min(≤∆
Υ , T ) = ∀ q+1 q

−
1 q

+
2 q

−
2

(

q+1 ∧ q−1 ∧ q+2 →
(

(

(q+1 ∧ q−1 ) → (p+
1 ∧ p−1 )

)

∧
(

(q+2 ∧ q−2 ) → (p+
2 ∧ p−2 )

)

→
(

(p+
1 ∧ p−1 ) → (q+1 ∧ q−1 )

)

∧
(

(p+
2 ∧ p−2 ) → (q+2 ∧ q−2 )

)

))

.

Both ν1 = {p+
1 : t, p−1 : t, p+

2 : t, p−2 : t} and ν2 = {p+
1 : t, p−1 : t, p+

2 : t, p−2 : f}
satisfy τ1(T ) = {p+

1 , p
−
1 , p

+
2 }, but only ν2 also satisfies Min(≤∆

Υ , T ). The four-valued
valuation that is associated with ν2 is {p1 : ⊤, p2 : t}, and this indeed is the only
≤∆

Υ-minimal model of T . Thus, for instance, T 6|=4
(Υ,∆) ¬p2.

Example 5.14. By Theorem 5.11, it is now possible to simulate the consequence
relations of Example 5.5 by classical entailment. Indeed, if T ,∆ are finite sets of
formulae in L, then

T |=3
LPm ψ iff τ1(T ∪ EM(T )), Min(≤

A(T )
{⊤} , T ) |=2 τ1(ψ). Similarly for |=4

I1
.

T |=4
I2
ψ iff τ1(T ), Min(≤

A(T )
{⊤,⊥}, T ) |=2 τ1(ψ).

T |=n ψ iff τ1(T ∪ EM(T )), Min(≤T
{⊤}, T ) |=2 τ1(ψ).

T |=P ψ where P = (|=4,≤∆
{⊤,t}) iff τ1(T ), Min(≤∆

{⊤,t}, T ) |=2 τ1(ψ).

5.4 Complexity

The representation theorems by signed formulae (Theorems 4.1 and 5.11) allow, in
particular, to derive complexity results for the corresponding consequence relations.
For instance, Theorem 4.1 and Corollary 4.5 show that the entailment problems for
|=4, |=3

KL, and |=3
LP, can be reduced (using a polynomial-time transformation) to

the problem of entailment in classical logic, which implies that the corresponding
decision problems are in coNP (moreover, this fact, together with polynomial-time
reductions from SAT, show the well-known result that these problems are actually
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coNP-complete; see, e.g., [Cadoli and Schaerf 1996; Costa-Marquis and Marquis
2002; Konieczny and Marquis 2002]).

By Theorem 5.11 one can derive complexity results for the preferential versions of
the above consequence relations (see also [Costa-Marquis and Marquis 2002; 2004]
and [Konieczny and Marquis 2002] for related results about the computational
complexity of some of these relations):

Proposition 5.15. The decision problems for |=4
(Υ,∆) and |=3

(Υ,∆) are in ΠP
2 .

Proof. By Theorem 5.11, entailment of a theory T w.r.t. |=4
(Υ,∆) is equivalent

to classical entailment checking w.r.t. τ1(T ) ∪ {Min(≤∆
Υ , T )}. Thus, this decision

problem can be encoded by QBFs in prenex normal form with exactly one quantifier
alternation (and requires a polynomial-time transformation). The proposition is
obtained, now, by the following well-known result:

Proposition 5.16. [Wrathall 1976] Given a propositional formula ψ, whose
atoms are partitioned into i ≥ 1 sets {p1

1, . . . , p
1
m1

}, . . . , {pi
1, . . . , p

i
mi

}, deciding if

∃p1
1, . . . ,∃p

1
m1
, ∀p2

1, . . . ,∀p
2
m2
, . . . ,Qpi

1, . . . ,Qp
i
mi
ψ

is true (where Q = ∃ if i is odd and Q = ∀ if i is even), is ΣP
i -complete. Dually,

deciding whether

∀p1
1, . . . ,∀p

1
m1
, ∃p2

1, . . . ,∃p
2
m2
, . . . ,Qpi

1, . . . ,Qp
i
mi
ψ

is true (where Q = ∀ if i is odd and Q = ∃ if i is even), is ΠP
i -complete.

For the three-valued case, note that T has to be extended with the set EM(T ) or
EFQ(T ) that forces three-valued assignments, but this does not change the com-
plexity of the corresponding decision problems.

Note that under the usual assumptions of complexity theory, the complexity
bound specified in the last corollary is not strict for every consequence relation of
the form |=4

(Υ,∆) and |=3
(Υ,∆). For instance, when ∆ = ∅, consequence relations

of the form |=4
(Υ,∆) are the same as |=4, thus the corresponding decision problems

are — as noted above — already in coNP (i.e., in ΠP
1 ). However, as shown in

[Costa-Marquis and Marquis 2002; 2004], the decision problems for many other
consequence relations of the form |=4

(Υ,∆) and |=3
(Υ,∆) are hard for ΠP

2 . We refer

to [Costa-Marquis and Marquis 2004] for a detailed proof of the ΠP
2 -hardness of

|=3
LPm, even in case that all the formulae are in conjunctive normal form. This also

implies the hardness of |=4
I1

and |=4
I2

, because of the following result:

Proposition 5.17. [Arieli and Avron 1998] Let T be a set of formulae and ψ
a formula in the language of {¬,∧,∨, t, f}. Then T |=3

LPm ψ iff T |=4
I2
ψ. If ψ is

a formula in CNF, none of its conjuncts is a tautology, then we have, in addition,
that T |=3

LPm ψ iff T |=4
I1
ψ.

It follows, then, that the evaluation of the resulting QBFs for the consequence
relations considered above resides in the same complexity class as the decision of
the original problems!

ACM Transactions on Computational Logic, Vol. V, No. N, August 2005.



16 · Ofer Arieli

6. GENERALIZATIONS

6.1 Reasoning with graded abnormality

The consequence relation |=4
(Υ,∆) of Definition 5.4 can be generalized in several ways

to capture other consequence relations considered in the literature. In this section
we demonstrate one possible extension and show how to simulate, by signed QBFs
and classical entailment, preferential reasoning with different levels of uncertainty.

Definition 6.1. A partial order ≺ on a set S is called modular if y ≺ x2 for
every x1, x2, y∈S s.t. x1 6≺x2, x2 6≺x1, and y≺x1.

Modular orders will be used here for grading uncertainty. As shown in [Lehmann
and Magidor 1992], ≺ is a modular order on S iff there is a total order < on a set
S′ and a function g : S → S′ s.t. x1 ≺ x2 iff g(x1)< g(x2). For a modular order
≺ on FOUR, then, there is a partition Υ1 . . .Υm of FOUR s.t. x ≺ y iff x ∈ Υi,
y ∈ Υj , and 1 ≤ i < j ≤ m.

Let T and ∆ be sets of formulae in L. Let ≺ be a modular order on FOUR and
ν, µ ∈ mod(T ). Denote ν≺∆ µ, if there is a ψ∈∆ s.t. ν(ψ)≺µ(ψ), and for every
φ∈∆ either ν(φ)≺µ(φ), or ν(φ) and µ(φ) are ≺-incomparable.

A valuation ν ∈ mod(T ) is a ≺∆-minimal model of T if there is no µ ∈ mod(T )
s.t. µ≺∆ ν. Denote T |=4

(≺,∆) ψ if every ≺∆-minimal model of T is a model of ψ.

Example 6.2. The consequence relation |=4
c3

, introduced in [Arieli 2003], is one
example of formalisms for reasoning with graded uncertainty. In this case ∆ con-
sists of the atomic formulae, and the preferred (i.e., the ≺∆-minimal) models are
determined according to a modular order ≺c3

on FOUR that has three ‘uncertainty
levels’: t, f are the ≺c3

-minimal elements, ⊥ is the ≺c3
-intermediate value, and ⊤

is the ≺c3
-maximal (i.e., the most abnormal) one. Clearly, then, |=4

c3
is a particular

case of |=4
(≺,∆): for every set T of formulae and a formula ψ is L, we have that

T |=4
c3
ψ iff T |=4

(≺c3
,A(T )) ψ.

Consider, for instance, T = {¬q, (p ⊃ q) ∨ (¬q ⊃ ¬p), (¬p ⊃ q) ∨ (¬q ⊃ p)}.
This theory has three ≺c3

-minimal models: ν1 = {p :⊥, q :f}, ν2 = {p :t, q :⊤}, and
ν3 = {p :f, q :⊤}. Therefore, e.g., T |=4

(≺c3
,A(T )) p ⊃ q and T 6|=4

(≺c3
,A(T )) q ⊃ p.

In order to simulate consequence relations such as |=4
c3

in our framework, it is
necessary to extend Definition 5.1. In particular, Υ should be partitioned according
to the underlying preference order.

Definition 6.3. Let ν1, ν2 be two valuations, ∆ a set of formulae, and ~Υ =
~Υ≺ = {Υ1,Υ2, . . . ,Υm} – a partition of FOUR. Denote ν1 ≤∆

~Υ
ν2 if the following

conditions are satisfied:

{ψ∈∆ | ν2(ψ)∈Υ1} ⊆ {ψ∈∆ | ν1(ψ)∈Υ1},

{ψ∈∆ | ν2(ψ)∈Υ2} ⊆ {ψ∈∆ | ν1(ψ)∈Υ1 ∪ Υ2},

. . .

{ψ∈∆ | ν2(ψ)∈Υm−1} ⊆ {ψ∈∆ | ν1(ψ)∈Υ1 ∪ . . . ∪ Υm−1}.

Denote by ν1 <
∆
~Υ
ν2 that ν1 ≤∆

~Υ
ν2 and ν2 6≤∆

~Υ
ν1. ν1 ∈mod(T ) is a ≤∆

~Υ
-minimal

model of T if there is no ν2 ∈ mod(T ) s.t. ν2 <
∆
~Υ
ν1.
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Preferential reasoning with graded uncertainty can now be defined in our context
as follows.

Definition 6.4. Denote T |=4
(~Υ,∆)

ψ, if any ≤∆
~Υ
-minimal model of T is a model

of ψ.

The following proposition follows from the fact that ν1 ≺∆ ν2 iff ν1 <
∆
~Υ
ν2.

Proposition 6.5. T |=4
(≺,∆) ψ iff T |=4

(~Υ,∆)
ψ.

Example 6.6. Consider again the consequence relation of Example 6.2. Let
Υ1 = {t, f}, Υ2 = {⊥}, Υ3 = {⊤}, and ~Υ = {Υ1,Υ2,Υ3}. Then:

(1) for every ν1, ν2 ∈ mod(T ), ν1 �c3
ν2 iff ν1 ≤

A(T )
~Υ

ν2, and so

(2) T |=4
c3
ψ iff T |=4

(≺c3
,A(T )) ψ iff T |=4

(~Υ,A(T ))
ψ.

Note that, in fact, the definition of preferential reasoning with graded uncertainty
(Definition 6.4) is a conservative extension of the definition of consequence relations
for preferential reasoning (Definition 5.4):

Proposition 6.7. For every consequence relation of the form |=4
(Υ,∆) there is a

partition ~Υ = {Υ1,Υ2} of FOUR, such that |=4
(Υ,∆) and |=4

(~Υ,∆)
coincide.

Proof. Given Υ ⊆ FOUR, let ~Υ = {FOUR−Υ,Υ}. By Definitions 5.1 and 6.3,
for every two valuations ν1 and ν2 it holds that ν1 <

∆
Υ ν2 iff {ψ∈∆ | ν1(ψ)∈Υ} ⊆

{ψ∈∆ | ν2(ψ)∈Υ}, iff {ψ∈∆ | ν2(ψ)∈FOUR−Υ} ⊆ {ψ∈∆ | ν1(ψ)∈FOUR−Υ},
iff ν1 <

∆
~Υ
ν2. Thus, by Definitions 5.4 and 6.4, |=4

(Υ,∆) and |=4
(~Υ,∆)

are identical.

The converse of the last proposition is not true; there are consequence relations
of the form |=4

(~Υ,∆)
that are not the same as any consequence relation of the form

|=4
(Υ,∆). The consequence relation of Examples 6.2 and 6.6 is one example for that

(in [Arieli 2003] it is shown that this consequence relation is different than any other
four-valued consequence relation that is defined by a pointwise preferential order
on FOUR). It follows, therefore, that consequence relations of the form |=4

(~Υ,∆)

may be divided into three nonempty classes of paraconsistent entailments:

(1) when ~Υ is the degenerated partition (i.e., ~Υ = {FOUR}), |=4
(~Υ,∆)

is the same

as the monotonic consequence relation |=4,

(2) two-leveled partitions of FOUR induce the consequence relations of Section 5,

(3) other consequence relations of the form |=4
(~Υ,∆)

have more than two levels of

uncertainty.

The next step is to simulate reasoning with graded uncertainty by (signed) QBFs.
For that, ≤∆

~Υ
-minimal valuations should be described by an appropriate signed

QBF. In the remaining of this section, for keeping this QBF as simple as possible, we
consider only the case where ∆ = A(T ). However, similar results can be obtained
for any finite set ∆ of formulae in L (as in Proposition 5.9).
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Proposition 6.8. Let T be a finite set of formulae in L, and let A±(T ) =

{p1, . . . , pn}. Then ν4 is a ≤
A(T )
~Υ

-minimal model of T , where ~Υ = {Υ1,Υ2, . . . ,Υm}

is a partition of FOUR, iff the two-valued valuation ν2 that is associated with ν4

is a model of τ1(T ) and the following signed QBF, denoted Min(≤
A(T )
~Υ

, T ):

∀ q1, . . . , qn

(

τ1(T∧)
[

q1/p1, . . . , qn/pn

]

−→

(

n
∧

i=1

((

Υ1(pi) → Υ1(qi)
)

∧ . . . ∧
(

Υm−1(pi) →
m−1
∨

j=1

Υj(qi)
))

−→

n
∧

i=1

((

Υ1(qi) → Υ1(pi)
)

∧ . . . ∧
(

Υm−1(qi) →
m−1
∨

j=1

Υj(pi)
)) )

)

.

Proof. Again, we denote by ({r1, . . . , rn} : µ1, {s1, . . . , sm} : µ2) a valuation
that interprets the symbols in {r1, . . . , rn} according to µ1 and the symbols in
{s1, . . . , sm} according to µ2. Now, the proof is similar to that of Proposition 5.9,
using the fact that µ4

1 ≤∆
~Υ
µ4

2 iff the valuation ({r1, . . . , rn} : µ2
1, {s1, . . . , sn} : µ2

2)
satisfies

n
∧

i=1

((

Υ1(si) → Υ1(ri)
)

∧ . . . ∧
(

Υm−1(si) →
m−1
∨

j=1

Υj(ri)
))

,

where µ2
1 and µ2

2 are the two-valued interpretations that are induced by µ4
1 and µ4

2,
respectively.

By Proposition 6.8, for a finite set of formulae T and a formula ψ in L, we have:

Proposition 6.9. T |=4
(~Υ,A(T ))

ψ iff τ1(T ),Min(≤
A(T )
~Υ

, T ) |=2 τ1(ψ).

Corollary 6.10. T |=4
(≺,A(T )) ψ iff τ1(T ),Min(≤

A(T )
~Υ

, T ) |=2 τ1(ψ).

Proof. By propositions 6.5 and 6.9.

The last results imply that the decision problem for consequence relations with
graded abnormality remains in the second level of the polynomial hierarchy (cf. Propo-
sition 5.15).

Proposition 6.11. The decision problem for |=4
(~Υ,A(T ))

is in ΠP
2 .

Proof. Similar to that of Proposition 5.15, using Proposition 6.9.

Again, as noted in Section 5.4, ΠP
2 is not a strict bound for every decision problem

of entailments of the form |=4
(~Υ,A(T ))

(for instance, when ~Υ={FOUR}, |=4
(~Υ,A(T ))

is equivalent to |=4, the decision problem of which is in ΠP
1 ). However, as noted

in the paragraph below the proof of Proposition 5.15, many decision problems for
consequence relations of the form |=4

(Υ,A(T )) (which are, by Proposition 6.7, also of

the form |=4
(~Υ,A(T ))

) are hard for ΠP
2 . Below we give one more example:

Proposition 6.12. The decision problem for |=4
c3

is ΠP
2 -complete.
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Fig. 2. T HREE ⊙ T HREE

Proof. In Section 5.4 we have shown that the decision problem for |=4
I2

is

hard for ΠP
2 even when all the formulae are in CNF. The claim now follows from

Example 6.6 and Proposition 6.11 (which imply that |=4
c3

is in ΠP
2 ), together with

the fact, shown in [Arieli 2003], that in the language of {¬,∧,∨, t, f} it holds that
T |=4

c3
ψ iff T |=4

I2
ψ (which implies that |=4

c3
is hard for ΠP

2 ).

Other generalizations of Definition 5.1 could be useful as well. For instance, the
set ∆ may contain formulae with different levels of abnormality, in which case it
should be graded. Again, it is possible to simulate reasoning with corresponding
consequence relations by signed QBFs just as described above for cases in which Υ
is graded.

6.2 Beyond four-valued semantics

In this section we show that by using the same techniques as those introduced
above, it is possible to perform preferential reasoning in general multiple-valued
logics (having arbitrarily many truth values). For instance, default reasoning in
the context of nine-valued semantics [Arieli and Avron 1996] (see Figure 2) may be
simulated though either Kleene’s three-valued logic [Kleene 1950] or Priest’s three-
valued logic LP [Priest 1989; 1991] (see Example 6.22 below). Essentially, we do
so by repeating the same process as described before, using signed formulae for the
basic entailment, and quantified Boolean formulae for expressing the preferential
semantics. Below are the details.

6.2.1 The lattice-valued setting. Consider a complete lattice L = (L,≤L) with
a negation operator ¬.13 Let DL be the set of the designated elements of L. As
usual in multiple-valued logics (and as we did in the case of FOUR), we require
that DL would be a filter in L, namely: it is a nonempty proper subset of L s.t.
for every x, y∈L, x∧y∈DL iff x∈DL and y∈DL. If, in addition, for every x, y∈L,

13That is, for every x, y ∈ L, x ≤L y iff ¬y ≤L ¬x, and for every x ∈ L, ¬¬x=x.
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x∨y ∈DL iff x ∈DL or y ∈ DL, then DL is a prime filter in L. Note that by its
definition DL is ≤L-upwards closed, and so max(L)∈DL while min(L) 6∈DL.

Now, the connectives of the language L are defined by the corresponding opera-
tors on L: conjunction, disjunction, and negation correspond, respectively, to the
meet, join, and negation operators on L; the definition of the implication connec-
tive ⊃ depends, as in the case of FOUR, on the choice of the designated elements:
x ⊃ y = max(L) if x 6∈ DL, otherwise x ⊃ y = y.

The other semantical notions and the corresponding consequence relations are
now defined in the obvious way:

—A (multiple-valued) valuation ν is a function that assigns an element of L to
each atomic formula in Σ. A valuation is extended to complex formulae in the
standard way: ν(¬ψ) = ¬ν(ψ), ν(ψ ∧ φ) = ν(ψ) ∧ ν(φ), ν(ψ ∨ φ) = ν(ψ) ∨ ν(φ),
and ν(ψ ⊃ φ) = ν(ψ) ⊃ ν(φ).

—A valuation ν satisfies a formula ψ if ν(ψ)∈DL.

—A valuation ν is a model of T if it satisfies every formula in T . We shall continue
to denote by mod(T ) the set of the models of T .

A natural definition for a consequence relation w.r.t. this L-valued semantics is
the following.

Definition 6.13. Let L be a lattice and DL a prime filter in it. For a set T of
formulae and a formula ψ, denote T |=L,DL ψ if every model of T is a model of ψ.

Common examples of logics that are obtained from the definitions above are clas-
sical logic (where L is the two-valued lattice ({t, f}, f <L t) and DL ={t}), Kleene’s
three-valued logic [Kleene 1950] (where L is the three-valued lattice ({t, f,⊥}, f≤L

⊥≤L t) and DL ={t}), Priest’s three-valued logic [Priest 1989] (where L is the three-
valued lattice ({t, f,⊤}, f ≤L ⊤≤L t) and DL = {t,⊤}), and Belnap’s four-valued
logic, defined in Section 2. Note that the former two logics are not paraconsistent
while the latter two are paraconsistent.

6.2.2 The bilattice-valued setting. In previous sections we have reduced four-
valued paraconsistent reasoning to classical entailment by ‘splitting’ syntactical and
semantical objects (e.g., the alphabet, the truth values, and the truth assignments)
to their positive and negative counterparts. The same idea can be applied here,
this time on the L-valued setting. This leads us to the following construct:

Definition 6.14. [Ginsberg 1988] Let L = (L,≤L) be a complete lattice. The
structure L ⊙ L = (L×L,≤t,≤k,¬) consists of pairs of elements from L that are
arranged in two complete lattice structures as follows:
• (L×L,≤t), where (x1, y1) ≤t (x2, y2) iff x1 ≤L x2 and y1 ≥L y2
• (L×L,≤k), where (x1, y1) ≤k (x2, y2) iff x1 ≤L x2 and y1 ≤L y2

The unary operation ¬ is defined on L×L by ¬(x, y) = (y, x).

Figures 1 and 2 above show two structures that are particular cases of Defini-
tion 6.14, where L is a chain of two and three elements, respectively. The structure
that L⊙L forms is called bilattice [Fitting 1990; Ginsberg 1988], denoting that the
set of truth values is simultaneously arranged in two (related) lattice structures. As
in the four-valued case, a truth value (x, y)∈L ⊙ L may intuitively be understood
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so that x represents the amount of evidence for an assertion, while y represents the
amount of evidence against it. It is easy to verify that the basic ≤t-operators are
defined in the same way as in FOUR, namely that for every x1, x2, y1, y2 ∈ L,

(x1, y1) ∨ (x2, y2) = (x1 ∨ x2, y1 ∧ y2),

(x1, y1) ∧ (x2, y2) = (x1 ∧ x2, y1 ∨ y2). 14

Also, the ≤k-minimal element of L ⊙ L is (min(L),min(L)), the ≤k-maximal one
is (max(L),max(L)), the ≤t-minimal element is (min(L),max(L)), and the ≤t-
maximal one is (max(L),min(L)).

Clearly, the structure of Definition 6.14 is a natural extension of Belnap’s four-
valued structure. As before, we denote by DL⊙L a (fixed) set of designated values of
L⊙L, which is a filter of L×L. The other semantical notions are defined accordingly.

Given a bilattice L ⊙ L and a (prime) filter DL⊙L of it, one may define a corre-
sponding consequence relation in a way similar to the lattice-valued case:

Definition 6.15. T |=L⊙L,DL⊙L ψ if every L×L-valued model of T (w.r.t.
DL⊙L) is also a model of ψ.

The preferential derivative of |=L⊙L,DL⊙L is defined as follows (cf. Definition 5.4).

Definition 6.16. Let ∆ be a set of formulae in L, and Υ ⊆ L×L.

(1) Define a relation ≤∆
Υ on L×L-valued valuations as in Definitions 5.1 and 5.2:

(a) for two valuations ν1 and ν2 into L×L, we denote ν1 ≤∆
Υ ν2 (ν1 is Υ-

preferred to ν2 w.r.t. ∆) if {ψ ∈ ∆ | ν1(ψ) ∈ Υ} ⊆ {ψ ∈ ∆ | ν2(ψ) ∈ Υ}.
We write ν1 <

∆
Υ ν2 if ν1 ≤∆

Υ ν2 and ν2 6≤∆
Υ ν1.

(b) A valuation ν ∈ mod(T ) is a ≤∆
Υ-minimal model of T if there is no model

µ of T such that µ <∆
Υ ν.

(2) T |=
L⊙L,DL⊙L

(Υ,∆) ψ if every ≤∆
Υ-minimal (L×L-valued) model of T (w.r.t. DL⊙L)

is also a model of ψ.

Example 6.17. Consider again T1 of Example 5.3 and the bilattice T HREE ⊙
T HREE (Figure 2) with DT HREE⊙T HREE = {(x, y) | (x, y) ≥k (1, 0)}. Suppose
that one wants to consider only the models of T1 that are ‘as consistent as possible’
(that is, the models of T1 that assign either true, (1, 0), or false, (0, 1), to a maximal
amount of atomic formulae that appear in the premise formulae). In this case,
Υ = T HREE × T HREE − {(1, 0), (0, 1)} and ∆ = A(T1). Now, abbreviate by 9
the pair (T HREE ⊙ T HREE ,DT HREE⊙T HREE). Then, for instance,

T1 |=9
(Υ,∆) p, T1 |=9

(Υ,∆) q, T1 |=9
(Υ,∆) s, T1 6|=9

(Υ,∆) r,

T1 |=
9
(Υ,∆)¬p, T1 6|=

9
(Υ,∆)¬q, T1 6|=

9
(Υ,∆)¬s, T1 6|=

9
(Υ,∆)¬r.

14It worth noting that the ≤k-join ⊕ and the ≤k-meet ⊗ in L⊙Lhave similar definitions. For every
x1, x2, y1, y2 ∈ L, (x1, y1)⊕(x2, y2) = (x1∨x2, y1∨y2) and (x1, y1)⊗(x2, y2) = (x1∧x2, y1∧y2).
These operators, nevertheless, will not play an important role in what follows.
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6.2.3 Relating the two settings. In what follows we fix some complete lattice
L = (L,≤L) with a prime filter DL, and consider the associated bilattice L ⊙ L

with a set of designated elements D = DL×L of L×L. Note that D is a legitimate
choice of a set of designated elements due to the following result:

Proposition 6.18. [Arieli and Avron 2000, Proposition 14] DL is a (prime)
filter in L iff DL×L is a (prime) filter in L×L.

We again start with the basic consequence relations of these settings and then
turn to the preferential cases.

Theorem 6.19. T |=L⊙L,D ψ iff τ1(T ) |=L,DL τ1(ψ).

Proof (outline). Essentially, we repeat the process described in Section 3,
and extend the corresponding results to the (bi)lattice-valued case.

As in Definition 3.1, we define a signed alphabet Σ± for a given alphabet Σ.
Then, L-valuations (νL) and L×L-valuations (νL×L) are associated with each
other, exactly like the two- and the four-valued case (see again Definition 3.1). By
induction on the structure of the formulae in the language L, one can show that if
νL is induced by νL×L or νL×L is induced by νL, then for every formula ψ,

νL×L(ψ) =
(

νL(τ1(ψ)), νL(τ2(ψ))
)

,

where the τi transformation (i= 1, 2) are the same ones as those of Definition 3.2
(see the proof of Proposition 3.4). By the last equation, then,

νL×L(ψ) ∈ D = DL×L iff νL(τ1(ψ)) ∈ DL,

νL×L(¬ψ) ∈ D iff νL(τ2(ψ)) ∈ DL,

which means that νL×L satisfies ψ iff νL satisfies τ1(ψ), and νL×L satisfies ¬ψ iff
νL satisfies τ2(ψ) (cf. Corollary 3.6). It follows that there is a one-to-one correspon-
dence between the L×L-valued models of T (w.r.t. D) and the L-valued models of
τ1(T ) (w.r.t. DL), and so we are done.

We turn now to the preferential case. Again, paraconsistent preferential reasoning
in L⊙L may be simulated in L by signed QBFs in a way which is similar to the one
described in Section 5.3. The only difference is that unlike the four-valued case, it
is not possible to represent every element in L×L by a formula in L (i.e., it is not
necessarily possible to define formulae val, like those of Definition 3.7, that satisfy
the property of Proposition 3.8), so it is not always possible to define formulae
Υ(ψ) that hold iff the truth value of ψ is in Υ (see Note 5.7). We therefore have to
impose the following restriction on the choice of Υ.

Definition 6.20. Given a bilattice L ⊙ L and a filter F in L×L, consider the
following partition of L×L:

Tt = {x∈L×L | x∈F ,¬x 6∈F}, Tf = {x∈L×L | x 6∈F ,¬x∈F},

T⊤ = {x∈L×L | x∈F ,¬x∈F}, T⊥ = {x∈L×L | x 6∈F ,¬x 6∈F}.

A set Υ⊆L×L is called perceptive, if for every c ∈ {t, f,⊤,⊥}, either Tc ⊆ Υ or
Υ ∩ Tc = ∅.

Consider again the signed QBF Min(≤∆
Υ , T ), introduced in Proposition 5.9 for a

theory T and fixed sets ∆, Υ. The analogue of Theorem 5.11 is now the following:
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Theorem 6.21. Let T ,∆ be finite sets of formulae in L, and Υ a nonempty
perceptive subset of L×L. Then T |=L⊙L,D

(Υ,∆) ψ iff τ1(T ),Min(≤∆
Υ , T ) |=L,DL τ1(ψ).

Proof (outline). In the proof of Theorem 6.19 we have shown that if νL is
induced by νL×L or νL×L is induced by νL, then for every formula ψ, νL×L satisfies
ψ iff νL satisfies τ1(ψ), and νL×L satisfies ¬ψ iff νL satisfies τ2(ψ). In the notations
of Definition 3.7, then, for every formulae ψ and every c ∈ {t, f,⊤,⊥}, νL×L(ψ)∈Tc

iff νL satisfies val(ψ, c) (the proof of this is similar to that of Proposition 3.8, using
the fact that DL is a filter in L). Now, Υ is a nonempty perceptive subset of L×L,
so there are elements c1, . . . , ck ∈ {t, f,⊤,⊥} such that Υ = Tc1

∪ . . . ∪ Tck
. Let

Υ(ψ) = val(ψ, c1) ∨ . . . ∨ val(ψ, ck). We have that νL×L(ψ) ∈ Υ, iff νL×L(ψ) ∈ Tc

for some c ∈ {c1, . . . , ck}, iff νL(val(ψ, c)) ∈ DL for the same c ∈ {c1, . . . , ck}, iff
νL satisfies Υ(ψ)15 (cf. Note 5.7). This implies that νL×L is a ≤∆

Υ-minimal model
of T iff νL is a model of τ1(T ) and Min(≤∆

Υ , T ) (the proof of this is completely
analogous to that of Proposition 5.9, using the fact that we have shown that for a
perceptive set Υ, Proposition 3.9-(2) and Note 5.7 are both valid in the L×L-case
as well).

Example 6.22. Consider again the bilattice T HREE ⊙ T HREE of Figure 2.
This structure may be used, e.g., for default reasoning (where the values (1

2 , 0)
and (0, 1

2 ) stand for ‘true by default’ and ‘false by default’, respectively; see e.g.
[Arieli and Avron 1996; 1998]). This structure has two sets that are prime filters
with respect to both ≤t and ≤k, namely D1 = {(x1, x2) | (x1, x2) ≥k (1, 0)}
and D2 = {(x1, x2) | (x1, x2) ≥k (1

2 , 0)}. These sets are, therefore, natural
candidates for being the set of the designated elements. Note, moreover, that
D1 = {1}×{0, 1

2 , 1} and D2 = {1, 1
2}×{0, 1

2 , 1}. By Theorems 6.19 and 6.21,
then, (preferential) reasoning with T HREE ⊙T HREE and D1 can be simulated in
T HREE with DT HREE = {1} (a setting that corresponds to Kleene’s three-valued
logic), while (preferential) reasoning with T HREE ⊙ T HREE and D2 can be sim-
ulated in T HREE with DT HREE = {1, 1

2} (a setting that corresponds to Priest’s
three-valued logic LP).

7. RELATED WORKS

A key issue in our approach is the encoding of many-valued logics in terms of
two-valued classical logic by means of signed formulae. Such formulae were intro-
duced by Besnard and Schaub [1996; 1998] as syntax-independent paraconsistent
reasoning systems. A similar idea is used in [Arieli and Denecker 2002; 2003], and
[Besnard et al. 2003], where different transformations of formulae to signed formu-
lae are considered for reducing multiple-valued entailments to classical entailments.
We find the τ -transformations used here (Definition 3.2) somewhat more natural
and general for the conversions to signed theories, as three-valued semantics is in-
herent in the formalism of [Besnard et al. 2003] (this is implied by Definition 1 in
that paper), and the language considered in [Arieli and Denecker 2002; 2003] is not
functionally complete.

The use of QBF axiomatic theories for representing preferred models is another
fundamental ingredient of our approach. Using QBFs for knowledge representation

15Here we are using the fact that DL is a prime filter in L.
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and reasoning is proposed by Egly, Eiter, Tompits and Woltran [2000] who showed
that several major problems from propositional nonmonotonic reasoning can be
translated into QBFs and resolved by the QBF-based system QUIP. Quantified
propositional logic for paraconsistent reasoning has been independently considered
in the preliminary version of this paper [Arieli 2004] and by Besnard et al., who
defined a variety of paraconsistent consequence relations by means of default logic
[Besnard et al. 2002] and showed how to circumscribe inconsistent theories in the
context of three-valued logics [Besnard et al. 2003] (see also [Besnard et al. 2004]
for a survey on these and related methods). Although the QBF axiomatic theo-
ries in [Besnard et al. 2003] are different than ours, in both cases the formulae are
obtained from the original theories by an effective and efficient (polynomial-time
constructible) encoding. Moreover, when the complexity bounds given in Proposi-
tions 5.15 and 6.11 for the underlying consequence relations are strict, determining
the validity of the QBFs resulting from the transformations is not computationally
harder than checking inferences with respect to those consequence relations.16

The main difference between the approach in this paper and that of [Besnard
et al. 2003] concerns with the representation level. While the encoding used by
Besnard et al. [2003] is sensitive to the underlying three-valued semantic and the
inter-relations among its elements, here the role of the truth values is somewhat
more transparent. As a consequence, our formalism can be generalized relatively
easily, as one can verify by comparing the computation of the basic four-valued en-
tailment (Theorem 4.1) to that of the lattice-valued entailment (Theorem 6.19), or
by relating the simulation of preferential entailments (Theorem 5.11) to the reason-
ing process with their graded extensions (Proposition 6.9). Similar generalizations
are less natural in case of the formalism of Besnard et al. [2003]. For instance,
switching from the axiomatization of Priest’s three-valued logic |=3

LP (which is the
basic three-valued entailment considered in [Besnard et al. 2003]) to the axiom-
atization of Kleene’s three-valued logic |=3

Kl requires, according to the approach
of [Besnard et al. 2003], a modification in the parametrized translation to signed
formulae, while in our case the same transformation is appropriate for both logics
(Corollary 4.5), as well as for their generalizations to logics with more truth values
and/or with preferential semantics. Now, as the consequence relations considered
in [Besnard et al. 2003] are particular cases of those conveyed by Definition 5.4,
our formalism may be viewed as an alternative approach for simulating the three-
valued consequence relations considered in [Besnard et al. 2003], which is tolerant
to refinements of the preference criteria at hand, and offers a simple way of general-
izing the underlying semantics to algebraic structures with arbitrarily many truth
values.

Another approach for reducing (multiple-valued) preferential reasoning to (higher-
order) classical propositional logic is considered in [Arieli and Denecker 2003].
This approach expresses preferences in terms of second-order formulae, so (instead
of QBF solvers) algorithms for processing circumscriptive theories (i.e., reducing
second-order formulae to their first-order equivalents) are needed in order to imple-

16For instances of those relations that have lower complexity than ΠP

2 , efficient reductions to
classical logic are more appropriate; see, e.g., [Arieli and Denecker 2002; 2003].
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ment preferential reasoning. In the propositional case, a circumscriptive encoding
is given in [Egly et al. 2000] (see also [Lifschitz 1985]). As both methods have the
same origin (namely, second-order languages, see Note 5.10) this duality is quite
natural. Below we formulate the exact relation between the present approach and
the circumscription-based approach of Arieli and Denecker [2003] w.r.t. the propo-
sitional fragment of L (i.e., the language without ‘⊃’).17

Define the scope of a negation operator ¬ in the formula ¬ψ as the set of all
occurrences of propositional symbols in ψ. An occurrence of p in a formula ψ is
positive if it appears in the scope of an even number of negation operators in ψ,
otherwise it is a negative occurrence.

Definition 7.1. [Arieli and Denecker 2003] Let ψ be a formula in Σ. Denote
by ψ the formula in Σ±, obtained from ψ by substituting every positive occurrence
in ψ of an atomic formula p by p+, and replacing every negative occurrence in ψ of
an atomic formula p by ¬p−. Given a theory T , the set {ψ | ψ∈T } is denoted by
T .

Example 7.2. Consider again the formula ψ = ¬(p ∨ ¬q) ∨ ¬q of Example 3.3.
The first occurrence of q in ψ is positive, and the second occurrence of q as well
as the (single) occurrence of p in ψ are negative. Thus, the signed formula that is
obtained from ψ is ψ = ¬(¬p− ∨ ¬q+) ∨ ¬¬q−. Note that ψ is logically equivalent
to τ1(ψ) (see Example 3.3). As the following proposition shows, this equivalence is
not accidental.

Proposition 7.3. If ν4(ψ) = x and ν2 is the two-valued valuation that is in-
duced by ν4, then ν2(ψ) = 1 iff ν2(τ1(ψ)) = 1 (iff x ≥k t).

Proof. Let ν4(ψ) = (ν1(ψ), ν2(ψ)) and let ν2 be the two-valued valuation that
is induced by ν4. In [Arieli and Denecker 2003, Proposition 2.4] it is shown that
ν2(ψ) = ν1(ψ). The claim now follows from item (2) of Proposition 3.4.

Corollary 7.4. Let T be a finite theory in the propositional fragment of L.
Then:

(1 ) The two-valued models of T are the same as the two-valued models of τ1(T ).

(2 ) T |=4 ψ iff T |=2 ψ (iff τ1(T ) |=2 τ1(ψ)).

(3 ) T |=4
(Υ,∆) ψ iff T ,Min(≤∆

Υ , T ) |=2 ψ (iff τ1(T ),Min(≤∆
Υ , T ) |=2 τ1(ψ)).

Proof. Part (1) follows from Proposition 7.3, part (2) follows from part (1) and
Theorem 4.1, and part (3) follows from part (1) and Theorem 5.11.

It follows, then, that our embedding in four-valued semantics captures the re-
ductions to classical entailments, considered in [Arieli and Denecker 2003], but in
a more general context. In particular, our approach extends that of Arieli and
Denecker [2003] in the sense that the language L considered here (unlike the ≤k-
monotonic language used in [Arieli and Denecker 2003]) is functionally complete
for FOUR.18 Also, we simulate a wider range of preferential logics and provide a
natural approach to reasoning with graded abnormality.

17This fragment is the language considered in [Arieli and Denecker 2003].
18See [Arieli and Avron 1998] for a proof of the functional completeness of L.
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8. CONCLUSION

Motivated by the need to find practical and effective methods for paraconsistent
reasoning, signed formulae serve here as a representative platform that can be used
by a variety of off-the-shelf QBF-solvers for drawing plausible conclusions from
possibly inconsistent and/or incomplete theories.

Benchmark studies on the performance of QBF solves in comparison to that of
neighboring tools (such as the answer set programming solvers dlv [Eiter et al. 1998]
and smodels [Niemelä and Simons 1996], and the SAT-solver zChaff [Moskewicz et al.
2001]) have shown that in some cases the performance of the QBF-solvers is below
that of the other solvers (see, e.g., [Arieli et al. 2004] for a comparative study in
the context of database repair, and [Egly et al. 2000] for some benchmark results
for abduction problems and graph problems). Still, the performance of many QBF
solvers is continuously improving as the underlying techniques become more so-
phisticated. This includes adaptations of the Davis–Putnam–Logemann–Loveland
(DPLL) algorithm for propositional logic [Davis et al. 1962; Davis and Putnam
1960] to quantified propositional logic [Cadoli et al. 1998; Cadoli et al. 2002], ex-
tensions of resolution-based reasoning [Kleine-Büning et al. 1995], employment of
lookback techniques [Letz 2002], and incorporation of new solving paradigms that
are based on symbolic reasoning strategies [Benedetti 2005]. Different methods for
converting formulae to prenex CNF and specifying them in Dimacs or Rintanen
format (which is the conventional form that QBF solvers accept) also help to re-
duce the evaluation time of different solvers (see [Egly et al. 2004]). Moreover,
QBF solvers provide an easy way of obtaining a prototypical implementation for
many different problems, and this kind of implementations is particularly suitable
for our purpose, since quantified Boolean formulae offer a natural way of express-
ing minimization (which is, in many cases, a major consideration in preferential
reasoning). We believe, therefore, that QBF solvers are becoming powerful mech-
anisms that provide robust ways of computing preferential entailments in general,
and paraconsistent reasoning in particular.

ACKNOWLEDGMENTS

This paper benefited from the reviewers’ constructive and helpful comments.

REFERENCES

Arieli, O. 2003. Reasoning with different levels of uncertainty. Applied Non-Classical Log-

ics 13, 3–4, 317–343.

Arieli, O. 2004. Paraconsistent preferential reasoning by signed quantified Boolean formulae. In
Proc. 16th European Conference on Artificial Intelligence (ECAI’04), R. López de Mántaras
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