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Abstract

The ability to draw rational conclusions from incomplete and inconsistent data is a major

challenge in many areas of computer science, mathematical logic, and philosophy, and its signif-

icance should be obvious. In this work we show that by combining a few simple considerations,

most of them semantical in nature, we can construct a plausible framework for reasoning with

uncertainty. In particular, all the formalisms considered here are induced by this framework and

have the same cornerstones:

• Multiple-valued logics that are based on multiple-valued algebraic structures, with one or

more partial orders defined on the truth values, and a set of designated values that represent

true assertions.

• Languages with operators that correspond to the basic operations on the semantical struc-

tures, and proper definitions of implication and equivalence connectives.

• Nonmonotonic consequence relations that are based on making preferences among the mod-

els of the premises. Conclusions are then drawn only according to the subset of the preferred

models.

We show that these few basic ideas enable us to consider a variety of general patterns for

reasoning with uncertainty and consequently yield definitions of many formalisms with desirable

properties. This is the essence of this work.

This work is divided to three parts. In the first we introduce our framework and the basic

considerations behind it. In particular, in this part we investigate the conditions that general

consequence relations for reasoning with uncertainty should satisfy. Also, we present some results

concerning the algebraic and logical properties of the multi-valued structures used here.
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In the second part we show that our framework is in fact a generalization of a diversity of ap-

proaches for reasoning with uncertainty, such as Kleene’s three-valued logics, Belnap’s four-valued

logic, and Priest’s LPm. Other approaches for reasoning with uncertainty, such as Subrahmanian’s

annotated logic, Lozinskii’s coherent approaches for recovering inconsistent knowledge-bases, and

Prade/Dubois’s possiblistic logic, are also related to our framework. Also, we consider in greater

detail some more specific formalisms that are induced by our framework, and we show that they

have many important properties of commonsense reasoning. For instance, we introduce a family

of nonmonotonic consequence relations that are equivalent to classical logic on consistent theories

and are nontrivial w.r.t. inconsistent theories.

In the last part of this work we show that our formalisms can be practically implemented in

some useful applications, such as efficient recovery of consistent data from inconsistent stratified

knowledge-bases, and fault analysis of malfunction devices.
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Introduction

Purpose and motivation

In this work we investigate and characterize inference mechanisms for reasoning with uncertainty .

The underlying concept behind such formalisms is the rationality of the consequences that they

allow. Although many real-life inferences turn out to be wrong, especially in the presence of

uncertainty, we always expect them to be “rational”.

Generally, we consider two kinds of uncertainty:

1. The data is contradictory, and so there is inconsistent information,

2. The available data is insufficient, and so there is incomplete information.

Situations like that of the first kind are very common in databases and knowledge-bases, es-

pecially large ones. Such knowledge-bases can be inconsistent in many ways: erroneous updates

might occur, and complex reasoning tasks (such as control systems or diagnostic devices) might

use information from conflicting sources (e.g., imprecise instruments, different expert opinions,

faulty components, etc. See [Su94] for some motivating examples). The ability to use even incon-

sistent knowledge-bases in an effective and rational way is a major challenge, and its significance

should be obvious. Moreover, beyond its practical need, the problem of reasoning in the pres-

ence of inconsistency is fundamental in many other areas, like mathematical logic, philosophy,

and computer science. Frequently, it changes the conceptualization of problems as well as the

resulting solutions.1

1Common examples are the foundations of mathematics, many topics from the methodology of the sciences,
ontology, epistemology, and linguistics.
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For handling inconsistency we need systems that are capable of drawing nontrivial conclusions

despite the contradictions. A great deal of research has been devoted to construct such systems

(see, e.g., [Be77a, Be77b, Gi88, Su90a, Su90b, Pr91, KL92, Fi94, Lo94, Su94, BDP95, PH98]).

These formalisms may be divided into two approaches: One approach is based on paraconsistent

theories [dC74] (or: foundation theories). This approach accepts inconsistency and tries to cope

with it. Paraconsistent systems allow us to make nontrivial conclusions from an inconsistent

theory without throwing pieces of information away. The other approach is based on coherent

theories. It revises inconsistent information and restores consistency. Unlike the paraconsistent

approaches, these methods are, in terms of [Wa94a], “conservative” in the sense that they con-

sider contradictory data as useless, and only a consistent part of the original information is used

for making inferences.

The second kind of uncertainty previously mentioned, i.e. reasoning with incomplete informa-

tion, is also very common: Formalizations of realistic domains always require simplification. By

necessity, we leave many facts unknown, unsaid, or inaccurately summarized. For example, most

of the rules that encode knowledge and behavior have exceptions that cannot be enumerated.

A plausible formalism for reasoning with incomplete information must therefore be prepared to

draw conclusions in a nonmonotonic manner: default conclusions, drowned because of insufficient

data, must be altered in light of new, more accurate information.

The ability to make nonmonotonic inferences is another goal that has attracted the attention

of many researchers in the last twenty years. Among the better known approaches and techniques

for nonmonotonic reasoning are the default logic of Reiter [Re80], which is based on the idea of

having default rules and a fixed-point mechanism for adding to the basic theory as many con-

clusions of applicable defaults as consistently possible; the autoepistemic logic of Moore [Mo85],

which is also based on fixed-point semantics together with a modal operator for representing

self-belief; McCarthy’s circumscription [Mc80], which is a model-theoretic formalism expressed

as a second-order formula for minimizing the extensions of some specific set of predicates; and

Reiter’s closed word assumption [Re78], which is a proof theoretic formalism based on the as-

sumption that a database contains all the relevant facts and therefore every non-provable ground

term is assumed to be false.

18



Classical logic is unfortunately not suitable for dealing with either of the types of uncertainty

previously mentioned. Since classically any formula is a logical consequence of an inconsistent

theory, classical logic is useless in the presence of inconsistency. Moreover, classical logic is mono-

tonic; thus it cannot support default reasoning, and so its use with incomplete information is

problematic as well.

A common approach to overcome the shortcomings of classical calculus is to turn to multiple-

valued logics. Many formalisms for reasoning with many-valued semantics have been proposed in

the literature, using every possible number of truth-values, from three values (see, e.g., [Av91a]

for a survey of some natural three-valued logics), up to arbitrarily many values (used e.g., in

possiblistic logics [DLP94], annotated logics [Su90a, Su90b], and many formalisms that are based

on fuzzy logic or probabilistic reasoning. See, for example, a survey in [Pe89]). In most of these

approaches the truth-values are arranged in an algebraic structure (usually some [pseudo-] lattice)

with some kind of order relation among its elements.

Recently and independently, several researchers have suggested using special multi-valued

structures called bilattices as particularly suitable for the purpose of dealing with inconsistent

and incomplete data. Bilattices are natural generalizations of the well-known four-valued struc-

ture of Belnap ([Be77a, Be77b]). They were introduced by Ginsberg ([Gi87, Gi88]) for providing

a uniform approach for a diversity of applications in AI. In particular, Ginsberg dealt with first

order theories and their consequences, truth maintenance systems, and formalisms for default

reasoning. The algebraic properties of bilattices were further investigated by Fitting and Avron

([Fi90b, Fi94, Av95, Av96]). Fitting showed that bilattices are very useful for providing a seman-

tic to logic programs. He proposed an extension of Smullyan’s tableaux-style proof method to

bilattice-valued programs, and showed that this method is sound and complete with respect to a

natural generalization of van-Emden and Kowalski’s operator ([Fi90a, Fi91]). Fitting also intro-

duced a multi-valued fixed-point operator that generalizes the Gelfond-Lifshitz operator ([GL88])

for providing bilattice-based stable models and well-founded semantics for logic programs ([Fi93]).

Bilattices have also been found useful for combining distributed knowledge ([Me97]), temporal

reasoning ([FM93]), natural language processing ([NF98]), and model-based diagnostics ([Gi88]).

19



Bilattices, and in particular a special family of them, called logical bilattices, will be our main

semantical tool here. The existence of elements that intuitively represent lack of knowledge and

contradictions, as well as the idea of ordering data according to degrees of knowledge, suggest that

these structures should be particularly suitable for our purpose. In almost all of their applications

so far the role of bilattices was algebraic in nature. One of our major objectives is to introduce

a new stage in the use of bilattices by constructing logics (i.e. consequence relations) that are

based on them. Our major concern will be to recapture within this multi-valued framework

classical reasoning (where its use is appropriate), as well as some standard non-monotonic and

paraconsistent methods. In particular, we incorporate a concept first introduced by McCarthy

([Mc80]) and later by Shoham ([Sh87, Sh88]) of using a set of preferential models of a given theory

for making inferences. The essential idea is that only a subset of the possible models should be

relevant for making inferences from a given theory. These models are the most preferred ones

according to conditions that can be specified syntactically by a set of (usually second-order)

propositions, or semantically by using some order on the set of models of the theory that reflects

the desired preference.

We then examine the usefulness of the resulting inference mechanisms in some concrete appli-

cations. Specifically, we consider diagnostic systems for handling faulty devices, and an algorithm

for efficient information retrieval from stratified knowledge-bases.

The outcome of this work is, we believe, firm evidence that multiple-valued semantics together

with few other syntactical and semantical considerations (e.g., specifications of general properties

that a plausible consequence relation for reasoning with uncertainty should meet, and an appro-

priate criterion for making preferences among models of a given theory) allow us to define new

formalisms that are both simple and particularly suitable for reasoning with uncertainty. This is

the underlying idea of this work.

20



The organization of this work

As we have noted above, the purpose of this work is to develop a framework that provides simple

and powerful formalisms for reasoning with uncertainty. This work is organized accordingly:

In the first part we introduce our framework, in the second part we develop several formalisms

(for different purposes) that are based on this framework, and in the last part we consider some

possible applications based on these formalisms. A more detailed description of the structure of

this work follows:

Part I – The Logical Framework

This part introduces the general framework used here. It consists of four chapters:

1. General patterns for uncertain reasoning: We begin with an abstract study of the

conditions that a useful relation for reasoning with uncertainty should satisfy. For

this we consider the general patterns for nonmonotonic reasoning proposed by Gabbay

([Ga85]), Kraus, Lehman, Magidor ([KLM90, LM92]), Makinson ([Ma89, Ma94]), and

others. Then we introduce a sequence of generalizations of these works, which allow the

use of a monotonic nonclassical logic as the underlying logic upon which nonmonotonic

reasoning with uncertainty can be based.

2. Bilattices – General overview: In this chapter we consider a semantical counterpart

of the syntactical approach given in Chapter 1, and use bilattices as our basic seman-

tical tool. This chapter is mainly devoted to describe and motivate the use of these

structures, and to review some of their algebraic properties.

3. Logical bilattices: In this chapter, which is a continuation of the semantical study of

Chapter 2, we consider bilattices from a logical point of view. For this purpose we

introduce a special family of bilattices, called logical bilattices, and examine its main

properties.

4. Satisfiability and Expressiveness: This chapter completes the presentation of our

framework. It contains some basic semantical and syntactical notions that have not

been dealt with so far. Specifically, we generalize in the multiple-valued case some
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classical notions, present the languages that we are using here, and consider their

expressive power.

Part II – Reasoning with uncertainty

Here we use the framework introduced previously for our primary goal, i.e. reasoning with

uncertainty. This part consists of three chapters:

1. The basic logic of logical bilattices: In the first chapter of Part II we consider the most

natural family of logics that are based on logical bilattices, and show their usefulness

for reasoning with uncertainty. In particular, we investigate the main properties of

these logics, and provide Gentzen-type and Hilbert-type bilattice-based proof systems

for them. We also show that besides the appealing properties of these logics, they also

have some substantial drawbacks. In the following chapters we therefore refine the

inference process of the basic logics, so that the resulting logics will be more suitable

for reasoning with uncertainty.

2. Bilattice-based paraconsistent logics: This is the first of two chapters in which we

consider the two kinds of techniques for reasoning with inconsistency previously men-

tioned. In this chapter we examine paraconsistent theories. In particular, we char-

acterize some bilattice-based paraconsistent consequence relations, show their corre-

spondence to the general patterns of uncertain reasoning considered in Chapter 1, and

relate them to some other approaches of paraconsistent reasoning.

3. Consistency-based formalisms: Here we develop coherent formalisms for reasoning

with uncertainty, using the same methodology as the previous chapters. In particular,

Shoham’s notion of preferential models [Sh87, Sh88] and logical bilattices still serve

as the basic semantical foundations of the formalisms developed here. In addition, we

consider the use of these approaches for theories in which the formulae are prioritized,

and compare the results to some related consistency-based methods.

Part III – Applications

In the last part we investigate two possible applications of the formalisms discussed in Part

II.
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1. Recovery of stratified knowledge-bases: It is well-known that problems like those un-

der consideration are generally highly complex. In this chapter we consider a special

(nevertheless common) family of knowledge-bases (called stratified knowledge-bases),

which have a special structure, and show how we can practically apply our approaches

for managing uncertainty in such knowledge-bases. In particular, we provide an algo-

rithm for identifying stratified knowledge-bases and for efficiently recovering consistent

data from them.

2. Model-based diagnostics: The primary goal of diagnostic systems is to explain the dif-

ferences between the operation of faulty devices and the way in which they are suppose

to behave. Thus, such systems should be able to cope with ambiguous situations. This

makes these systems good candidates to be treated in our framework. In this chapter

we study the correspondence between basic concepts of this area (see [HCdK92]) and

our notions. We also show how such systems can be implemented in our framework.

In the last chapter we summarize the issues addressed in the sequel, review the main results,

and consider some further work.

The structure of this work is shown in the figure at the end of this section.

Finally, a technical note: In order to make the presentation of this work complete and self-

contained, there are sometimes repetitions, together with the appropriate references of some

propositions and short proofs that have already appeared elsewhere. Propositions without refer-

ences are therefore either new, or have appeared in a paper in which I am a co-author. A list of

these papers appears in Appendix C. 2

2Although this work summarizes the material presented in the papers that appear in Appendix C, there is no
complete correlation between the content of this work and that of the papers in Appendix C; Some of the material
that has appeared in those papers is omitted here, whereas some parts of this work have not been presented
elsewhere.
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Chapter 1

General Patterns for Uncertain
Reasoning

1.1 Introduction

As we have noted in the introduction of this work, reasoning with uncertainty is related to the

ability of making “rational conclusions” from data that might be either inconsistent or incomplete

(or both, of course). This is further related to other desirable properties in commonsense reason-

ing, such as nonmonotonicity, paraconsistency, coherence, etc. A first step toward a definition of

a “plausible” framework for reasoning with uncertainty is therefore to formulate these properties

from an abstract point of view.

In this chapter we consider, on a purely syntactical level, conditions that specify what a

consequence relation for reasoning with uncertainty should look like. To do so, we consider a

sequence of generalizations of the pioneering works of Gabbay [Ga85, Ga91], Kraus, Lehmann,

Magidor [KLM90], and Makinson [Ma89]. These generalizations are based on the following ideas:

• Each nonmonotonic logical system is based on some underlying monotonic one.

• The underlying monotonic logic should not necessarily be classical logic, but should be

chosen according to the intended application. If, for example, inconsistent data is not to

be totally rejected, then an underlying paraconsistent logic might be a better choice than

classical logic.

• The more significant logical properties of the main connectives of the underlying mono-

tonic logic, especially conjunction and disjunction (which have crucial roles in monotonic

27
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consequence relations), should be preserved as far as possible.

• On the other hand, the conditions that define a certain class of nonmonotonic systems should

not assume anything concerning the language of the system (in particular, the existence of

appropriate conjunction or disjunction should not be assumed).

Our sequence of generalizations culminates in what we call (following [Le92]) plausible non-

monotonic consequence relations. We believe that this notion indeed captures the intuitive idea

of “correct” reasoning with uncertainty.

1.2 The standard basic theory – A general overview

In the sequel we will denote atomic formulae are by small Latin letters from the middle of the

alphabet (p, q, r, sometimes with subscripts), and complex formulae are denoted by small Greek

letters (ψ, φ, τ , etc.). Sets of formula will usually be denoted by the symbols Γ and ∆. Given a set

Γ of formulae, we shall write A(Γ) to denote the set of the atomic formulae that occur in Γ. L(Γ)

denotes the set of the literals (i.e., atomic formulae or their negations) that occur in Γ. In what

follows we will sometimes write A(Γ,∆) instead of A(Γ∪∆) or A(Γ)∪A(∆); Similarly for L(Γ,∆).

The language that is considered in [Ma89, KLM90] is based on the standard propositional

one. Here, ; denotes the material implication (i.e., ψ ; φ = ¬ψ ∨ φ) and ! denotes the

corresponding equivalence operator (i.e., ψ!φ = (ψ;φ)∧(φ;ψ)). The classical propositional

language, with the connectives ¬, ∨, ∧, ;, !, and with a propositional constant t, is denoted

here by Σprop. An arbitrary language is denoted by Σ.

Definition 1.1 [KLM90] Let `cl be the classical consequence relation. A binary relation1 |∼′

between formulae in Σprop is called cumulative if it is closed under the following inference rules:

reflexivity: ψ |∼′ψ.

cautious monotonicity: if ψ |∼′φ and ψ |∼′ τ , then ψ∧φ |∼′ τ .

cautious cut: if ψ |∼′φ and ψ∧φ |∼′ τ , then ψ |∼′ τ .

left logical equivalence: if `clψ!φ and ψ |∼′ τ , then φ |∼′ τ .

right weakening: if `clψ;φ and τ |∼′ψ, then τ |∼′φ.

1A “conditional assertion” in terms of [KLM90].
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Definition 1.2 [KLM90] A cumulative relation |∼′ is called preferential if it is closed under the

following rule:

∨-introduction (Or): if ψ |∼′ τ and φ |∼′ τ , then ψ∨φ |∼′ τ .

Note: In order to distinguish between the rules of Definitions 1.1, 1.2, and their generalized

versions that will be considered in the sequel, the condition above will usually be preceded by

the string “KLM”. Also, a relation that satisfies the rules of Definition 1.1 [Definition 1.2] will

sometimes be called KLM-cumulative [KLM-preferential].

The conditions above might look a little-bit ad-hoc. For example, one might ask why ;

is used on the right, while the stronger ! is on the left. A discussion and some justification

appears in [KLM90, LM92].2 A stronger intuitive justification will be given below, using more

general frameworks.

1.3 Generalizations

In the sequel we will consider several generalizations of the basic theory presented above:

1. In their formulation, [Ma89, KLM90, KL92, Ma94] consider the classical setting, i.e. the

basic language is that of the classical propositional calculus (Σprop), and the basic entailment

relation is the classical one (`cl). Our first generalization concerns with an abstraction

of the syntactic components and the entailment relations involved: Instead of using the

classical entailment relation `cl as the basis for definitions of cumulative nonmonotonic

entailment relations, we allow the use of any entailment relation which satisfies certain

minimal conditions.

2. The next generalization is to use Tarskian consequence relations instead of entailment re-

lations (i.e., we consider the use of a set of premises rather than a single one). These

consequence relations should satisfy some minimal conditions concerning the availability

of certain connectives in their language. Accordingly, we consider cumulative and prefer-

2Systems that satisfy the conditions of Definitions 1.1, 1.2, as well as other related systems, are also considered
in [FLM91, Ma94, Sc96, Le98].
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ential nonmonotonic consequence relations that are based on those Tarskian consequence

relations.

3. We further extend the class of Tarskian consequence relations on which nonmonotonic

relations can be based by removing almost all the conditions on the language. The definition

of the corresponding notions of a cumulative and a preferential nonmonotonic consequence

relation is generalized accordingly.

4. Our final generalization is to allow relations with multiple conclusions rather than the single

conclusion ones. Within this framework all the conditions on the language can be removed.

1.4 Entailment relations and cautious entailment relations

Definition 1.3 A basic entailment is a binary relation |
1

− between formulae that satisfies the

following conditions:3 4 5

1R 1-reflexivity: ψ |
1

−ψ.

1C 1-cut: if ψ |
1

−τ and τ |
1

−φ then ψ |
1

−φ.

Next we generalize the propositional connectives used in the original systems:

Definition 1.4 Let |
1

− be some basic entailment.

a) A connective ∧ is a combining conjunction (w.r.t. |
1

−) if it satisfies the following condition:

τ |
1

−ψ∧φ iff τ |
1

−ψ and τ |
1

−φ.

b) A connective ∨ is a combining disjunction (w.r.t. |
1

−) if it satisfies the following condition:

ψ∨φ |
1

−τ iff ψ |
1

−τ and φ |
1

−τ .

From now on, unless otherwise stated, we assume that |
1

− is a basic entailment, and ∧ is a

combining conjunction w.r.t. |
1

−.

3The “1” means that exactly one formula should appear on both sides of this relation.
4It could have been convenient to assume also that |

1

− is closed under substitutions of equivalents, (see Lemma
1.12), but here we allow cases in which this is not the case.

5These conditions mean, actually, that basic entailment induces a category in which the objects are formulae.
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Definition 1.5

a) A connective ∨ is a ∧-combining disjunction (w.r.t. |
1

−) if it is a combining disjunction, and

σ∧(ψ∨φ) |
1

−τ iff σ∧ψ |
1

−τ and σ∧φ |
1

−τ .

b) A connective ⊃ is a ∧-internal implication (w.r.t. |
1

−) if it satisfies the following condition:

τ∧ψ |
1

−φ iff τ |
1

−ψ⊃φ.

c) A constant t is called a ∧-internal truth (w.r.t. |
1

−) if it satisfies the following condition:

ψ∧t |
1

−φ iff ψ |
1

−φ.

Definition 1.6

a) A formula τ is a conjunct of a formula ψ if ψ= τ , or if ψ=φ1∧φ2 and τ is a conjunct of

either φ1 or φ2.

b) For every 1≤ i≤n ψi is called a semiconjunction of ψ1,. . ., ψn; If ψ′ and ψ′′ are semicon-

junctions of ψ1,. . ., ψn then so is ψ′∧ψ′′.

c) A conjunction of ψ1,. . ., ψn is a semiconjunction of ψ1,. . ., ψn in which every ψi appears at

least once as a conjunct.

Lemma 1.7 (Basic properties of |
1

− and ∧)

a) |
1

− is monotonic: If ψ |
1

−τ then ψ∧φ |
1

−τ and φ∧ψ |
1

−τ .

b) If τ is a conjunct of ψ then ψ |
1

−τ .

c) If ψ is a conjunction of ψ1,. . ., ψn and ψ′ is a semiconjunction of ψ1,. . ., ψn then ψ |
1

−ψ′.

d) If ψ and ψ′ are conjunctions of ψ1,. . ., ψn then ψ and ψ′ are equivalent: ψ |
1

−ψ′ and ψ′ |
1

−ψ.

e) If ψ |
1

−φ and ψ∧φ |
1

−τ then ψ |
1

−τ .

Proof: For part (a), suppose that ψ |
1

− τ . By 1-reflexivity, ψ∧φ |
1

−ψ∧φ. Since ∧ is a combining

conjunction, ψ∧φ |
1

−ψ. A 1-cut with ψ |
1

−τ yields ψ∧φ |
1

−τ . The case of φ∧ψ is similar. Part (b) is

shown by induction on the structure of ψ, using part (a). Part (c) follows from (b) by induction

on the structure of ψ′. Part (d) follows from (c). Finally, for part (e), suppose that ψ |
1

−φ and
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ψ∧φ |
1

−τ . By 1-reflexivity, ψ |
1

−ψ, and since ∧ is a combining conjunction ψ |
1

−ψ∧φ. A 1-cut with

ψ∧φ |
1

−τ yields ψ |
1

−τ . 2

Notation 1.8 Let Γ={ψ1, . . . , ψn}. Then ∧Γ and ψ1∧ . . .∧ψn will both denote any conjunction

of all the formulae in Γ.

Note: Because of Lemma 1.7 (especially part (d)), there will be no importance to the order

according to which the conjunction of elements of Γ is taken in those cases below in which we use

Notation 1.8.

Notation 1.9 ψ ≡ φ = (ψ ⊃ φ) ∧ (φ ⊃ ψ).

Lemma 1.10 (Basic properties of |
1

− and ⊃, t) Let ⊃ be a ∧-internal implication w.r.t. |
1

− and

let t be a ∧-internal truth w.r.t. |
1

−. Then:

a) If t |
1

−τ then φ |
1

−τ .

b) ψ |
1

− t for every formula ψ.

c) ψ∧φ |
1

−τ iff φ |
1

−ψ⊃τ .

d) ψ |
1

−φ iff t |
1

−ψ⊃φ. Also, ψ |
1

−φ and φ |
1

−ψ iff t |
1

−ψ≡φ.

e) If τ |
1

−ψ⊃φ then t |
1

−(τ∧ψ)⊃(τ∧φ); If τ |
1

−ψ≡φ then t |
1

−(τ∧ψ)≡(τ∧φ).

f) If ψ1, ψ2 are conjunctions of the same set of formulae then t |
1

−ψ1≡ψ2.

g) If ψ |
1

−φ and ψ |
1

−φ⊃τ then ψ |
1

−τ .

Proof:

a) Suppose that t |
1

−τ . By Lemma 1.7(a), φ∧t |
1

−τ . Since t is a ∧-internal truth, φ |
1

−τ .

b) By 1-reflexivity, ψ∧t |
1

− t, and so, since t is a ∧-internal truth, ψ |
1

− t.

c) Suppose that ψ∧φ |
1

−τ . By Lemma 1.7(d) φ∧ψ |
1

−ψ∧φ. A 1-cut with ψ∧φ |
1

−τ yields φ∧ψ |
1

−τ ,

and since ⊃ is an ∧-internal implication, φ |
1

−ψ⊃τ . The proof of the other direction is similar.

d) If τ |
1

− ψ ⊃ φ, then τ ∧ψ |
1

− φ. By Lemma 1.7(a), τ ∧ψ |
1

− τ . Thus τ ∧ψ |
1

− τ ∧φ (combining

conjunction), and so τ∧ψ∧t |
1

−τ∧φ (Lemma 1.7(d)). By Part (c) it follows, that t |
1

−(τ∧ψ)⊃(τ∧φ).
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e) If τ |
1

− ψ ⊃ φ, then τ ∧ψ |
1

− φ. By Lemma 1.7(a), τ ∧ψ |
1

− τ . Thus τ ∧ψ |
1

− τ ∧φ (combining

conjunction), and so t |
1

−(τ∧ψ)⊃(τ∧φ) by part (d).

f) By Lemma 1.7(d) and Lemma 1.10(d).

g) Assume that ψ |
1

−φ and ψ |
1

−φ⊃τ . Since ⊃ is an ∧-internal implication, the second assumption

implies that ψ∧φ |
1

−τ . By Lemma 1.7(e), then, ψ |
1

−τ . 2

Lemma 1.11 Let ∨ be a combining disjunction w.r.t. |
1

−.

a) ∨ is a ∧-combining disjunction iff the following distributive law obtains:

φ ∧ (ψ1 ∨ ψ2) |
1

− (φ ∧ ψ1) ∨ (φ ∧ ψ2)

b) If |
1

− has a ∧-internal implication then ∨ is a ∧-combining disjunction.

Proof: Part (a) is based on the facts that ψ |
1

−ψ∨φ, φ |
1

−ψ∨φ, ψ∧φ |
1

−ψ, and ψ∧φ |
1

−φ (see the

proof of Lemma 1.7(a)). We leave the details to the reader. Part (b) follows from (a), since it is

easy to see that if |
1

− has a ∧-internal implication then the above distributive law holds. 2

Note: It is easy to see that the converse of the distributive law above, i.e. that

(φ ∧ ψ1) ∨ (φ ∧ ψ2) |
1

− φ ∧ (ψ1 ∨ ψ2)

is true whenever ∧ and ∨ are, respectively, a combining conjunction and a combining disjunction

w.r.t. |
1

−.

Lemma 1.12 Let ⊃ and t be as in Lemma 1.10 and let ∨ be a combining disjunction w.r.t. |
1

−.

Let Ψ(p1,. . ., pn) be a formula in the language of {∧,∨,⊃, t} and A(Ψ) = {p1,. . .pn}. Denote by

Ψ(τ/p) the formula obtained from Ψ by substituting τ for every occurrence of p. Suppose that

ψi |
1

−φi and φi |
1

−ψi for i=1,. . ., n. Then:

a) Ψ(ψ1/p1,. . ., ψn/pn) |
1

−Ψ(φ1/p1,. . ., φn/pn).

b) Ψ(ψ1/p1,. . ., ψn/pn) |
1

−τ iff Ψ(φ1/p1,. . ., φn/pn) |
1

−τ .

c) τ |
1

−Ψ(ψ1/p1,. . ., ψn/pn) iff τ |
1

−Ψ(φ1/p1,. . ., φn/pn).
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Proof: The proof of part (a) is by an induction on the structure of Ψ. For parts (b) and (c) note

that if ψ |
1

−φ and φ |
1

−ψ then by 1-cut τ |
1

−ψ iff τ |
1

−φ and ψ |
1

−τ iff φ |
1

−τ . This, together with part

(a), entail parts (b) and (c).6 2

Definition 1.13 Suppose that a language Σ of a basic entailment |
1

− contains a combining con-

junction ∧, a ∧-internal implication ⊃, and a ∧-internal truth t. A binary relation |
1

∼ between

formulae in Σ is called {∧,⊃, t, |
1

−}-cumulative if it satisfies the following conditions:

ψ |
1

∼ψ.

if ψ |
1

∼φ and ψ |
1

∼τ , then ψ∧φ |
1

∼τ .

if ψ |
1

∼φ and ψ∧φ |
1

∼τ , then ψ |
1

∼τ .

if t |
1

−ψ≡φ and ψ |
1

∼τ , then φ |
1

∼τ .

if t |
1

−ψ⊃φ and τ |
1

∼ψ, then τ |
1

∼φ.

Note: In our notations, a KLM-cumulative relation (Definition 1.1) is {∧,;, t,`cl}-cumulative.

Lemma 1.10(d) allows us to further generalize the notion of a cumulative relation so that only

the availability of a combining conjunction is assumed:

Definition 1.14 A binary relation |
1

∼ between formulae is called {∧, |
1

−}-cumulative if it satisfies

the following conditions:

1R 1-reflexivity: ψ |
1

∼ψ.

1CM 1-cautious monotonicity: if ψ |
1

∼φ and ψ |
1

∼τ , then ψ∧φ |
1

∼τ .

1CC 1-cautious cut: if ψ |
1

∼φ and ψ∧φ |
1

∼τ , then ψ |
1

∼τ .

1LLE 1-left logical equivalence: if ψ |
1

−φ and φ |
1

−ψ and ψ |
1

∼τ , then φ |
1

∼τ .

1RW 1-right weakening: if ψ |
1

−φ and τ |
1

∼ψ, then τ |
1

∼φ.

6The availability of combining disjunction, for example, is needed in the proof only for formulae that contain
it. Similarly for ⊃ and t.
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If, in addition, ∨ is a ∧-combining disjunction w.r.t. |
1

−, and |
1

∼ satisfies the following rule:

1Or 1-∨ introduction: if ψ |
1

∼τ and φ |
1

∼τ , then ψ∨φ |
1

∼τ .

then |
1

∼ is called {∨,∧, |
1

−}-preferential .

Proposition 1.15 Let ⊃ be a ∧-internal implication w.r.t. |
1

− and let t be a ∧-internal truth

w.r.t. |
1

−. Then a relation is {∧,⊃, t, |
1

−}-cumulative iff it is {∧, |
1

−}-cumulative.

Proof: Follows easily from Lemma 1.10. 2

Note: From the note after Definition 1.13 and the last proposition it follows that in a lan-

guage containing Σprop, |
1

∼ is a KLM-preferential relation (Definition 1.2) iff it is {∨,∧,;, t,`cl}-

preferential.

Proposition 1.16 Every {∧, |
1

−}-cumulative relation |
1

∼ is an extension of its corresponding basic

entailment: If ψ |
1

−φ then ψ |
1

∼φ.

Proof: By 1RW of ψ |
1

−φ and ψ |
1

∼ψ. 2

Proposition 1.17 Let |
1

∼ be a {∧, |
1

−}-cumulative relation. Then:

a) ∧ is a combining conjunction also w.r.t. |
1

∼: τ |
1

∼ψ∧φ iff τ |
1

∼ψ and τ |
1

∼φ.

b) If t is a ∧-internal truth w.r.t. |
1

− then it is also a ∧-internal truth w.r.t. |
1

∼:

ψ∧t |
1

∼φ iff ψ |
1

∼φ.

Proof:

a) (⇐): Suppose that τ |
1

∼ ψ and τ |
1

∼ φ. Then by 1CM, [1]: τ ∧ψ |
1

∼ φ. On the other hand, by

Lemma 1.7(c), τ∧ψ∧φ |
1

−ψ∧φ, and so by Proposition 1.16, [2]: τ∧ψ∧φ |
1

∼ψ∧φ. A 1CC, of [1] and

[2] yields τ∧ψ |∼ψ∧φ. Another 1CC with τ |
1

∼ψ yields that τ |
1

∼ψ∧φ.

(⇒): Suppose that τ |
1

∼ψ∧φ. By Lemma 1.7(c), τ∧(ψ∧φ) |
1

−ψ. By Proposition 1.16 τ∧(ψ∧φ) |
1

∼ψ.

A 1CC with τ |
1

∼ψ∧φ yields that τ |
1

∼ψ. Similarly, if τ |
1

∼ψ∧φ then τ |
1

∼φ.

b) By Lemma 1.10(b) and Proposition 1.16, ψ |
1

∼ t. Now, suppose that ψ |
1

∼φ. A 1CM with ψ |
1

∼ t
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yields ψ∧t |
1

∼φ. For the converse, assume that ψ∧t |
1

∼φ. A 1CC with ψ |
1

∼ t yields ψ |
1

∼φ. 2

Note: Unlike ∧ and t, in general ⊃ and ∨ do not always remain a ∧-internal implication and a

combining disjunction w.r.t |
1

∼. Counter-examples will be given in Chapter 6 (see Notes 2,3 after

Proposition 6.27).

It is possible to strengthen the conditions in Definition 1.14 as follows:

s-1R strong 1R: if ψ is a conjunct of γ then γ |
1

∼ψ.

s-1RW strong 1RW: if τ∧ψ |
1

−φ and τ |
1

∼ψ, then τ |
1

∼φ.

Our next goal is to show that these stronger versions are really valid for any {∧, |
1

−}-cumulative

relation. Moreover, each property is in fact equivalent to the corresponding property under certain

conditions, which are specified below.

Proposition 1.18

a) 1RW and s-1RW are equivalent in the presence of 1R and 1CC.

b) 1RW and s-1R are equivalent in the presence of 1R, 1CC, and 1LLE.

Proof:

a) For showing that s-1RW implies 1RW assume that τ |
1

∼ψ and t |
1

−ψ⊃φ. By Lemma 1.10(a),

τ |
1

− ψ ⊃ φ. By s-1RW with τ |
1

∼ ψ, then, τ |
1

∼ φ. For the converse assume that τ ∧ψ |
1

− φ. By

Proposition 1.16 (the proof of which uses only 1R and 1RW), τ∧ψ |
1

∼φ. A 1CC with τ |
1

∼ψ yields

τ |
1

∼φ.

b) Suppose that ψ |
1

− φ and τ |
1

∼ψ. From Lemma 1.7 it easily follows that the first assumption

entails that τ∧ψ∧φ |
1

−τ∧ψ and τ∧ψ |
1

−τ∧ψ∧φ. By s-1R, τ∧ψ∧φ |
1

∼φ. A 1LLE of the last three

sequents yields τ∧ψ |
1

∼φ. Finally, by 1CC with τ |
1

∼ψ we get τ |
1

∼φ. In the other direction s-1R is

obtained from 1RW as follows: Let ψ be a conjunct of γ. By Lemma 1.7(b) γ |
1

−ψ. A 1RW with

γ |
1

∼γ yields that γ |
1

∼ψ. 2
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Corollary 1.19

a) s-1R and s-1RW are equivalent in the presence of 1R, 1CC, and 1LLE.

b) A relation is {∧, |
1

−}-cumulative if it satisfies s-1R, 1LLE, 1CM, and 1CC.

Proof: Immediate from Proposition 1.18 and the fact that s-1R entails 1R. 2

1.5 Tarskian consequence relations and Tarskian cautious conse-
quence relations

The next step in our generalizations is to allow several premises on the l.h.s. of the consequence

relations. In the rest of this chapter we assume that Γ,∆ are finite sets of formulae.

Definition 1.20

a) A (ordinary) Tarskian consequence relation [Ta41] (tcr , for short) is a binary relation `

between sets of formulae and formulae that satisfies the following conditions: 7

s-TR strong T-reflexivity: Γ`ψ for every ψ∈Γ.

TM T-monotonicity: if Γ`ψ and Γ⊆Γ′ then Γ′`ψ.

TC T-cut: if Γ1`ψ and Γ2, ψ`φ then Γ1,Γ2`φ.

b) A Tarskian cautious consequence relation (tccr , for short) is a binary relation |∼ between

sets of formulae and formulae in a language Σ that satisfies the following conditions:8

s-TR strong T-reflexivity: Γ |∼ψ for every ψ∈Γ.

TCM T-cautious monotonicity: if Γ |∼ψ and Γ |∼φ, then Γ, ψ |∼φ.

TCC T-cautious cut: if Γ |∼ψ and Γ, ψ |∼φ, then Γ |∼φ.

Proposition 1.21 Any tccr |∼ is closed under the following rules for every n:

TCM[n] if Γ |∼ψi (i=1,. . ., n) then Γ, ψ1, . . . , ψn−1 |∼ψn.

TCC[n] if Γ |∼ψi (i=1,. . ., n) and Γ, ψ1, . . . ψn |∼φ, then Γ |∼φ.

7The prefix “T” denotes that these are Tarskian rules.
8A set of conditions which is similar to the one below has been proposed in [Ga91], except that instead of

cautious cut Gabbay uses T-cut.
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Proof: We show closure under TCM[n] by induction on n. The case n=1 is trivial, and TCM[2]

is simply TCM. Now, assume that TCC[n] is valid and Γ |∼ψi (i=1, . . . , n+1). By induction hy-

pothesis Γ, ψ1, . . . , ψn−1 |∼ψn and Γ, ψ1, . . . , ψn−1 |∼ψn+1. Hence Γ, ψ1, . . . , ψn |∼ψn+1 by TCM.

The proof of TCC[n] is also by induction on n. TCC[1] is just TCC. Assume now that Γ |∼ ψi
(i= 1, . . . , n+1) and Γ, ψ1, . . . ψn, ψn+1 |∼ φ. By TCM[n+1] Γ, ψ1, . . . , ψn |∼ψn+1. A TCC of the

last two sequents gives Γ, ψ1, . . . ψn |∼φ. Hence Γ |∼φ by induction hypothesis. 2

The following definition is the multiple-assumptions analogue of Definition 1.4:

Definition 1.22 Let ` be relation between a set of formulae and a formula in a language Σ.

a) A connective ∧ is a combining conjunction (w.r.t. `) if it satisfies the following condition:

Γ`ψ∧φ iff Γ`ψ and Γ`φ.

b) A connective ∧ is called internal conjunction (w.r.t. `) if it satisfies the following condition:

Γ, ψ∧φ`τ iff Γ, ψ, φ`τ .

c) A connective ∨ is a combining disjunction (w.r.t. `) if it satisfies the following condition:

Γ, ψ∨φ`τ iff Γ, ψ`τ and Γ, φ`τ .

In what follows we assume that ` is a tcr and ∧ is a combining conjunction w.r.t. `.

Lemma 1.23 (Basic properties of ` and ∧)

a) If Γ, ψ`τ then Γ, ψ∧φ`τ .

b) If Γ, ψ`τ then Γ, φ∧ψ`τ .

c) If ψ is a conjunction of ψ1,. . ., ψn and ψ′ is a semiconjunction of ψ1,. . ., ψn then ψ`ψ′.

d) If ψ and ψ′ are conjunctions of ψ1,. . ., ψn then ψ and ψ′ are equivalent: ψ`ψ′ and ψ′`ψ.

e) If Γ 6=∅ then Γ`ψ iff ∧Γ`ψ.

f) ∧ is an internal conjunction w.r.t. `.
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Proof: Similar to that of Lemma 1.7. 2

Our next goal is to generalize the notion of cumulative entailment relation (Definition 1.14).

We shall first do it for consequence relations that have a combining conjunction.

Definition 1.24 A tccr |∼ is called {∧,`}-cumulative if it satisfies the following conditions:

w-TLLE weak T-left logical equivalence: if ψ `φ and φ`ψ and ψ |∼τ , then φ |∼τ .

w-TRW weak T-right weakening: if ψ `φ and τ |∼ψ, then τ |∼φ.

TICR T-internal conjunction reduction: for every Γ 6=∅, Γ |∼ψ iff ∧Γ |∼ψ.

If, in addition, ` has a combining disjunction ∨, and |∼ satisfies

TOr T-∨-introduction: if Γ, ψ |∼τ and Γ, φ |∼τ , then Γ, ψ∨φ |∼τ

then |∼ is called {∨,∧,`}-preferential .

Notes:

1. Because of Proposition 1.23 and w-TLLE, it again does not matter what conjunction of Γ

is used in TICR.

2. Condition TICR is obviously equivalent to the requirement that ∧ is an internal conjunction

w.r.t. |∼ (see Definition 1.22(b)).

Proposition 1.25 In the definition of {∧,`}-cumulative tccr one can replace condition s-TR

with the following weaker condition:

TR T-reflexivity: ψ |∼ψ.

Proof: Let ψ∈Γ. A w-TRW of ∧Γ`ψ and ∧Γ |∼∧Γ yields ∧Γ |∼ψ. By TICR, Γ |∼ψ. 2

We now show that the concept of a {∧,`}-cumulative tccr is equivalent to the notion of

{∧, |
1

−}-cumulative relation:

Definition 1.26 Let |
1

− be a basic entailment with a combining conjunction ∧. Let |
1

∼ be a

{∧, |
1

−}-cumulative relation. Define two binary relations (|
1

−)′ and (|
1

∼)′ between sets of formulae

and formulae in a language Σ as follows:
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a) Γ(|
1

−)′φ iff either Γ 6=∅ and ∧Γ |
1

−φ, or Γ=∅ and ψ |
1

−φ for every ψ.

b) Γ(|
1

∼)′φ iff Γ 6=∅ and ∧Γ |
1

∼φ. 9

Definition 1.27 Let ` be a tcr with a combining conjunction ∧. Suppose that |∼ is a {∧,`}-

cumulative tccr. Define two binary relations (`)∗ and (|∼)∗ between formulae in Σ as follows:

a) ψ (`)∗ φ iff {ψ}`φ.

b) ψ (|∼)∗ φ iff {ψ}|∼φ.

Proposition 1.28 Let |
1

−, |
1

∼, `, and |∼ be as in the last two definitions. Then:

a) (|
1

−)′ is a tcr for which ∧ is a combining conjunction.

b) (|
1

∼)′ is a {∧, (|
1

−)′}-cumulative tccr.

c) (`)∗ is a basic entailment for which ∧ is a combining conjunction.

d) (|∼)∗ is a {∧, (`)∗}-cumulative entailment.

e) ((|
1

−)′)∗ = |
1

−.

f) ((|
1

∼)′)∗ = |
1

∼.

g) If ` is a normal tcr (i.e., if ∀ψ ψ`φ then `φ), then ((`)∗)′ = `.

h) If Γ 6=∅ then Γ ((|∼)∗)′ ψ iff Γ |∼ ψ.

i) If ∨ is a ∧-combining disjunction w.r.t. |
1

− and |
1

∼ satisfies 1Or, then (|
1

∼)′ is {∨,∧,`}-

preferential.

j) If ∨ is a combining disjunction w.r.t. ` and |∼ satisfies TOr, then (|∼)∗ is {∨,∧, |
1

−}-

preferential.

9Since |
1

∼ is {∧, |
1

−}-cumulative, it satisfies, in particular, 1LLE. Hence, the order in which the conjunction of Γ

is taken has no importance (see Lemma 1.7d). Thus (|
1

∼)′ is well-defined.
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Proof: All the parts of the claim are easily verified. We show parts (h) and (i) as examples:

Part (h): Suppose that Γ 6=∅. Then Γ ((|∼)∗)′ ψ iff ∧Γ (|∼)∗ φ iff ∧Γ |∼ φ, iff (by TICR) Γ |∼φ.

Part (i): By part (b) we only need to show that (|
1

∼)′ satisfies TOr. Indeed, assume that

γ1, γ2, . . . , γn, ψ (|
1

∼)′ τ and γ1, γ2, . . . , γn, φ (|
1

∼)′ τ . Then (
∧n
i=1 γi)∧ψ |

1

∼ τ and (
∧n
i=1 γi)∧φ |

1

∼ τ .

By 1-Or, ((
∧n
i=1 γi) ∧ ψ) ∨ ((

∧n
i=1 γi) ∧ φ) |

1

∼ τ . By Lemma 1.11, the note that follows it, and

1-LLE, ((
∧n
i=1 γi) ∧ (ψ ∨ φ) |

1

∼ τ . Thus, γ1, γ2, . . . , γn, ψ ∨ φ (|
1

∼)′ τ . 2

Corollary 1.29 Suppose that |∼ is `cl-cumulative [`cl-preferential]. Define ψ |
1

∼ φ iff ψ |∼ φ.

Then w.r.t. Σprop, |
1

∼ is cumulative [preferential] in the sense of [KLM90] (Definitions 1.1 and

1.2).

We next generalize the definition of a cumulative tccr to make it independent of the existence

of any specific connective in the language. In particular, we do not want to assume anymore that

a combining conjunction is available.

Proposition 1.30 Let ` be a tcr, and let |∼ be a tccr in the same language. The following

connections between ` and |∼ are equivalent:

TCum T-cumulativity: for every Γ 6=∅, if Γ`ψ then Γ |∼ψ.

TLLE T-left logical equivalence: if Γ, ψ `φ and Γ, φ `ψ and Γ, ψ |∼τ , then Γ, φ |∼τ .

TRW T-right weakening: if Γ, ψ `φ and Γ |∼ψ, then Γ |∼φ.

TMiC T-mixed cut: for every Γ 6=∅, if Γ`ψ and Γ, ψ |∼ φ, then Γ |∼φ.

Proof: We show that each property is equivalent to TCum:

TCum ⇒ TLLE: Suppose that Γ, ψ ` φ and Γ, φ ` ψ. By TCum we have that Γ, ψ |∼ φ and

Γ, φ |∼ψ. A T-cautious monotonicity of the first sequent with Γ, ψ |∼ τ yields Γ, ψ, φ |∼ τ , and by

T-cautious cut with Γ, φ |∼ψ we are done.

TLLE ⇒ TCum: Let γ ∈ Γ, and suppose that Γ ` ψ. This entails that Γ, γ ` ψ. Also, by s-R,

Γ, ψ`γ. Since Γ, ψ |∼ψ then by TLLE we have that Γ, γ |∼ψ. But γ∈Γ, so Γ |∼ψ.

TCum ⇒ TRW: Suppose that Γ, ψ`φ. By TCum Γ, ψ |∼φ. TCC with Γ |∼ψ yields Γ |∼φ.

TRW ⇒ TCum: Suppose that Γ 6=∅ and Γ`ψ. Then there exists some γ∈Γ, and so Γ, γ`ψ. By

s-TR, Γ |∼γ, and by TRW Γ |∼ψ.
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TCum ⇒ TMiC: If Γ is a nonempty set of assertions s.t. Γ ` ψ, then by TCum, Γ |∼ ψ. A

T-cautious cut of this sequent and Γ, ψ |∼ φ gives Γ |∼φ.

TMiC ⇒ TCum: Suppose that Γ is a nonempty set of assertions and Γ ` ψ. By T-reflexivity,

Γ, ψ |∼ψ, and by TMiC, Γ |∼ψ. 2

Notes:

1. If there is a formula ψ s.t. |∼ ψ, then one can remove the requirement Γ 6= ∅ from the

definition of TCum. Indeed, suppose that |∼ψ. If `φ then ψ`φ. Since the l.h.s. of the last

entailment is nonempty, then by the original version of Cum, ψ |∼φ, and by TCC with |∼ψ

we have |∼φ. The other direction is, however, not true: Let, for instance, ` be some tcr for

which there exists ψ0 s.t. ` ψ0. Define Γ |∼φ if Γ`φ and Γ 6=∅. It is easy to verify that all

the conditions of Definition 1.20 as well as TCum are valid for this |∼, but 6|∼ψ0.

2. Being the “complement” of TMiC, one might consider TRW as another kind of “mixed cut”.

Definition 1.31 Let ` be a tcr. A tccr |∼ in the same language is called `-cumulative if it

satisfies any of the conditions of Proposition 1.30. If, in addition, ` has a combining disjunction

∨, and |∼ satisfies TOr, then |∼ is called {∨,`}-preferential .

Note: Since Γ ` ψ for every ψ ∈ Γ, TCum implies s-TR, and so a binary relation that satisfies

TCum, TCM, and TCC is a `-cumulative tccr.

Proposition 1.32 Suppose that ` is a tcr with a combining conjunction ∧. A tccr |∼ is a

{∧,`}-cumulative iff it is `-cumulative. If ` has also a combining disjunction ∨, then |∼ is

{∨,∧,`}-preferential iff it is {∨,`}-preferential.

For proving Proposition 1.32 we first show the following lemmas:

Lemma 1.33 Suppose that ` is a tcr with a combining conjunction ∧, and let |∼ be a `-

cumulative tccr. Then
∧n
i=1 ψi |∼φ iff ψ1, ψ2, . . . , ψn |∼φ.

Proof: For the proof we need two simple claims:

Claim 1.33-A: ψ1, ψ2, . . . , ψn |∼
∧n
i=1 ψi.
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Proof: Clearly, ψ1, ψ2, . . . , ψn−1, ψn `
∧n
i=1 ψi and ψ1, ψ2, . . . , ψn−1

∧n
i=1 ψi ` ψn. Now, since

ψ1, ψ2, . . . , ψn−1,
∧n
i=1 ψi |∼

∧n
i=1 ψi, then by TLLE, ψ1, ψ2, . . . , ψn |∼

∧n
i=1 ψi.

Claim 1.33-B: Let 1≤j≤n. Then Γ,
∧n
i=1 ψi |∼φ iff Γ, ψj ,

∧n
i=1 ψi |∼φ.

Proof: (⇒) Follows by applying TLLE on Γ,
∧n
i=1 ψi, ψj `

∧n
i=1 ψi, and Γ,

∧n
i=1 ψi,

∧n
i=1 ψi `ψj ,

and Γ,
∧n
i=1 ψi,

∧n
i=1 ψi |∼φ.

(⇐) By applying TLLE on Γ,
∧n
i=1 ψi, ψj `

∧n
i=1 ψi and Γ,

∧n
i=1 ψi,

∧n
i=1 ψi,`ψj , and Γ, ψj ,

∧n
i=1 ψi

|∼φ, we get that Γ,
∧n
i=1 ψi,

∧n
i=1 ψi |∼φ. Thus Γ,

∧n
i=1 ψi |∼φ.

Lemma 1.33 now easily follows from the above claims: If
∧n
i=1 ψi |∼φ then by repeated applications

of Claim 1.33-B,
∧n
i=1 ψi, ψ1, ψ2, . . . , ψn |∼φ. A T-cautious cut with the property of Claim 1.33-

A yields ψ1, ψ2, . . . , ψn |∼ φ. For the converse suppose that ψ1, ψ2, . . . , ψn |∼ φ. By T-cautious

monotonicity with the property of Claim 1.33-A,
∧n
i=1 ψi, ψ1, ψ2, . . . , ψn |∼φ, and by Claim 1.33-B

(applied n times),
∧n
i=1 ψi |∼φ. 2

Lemma 1.34 Let |∼ be a {∧,`}-cumulative relation. Then |∼ satisfies TRW.

Proof: Suppose that Γ, ψ`φ. By Lemma 1.23(e) (∧Γ)∧ψ`φ. Since (∧Γ) ∧ ψ |∼(∧Γ) ∧ ψ (s-R),

then by w-TRW we have that (∧Γ) ∧ ψ |∼φ. By TICR, Γ, ψ |∼φ, and a TCC with Γ |∼ψ yields

that Γ |∼φ. 2

Note: In fact, we have proved a stronger claim, since in the course of the proof we haven’t used

CM and w-TLLE.

Now we can show Proposition 1.32:

Proof of Proposition 1.32:

(⇐) Suppose that |∼ is a `-cumulative tccr. It obviously satisfies w-TLLE and w-TRW (take

Γ = ∅ and Γ = {τ}, respectively). Lemma 1.33 shows that |∼ also satisfies TICR. Thus |∼ is a

{∧,`}-cumulative tccr.

(⇒) Suppose that |∼ is a {∧,`}-cumulative tccr. By Lemma 1.34 it satisfies TRW, and so it is

`-cumulative.

We leave the second part concerning ∨ to the reader. 2
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Corollary 1.35 Let |∼ be a `-cumulative relation, and let ∧ be a combining conjunction w.r.t.

`. Then ∧ is a combining conjunction w.r.t. |∼ as well.

Proof: For a {∧,`}-cumulative relation the proof is similar to that of Proposition 1.17(a). Hence

the claim follows from Proposition 1.32. 2

Another characterization of `-cumulative tccr which resembles more that of a cumulative

entailment (Definition 1.14) is given in the following proposition:

Proposition 1.36 A relation |∼ is a `-cumulative tccr iff it satisfies TR, TCM, TCC, TLLE and

TRW.

Proof: If |∼ is a `-cumulative tccr then by Proposition 1.30 and the fact that s-TR implies TR,

it obviously has all the above properties. The converse follows from the fact that TRW and s-TR

are equivalent in the presence of TR, TCC, and TLLE. The proof of this fact is similar to that of

Proposition 1.18. 2

1.6 Scott consequence relations and Scott cautious consequence
relations

The last generalization that we consider in this section concerns with consequence relations in

which both the premises and the conclusions may contain more than one formula.

Definition 1.37

a) A Scott consequence relation [Sc74a, Sc74b] (scr , for short) is a binary relation ` between

sets of formulae that satisfies the following conditions:

s-R strong reflexivity: if Γ ∩∆ 6=∅ then Γ`∆.

M monotonicity: if Γ`∆ and Γ⊆Γ′, ∆⊆∆′ then Γ′`∆′.

C cut: if Γ1`ψ,∆1 and Γ2, ψ`∆2 then Γ1,Γ2`∆1,∆2.

b) A Scott cautious consequence relation (sccr , for short) is a binary relation |∼ between

nonempty10 sets of formulae that satisfies the following conditions:

10The condition of non-emptiness is just technically convenient here. It is possible to remove it with the expense
of complicating somewhat the definitions and propositions. It is preferable instead to employ (whenever necessary)
the propositional constants t and f to represent the empty l.h.s. and the empty r.h.s., respectively.
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s-R strong reflexivity: if Γ ∩∆ 6=∅ then Γ |∼∆.

CM cautious monotonicity: if Γ |∼ψ and Γ |∼∆ then Γ, ψ |∼∆.

CC[1] cautious 1-cut: if Γ |∼ψ and Γ, ψ |∼∆ then Γ |∼∆.

The following definition is a natural analogue for the multiple-conclusion case of Definition

1.22: 11

Definition 1.38 Let ` be a relation between sets of formulae.

a) A connective ∧ is a combining conjunction (w.r.t. `) if it satisfies the following conditions:

Γ`ψ∧φ,∆ iff Γ`ψ,∆ and Γ`φ,∆.

b) A connective ∧ is an internal conjunction (w.r.t. `) if it satisfies the following conditions:

Γ, ψ∧φ`∆ iff Γ, ψ, φ`∆.

c) A connective ∨ is a combining disjunction (w.r.t. `) if it satisfies the following conditions:

Γ, ψ∨φ ` ∆ iff Γ, ψ`∆ and Γ, φ`∆.

d) A connective ∨ is an internal disjunction (w.r.t. `) if it satisfies the following conditions:

Γ`ψ∨φ,∆ iff Γ`ψ, φ,∆.

Note: Again, it can be easily seen that if ` is an scr then ∧ is an internal conjunction iff it is a

combining conjunction, and similarly for ∨. This, however, is not true in general.

A natural requirement from a Scott cumulative consequence relation is that its single-conclusion

counterpart will be a Tarskian cumulative consequence relation. Such a relation should also use

disjunction on the r.h.s. like it uses conjunction on the l.h.s. The following definition formalizes

these requirements.

Definition 1.39 Let ` be an scr with a combining disjunction ∨. A relation |∼ between nonempty

finite sets of formulae is called {∨,`}-cumulative sccr if it is an sccr that satisfies the following

two conditions:

11This definition is taken from [Av91b]. Definitions 1.4 and 1.22 are obvious adaption of it.
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a) Let `T and |∼T be, respectively, the single-conclusion counterparts of ` and |∼ (i.e., Γ`Tψ

iff Γ`{ψ} and Γ |∼Tψ iff Γ |∼{ψ}). Then `T is a tcr and |∼T is a `T-cumulative tccr.

b) For ∆={ψ1, . . . , ψn}, denote by ∨∆ (or by ψ1∨ . . .∨ψn) any disjunction of all the formulae

in ∆.12 Then for every ∆ 6=∅, |∼ satisfies the following property: 13

IDR internal disjunction reduction: Γ |∼∆ iff Γ |∼∨∆.

Following the line of what we have done in the previous section, we next specify conditions

that are equivalent to those of Definition 1.39, but are independent of the existence of any specific

connective in the language. In particular, we do not want to assume anymore that a combining

disjunction is available:

Definition 1.40 Let ` be an scr. An sccr |∼ in the same language is called weakly `-cumulative

if it satisfies the following conditions:

Cum cumulativity: if Γ,∆ 6=∅ and Γ`∆, then Γ |∼∆.

RW[1] right weakening: if Γ, ψ`φ and Γ |∼ψ,∆ then Γ |∼φ,∆.

RM right monotonicity: if Γ |∼∆ then Γ |∼ψ,∆.

Notes:

1. Since Γ, ψ`ψ,∆, Cum implies s-R, and so a binary relation that satisfies Cum, CM, CC[1],

RW[1], and RM, is a weakly `-cumulative sccr.

2. Any weakly `-cumulative relation satisfies the following condition:

LLE left logical equivalence: if Γ, ψ`φ and Γ, φ`ψ and Γ, ψ |∼∆ then Γ, φ |∼∆.

Indeed, by Cum on Γ, ψ`φ we have that Γ, ψ |∼φ, and CM with Γ, ψ |∼∆ yields Γ, ψ, φ |∼∆.

Also, since Γ, φ`ψ then by Cum Γ, φ |∼ψ. A CC[1] with Γ, ψ, φ |∼∆ yields Γ, φ |∼∆.

Proposition 1.41 Let ` and ∨ be as in Definition 1.39. A relation |∼ is a {∨,`}-cumulative

sccr iff it is a weakly `-cumulative sccr.

12It easily follows from (a) above and from the properties of ∨ in ` that the order according to which ∨∆ is
taken has no importance here.

13This property is dual to the property of internal conjunction reduction (TICR, see Definition 1.24) of a `-
cumulative tccr.
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Proof: (⇐) Since ` is an scr, `T is obviously a tcr. Also, since |∼ is a weakly `-cumulative sccr,

it satisfies s-R, CM, CC[1], and Cum, thus |∼T obviously satisfies s-TR, TCM, TCC and TCum,

therefore |∼T is a `T-cumulative tccr. It remains to show that |∼ satisfies IDR: Suppose first that

Γ |∼∨∆ for ∆ 6=∅. Since Γ,∨∆`∆, then by Cum, Γ,∨∆ |∼∆. A CC[1] with Γ |∼∨∆ yields Γ |∼∆.

For the converse, we first show that if Γ |∼ψ, φ,∆ then Γ |∼ψ∨φ,∆. Indeed, RW[1] of Γ |∼ψ, φ,∆

and Γ, ψ `ψ∨φ yields Γ |∼ψ∨φ, φ,∆. Another RW[1] with Γ, φ`ψ∨φ yields Γ |∼ψ∨φ, ψ∨φ,∆.

Thus, Γ |∼ψ∨φ,∆. Now, by an induction on the number of formulae in ∆ it follows that if ∆ 6=∅

and Γ |∼∆, then Γ |∼∨∆.

(⇒) Let |∼ be a {∨,`}-cumulative sccr. Suppose that Γ,∆ 6=∅ and Γ`∆. Then Γ`∨∆. Hence

Γ `T ∨∆, and since |∼T is a `T-cumulative tccr, Γ |∼T ∨∆. Thus Γ |∼ ∨∆, and by IDR, Γ |∼∆.

This shows that |∼ satisfies Cum. For RW[1], assume that Γ, ψ`φ and Γ |∼ψ,∆. Since ` is an scr

and ∨ is a combining disjunction for it, the first assumption implies that Γ, ψ∨(∨∆)`φ∨(∨∆).

By IDR the second assumption implies that Γ |∼ ψ∨(∨∆). Hence Γ, ψ∨(∨∆) `T φ∨(∨∆) and

Γ |∼T ψ∨(∨∆). By TRW (see Proposition 1.30) applied to |∼T we get Γ |∼T φ∨(∨∆). Hence

Γ |∼ φ∨(∨∆). By IDR again, Γ |∼ φ,∆. It remains to show that |∼ satisfies RM. Suppose then

that Γ |∼∆ and let δ ∈∆. Then Γ |∼∆, δ, and RW[1] with Γ, δ `ψ∨δ yields Γ |∼ψ∨δ,∆. Using

IDR it easily follows that Γ |∼ψ, δ,∆, and since δ∈∆ we have that Γ |∼ψ,∆. 2

Note: A careful inspection of the proof of Proposition 1.41 shows that if a combining disjunction

w.r.t. ` is available, then RM follows from the other conditions for a weakly `-cumulative sccr.

It follows that in this case, Cum, CM, CC[1], and RW[1] suffice for defining a weakly `-cumulative

sccr.

The last proposition and its proof show, in particular, the following claim:

Corollary 1.42 Let ` be an scr with a combining disjunction ∨, and let |∼ be a weakly `-

cumulative sccr. Then ∨ is an internal disjunction w.r.t. |∼.

Part (a) of the following proposition shows that a similar claim about conjunction also holds:

Proposition 1.43 Let ` be an scr with a combining conjunction ∧, and let |∼ be a weakly

`-cumulative sccr. Then:
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a) ∧ is an internal conjunction w.r.t. |∼. I.e., |∼ satisfies the following property:

ICR internal conjunction reduction: for every Γ 6=∅, Γ |∼∆ iff ∧Γ |∼∆.

b) ∧ is a “half” combining conjunction w.r.t. |∼. I.e, the following rules are valid for |∼:14

[|∼∧]E
Γ |∼ ψ∧φ,∆

Γ |∼ ψ,∆
Γ |∼ ψ∧φ,∆

Γ |∼ φ,∆

Proof:

a) The proof is similar to that of in the Tarskian case (see Lemma 1.33 and Note 2 after Definition

1.40), using ∆ instead of φ.

b) Γ |∼ψ,∆ is obtained by applying RW[1] to Γ |∼ψ∧φ,∆ and Γ, ψ∧φ`ψ. Similarly for Γ |∼φ,∆. 2

Note: Clearly, the condition ICR in part (a) of Proposition 1.43 is equivalent to the following

conditions:

[∧|∼]I
Γ, ψ, φ |∼ ∆

Γ, ψ ∧ φ |∼ ∆
[∧|∼]E

Γ, ψ ∧ φ |∼ ∆

Γ, ψ, φ |∼ ∆

Definition 1.44 Suppose that an scr ` has a combining conjunction ∧. A weakly `-cumulative

sccr |∼ is called {∧,`}-cumulative if it satisfies the following condition:

[|∼∧]I
Γ |∼ ψ,∆ Γ |∼ φ,∆

Γ |∼ ψ∧φ,∆

Corollary 1.45 If ` is an scr with a combining conjunction ∧ and |∼ is a {∧,`}-cumulative sccr,

then ∧ is a combining conjunction w.r.t. |∼ as well.

Proof: Follows from Proposition 1.43(b). 2

As usual, we provide an equivalent notion in which one does not have to assume that a

combining conjunction is available:

Definition 1.46 A weakly `-cumulative sccr |∼ is called `-cumulative if for every finite n the

following condition is satisfied:

RW[n] if Γ |∼ψi,∆ (i=1, . . . , n) and Γ, ψ1, . . . , ψn`φ then Γ |∼φ,∆.

14The subscripts “I” and “E” in the following rules stand for “Introduction” and “Elimination”, respectively.
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Proposition 1.47 Let ∧ be a combining conjunction for `. An sccr |∼ is {∧,`}-cumulative iff

it is `-cumulative.

Proof: We have to show that if ∧ is a combining conjunction w.r.t. `, then RW[n] is equivalent

to [|∼∧]I. Suppose first that |∼ satisfies [|∼∧]I. From Γ |∼ψi,∆ (i=1,. . ., n) it follows, by [|∼∧]I,

that Γ |∼ψ1∧, . . . ,∧ψn,∆. From Γ, ψ1, . . . , ψn`φ it follows that Γ, ψ1∧, . . . ,∧ψn`φ. By a RW[1]

on these two sequents, Γ |∼ φ,∆. For the converse, assume that Γ |∼ψ,∆ and Γ |∼ φ,∆. Since

Γ, ψ, φ`ψ∧φ, RW[2] yields that Γ |∼ψ∧φ,∆. 2

Corollary 1.48 If ` is an scr with a combining conjunction ∧ and |∼ is a `-cumulative sccr,

then ∧ is a combining conjunction and an internal conjunction w.r.t. |∼.

Proof: By Proposition 1.43(a), Corollary 1.45, and Proposition 1.47. 2

Next we consider the dual property, i.e. conditions for assuring that a combining disjunction

∨ w.r.t. an scr ` will remain a combining disjunction w.r.t. a weakly `-cumulative sccr |∼. Note,

first, that one direction of the combining disjunction property for |∼ of ∨ yields monotonicity of

|∼:

Lemma 1.49 Suppose that ∨ is a combining disjunction for ` and |∼ is a weakly `-cumulative

sccr. Suppose also that |∼ satisfies the following condition:

[∨|∼]E
Γ, ψ∨φ |∼ ∆

Γ, ψ |∼ ∆

Γ, ψ∨φ |∼ ∆

Γ, φ |∼ ∆

Then |∼ is (left) monotonic.

Proof: Suppose that Γ |∼ ∆, and let γ ∈ Γ. Then Γ, γ |∼ ∆. Since Γ, γ ` γ∨ψ we have also

Γ, γ |∼ γ∨ψ. Hence, by CM, Γ, γ, γ∨ψ |∼ ∆. By [∨ |∼]E this implies that Γ, γ, ψ |∼ ∆ and so

Γ, ψ |∼∆. 2

It follows that requiring [∨|∼]E from a weakly `-cumulative sccr is too strong. It is reasonable,

however, to require the other direction of the combining disjunction property:
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Definition 1.50 A weakly `-cumulative sccr |∼ is called weakly {∨,`}-preferential if it satisfies

the following condition, (also denoted by [∨|∼]I):

Or left ∨-introduction: if Γ, ψ |∼∆ and Γ, φ |∼∆, then Γ, ψ∨φ |∼∆.

Unlike in the Tarskian case, this time we are able to provide an equivalent condition in which

one does not have to assume that a combining disjunction is available:

Definition 1.51 Let ` be an sccr. A weakly `-cumulative sccr is called weakly `-preferential if

it satisfies the following rule:

CC cautious cut : if Γ |∼ψ,∆ and Γ, ψ |∼∆ then Γ |∼∆.

Proposition 1.52 Let ` be an scr and let |∼ be a weakly `-cumulative sccr. Then |∼ is a weakly

`-preferential sccr iff for every finite n it satisfies cautious n-cut :

CC[n] if Γ, ψi |∼∆ (i=1, . . . , n) and Γ |∼ψ1, . . . , ψn then Γ |∼∆.

Proof: (⇐) We have to show that |∼ satisfies CC. Suppose that ∆={δ1,. . ., δk} for some k≥1.

Since for every 1≤ i≤k we have that Γ, δi |∼∆ and since by assumption Γ, ψ |∼∆, then a cautious

(k+1)-cut of these k+1 sequents with Γ |∼ψ,∆ yields that Γ |∼∆.

(⇒) Suppose that |∼ satisfies CC. We show the following stronger condition by induction on n:

If Γ |∼ψ1,. . ., ψn,∆0 and Γ, ψi |∼∆i (i=1,. . ., n) then Γ |∼∆0,∆1,. . .,∆n.

• For the case n= 1, assume that Γ |∼ψ1,∆0 and Γ, ψ1 |∼∆1. By RM on each sequent we have

that Γ |∼ψ1,∆0,∆1 and Γ, ψ1 |∼∆0,∆1. A CC gives the desired result.

• Assume the claim for n; We prove it for n+1: Suppose that Γ, ψi |∼ ∆i for i = 1,. . ., n+1

and Γ |∼ ψ1,. . ., ψn+1,∆0. By induction hypothesis applied to the last sequent and Γ, ψi |∼∆i,

for i = 1,. . ., n, we get Γ |∼ ∆0,∆1,. . .,∆n, ψn+1. From this and Γ, ψn+1 |∼ ∆n+1 we get that

Γ |∼∆0,∆1, . . . ,∆n+1 like in the case of n=1. 2

Note: By Proposition 1.21, the single conclusion counterpart of CC[n] is valid for any sccr (not

only the cumulative or preferential ones).

Proposition 1.53 Let ` be an scr with a combining disjunction ∨. A weakly `-cumulative sccr

|∼ satisfies Or iff it is closed under CC[n] for every finite n.
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Proof: Suppose first that |∼ satisfies Or. Then from Γ, ψi |∼∆ (i = 1, . . . , n) it easily follows

that Γ, ψ1∨ . . .∨ψn |∼∆. On the other hand, Γ |∼ ψ1∨ . . .∨ψn follows from Γ |∼ ψ1, . . . , ψn by

IDR and Proposition 1.41. Thus, Γ |∼∆ by CC[1]. For the converse, suppose that |∼ is a weakly

`-cumulative sccr that satisfies CC[n] for every finite n, and suppose that Γ, ψ |∼∆ and Γ, φ |∼∆.

Now, since Γ, ψ`ψ∨φ then by Cum Γ, ψ |∼ψ∨φ, and CM with Γ, ψ |∼∆ yields [1]: Γ, ψ, ψ∨φ |∼∆.

Similarly, since Γ, φ`ψ∨φ then by Cum and CM with Γ, φ |∼∆ we have [2]: Γ, φ, ψ∨φ |∼∆. Also,

since Γ, ψ∨φ`ψ, φ then by Cum, [3]: Γ, ψ∨φ |∼ψ, φ. A CC[2] of [1], [2], [3] yields Γ, ψ∨φ |∼∆. 2

Corollary 1.54 Let ` be an scr with a combining disjunction ∨. An sccr |∼ is weakly {∨,`}-

preferential iff it is weakly `-preferential.

Proof: By Propositions 1.52 and 1.53. 2

Proposition 1.55 Let ` be an scr. Then |∼ is weakly `-preferential iff it satisfies Cum, CM,

CC, and RM.

Proof: One direction is obvious. For the other direction, we have to show that if |∼ satisfies

the above conditions then it also satisfies RW[1] and CC[1]. For RW[1], assume that Γ, ψ ` φ

and Γ |∼ ψ,∆. By Cum and RM on the first assumption, Γ, ψ |∼ φ,∆. By RM on the second

assumption, Γ |∼ψ, φ,∆. A CC on the last two sequents yields Γ |∼φ,∆. We leave the proof of

CC[1] to the reader. 2

Corollary 1.56 Let ` be an scr. A relation |∼ is a weakly `-preferential iff it satisfies Cum,

CM, and the following rule:

s-AC strong additive cut : if Γ |∼ ψ,∆1 and Γ, ψ |∼ ∆2 then Γ |∼ ∆1,∆2.

Proof: Suppose first that |∼ satisfies Cum, CM, and s-AC. By Proposition 1.55 we have to show

that |∼ satisfies CC and RM. CC is obtained by taking ∆1 = ∆2 in s-AC. For RM, Suppose

that Γ |∼∆ and let δ ∈∆. Then Γ |∼ δ,∆. On the other hand, since Γ, δ ` δ, ψ, then by Cum,

Γ, δ |∼ δ, ψ. s-AC with Γ |∼ δ,∆ yields Γ |∼ ψ,∆. For the converse, suppose that |∼ is a weakly

`-preferential sccr for which Γ |∼ψ,∆1 and Γ, ψ |∼∆2. By RM, Γ |∼ψ,∆1,∆2 and Γ, ψ |∼∆1,∆2.

Thus, Γ |∼∆1,∆2, by CC. 2
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We are now ready to introduce our strongest notions of nonmonotonic Scott consequence

relation:

Definition 1.57 Let ` be an scr. An sccr |∼ is called `-preferential iff it satisfies Cum, CM, CC,

RM, and RW[n] for every n.

Proposition 1.58 Let ` be an scr. The following conditions are equivalent:

a) |∼ is `-preferential,

b) |∼ is a `-cumulative sccr that satisfies CC,

c) |∼ is a weakly `-preferential sccr that satisfies RW[n] for every n.

Proof: Immediately follows from the relevant definitions. 2

Proposition 1.59 Let ` be an scr and let |∼ be a `-preferential sccr.

a) A combining conjunction ∧ w.r.t. ` is also an internal conjunction and a combining con-

junction w.r.t. |∼.

b) A combining disjunction ∨ w.r.t. ` is also an internal disjunction and “half” combining

disjunction w.r.t. |∼.15

Proof: Part (a) follows from Corollary 1.48; Part (b) follows from Corollary 1.42 and Corollary

1.54. 2

The rule CC[n] (n≥1) is a natural generalization of cautious cut. A dual generalization, which

seems equally natural, is given in the following rule from [Le92]:

LCC[n] Γ |∼ ψ1,∆ . . . Γ |∼ ψn,∆, Γ, ψ1, . . . , ψn |∼ ∆

Γ |∼ ∆

Definition 1.60 [Le92] A binary relation |∼ is a plausibility logic if it satisfies Inclusion (Γ, ψ |∼

ψ), CM, RM, and LCC[n].

15I.e., |∼ satisfies left ∨-introduction (but not necessarily left ∨-elimination).
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Definition 1.61 Let ` be an scr. A relation |∼ is called `-plausible if it is a `-preferential sccr

and a plausibility logic.

Notes:

1. Clearly, a `-preferential relation is `-plausible if it satisfies LCC[n] for all n.

2. A more concise characterization of a `-plausible relation is given in the following proposition:

Proposition 1.62 Let ` be an scr. A relation |∼ is `-plausible iff it satisfies Cum, CM, RM,

and LCC[n] for every n.

Proof: Since CC is just LCC[1], we only need to show the derivability for all n of RW[n]. So

assume that Γ |∼ ψi,∆ (i= 1, . . . , n) and Γ, ψ1, . . . , ψn ` φ. By Cum and RM this implies that

Γ |∼ψi, φ,∆ (i=1, . . . , n) and Γ, ψ1, . . . , ψn |∼φ,∆. Hence Γ |∼φ,∆ follows by LCC[n]. 2

Proposition 1.63 Let ` be an scr with a combining conjunction ∧. A relation |∼ is `-preferential

iff it is `-plausible.

Proof: One direction is obvious. By the last proposition, for showing the converse we have to

prove that if |∼ is `-preferential and ` has a combining conjunction ∧, then |∼ satisfies LCC[n]

for every finite n. This follows from Corollary 1.48 and the following lemma:

Lemma 1.63-A: Let |∼ be a `-preferential sccr, where ` is an scr with a combining conjunction

∧. Then [|∼∧]I is equivalent to LCC[n].

Proof: (⇒) If Γ |∼ψ1,∆ . . . Γ |∼ ψn,∆ then by [|∼∧]I, Γ |∼ψ1∧. . .∧ψn,∆. Also, if Γ, ψ1,. . ., ψn |∼∆

then by ICR (see Proposition 1.43(a)), Γ, ψ1∧. . .∧ψn |∼∆. By CC, then, Γ |∼∆.

(⇐) Suppose that Γ |∼ψ,∆ and Γ |∼φ,∆. By RM, Γ |∼ψ,ψ∧φ,∆ and Γ |∼φ, ψ∧ψ,∆. Also, by

Cum on Γ, ψ, φ ` ψ∧φ,∆ we have that Γ, ψ, φ |∼ ψ∧φ,∆. By LCC[2] on these three sequents,

Γ |∼ψ∧φ,∆. 2

Table 1.1 and Figure 1.1 summarize the various type of Scott relations considered in this

section and their relative strengths. ` is assumed there to be an scr, and ∨, ∧ are combining

disjunction and conjunction (respectively) w.r.t. `, whenever they are mentioned.
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Table 1.1: Scott relations

consequence relation general conditions
valid conditions with ∧ and ∨

sccr s-R, CM, CC[1]

weakly `-cumulative sccr Cum, CM, CC[1], RW[1], RM
[∧|∼]I, [∧|∼]E, [|∼∧]E, [|∼∨]I, [|∼∨]E

`-cumulative sccr Cum, CM, CC[1], RW[n], RM
[∧|∼]I, [∧|∼]E, [|∼∧]I, [|∼∧]E, [|∼∨]I, [|∼∨]E

weakly `-preferential sccr Cum, CM, CC, RM
[∧|∼]I, [∧|∼]E, [|∼∧]E, [∨|∼]I, [|∼∨]I, [|∼∨]E,

`-preferential sccr Cum, CM, CC, RW[n], RM
[∧|∼]I, [∧|∼]E, [|∼∧]I, [|∼∧]E, [∨|∼]I, [|∼∨]I, [|∼∨]E

`-plausible sccr Cum, CM, LCC[n], RM
[∧|∼]I, [∧|∼]E, [|∼∧]I, [|∼∧]E, [∨|∼]I, [|∼∨]I, [|∼∨]E

scr extending ` Cum, M, C
[∧|∼]I, [∧|∼]E, [|∼∧]I, [|∼∧]E, [∨|∼]I, [∨|∼]E, [|∼∨]I, [|∼∨]E

uweakly `-cumulative sccr

u`-cumulative sccruweakly `-preferential
sccr

u
`-preferential sccr

u
`-plausible sccr

u
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Figure 1.1: Relative strength of the Scott relations



Chapter 2

Bilattices – General Overview

2.1 Background and motivation

So far we have considered the inference process from a purely syntactical level. In the next two

chapters we present the basic algebraic structures that provide semantics for our formalisms.

When using multiple-valued logics, it is usual to order the truth values in a lattice structure.

In most cases the partial order of the lattice under consideration intuitively reflects differences in

the “measure of truth” that the lattice elements are supposed to represent. There exist, however,

other intuitive criteria of ordering that might be useful. Another reasonable ordering might

reflect, for example, differences in the amount of knowledge or in the amount of information that

each one of these elements exhibits. Obviously, therefore, there might be cases in which two

partial orders, each one reflecting a different intuitive concept, are useful. This, for instance, has

been the case with Belnap’s famous four-valued logic [Be77a, Be77b], which will be considered in

details in the sequel. Belnap’s logic was generalized in [Gi87, Gi88], where Ginsberg introduced

the notion of bilattices:

Definition 2.1 [Gi87, Gi88] A bilattice is a structure B=(B,≤t,≤k,¬) such that

a) B is a nonempty set containing at least two elements,

b) (B,≤t) and (B,≤k) are complete lattices,

c) ¬ is a unary operation on B that has the following properties:

(i) if a ≤t b then ¬a ≥t ¬b, (ii) if a ≤k b then ¬a ≤k ¬b, (iii) ¬¬a = a.

55
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The original motivation of Ginsberg for using bilattices was to provide a uniform approach

for a diversity of applications in AI. In particular he treated first order theories and their conse-

quences, truth maintenance systems, and formalisms for default reasoning. The algebraic struc-

ture of bilattices has been further investigated by Fitting and Avron [Fi90b, Fi94, Av95, Av96].

Fitting has also shown that bilattices are very useful tools for providing semantics for logic pro-

grams: He proposed an extension of Smullyan’s tableaux-style proof method to bilattice-valued

programs, and showed that this method is sound and complete with respect to a natural gen-

eralization of van-Emden and Kowalski’s operator (see [Fi90a, Fi91]). Fitting also introduced a

multi-valued fixedpoint operator (that generalizes the Gelfond-Lifschitz operator [GL88]) for pro-

viding bilattice-based stable models and well-founded semantics for logic programs (see [Fi93]).

A well-founded semantics for logic programs that is based on a specific bilattice (which we will

denote by “NINE” – See Figure 2.3 below) is considered also in [DP95]. Bilattices have also been

found useful for temporal reasoning [FM93], model-based diagnostics [Gi88], computational lin-

guistics [NF98], reasoning with inconsistent knowledge-bases [Sc96], and processing of distributed

knowledge [Me97].

In all the applications mentioned above, the role of bilattices was algebraic in nature. One of

the goals of this work it to carry bilattices to a new stage in their development by constructing

bilattice-based logics (i.e., consequence relations), as well as corresponding proof systems. For

this purpose we shall introduce and investigate the notion of logical bilattices, which will be

considered in Chapter 3. In this chapter we present some of the basic algebraic properties of

bilattices.1

2.2 Basic elements and operations

By Definition 2.1, bilattices are algebraic structures that contain arbitrary number of truth val-

ues, arranged in two closely related partial orders, each one forms a complete lattice. Following

Fitting [Fi90a, Fi90b], we shall use ∧ and ∨ for the lattice operations that correspond to ≤t,

and ⊗, ⊕ for those that correspond to ≤k. While ∧ and ∨ can be associated with their usual

intuitive meanings of “and” and “or”, one may understand ⊗ and ⊕ as the “consensus” and the

1Most of this chapter is a survey of results presented elsewhere, so proofs are omitted.
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“gullibility” (“accept all”) operators, respectively; p ⊗ q is the most that p and q can agree on,

while p⊕q accepts the combined knowledge of p with that of q (see also [Fi90b, Fi94]). A practical

application of ⊗ and ⊕ is provided, for example, in an implementation of a logic programming

language designed for distributed knowledge-bases (see [Fi91] and [Me97] for further details).

The two partial orders ≤k and ≤t are related by the negation operator. As usual, this operator

is an involution w.r.t. ≤t.2 In our case, however, it is also an order preserving w.r.t ≤k. This

reflects the intuition that ≤k corresponds to differences in our knowledge about formulae and not

to their degrees of truth. Hence, while one expects negation to invert the notion of truth, the

role of negation w.r.t. ≤k is somewhat less transparent: We know no more and no less about ¬p

than we know about p.3

Similarly, it is possible to define a dual operator, which is an involution w.r.t. ≤k and keeps

the ≤t-order:

Definition 2.2 [Fi90b] A conflation, −, is a unary operation on a bilattice B, that satisfies the

following properties:

a) if a≤k b then −a≥k−b,

b) if a≤t b then −a≤t−b,

c) −−a = a, (d) −¬a = ¬− a.4

In what follows we will denote by f and by t the least element and the greatest element

(respectively) of B w.r.t ≤t, while ⊥ and > will denote the least element and the greatest element

(respectively) of B w.r.t ≤k. While t and f have their usual intuitive meaning, ⊥ and > could be

thought of as representing lack of information and inconsistent knowledge (conflicts), respectively.

By Lemma 2.6(b) below, and by the fact that each bilattice contains at least two elements, it

follows that f, t,⊥, and > are all distinct from each other.

2I.e., there is a mapping from B to itself that is its own inverse, and that reverses the ordering relation on B.
3See [Gi88, p.269] and [Fi90a, p.239] for further discussion.
4The last condition is not part of Fitting’s original definition. Nevertheless, it is usually assumed when dealing

with bilattices that have conflation, and is useful for our purposes.
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2.3 Different types of bilattices

Like in the case of lattices, it is possible to consider many algebraic properties of bilattices and

accordingly to define different types of them. Here we shall be particularly interested in the

following three types:

Definition 2.3 Let B be a bilattice.

a) [Gi88] B is called distributive if all the (twelve) possible distributive laws concerning ∧, ∨,

⊗, and ⊕ hold.

b) [Fi90a] B is called interlaced if each one of ∧, ∨, ⊗, and ⊕ is monotonic with respect to

both ≤t and ≤k. I.e., for every a, b, c∈B:

• a≤t b implies that a⊗c≤t b⊗c and a⊕c≤t b⊕c,

• a≤k b implies that a∧c≤k b∧c and a∨c≤k b∨c.

c) [Fi94] A bilattice with a conflation is called classical , if for every b∈B, b∨−¬b= t. 5 6

Lemma 2.4 [Fi90a] Every distributive bilattice is interlaced.

Example 2.5 Figures 2.1–2.3 contain double Hasse diagrams of three useful bilattices. In these

diagrams b is an immediate ≤t-successor of a iff b is on the right-hand side of a, and there is an

edge between them; Similarly, b is an immediate ≤k-successor of a iff b is above a, and there is

an edge between them.

Belnap’s FOUR [Be77a, Be77b], drawn in Figure 2.1, is the smallest bilattice. It easy to check

that FOUR is distributive (hence interlaced) and classical.

Ginsberg’s DEFAULT (Figure 2.2) was introduced in [Gi88] as a tool for non-monotonic

reasoning. The truth values that have a prefix “d” in their names are supposed to represent

values of default assumptions (dt = true by default, etc.). It easy to verify that ¬df = dt;

¬dt=df ; ¬d>=d>. The negations of >, t, f,⊥ are the same as those in FOUR (see Proposition

2.6(b) below). This bilattice is not even interlaced.7

5In the original definition of a classical bilattice, Fitting requires that the bilattice would be distributive. This
requirement is not essential for the present treatment of such bilattices.

6Classical bilattices were presented is order to allow analogies of classical tautologies. In particular, in classical
bilattices it is really the combination −¬ that plays the role of classical negation.

7For example, f <t df , while f⊗d>=d> >t df=df⊗ d>. See also Corollary 2.13 below.
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Figure 2.1: FOUR
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Figure 2.2: DEFAULT

NINE (Figure 2.3), on the other hand, is distributive, and it contains the default values of

DEFAULT . In addition, NINE has two more truth values, ot and of , where ¬of=ot and ¬ot=of .

2.4 Basic properties

Proposition 2.6 [Gi88] Let B = (B,≤t,≤k,¬) be a bilattice, and let a, b∈B.

a) ¬(a∧b) = ¬a∨¬b, ¬(a∨b) = ¬a∧¬b, ¬(a⊗b) = ¬a⊗¬b, ¬(a⊕b) = ¬a⊕¬b.

b) ¬f= t, ¬t=f , ¬⊥=⊥, ¬>=>.
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Figure 2.3: NINE

Proposition 2.7 [Fi90b] Let B = (B,≤t,≤k,¬) be a bilattice with a conflation, and let a, b∈B.

a) −(a∧b) = −a∧−b, −(a∨b) = −a∨−b, −(a⊗b) = −a⊕−b, −(a⊕b) = −a⊗−b.

b) −f=f , −t= t, −⊥=>, −>=⊥.

Proposition 2.8 [Fi91] Let B be an interlaced bilattice. Then

⊥∧> = f , ⊥∨> = t, f⊗t = ⊥, f⊕t = >.

2.5 General construction of bilattices

Definition 2.9 [Gi88] Let (L,≤L) be a complete lattice. The structure L�L=(L×L,≤t,≤k,¬)

is defined as follows:

(b1, b2) ≥t (a1, a2) iff b1 ≥L a1 and b2 ≤L a2,

(b1, b2) ≥k (a1, a2) iff b1 ≥L a1 and b2 ≥L a2,

¬(a1, a2) = (a2, a1).

L�L was introduced in [Gi88], and later examined by Fitting [Fi90a, Fi90b, Fi91, Fi94] and

Avron [Av96] as a general method for constructing bilattices. A pair (x, y)∈L�L may intuitively

be understood so that x represents the amount of belief for some assertion, and y is the amount

of belief against it.
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Example 2.10 Denote the standard two valued structure {0,1} by TWO, and denote by THREE

the three-valued structure {0, 1
2 , 1}, in which 1

2 is the intermediate value. Then FOUR is isomor-

phic to TWO � TWO, and NINE is isomorphic to THREE � THREE.

Proposition 2.11 Let L be a complete lattice with a join uL and a meet tL. Then:

a) [Gi88] L�L is a bilattice with the following basic operations:

(a, b)∨(c, d)=(a tL c, b uL d), (a, b)∧(c, d)=(a uL c, b tL d),

(a, b)⊕(c, d)=(a tL c, b tL d), (a, b)⊗(c, d)=(a uL c, b uL d),

¬(a, b)=(b, a).

b) [Gi88] The four basic elements of L�L are the following:

⊥L�L=(inf(L), inf(L)), >L�L=(sup(L), sup(L)),

tL�L=(sup(L), inf(L)), fL�L=(inf(L), sup(L)).

c) [Fi90a] Suppose that L has an involution operation. Denote by a− the ≤L-involute of a in

L. Then it is possible to define a conflation operation on L�L by −(a, b)=(b−, a−).

Proposition 2.12

a) [Fi90a] L�L is always an interlaced bilattice.

b) [Gi88] If L is distributive then so is L�L.

c) [Gi88, Fi90a] Every distributive bilattice is isomorphic to L�L for some complete distribu-

tive lattice L.

d) [Av96] Every interlaced bilattice is isomorphic to L�L for some complete lattice L.

The last proposition shows that Definition 2.9 indeed provides a general method of construct-

ing (interlaced) bilattices. Part (d) also implies a simple method for showing that a given finite

bilattice is not interlaced:

Corollary 2.13 [Av96] The number of elements of a finite interlaced bilattice is a perfect square.
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2.6 More on the relation between ≤t and ≤k

In [Jo94], Jónsson showed that the variety of distributive bilattices is equivalent to the variety of

all algebras (A,⊗,⊕,>,⊥, t, f), in which (A,⊗,⊕,>,⊥) is a bounded distributive lattice (with

> and ⊥ as the upper and lower bounds), and t, f are two complementary elements of A (i.e.,

t⊗f=⊥, t⊕f=>). An analogous result for interlaced bilattices is the following:

Definition 2.14 [Av96] A structure (L,⊕,⊗,>,⊥, t, f) is called a potential interlaced bilattice,

if the following conditions are met:

a) (L,⊕,⊗) is a complete lattice with upper and lower bounds > and ⊥ (respectively),

b) t and f are two complementary elements (i.e., t⊕f=> and t⊗f=⊥), and

c) t and f are distributive, i.e.

x ∗1 (y ∗2 z) = (x ∗1 y) ∗2 (x ∗1 z)

where ∗1, ∗2 ∈ {⊕,⊗}, and at least one of x, y, z is either t or f .

Proposition 2.15 [Av96] The families of interlaced bilattices and of potential interlaced bilat-

tices are equivalent. Specifically:

a) If B= (B,≤t,≤k) is an interlaced bilattice with ⊕ and ⊗ as the join and the meet w.r.t.

≤k, then the reduct (B,⊕,⊗,>,⊥, t, f) is a potential interlaced bilattice,

b) In any potential interlaced bilattice B it is possible to define, in a unique way, a partial

order ≤t so that the resulting structure is an interlaced bilattice with t and f as the upper

and the lower bounds of ≤t.

Clearly, it is possible to formulate a dual proposition that defines the ≤k-operators in terms of

the ≤t-operators and the four basic elements t, f,>,⊥. In particular, while in the original proof

of Proposition 2.15 the following equations are used:

a ∨ b = (a⊗ t)⊕ (b⊗ t)⊕ (f ⊗ a⊗ b),

a ∧ b = (a⊗ f)⊕ (b⊗ f)⊕ (t⊗ a⊗ b),
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one might use the dual equations for defining ⊕ and ⊗:

a⊕ b = (a ∧ >) ∨ (b ∧ >) ∨ (⊥ ∧ a ∧ b),

a⊗ b = (a ∧ ⊥) ∨ (b ∧ ⊥) ∨ (> ∧ a ∧ b).

It follows, therefore, that once we have the basic four elements that meet the conditions of

Proposition 2.15, then in interlaced bilattices each partial order can be constructed in a unique

way from the other partial order.

2.7 Bilattices as an extension of Kleene three-valued structure

As noted in [Fi90b, Fi94], bilattices may be viewed as a natural generalization of Kleene three-

valued structure [Kl50]. The corresponding elements t, f , and ⊥, form a complete lattice w.r.t.

≤t, and a pseudo lower lattice w.r.t. ≤k. Natural generalizations of this structure are therefore

≤k-pseudo lower bilattices, in which ¬,∨,∧, and ⊗ always exist, but not every two elements have

a least upper bound w.r.t. ≤k. It follows that bilattices contain natural extensions of week and

strong Kleene three-valued logics.8

Definition 2.16 [Fi90b] Let B be a bilattice with a conflation. An element b∈B is called exact

if b=−b. It is called coherent if b≤k−b.9

Proposition 2.17 [Fi94] In every interlaced bilattice with a conflation, the exact truth values

contain t and f , and are closed under ∧, ∨, and ¬ (finitary or infinitary). The exact truth values

do not contain > or ⊥, and are not closed under ⊗ and ⊕.

Proposition 2.18 [Fi94] In every interlaced bilattice with a conflation, the coherent truth values

contain the exact elements and ⊥. Also, they are closed under ∧, ∨, ⊗, ¬ (finitary or infinitary).

Further, the coherent truth values are closed under the infinitary version of ⊕ when applied to

directed sets.

Given a bilattice B=L�L, Fitting introduced a substructure of B that naturally generalize

Kleene three-valued structure:
8See Section 5.6 for more details on the logical aspects of this analogy.
9Fitting calls the coherent elements consistent . We reserve the latter notion for later use.
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Definition 2.19 [Fi90b] Let (L,≤L) be a complete lattice. The structure I(L) = (I(L),≤t,≤k)

is defined as follows:

I(L)={[a, b]}, where [a, b]={x | a ≤L x ≤L b},

[b1, b2] ≥t [a1, a2] iff b1 ≥L a1 and b2 ≥L a2,

[b1, b2] ≥k [a1, a2] iff b1 ≥L a1 and b2 ≤L a2.

Intuitively, I(L) consists of the “intervals” of L. An interval [c, d] is ≤k-bigger (i.e., contains

more information) than [a, b] if [c, d]⊆ [a, b]. Also, [c, d] is greater w.r.t. ≤t than [a, b] if ∀x∈ [a, b]

∃y∈ [c, d] s.t. x ≤L y and ∀y∈ [c, d] ∃x∈ [a, b] s.t. y ≥L x.

Example 2.20 Figure 2.4 depicts the pseudo ≤k-lower bilattice I({0, 1
2 , 1}), used in [FM93] for

defining a six-valued temporal logic.
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Figure 2.4: I({0, 1
2 , 1})

Proposition 2.21 [Fi90b] Let (L,≤L) be a complete lattice, and let I(L) be as defined in 2.19.

Then:

a) ⊥I(L) =(inf(L), sup(L)), tI(L) =(sup(L), sup(L)), fI(L) =(inf(L), inf(L)).

b) (a, b)∨(c, d)=(a tL c, b tL d), (a, b)∧(c, d)=(a uL c, b uL d), (a, b)⊗(c, d)=(a uL c, b tL d).

Proposition 2.22 [Fi90b] Suppose that L is a complete lattice with an involution operation.

Then I(L) is isomorphic to the set of the coherent elements of an interlaced bilattice with negation

and conflation.
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By the last proposition and by Proposition 2.12(d), we have the following result:

Corollary 2.23 Let B be an interlaced bilattice with a conflation. Then the substructure of the

coherent elements of B is isomorphic to I(L) for a complete lattice L.
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Chapter 3

Logical Bilattices

3.1 Motivation

As we have noted in the previous chapter, one of our goals here is to take advantage of the

special structure of bilattices for defining logics that are suitable for commonsense reasoning. For

this purpose we introduce and investigate the notion of a logical bilattice. The family of logical

bilattices turns out to be quite common. Actually, all the known bilattices which were proposed

for applications in the literature fall under this category. In the following chapters we will show

how to use logical bilattices in a more specific way for nonmonotonic reasoning and for efficient

inferences from inconsistent and incomplete data.1

3.2 Bifilters and logicality

3.2.1 The designated elements and their properties

When dealing with many-valued logics it is usual to define a subset of the designated truth values.

This subset is used for defining validity of formulae and a consequence relation. Frequently, in

an algebraic treatment of the subject, the set of the designated values forms a filter, or even

a prime (ultra-) filter, relative to some natural ordering of the truth values. Natural analogue

for bilattices of filters, prime filters, ultrafilters, and set of designated values in general, are the

following:

1These were, respectively, the original purposes of Belnap and Ginsberg in [Be77a, Be77b] and [Gi87, Gi88].

67
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Definition 3.1 Let B=(B,≤t,≤k) be a bilattice.

a) A bifilter B is a nonempty proper subset F⊂B, such that:

(i) a∧b∈F iff a∈F and b∈F (ii) a⊗b∈F iff a∈F and b∈F

b) A bifilter F is called prime, if it also satisfies the following conditions:

(i) a∨b∈F iff a∈F or b∈F (ii) a⊕b∈F iff a∈F or b∈F

c) Let B be a bilattice with a conflation. A set F is an ultrabifilter in B, if it is a prime bifilter,

and for every b∈B, b∈F iff −¬b 6∈F .

Example 3.2 FOUR and DEFAULT contain exactly one bifilter: {>, t}, which is prime in both,

and is an ultrabifilter in FOUR. F={>, t} is also the only bifilter of FIVE (Figure 3.1), but it is

not prime there: d>∨⊥= t∈F , while d>6∈F , and ⊥6∈F . NINE contains two bifilters: {>, ot, t},

as well as {>, ot, t, of, d>, dt}, both are prime, but neither is an ultrabifilter.
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Figure 3.1: FIVE

Proposition 3.3 Let F be a bifilter in B. Then:

a) F is upward-closed w.r.t both ≤t and ≤k.

b) t,> ∈ F , while f,⊥ 6∈ F .

Proof: Part (a) immediately follows from the definition of F . The first part of (b) follows from

part (a) and from the maximality of t and > w.r.t. ≤t and ≤k (respectively). The fact that the

minimal elements of ≤t and ≤k are not in F also follows from (a), since F 6=B. 2
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Definition 3.4

a) A binary operation 4 on B is conjunctive if for all a, b∈B a4b∈F iff a∈F and b∈F .

b) A binary operation ∇ on B is disjunctive if for all a, b∈B a∇b∈F iff a∈F or b∈F .

The following result immediately follows from the relevant definitions:

Lemma 3.5 In every bilattice B with a bifilter F

a) ∧ and ⊗ are conjunctive operations on B, and

b) ∨ and ⊕ are disjunctive operations on B, provided that F is prime.

Proof: Obvious. 2

Proposition 3.6 In classical bilattices every prime bifilter is also an ultrabifilter.

Proof: Let B be a classical bilattice with a prime bifilter F . Then b ∨ −¬b= t∈F , and since F

is prime, either b ∈F or −¬b ∈F . On the other hand, −¬b ∧ b=−¬(b ∨ −¬b) =−¬t= f 6∈ F ,

therefore −¬b ∧ b 6∈F , and so either b 6∈F or −¬b 6∈F . 2

Proposition 3.7 Let B=(B,≤t,≤k) be an interlaced bilattice.

a) A subset F of B is a (prime) bifilter iff it is a (prime) filter relative to ≤t, and >∈F .

b) A subset F of B is a (prime) bifilter iff it is a (prime) filter relative to ≤k, and t∈F .

Proof: Assume that B is interlaced.

a) The condition is obviously necessary. For the converse it suffices to show that: (i) if a ∈ F

and b∈F then a⊗b∈F , (ii) if a∈F and b≥k a then b∈F , and (iii) if F is prime relative to

≤t then a⊕b∈F iff either a∈F or b∈F . Now, (i) and (iii) follow, respectively, from the facts

that in interlaced bilattices a⊗b≥ta∧b and a∨b≥ta⊕b. For (ii) we note that a≤k b is equivalent

to a≤k b≤k>. Since B is interlaced, it follows that a∧(a∧>)≤k b∧(a∧>)≤k>∧(a∧>). Thus

a∧>≤k b∧(a∧>)≤k a∧>, and so b∧(a∧>)=a∧>. Hence b≥ta∧>. Since a∈F , >∈F , and F is

a filter w.r.t. ≤t, necessarily b∈F as well.

b) The proof is dual to that of part (a). 2
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Notation 3.8 Fk(a)={b | b≥k a}, Ft(a)={b | b≥ta}.

Proposition 3.9 Let B=(B,≤t,≤k) be an interlaced bilattice.

a) Fk(a) is a bifilter of B iff ⊥6=a≤k t, iff a>t⊥. Moreover, in this case Fk(a)=Ft(a∧>).

b) Ft(a) is a bifilter of B iff f 6=a≤t>, iff a>k f . Moreover, in this case Ft(a)=Fk(a⊗t).

c) Fk(t)=Ft(>).

Proof:

a) If a 6=⊥ then the set {b | b≥k a} is obviously a filter relative to ≤k. By Proposition 3.7(b) it

follows, therefore, that it is a bifilter iff ⊥6=a≤k t. For showing that ⊥6=a≤k t iff a>t⊥ suppose

first that ⊥ 6= a≤k t. Then a 6=⊥ and ⊥≤k a≤k t. Since B is interlaced, this means that a 6=⊥

and ⊥∧⊥≤k a∧⊥≤k t∧⊥=⊥, and so a 6=⊥ and a∧⊥=⊥. It follows that a 6=⊥ and a≥t ⊥,

thus a>t⊥. For the converse, suppose that a>t⊥. Then a∨>≥t⊥∨>= t (Proposition 2.8), and

so a∨>= t. Also, a= a∨a≤k a∨> (using again the fact that B is interlaced). So we have that

⊥<t a≤k a∨>= t, thus ⊥ 6=a≤k t. For the other part of the proposition, recall that in the proof

of Proposition 3.7(a) it is shown that in every interlaced bilattice, if b≥k a then b≥t a∧>. Thus

Fk(a)⊆Ft(a∧>). On the other hand, we have just shown that if a>t⊥ then a∨>= t. It follows

that if b≥ta∧> then a∧>≤t b≤ta∨>, and so a⊗(a∧>)≤ta⊗b≤ta⊗(a∨>). But a≤k> implies

that a=a∧a≤k a∧>, and so a⊗(a∧>)=a. Similarly a⊗(a∨>)=a. Hence a≤ta⊗b≤ta, and so

a⊗b=a, which means that a≤k b. Thus, Ft(a∧>)⊆Fk(a) and so Ft(a∧>)=Fk(a).

b) The proof is dual to that of part (a).

c) Immediately follows from either part (a) or (b). 2

Proposition 3.10 Let B = (B,≤t,≤k) be an interlaced bilattice. If F is a bifilter in B, then

infk F ∈F iff inftF ∈F . Moreover, in such a case inftF=> ∧ infk F and infk F= t⊗ inftF .

Proof: Follows from Proposition 3.9. 2

3.2.2 The minimal bifilter of interlaced bilattices

Next we discuss the existence of bifilters and prime bifilters in a given bilattice B. We shall

be particularly interested in cases where Fk(t) and Ft(>) are (prime) bifilters. Intuitively, each
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element of Fk(t) represents a truth value which is known to be “at least true” (see [Be77b, p.36]).

By Proposition 3.9(c), in interlaced bilattices Fk(t) is the same as Ft(>), hence this set is a

natural candidate to be the set of the designated values of B.

Example 3.11 In FOUR, FIVE, and DEFAULT , Fk(t) = Ft(>) = {>, t}. In NINE, Fk(t) =

Ft(>) = {>, ot, t}. When B = L�L, Fk(t) = Ft(>) = {(sup(L), x) | x ∈ L}. Fk(t) and Ft(>)

are bifilters in all these bilattices, and in FOUR, DEFAULT they are also prime. In bilattices of

the form L�L, Fk(t) and Ft(>) are prime iff sup(L) is join irreducible (see Corollary 3.20(b)).

Proposition 3.12 Let B be an arbitrary bilattice with a bifilter F .

a) t,> ∈ Fk(t), while f,⊥ 6∈ Fk(t). The same is true for Ft(>).

b) Fk(t) ∪ Ft(>) ⊆ F .

Proof: By definition, t,>∈Fk(t). To see that f 6∈Fk(t), assume the contrary. Then f ≥k t and

so also ¬f ≥k ¬t, which means that t≥k f , hence f = t. This entails that B contains just one

element, but this contradicts the definition of a bilattice. An even simpler argument holds for ⊥.

Part (b) immediately follows from Proposition 3.3. 2

Proposition 3.13 If Fk(t)=Ft(>), then Fk(t) is the smallest bifilter (i.e., it is contained in any

other bifilter).

Proof: For every a, b ∈ B, a∧b ∈ Ft(>) iff a∧b ≥t >, iff a ≥t > and b ≥t >, iff a ∈ Ft(>) and

b∈Ft(>). Similarly, a ⊗ b∈Fk(t) iff a∈Fk(t) and b∈Fk(t). Hence, if Fk(t) =Ft(>) then Fk(t)

is a bifilter of B. The fact that Fk(t) is the smallest bifilter in this case follows from Proposition

3.12(b). 2

Corollary 3.14 In every interlaced bilattice Fk(t) (=Ft(>)) is the smallest bifilter.

Proof: Follows from Propositions 3.9(c) and 3.13. 2

Proposition 3.15 Let B be an interlaced bilattice. Then {b,¬b}⊆Fk(t) iff {b,¬b}⊆Ft(>) iff

b=>.
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Proof: By proposition 3.9 it is sufficient to show that {b,¬b}⊆Fk(t) iff b=>. Indeed, if b=>,

then b=¬b=> ≥k t, hence {b,¬b} ∈Fk(t). The other direction: if {b,¬b} ∈Fk(t), then b≥k t

and ¬b≥k t, hence b≥k t and b=¬¬b≥k ¬t=f , and so b≥k t⊕f => (see Lemma 2.8). But > is

the greatest element w.r.t ≤k, hence b=>. 2

3.2.3 Logical bilattices

Definition 3.16 A logical bilattice is a pair (B,F), in which B is a bilattice and F is a prime

bifilter of B.

Notation 3.17 〈B〉 = (B,Fk(t)).

By Corollary 3.14 it follows that if B is interlaced, then 〈B〉 is a logical bilattice iff Fk(t) is

prime. In fact, 〈B〉 is logical bilattice in all the examples which were actually used in the literature

for constructive purposes. This is true even for 〈DEFAULT 〉, although it is not interlaced.

Example 3.18 〈FOUR〉 ( ≡ 〈{0, 1} � {0, 1}〉 ) and 〈NINE〉 ( ≡ 〈{0, 1
2 , 1} � {0,

1
2 , 1}〉 ) are

both logical bilattices.

3.3 General constructions of logical bilattices

Not every bilattice can be turned into a logical one. As we have noted before, FIVE (Figure 3.1)

is an example for that, since it has no prime bifilters. Still, as Propositions 3.19 and 3.21 below

show, logical bilattices are very common, and easily constructed:

Proposition 3.19 Let L�L be a bilattice as described in Definition 2.9.

a) F is a bifilter in L�L iff F=FL×L, where FL is a filter in L.

b) F is a prime bifilter in L�L iff F=FL×L, where FL is a prime filter in L.

Proof:

a) (⇐) Let FL be a filter in L and let F=FL×L. Since inf(L) 6∈FL and sup(L)∈FL, for every

x∈L (inf(L), x) 6∈ F and (sup(L), x)∈F . Thus F is a nonempty proper subset of L�L. Now,

(x1, x2) ∧ (y1, y2) ∈ F , iff (x1 ∧L y1, x2 ∨L y2) ∈ F , iff x1 ∧L y1 ∈ FL, iff x1 ∈ FL and y1 ∈ FL, iff
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(x1, x2) ∈ F and (y1, y2) ∈ F . The proof in the case of ⊗ is similar. Therefore F is a bifilter in

L�L.

(⇒) Let F be a bifilter in L�L. Denote: FL={x | ∃y (x, y)∈F}. We shall show that F=FL×L.

Obviously, F ⊆FL×L. For the converse, let (x, l)∈FL×L. Then there is a y∈L s.t. (x, y)∈F .

Now, (x, l ∨L y)≥k (x, y)∈F , and so (x, l ∨L y)∈F . On the other hand, (x, l)≥t (x, l ∨L y)∈F ,

and so (x, l)∈F . It follows, therefore, that FL×L⊆F . Hence F=FL×L.

b) Suppose first that FL is a prime filter in L. Then: (x1, x2)∨(y1, y2) ∈ F , iff (x1∨Ly1, x2∧Ly2)∈

F , iff x1 ∨L y1∈FL, iff x1∈FL or y1∈FL, iff (x1, x2)∈F or (y1, y2)∈F . The proof in the case of

⊕ is similar. For the converse, assume that F is a prime bifilter in L�L. By part (a), F=FL×L,

where FL is a filter in L. We show that FL is prime: Assume that x∨L y∈FL and let z be some

element in L. Then (x ∨L y, z)∈F ⇒ (x, z) ∨ (y, z)∈F ⇒ (x, z)∈F or (y, z)∈F ⇒ x∈FL or

y∈FL. 2

Corollary 3.20 Let x0 ∈ L, x0 6= inf(L). Denote: F(x0) = {(y1, y2) | y1 ≥L x0, y2 ∈ L}, and

FL(x0)={y∈L | y≥Lx0}. Then:

a) (L�L,F(x0)) is a logical bilattice iff FL(x0) is a prime filter in L.

b) (L�L,F(sup(L))) is a logical bilattice iff sup(L) is join irreducible (i.e., iff x∨L y=sup(L)

implies that x=sup(L) or y=sup(L)).

c) If sup(L) is join irreducible then F(sup(L)) is minimal among the (prime) bifilters of L�L.

d) If L is a chain, or if sup(L) has a unique predecessor, then 〈L�L〉 is a logical bilattice.

Proof: Part (a) immediately follows from Propositions 3.9(a) and 3.19(b), since F(x0) =Fk(z)

where z=(x0, inf(L)). Part (b) follows from (a), since FL(sup(L))={sup(L)} is a prime filter in

L iff sup(L) is join irreducible. For part (c) note that F(sup(L)) =Fk(tL�L). The claim follows

therefore from (b) and the fact that every bilattice contain the set {b∈B | b≥k tB}. Part (d) is

a specific case of (b). 2

Proposition 3.21 Every distributive bilattice can be turned into a logical bilattice.

First proof: Let B be a distributive bilattice. Consider a ≤t-filter F ′ in B s.t. >∈F ′ (clearly

there is such a filter, e.g.: Ft(>)). By a famous theorem of lattice theory (see [Bi67]) F ′ can be
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extended to a prime ≤t-filter F . By Proposition 3.7(a), F is a prime bifilter. 2

Second proof: By Fitting’s theorem mentioned in Proposition 2.12(c), every distributive bilat-

tice is isomorphic to L�L, where L is a distributive lattice. Let FL be any prime filter of L

(again, such a filter exists by a theorem of lattice theory). Then FL×L is a prime bifilter by

Proposition 3.19(b). 2

Corollary 3.22 If L is a complete distributive lattice, then L�L can be turned to a logical

bilattice.

Proof: Let L be a complete distributive lattice. By Proposition 2.12(b), L�L is a distributive

bilattice. Now, using either Proposition 3.19 or Proposition 3.21, this bilattice can be turned to

a logical one. 2

Note: Not every logical bilattice needs to be distributive or even interlaced. (DEFAULT, {>, t})

is, for example, a logical bilattice although DEFAULT is not interlaced.



Chapter 4

Satisfiability and Expressiveness

In this chapter we use the syntactical and semantical tools presented in the previous chapters

for introducing some basic logical notions of our framework. The semantical notions are mainly

natural extensions to the multiple-valued case of similar classical notions. In the syntactical level

we defined several languages and investigate their expressive power from two aspects:

(a) their ability to characterize sets of tuples of truth values, and

(b) their power in representing operations.

4.1 Syntax and semantics

4.1.1 Basic notations

The various semantical notions are defined in the bilattice-valued case as natural generalizations

of similar classical notions:

Definition 4.1 Let (B,F) be an arbitrary logical bilattice.

a) A valuation in B is a function that assigns a truth value from B to each atomic formula.

Any valuation is extended to complex formulas in the standard way.

b) A valuation satisfies ψ (notation : ν |=B,F ψ), iff ν(ψ)∈F .

c) A valuation that satisfies every formula in a given set of formulas, Γ, is said to be a model

of Γ. The set of the models of Γ will be denoted mod(Γ).

75
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In what follows we shall denote an arbitrary valuation by ν. We will sometimes write ν={ψ :b}

instead of ν(ψ) = b. The set of all the valuations on B will be denoted by V. Valuations that

are also models of a given theory will usually be denoted by M or N . We will sometimes write

M |=B,F Γ instead of M ∈mod(Γ).

Next we assign to every element of a bilattice B and to every valuation in B a specific type.

This typing of the space of valuations on B will have a great importance in what follows.

Definition 4.2 Let (B1,F1) and (B2,F2) be two logical bilattices. Suppose that bi is some

element of Bi and that νi is a valuation on Bi for i=1, 2.

a) b1 and b2 are similar if: (i) b1∈F1 iff b2∈F2, and (ii) ¬b1∈F1 iff ¬b2∈F2.

b) ν1 and ν2 are similar if for every atomic p, ν1(p) and ν2(p) are similar.

Notation 4.3 Given a logical bilattice (B,F). Denote:

T B,Ft ={b∈B | b∈F ,¬b 6∈F}, T B,Ff ={b∈B | b 6∈F ,¬b∈F},

T B,F> ={b∈B | b∈F ,¬b∈F}, T B,F⊥ ={b∈B | b 6∈F ,¬b 6∈F}.

We shall usually omit the superscripts, and just write Tt, Tf , T>, T⊥.

Clearly, two elements of the same bilattice are similar iff they belong to the same set Tx for

some x∈{t, f,>,⊥}.

Note that similarity depends on the specific bifilter under consideration, so two valuations

might not be similar even in case they are identical and the underlying bilattice is the same.

Consider, e.g., a valuation ν on NINE s.t. ν(p)=ot for some atom p. Then ν for F=Fk(t) is not

similar to the same valuation where the bifilter is F=Fk(dt).

Proposition 4.4 Let (B1,F1) and (B2,F2) be two logical bilattices and suppose that ν1, ν2 are

similar valuations on B1, B2 (respectively). Then for every formula ψ, ν1(ψ) and ν2(ψ) are similar.

Proof: By an induction on the structure of ψ.1 2

1The fact that F is prime is crucial here.
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Corollary 4.5 Let ν1, ν2 be two similar valuations on a logical bilattice (B,F). Then for every

formula ψ, ν1(ψ) and ν2(ψ) are similar.

4.1.2 Adding implication connectives

In general, the existence of an appropriate implication connective is a major requirement for a

logic. First of all, it allows us to reduce questions of deductibility to questions of theoremhood, and

to express the various consequence relations among sentences by other sentences of the language.

Moreover, higher order rules (like: “if ψ entails φ then not-φ entails that not-ψ”) can be expressed

only if we have a corresponding implication in our disposal.

In Part II of this work, when we define consequence relations, we shall see that the material

implication a; b = ¬a∨b is not an adequate connective for representing entailments in bilattice-

based logics.2 Instead, we use another operator as our implication connective (see Proposition

5.9 for a justification of this choice).

Definition 4.6 Given a logical bilattice (B,F), the operation ⊃ is defined as follows:

a ⊃ b =

{
b if a∈F
t if a 6∈F

Notes:

1. On {t, f}, the connective ⊃ is identical to the material implication, thus ⊃ is a generalization

of the classical implication.

2. Unlike the bilattice operations we dealt with so far, ⊃ is defined only for logical bilattices.

Moreover, unlike ¬,∧,∨,⊗ and ⊕, the new connective is not monotone w.r.t. ≤k, even in

interlaced bilattices.

3. Even in case that ψ⊃φ and φ⊃ψ are both valid, ψ and φ might not be equivalent (in the

sense that one can be substituted for the other in any context). For example, if ψ = ¬(τ⊃ρ)

and φ = τ∧¬ρ, then both ψ⊃φ and φ⊃ψ are valid, but ¬ψ⊃¬φ is not. We will return to

this in Chapter 5, when we consider alternative implication connectives (see Section 5.5.4.).

2Thus, a!b=(a;b)∧(b;a) does not represent equivalence in this context.
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4. It is easy to see that Proposition 4.4 and Corollary 4.5 hold also w.r.t. languages with ⊃.

In the sequel we shall use the following notations to abbreviate the various languages when

are using here:

Notation 4.7

Σscl = {¬,∧,∨,⊃} (the strict classical language)

Σmcl = {¬,∧,∨, t, f} (the monotonic classical language)

Σcl = {¬,∧,∨,⊃, t, f} (the classical language)

Σmon = {¬,∧,∨,⊗,⊕, t, f,>,⊥} (the monotonic language)

Σfull, ΣB = {¬,∧,∨,⊗,⊕,⊃, t, f,>,⊥} (the full language)

4.2 The expressive power of the language

In this section we examine the expressive power of the languages we introduced above. We do it

from two different points of view (which happen to be equivalent in the two-valued case, but are

not so in general).3

4.2.1 Characterization of subsets of FOURn

Definition 4.8 Let ψ be a formula so that A(ψ)⊆{p1, . . . , pn}. Snψ, the subset of FOURn which

is characterized by ψ, is:

Snψ = {(a1, a2, . . . , an)∈FOURn | ∀ν[(∀1≤ i≤n ν(pi)=ai) =⇒ ν(ψ)∈F ]}

Proposition 4.9 A subset S of FOURn is characterizable by some formula in the language of

{¬,⊃} (or {¬,∧,∨,⊗,⊕,⊃,>}) iff (>,>, . . . ,>)∈S.

Proof: If ψ is any formula in the language of {¬,∧,∨,⊗,⊕,⊃,>} s.t. A(ψ) ⊆ {p1, . . . , pn}

and ν(p1) = ν(p2) = . . . = ν(pn) = >, then ν(ψ) = >. Hence the condition is necessary. For

the converse we introduce the following connectives: p∧̄q = ¬(p ⊃ ¬q), p∨̄q = (p ⊃ q) ⊃ q,

fn = p1∧̄¬p1∧̄p2∧̄¬p2∧̄ . . . pn∧̄¬pn. The following properties are easily verified:

3More on the expressive power of three- and four-valued languages can be found in [Th92] and [Av99].
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1. ∧̄ is associative. Moreover,

ν(ψ1∧̄ψ2∧̄ . . . ∧̄ψn) =

{
f ∃1≤ i≤n−1 ν(ψi) 6∈F
ν(ψn) ∀1≤ i≤n−1 ν(ψi)∈F

2. ν(ψ1∧̄ψ2∧̄ . . . ∧̄ψn) ∈ F iff ∀1≤ i≤n ν(ψi) ∈ F .

3. ∨̄ is associative. Moreover,

ν(ψ1∨̄ψ2∨̄ . . . ∨̄ψn) =

{
ν(ψn) ∀1≤ i≤n−1 ν(ψi) 6∈F or ν(ψn)=>
t otherwise

4. ν(ψ1∨̄ψ2∨̄ . . . ∨̄ψn) ∈ F iff ∃1≤ i≤n ν(ψi) ∈ F .

5. fn has the following property:

ν(fn) =

{
> ∀1≤ i≤n ν(pi)=>
f otherwise

Now, by (2) and (4) it follows that:

(i) Snψ1∧̄...∧̄ψm = Snψ1
∩ . . . ∩ Snψm (ii) Snψ1∨̄...∨̄ψm = Snψ1

∪ . . . ∪ Snψm

Let ~a=(a1,. . ., an)∈FOURn. Define, for every 1≤ i≤n,

ψ~ai =


pi ∧̄ ¬pi if ai=>
pi ∧̄ (¬pi ⊃ fn) if ai= t

¬pi ∧̄ (pi ⊃ fn) if ai=f

(¬pi ⊃ fn) ∧̄ (pi ⊃ fn) if ai=⊥

Using the observations above, it is easy to see that ψ~a1 ∧̄ψ~a2 ∧̄ . . . ψ~an characterizes {~>,~a}, where

~>=(>,>, . . . ,>). This and (ii) above entail the proposition. 2

Note: Obviously, the characterizing formula is much simpler in the {¬,∧,⊃}-language, where

we can use ∧ instead of ∧̄ and ∨ instead of ∨̄.

By Proposition 4.9 it follows that the language of {¬,⊃} should be extended in order to

get full characterization of subsets of FOURn. One possibility is to add to this language the

propositional constant f :

Theorem 4.10 Every subset of FOURn is characterizable in the language of {¬,⊃, f}
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Proof: All we need to change in the proof of Proposition 4.9 is to use f instead of fn in the

definition of ψ~ai . After this change the ∧̄-conjunction of the new ψ~ai ’s characterizes {~a} and not

{~>,~a}. This suffices (using ∨̄) for the characterization of every nonempty set. The empty set

itself is characterized by f . 2

Note: Since f =¬(⊥⊃⊥), the language of {¬,⊃,⊥} also suffices for representing all subsets of

FOURn.

Proposition 4.9 entails that one cannot delete f from the set {¬,⊃, f} and retain the validity

of Theorem 4.10. We next show that ¬ and ⊃ cannot be deleted either:

Corollary 4.11 ⊃ is not definable in terms of the other connectives we consider here.

Proof: By Theorem 4.10 it is sufficient to show that {⊥} (for example) is not characterizable in

the language {¬,∧,∨,⊗,⊕, t, f,⊥,>}.4 This follows from the fact that these connectives are all

≤k-monotone. It follows that if A(ψ)⊆{p1} and ν1(p1)≤k ν2(p1) for some valuations ν1, ν2, then

ν1(ψ)≤k ν2(ψ). In particular if ⊥∈S1
ψ then also f, t,>∈S1

ψ. 2

Corollary 4.12 ¬ is not definable in terms of the other connectives.

Proof: Again, we show that without ¬ not all subsets of FOUR are characterizable. For this

it is sufficient to show that if ψ is a formula in the language of {∨,∧,⊕,⊗,⊃, t, f,⊥,>} and

A(ψ)⊆{p1}, then ⊥∈S1
ψ iff f ∈S1

ψ. The proof of this fact is by an induction on the structure of

ψ.

• Base step: S1
t =S1

>=FOUR, S1
f =S1

⊥=∅, S1
p1 ={t,>}.

• Induction step:

1. ⊥∈S1
ψ∧φ iff ⊥∈S1

ψ and ⊥∈S1
φ, iff f ∈S1

ψ and f ∈S1
φ (by induction hypothesis), iff f ∈S1

ψ∧φ.

2. ⊥∈S1
ψ∨φ iff ⊥∈S1

ψ or ⊥∈S1
φ, iff f ∈S1

ψ or f ∈S1
φ (by induction hypothesis), iff f ∈S1

ψ∨φ.

3. ⊥∈S1
ψ⊃φ iff ⊥6∈S1

ψ or ⊥∈S1
φ, iff f 6∈S1

ψ or f ∈S1
φ (by induction hypothesis), iff f ∈S1

ψ⊃φ.

The cases of ⊗ and ⊕ are similar to the cases of ∧ and ∨, respectively. 2

4Note that {⊥} is not characterizable even though the use of the propositional constant ⊥ is allowed.
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4.2.2 Representation of operations on FOURn

We turn now to the subject of functional completeness.

Definition 4.13 An operation g :FOURn → FOUR is represented by a formula ψ s.t. A(ψ)⊆

{p1, . . . , pn} if for every valuation ν we have ν(ψ)=g(ν(p1), . . . , ν(pn)).

The most important result of this section is the following:

Theorem 4.14 The language Σ∗={¬,∧,⊃,⊥,>} is functionally complete for FOUR (i.e., every

function from FOURn to FOUR is representable by some formula in Σ∗).

Proof: Let g :FOURn → FOUR. Since f=¬(⊥⊃⊥), by Theorem 4.10 every subset of FOURn

is characterizable in Σ∗. Let, accordingly, ψgf , ψg>, and ψg⊥ characterize g−1({f}), g−1({>}), and

g−1({⊥}), respectively. Define: Ψg = (ψgf ⊃ f) ∧ (ψg> ⊃ >) ∧ (ψg⊥ ⊃ ⊥). It is easy to verify that

Ψg represents g. 2

Notes:

1. If we follow the construction of Ψg step by step under the assumption that there are only

two truth values (t and f), we shall get (with the help of trivial modifications, like replacing

p⊃ f by ¬p and p∧¬¬p by p) the classical conjunctive normal form. Our construction is,

therefore, a generalization of this normal form.

2. The functional completeness property for operations is completely independent, of course, of

the choice of the designated values. It is remarkable that our choice of F has, nevertheless,

a crucial role in its proof (through the notion of characterizability of subsets, which does

depend on the choice of F).

The ten connectives we use are not independent. Obviously, ∧ and ∨ are definable in term of

each other (using ¬), and so are t and f . There are, however, other dependencies. The following

identities are particularly important:5

5See Section 2.6 for definitions of ∨ and ∧ in terms of ⊕,⊗, t and f , which are dual to (2) and (5).
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1. > = (a ⊃ a)⊕ ¬(a ⊃ a)

2. a⊕ b = (a ∧ >) ∨ (b ∧ >) ∨ (⊥ ∧ a ∧ b)

3. ⊥ = f ⊗ ¬f

4. f = ¬(⊥ ⊃ ⊥)

5. a⊗ b = (a ∧ ⊥) ∨ (b ∧ ⊥) ∨ (> ∧ a ∧ b)

These identities mean that relative to the basic classical language Σ={¬,∧,∨,⊃} the connectives

> and ⊕ are inter-definable, while ⊥ is equivalent in expressive strength to the combination of

⊗ and f . It follows, for example, that the set {¬,∧,⊗,⊕,⊃, f} is also functionally complete.

This set is obtained from the classical language Σcl ={¬,∧,∨,⊃, t, f} by adding to it the lattice

operators of ≤k (⊗ and ⊕).

Example 4.15 (Kleene’s three-valued logics and Fitting’s guard connective) The meet and the

join in FOUR with respect to ≤t correspond to the conjunction and disjunction of strong Kleene’s

logic. In order to represent the connectives of the other Kleene’s three-valued logics (weak-Kleene6

and sequential-Kleene7), Fitting [Fi94] introduces a new connective, called the guard connective.

This connective is denoted p : q, and is evaluated as follows: if p is assigned a designated value (t

or >) the value of p : q has the value of q, otherwise p : q has the value ⊥. The guard connective

has the following simple and natural definition in our language:8

p : q = (p ⊃ q)⊗ ¬(p ⊃ ¬q)

We turn now to investigate the expressive power of the various fragments of our language

which include at least the basic classical language Σ = {¬,∧,∨,⊃}. From the discussion before

Example 4.15 it follows that there are at most eight such fragments, corresponding to extending

Σ with some subset of (say) {⊗,⊕, f}. Our next theorem provides exact characterizations of the

expressive power of each of these fragments, implying that they are all different from each other.

6Also known as Bochvar’s logic.
7Also known as McCarthy’s logic.
8Fitting [Fi94] also provides a definition for the guard connective, which is somewhat less straightforward, but

does not require implication: p :q=((p⊗t)⊕¬(p⊗t))⊗q.
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We show that there is a correspondence between these eight fragments and the various possible

combinations of the following three conditions:

I g(~>) = >

II g(~x) = > =⇒ ∃1≤ i≤n xi = >

III g(~x) = ⊥ =⇒ ∃1≤ i≤n xi = ⊥

Theorem 4.16 Let Σ = {¬,∧,⊃} and suppose that Ξ is a subset of {⊗,⊕, f}. A function

g :FOURn → FOUR is representable in Σ ∪ Ξ iff it satisfies those conditions from I–III that all

the (functions that directly correspond to the) connectives in Ξ satisfy. In other words:

• g is representable in {¬,∧,⊃} iff it satisfies I, II, and III.

• g is representable in {¬,∧,⊃, f} iff it satisfies II and III.

• g is representable in {¬,∧,⊃,⊕} iff it satisfies I and III.

• g is representable in {¬,∧,⊃,⊗} iff it satisfies I and II.

• g is representable in {¬,∧,⊃,⊗, f} iff it satisfies II.

• g is representable in {¬,∧,⊃,⊕,⊗} iff it satisfies I.

• g is representable in {¬,∧,⊃,⊕, f} iff it satisfies III.

• g is representable in {¬,∧,⊃,⊕,⊗, f}.

Proof: The proof closely follows that of Theorem 4.14. The following changes should be made:

1. If f is not available we use fn as a substitute (see the proof of Proposition 4.9). In addition,

instead of ψgf , ψg>, and ψg⊥ (which are not available in this case) we use φgf , φg>, and φg⊥ – the

formulae in the language of {¬,∧,⊃} which characterize {~>} ∪ g−1({f}), {~>} ∪ g−1({>}),

and {~>} ∪ g−1({⊥}) respectively (such formulae exist by Proposition 4.9).



84 CHAPTER 4. SATISFIABILITY AND EXPRESSIVENESS

2. If > is not available (i.e., ⊕ 6∈ Ξ) then we use the following sentence as a substitute:

>n = (p1 ⊃ p1) ∧ (p2 ⊃ p2) ∧ . . . ∧ (pn ⊃ pn)

It is easy to verify that >n has the following property:

ν(>n) =

{
> ∃1≤ i≤n ν(pi)=>
t otherwise

3. If ⊥ is not available (i.e., {⊗, f} 6⊆ Ξ) then if ⊗ ∈ Ξ we use as a substitute for ⊥ the

following sentence:

⊥n = p1 ⊗ ¬p1 ⊗ p2 ⊗ ¬p2 ⊗ . . .⊗ pn ⊗ ¬pn

If ⊗ 6∈ Ξ we use instead the following sentence:

⊥′n =
∨n
i=1(pi ∧ ((pi ∨ ¬pi) ⊃ fn))

These sentences have the following properties:

ν(⊥n) =

{
> ∀1≤ i≤n ν(pi)=>
⊥ otherwise

∃1≤ i≤n ν(pi)=⊥ ⇐⇒ ν(⊥′n) = ⊥

Following these guidelines, it is not difficult to prove the theorem. We show part 1 as an

example, leaving the rest to the reader. Assume then that g :FOURn → FOUR satisfies I – III.

Define:

Φg = (φgf ⊃ fn) ∧ (φg> ⊃ >n) ∧ (φg⊥ ⊃ ⊥
′
n)

Φg is in the language of {¬,∧,⊃}. We show that Φg represents g. Let ~x∈FOURn and assume

that ν(pi)=xi for i=1,. . ., n.

Case 1: g(~x) = t. By condition I, ~x 6= ~>. Since g(~x) 6= f this implies that ~x 6∈ {~>} ∪ g−1({f}).

Therefore ν(φgf ) 6∈{>, t} and so ν(φgf ⊃fn)= t. The facts that ν(φg>⊃>n)= t and ν(φg⊥⊃⊥
′
n)= t

follows similarly. Hence ν(Φg)= t=g(~x).

Case 2: g(~x) = f . Again, by condition I ~x 6= ~>, and so ν(fn) = f . In addition, ν(φgf )∈{t,>} in

this case, and so ν(φgf ⊃fn)=f . It follows that ν(Φg)=f=g(~x).

Case 3a: g(~x)=> and ~x= ~>. Since Φg is in the language of {¬,∧,⊃}, also ν(Φg)=>=g(~x).

Case 3b: g(~x)=> and ~x 6= ~>. By condition II there exists 1≤ i≤n s.t. xi=> and so ν(>n)=>.
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It follows that ν(φg> ⊃>n) => (since ν(φg>) ∈ {t,>} in this case). On the other hand, by the

same arguments as in case 1, ν(φgf ⊃fn)=ν(φg⊥⊃⊥
′
n)= t. Hence ν(Φg)=>=g(~x).

Case 4: g(~x) =⊥. By III there exists 1≤ i≤ n s.t. xi =⊥ and so ν(⊥′n) =⊥ and ~x 6= ~>. Since

in this case ν(φg⊥)∈{t,>}, it follows that ν(φg⊥⊃⊥
′
n) = ν(⊥′n) =⊥. Since the value of the other

components is again t (like in case 1), ν(Φg)=⊥=g(~x). 2

Corollary 4.17 The eight fragments above are different from each other.

Proof: It is rather easy to construct for every subset of I – III a function from FOURn to FOUR

that satisfies the conditions in this subset but not the rest. This easily implies the corollary. 2

We conclude this section with a short discussion on the minimality of the set of connectives

in each case. By Corollaries 4.11 and 4.12, neither ¬ nor ⊃ can be deleted from any of the sets

of connectives which we have provided in each case. Theorem 4.16 and Corollary 4.17 imply that

none of the connectives in {⊗,⊕, f} can be deleted in case it is included in the set we construct.9

This leaves only the question of the necessity of ∧. We shall content ourselves with an example

in which this connective is necessary, and an example in which it is not .

Proposition 4.18 The functionally complete set {¬,∧,⊃,>,⊥} considered in Theorem 4.14 is

minimal in the sense that no connective can be deleted from it without losing the functional

completeness.

Proof: We have discussed already the necessity of ¬,⊃,> and ⊥ (again: ⊥ takes here the

role of ⊗ and f together). To show that ∧ is also indispensable we prove, by induction on the

structure of formulae, that no formula ψ(p, q) in the language of {¬,⊃,>,⊥} defines a function

g such that g(t,⊥)=⊥ while g(>, t)=>. In particular ∧ itself is not definable in this language. 2

The set {¬,∧,⊃,>,⊥} is not minimal in the sense of the number of connectives in it. The

next proposition shows that there is a smaller set which is functionally complete.

Proposition 4.19 The set {¬,⊕,⊃,⊥} is functionally complete for FOUR.

9Although one can always replace ⊕ by >, and the pair {⊗, f} by ⊥.
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Proof: > and f are definable from this set as shown in the discussion before Example 4.15. Now,

define:

p u q = (p ∧̄ q)⊕ ((¬p ⊃ ¬q) ∧̄ q)

The relevant properties of u are the following:

ν(p u q) =


t ν(p)= t, ν(q)= t

⊥ ν(p)= t, ν(q)=⊥
> ν(p)=>, ν(q)= t

Now, given a function g :FOURn → FOUR, define:

Υg = (ψgf ⊃ f) ∧̄ ((ψg> ⊃ >) u (ψg⊥ ⊃ ⊥)) 10

It is easy now to check that Υg characterizes g. 2

Notes:

1. Using Theorem 4.16, Corollaries 4.11, 4.12, and Proposition 4.9, it is easy to show that

no subset of {¬,∧,∨,⊗,⊕,⊃, t, f,>,⊥} with less than four connectives can be functionally

complete.

2. The fact that ⊥ = f ⊗¬f together with Proposition 4.19 imply that {¬,⊗,⊕,⊃, f} is

functionally complete. Hence ∧ can be deleted from the set provided by the last part of

Theorem 4.16 (in contrast to that given in Theorem 4.14!)

10See the proof of Theorem 4.14 for the definition of ψgf , ψg>, and ψg⊥.
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Chapter 5

The Basic Logic of Logical Bilattices

5.1 The logic |=B,F

In the following chapters we shall use the framework defined in Part I of this work in order to

develop formalisms for reasoning with uncertainty. We begin with an approach that seems to be

the most natural way of defining a consequence relation in the bilattice-valued case.

Definition 5.1 Let (B,F) be a logical bilattice, and suppose that Γ, ∆ are two sets of formulae.

Then Γ |=B,F∆ if every model of Γ is a model of some formula in ∆.1

In the particular case where the bilattice under consideration is B=FOUR, we shall use the

abbreviation |=4 instead of |=(FOUR,{t,>}) or |=〈FOUR〉.

As we shall see below, for every logical bilattice (B,F), the relation |=B,F is a consequence

relation in the sense of Tarski and Scott, i.e. it is reflexive, monotonic, and preserves cut (see

also Proposition 5.4).

5.2 Canonical examples

Let us demonstrate the behavior of |=B,F with some well-known toy examples. These examples

will be used several times in the sequel.

1Note that the symbol |=B,F has two different meanings here: the one defined above, and the one in Definition
4.1. This is a usual overloading and it will not cause any conflict in what follows.
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First, we extend the discussion to first-order logic. It is possible to do so in a straightforward

way, provided that there are no quantifiers within the formulae, and that each formula that

contains variables is considered as universally quantified. Consequently, a set of assertions Γ

containing a non-grounded formula, ψ, will be viewed as representing the corresponding set of

ground formulae formed by substituting for each variable that appears in ψ every possible element

of Herbrand universe, U . Formally: ΓU = {ρ(ψ) | ψ ∈ Γ, ρ : var(ψ)→ U}, where ρ is a ground

substitution from the variables of every ψ∈Γ to the individuals of U .

Example 5.2 (Tweety dilemma) Consider the following well-known example:

bird(x) ; fly(x)

penguin(x) ⊃ bird(x)

penguin(x) ⊃ ¬fly(x)

bird(Tweety)

bird(Fred)

We are using different implication connectives here according to the strength we attach to each

entailment: Penguins never fly. This is a characteristic property of penguins, and there are no

exceptions to that. Also, every penguin is a bird and again, there are no exceptions to that fact.

Thus, the second and the third rules are formulated with stronger implication connective than

the first rule, which states only a default property of birds. Indeed, since from ψ and ψ ; φ we

cannot infer φ (by |=B,F ) without more information,2 the first assertion does not cause automatic

inference of flying abilities just from the fact that something is a bird. It does give, however, a

strong connection between these two facts.

Let’s consider this example in 〈FOUR〉. Denote the above set of assertions by ΓT,F .3 ΓT,F

has 324 (= 182) four-valued models altogether. Since the roles of Tweety and Fred are totally

symmetric, we give in Table 5.1 only the 18 model-assignments that concern with Tweety.

Hence, the only atomic conclusion allowed by |=4 here is that Tweety and Fred are birds.

One might also expect to infer in this case that Tweety and Fred can fly (since this is a “default

2A counter-model is, e.g., ν(ψ)=> and ν(φ)=⊥.
3The subscript T, F denotes that we consider here the “Tweety/Fred” example.
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Table 5.1: The assignments of 〈Predicate〉(Tweety) in mod(ΓT,F ) (Example 5.2)

Model No. bird(Tweety) fly(Tweety) penguin(Tweety)

M1 −M8 > >, f >, t, f,⊥
M9 −M12 > t,⊥ f,⊥
M13 −M16 t > >, t, f,⊥
M17 −M18 t t f,⊥

property” of birds) and that they are not penguins (since one has no reason to believe so), but

these inferences are not supported by |=4. We will return to this “over-cautiosness” property of

|=4 in what follows.

Suppose now that a new datum arrives, and Tweety is now known to be a penguin. Denote

the new set of assertions by Γ′T,F . I.e.,

Γ′T,F = ΓT,F ∪ { penguin(Tweety) }

Clearly, Γ′T,F is no longer classically consistent. This implies that everything classically follows

from it. In particular, although the conflict in Γ′T,F has nothing to do with the information about

Fred, and despite the fact that the data about Fred have not been changed, classical logic is still

useless for reasoning about Fred, because every fact is now classically provable. This is, of course,

also the case with Tweety. We see, therefore, that the new datum – despite being more accurate

– has spoiled the whole knowledge-base.

The inference relation |=4 (as well as |=B,F in the general case) does not have this drawback:

Γ′T,F has 6 × 18 four-valued models; The 18 assignments for the predicates that concerns with

Fred remain the same as those of ΓT,F (since there is no change in the information about Fred).

However, the assignments for the predicate that are related with Tweety are totally changed.

These 6 model-assignments are listed in Table 5.2.

The new conclusions are therefore the following:

Γ′T,F |=4 bird(Tweety), Γ′T,F |=4 bird(Fred),

Γ′T,F 6|=4 ¬bird(Tweety), Γ′T,F 6|=4 ¬bird(Fred),

Γ′T,F |=4 ¬fly(Tweety), Γ′T,F 6|=4 fly(Fred),
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Table 5.2: The assignments of 〈Predicate〉(Tweety) in mod(Γ′T,F ) (Example 5.2)

Model No. bird(Tweety) fly(Tweety) penguin(Tweety)

M1 −M2 > > >, t
M3 −M4 > f >, t
M5 −M6 t > >, t

Γ′T,F 6|=4 fly(Tweety), Γ′T,F 6|=4 ¬fly(Fred),

Γ′T,F |=4 penguin(Tweety), Γ′T,F 6|=4 penguin(Fred),

Γ′T,F 6|=4 ¬penguin(Tweety), Γ′T,F 6|=4 ¬penguin(Fred).

Thus, although Γ′T,F is classically inconsistent, nontrivial conclusions about Tweety and Fred can

be obtained by |=4. Moreover,

1. Previous knowledge that has no relation to the modified data is not affected: All the

conclusions about Fred remain the same as those deducible from ΓT,F .

2. Despite the conflicting information about Tweety, we are still able to infer that Tweety is a

penguin, a bird, and it cannot fly. The complementary conclusions cannot be obtained by

|=4 (neither by |=B,F for any logical bilattice (B,F)), as expected.

Example 5.3 (Nixon diamond) The following example is another famous puzzle in the liter-

ature of AI: Nixon was a republican and a quaker. Quakers are considered to be doves (however,

there might be some exceptions), and republicans are generally hawks. Hawks and doves rep-

resent two different political views, and each person is (roughly) either a hawk or a dove. A

formulation of this puzzle is as follows:

quaker(Nixon)

republican(Nixon)

quaker(Nixon) ; dove(Nixon)

republican(Nixon) ; hawk(Nixon)

dove(Nixon) ⊃ ¬hawk(Nixon)
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hawk(Nixon) ⊃ ¬dove(Nixon)

hawk(Nixon) ∨ dove(Nixon)

Denote this set of assertions by ΓN . The twelve four-valued models of ΓN are given in Table 5.3.

Table 5.3: The models of ΓN (Example 5.3)

Model No. quaker(Nixon) republican(Nixon) hawk(Nixon) dove(Nixon)

M1 −M4 >, t >, t > >
M5 −M8 >, t > f >, t
M9 −M12 > >, t >, t f

Thus, by using |=4, one cannot tell whether Nixon is a dove or a hawk (which seems reasonable

given the conflicting defaults). One can still infer the explicit information about Nixon, i.e. that

he was a republican and a quaker. However, unlike the classical case, the negations of these

assertions cannot be inferred, despite the inconsistency. What can be inferred is their disjunction:

¬hawk(Nixon) ∨ ¬dove(Nixon).

5.3 Basic properties

Proposition 5.4 |=B,F is an scr.

Proof: Reflexivity and Monotonicity immediately follow from Definition 5.1. For cut, assume

that M ∈mod(Γ1∪Γ2). In particular, M ∈mod(Γ1), and since Γ1 |=B,F ψ,∆1, either M |=B,F δ for

some δ∈∆1, or M |=B,F ψ. In the former case we are done. In the latter case M ∈mod(Γ2∪{ψ})

and since Γ2, ψ |=B,F∆2, we have that M |=B,F δ for some δ∈∆2. 2

The following proposition immediately follows from the relevant definitions.

Proposition 5.5 Let (B,F) be an arbitrary logical bilattice.

a) If u is a connective s.t. the corresponding operation of B is conjunctive, then u is a

combining conjunction and an internal conjunction w.r.t. |=B,F .

b) If t is a connective s.t. the corresponding operation ofB is disjunctive, then t is a combining

disjunction and an internal disjunction w.r.t. |=B,F .
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Corollary 5.6 In every logical bilattice (B,F),

a) the connectives ∧ and ⊗ are combining conjunctions and internal conjunctions w.r.t. |=B,F .

b) the connectives ∨ and ⊕ are combining disjunctions and internal disjunctions w.r.t. |=B,F .

proof: By Lemma 3.5 and Proposition 5.5. 2

Proposition 5.7 |=B,F is paraconsistent:

Proof: Indeed, p,¬p 6|=B,F q. To see this consider, e.g., ν(p)=> and ν(q)=f . 2

Proposition 5.8 In the language of {¬,∧,∨,⊗,⊕}, |=B,F has no tautologies.4

Proof: Let ψ be any formula in {¬,∧,∨,⊗,⊕}, and suppose that ν is a valuation that assigns

all the propositional variables in ψ the value ⊥. Then ν(ψ)=⊥ as well, so ψ is not valid. 2

From Proposition 5.8 it follows, in particular, that the material implication is not adequate

for representing entailments in any bilattice-valued setting. As we have noted in Chapter 4, this

is not the case with ⊃:

Proposition 5.9 Both modus ponens and the deduction theorem are valid for ⊃ in |=B,F :

Γ, ψ |=B,F φ,∆ iff Γ |=B,F ψ⊃φ,∆.

Proof: Immediate from the definition of ⊃. 2

Theorem 5.10 (monotonicity and compactness) Let Γ,∆ be arbitrary (possibly infinite) sets of

formulae in Σfull. Define Γ |=B,F ∆ exactly as in the finite case. Then Γ |=B,F ∆ iff there exist

finite sets Γ′,∆′ such that Γ′⊆Γ, ∆′⊆∆, and Γ′ |=B,F∆′

Proof: Suppose that Γ,∆ are sets of formulae for which no such Γ′,∆′ exist. Construct a refuting

valuation ν in FOUR as follows: First, extend the pair (Γ,∆) to a maximal pair (Γ∗,∆∗) with

the same property. Then, for any ψ, either ψ ∈ Γ∗ or ψ ∈∆∗ (Otherwise, (Γ∗ ∪ {ψ},∆∗) and

(Γ∗,∆∗ ∪ {ψ}) do not have the property, and so there are finite Γ′⊆Γ∗, and ∆′⊆∆∗ such that

4Note that this proposition is not true in Σmon, since t and > are always valid.
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Γ′, ψ |=B,F ∆′ and there are finite Γ′′⊆Γ∗, and ∆′′⊆∆∗ such that Γ′′ |=B,F ψ,∆′′. It follows that

Γ′ ∪Γ′′ |=B,F∆′ ∪∆′′, contradicting the definition of (Γ∗,∆∗)). Now, define a function ν from the

set of all sentences to FOUR as follows:

ν(ψ)
def
=


> if ψ∈Γ∗ and ¬ψ∈Γ∗

t if ψ∈Γ∗ and ¬ψ∈∆∗

f if ψ∈∆∗ and ¬ψ∈Γ∗

⊥ if ψ∈∆∗ and ¬ψ∈∆∗

Obviously, ν(ψ)∈Fk(t) (= Ft(>)) for all ψ∈Γ∗, while ν(ψ) 6∈Fk(t) if ψ∈∆∗. It remains to show

that ν is indeed a valuation (i.e. it respects the operations). We will prove here only the case of

∧. For this, we first note the following facts:

Fact 1: If ψ∈∆∗ or φ∈∆∗, then ψ∧φ∈∆∗.

Proof: Since ψ∧φ |=B,F ψ and ψ∧φ |=B,F φ, then ψ∧φ cannot be in Γ∗.

Fact 2: If ψ∈Γ∗, then ψ ∧ φ∈Γ∗ [∈∆∗] iff φ∈Γ∗ [∈∆∗]. Similarly for φ.

Proof: Suppose that ψ∈Γ∗. If also φ∈Γ∗, then ψ∧φ cannot be in ∆∗, since ψ, φ |=B,F ψ∧φ, so

ψ∧φ∈Γ∗ as well. If, on the other hand, φ∈∆∗, then also ψ∧φ∈∆∗, by Fact (1).

Fact 3: If ¬ψ∈Γ∗ or ¬φ∈Γ∗, then ¬(ψ∧φ)∈Γ∗.

Proof: Similar to that of Fact 1.

Fact 4: If ¬ψ∈∆∗ then ¬(ψ∧φ)∈∆∗ iff ¬φ∈∆∗.

Proof: Similar to that of Fact 2.

Using Facts (1)-(4), it is straightforward to check that ν(ψ ∧ φ)=ν(ψ) ∧ ν(φ) for every ψ, φ. For

example, if ν(ψ)=f then ψ∈∆∗ and ¬ψ∈Γ∗, thus, by (1) and (3), ψ∧φ∈∆∗ and ¬(ψ∧φ)∈Γ∗.

Hence ν(ψ∧φ)=f=ν(ψ)∧ν(φ) in this case. The other cases are handled similarly. 2

5.4 Characterization in 〈FOUR〉

The main result of this section is that |=B,F can actually be characterized by using only the basic

four values. This does not mean, of course, that from now on bilattices have no value (exactly

as the fact, that Boolean algebras can be characterized in {t, f}, does not mean that Boolean

algebras have no value). It does demonstrate, however, the fundamental role of the four values.
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Proposition 5.11 A model of Γ in 〈FOUR〉 is also a model of Γ in every logical bilattice (B,F).

Proof: Let M (4) be a model of Γ in 〈FOUR〉, and suppose that M (B,F) is the same valuation

defined on some logical bilattice (B,F). Since every bifilter F contains t,> and does not contain

f,⊥, then M (4) and M (B,F) are similar. Hence, by Proposition 4.4, for every ψ∈Γ M (4)(ψ) and

M (B,F)(ψ) are similar. In particular M (B,F) must be a model of Γ in (B,F) as well.5 2

Corollary 5.12 If Γ |=B,F∆ then Γ |=4 ∆.

Proof: Otherwise, there is a four-valued model M of Γ, but M(δ) 6∈ {t,>} for every δ ∈∆. By

Proposition 5.11 M is also a model of Γ in (B,F) and ∀δ∈∆ M(δ) 6∈F . Thus Γ 6|=B,F∆. 2

For the converse of the last corollary, we need the following definition:

Definition 5.13 Let (B,F) be a logical bilattice. Define a function h : B → FOUR as follows:

h(b) =



> if b∈T>
t if b∈Tt
f if b∈Tf
⊥ if b∈T⊥

Proposition 5.14

a) h is an homomorphism onto FOUR.

b) M is a model in (B,F) of a set Γ of formulae iff the composition h◦M is a model of Γ in

〈FOUR〉.

Proof: Note first, that h is obviously an homomorphism w.r.t ¬. It remains to show that it is

also a homomorphism w.r.t ∧,∨,⊗,⊕, and ⊃:

5In the specific case where (B,F) is interlaced, this proposition immediately follows from Proposition 3.1 of
[Fi91], since it is shown there that FOUR is actually a sub-bilattice of every interlaced bilattice B, so in this case
M (4)(ψ) and M (B,F)(ψ) are not only similar, but are actually identical.
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a) The case of ∧:

1. Suppose that a∧b∈F and ¬(a∧b)∈F . Then a∈F and b∈F . In addition, ¬(a∧b)∈F ,

hence ¬a∨¬b ∈ F , and so ¬a ∈ F or ¬b ∈ F (since F is prime). It follows that

{a,¬a} ⊆ F or {b,¬b} ⊆ F , hence either h(a) => or h(b) =>. Since both h(a) and

h(b) are in {>, t}, and >∧>=>∧t=>, it follows that h(a)∧h(b)=>=h(a∧b).

2. If a∧b∈F but ¬(a∧b) 6∈F , then a∈F and b∈F , but ¬a∨¬b 6∈F , and so neither ¬a

nor ¬b are in F . It follows that h(a)=h(b)= t, so this time h(a)∧h(b)= t=h(a∧b).

3. Suppose that a∧b 6∈F and ¬(a∧b)∈F . Then either ¬a∈F or ¬b∈F . Assume, e.g.,

that ¬a∈F . If a 6∈ F then h(a) = f and so h(a)∧h(b) = f =h(a∧b). If, on the other

hand, a∈F , then h(a)=>. In addition b 6∈F (otherwise we would have a∧b∈F), and

so h(b)∈{f,⊥}. Since in FOUR >∧f=>∧⊥=f , in this case h(a)∧h(b)=f=h(a∧b).

4. Suppose that a∧b 6∈F and ¬(a∧b) 6∈F . Then ¬a 6∈F , ¬b 6∈F and either a 6∈F or b 6∈F .

It follows that either h(a) =⊥ or h(b) =⊥. Assume, e.g., the former. Since ¬b 6∈ F ,

then h(b)∈{t,⊥}. But since ⊥∧t=⊥∧⊥=⊥, h(a)∧h(b)=⊥=h(a∧b) in this case.

b) The case of ∨:

Since a∨b=¬(¬a∧¬b), this case follows from the previous one.

c) The case of ⊗:

1. If a⊗b∈F and ¬(a⊗b)∈F , then since ¬(a⊗b)=¬a⊗¬b, we have that a, b,¬a,¬b∈F ,

hence h(a)=h(b)=>, and so h(a)⊗h(b)=>⊗>=>=h(a⊗b).

2. If a⊗b ∈ F and ¬(a⊗b) 6∈ F , then a ∈ F , b ∈ F , and either ¬a 6∈ F or ¬b 6∈ F . It

follows that both h(a) and h(b) are in {>, t}, and at least one of them is t. hence,

h(a)⊗h(b)= t=h(a⊗b).

3. The case that a⊗b 6∈F and ¬(a⊗b)∈F is similar to the previous one.

4. If a⊗b 6∈F and ¬(a⊗b) 6∈F then either a 6∈F or b 6∈F , and also either ¬a 6∈F or ¬b 6∈F .

Assume, e.g., that a 6∈F . If also ¬a 6∈F , then h(a)=⊥, and so h(a)⊗h(b)=⊥=h(a⊗b).

If, on the other hand, ¬a∈F , then ¬b 6∈ F , and so we get that h(a) = f , and h(b)∈

{t,⊥}. Since in FOUR f⊗t=f⊗⊥=⊥,
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we have again that h(a)⊗h(b)=⊥=h(a⊗b).

d) The case of ⊕:

1. Assume that a⊕b∈F and ¬(a⊕b)∈F . Then a∈F or b∈F . Assume, e.g., that a∈F ;

then h(a)∈{>, t}. If in addition ¬a∈F , then h(a)=>, and so h(a)⊕h(b)=>=h(a⊕b).

Otherwise, ¬b∈F , and so h(b)∈{>, f}. Since in FOUR, >⊕>=>⊕t=>⊕f= t⊕f=>,

we have that h(a)⊕h(b)=>=h(a⊕b).

2. If a⊕ b ∈ F and ¬(a⊕ b) 6∈ F , then a ∈ F or b ∈ F , and neither ¬a nor ¬b are in

F . It follows that h(a), h(b) are both in {t,⊥}, and at least on of then is t. Hence,

h(a)⊕h(b)= t=h(a⊕b).

3. The case that a⊕b 6∈F and ¬(a⊕b)∈F is similar to the previous one.

4. If a⊕b 6∈F and ¬(a⊕b) 6∈F , then a,¬a, b,¬b are all not in F , and so h(a)=h(b)=⊥.

It follows that h(a)⊕h(b)=⊥=h(a⊕b).

e) The case of ⊃:

1. If a∈F , then a⊃b=b, so h(a⊃b)=h(b)=h(a)⊃h(b), since h(a)∈{>, t} when a∈F .

2. if a 6∈F , then a⊃ b= t and so h(a⊃ b) =h(t) = t. But since in this case h(a)∈{⊥, f},

then h(a)⊃h(b) is also t, no matter what h(b) is. 2

Notes:

1. In case that F is an ultrabifilter, then h of Definition 5.13 is a homomorphism w.r.t. con-

flation as well. Indeed,

• If h(b)=> then b∈F and ¬b∈F , so −¬b 6∈F and −¬¬b 6∈F . Thus, ¬−b 6∈F and −b 6∈F ,

so we have that h(−b)=⊥=−h(b).

• If h(b)= t then b∈F and ¬b 6∈F , so −¬b 6∈F and −¬¬b∈F . Hence ¬−b 6∈F and −b∈F .

It follows that h(−b)= t=−h(b).

• If h(b) = f then b 6∈ F and ¬b∈F . Thus −¬b∈F and −¬¬b 6∈ F , and so ¬−b∈F and

−b 6∈F . Hence, h(−b)=f=−h(b).

• If h(b)=⊥ then b 6∈F and ¬b 6∈F , thus −¬b∈F , −¬¬b∈F and so ¬−b∈F , −b∈F . So

again we have that h(−b)=>=−h(b).
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2. From Proposition 5.14 it follows that there exists a unique homomorphism h : B → FOUR,

such that h(b)∈{>, t} iff b∈F . For Boolean algebras we have, in fact, a weaker theorem:

Given x from a Boolean algebra B, and a filter F⊆B s.t. x 6∈F, we have an homomorphism

hx : B→TWO w.r.t ¬,∧,∨ s.t. hx(x) 6∈F(TWO), and hx(y)∈F(TWO) for every y∈F. In

our case, the same h is good for all x. On the other hand, in Boolean algebras we have the

property that if x, y ∈ B and x 6= y, then there is an homomorphism h : B→ TWO which

separates them. This further implies that equalities which hold in TWO are valid in any

Boolean algebra. Logical bilattices and FOUR, in contrast, do not enjoy this property.

Thus, the distributive law a∧(b∨c)=(a∧b)∨(a∧c) is valid in FOUR, but not in every logical

bilattice in general (take, e.g., DEFAULT ).

Theorem 5.15 Γ |=B,F∆ iff Γ |=4 ∆.

Proof: One direction is shown in Corollary 5.12. For the other direction, suppose that Γ 6|=B,F∆.

Then there is a valuation M that is a model of Γ in (B,F) but M(δ) 6∈ F for every δ ∈∆. Let

M ′ = h◦M . By Propositions 4.4 and 5.14 it follows that M ′ is a four-valued model of Γ s.t.

M ′(δ) 6∈{t,>} for every δ∈∆. Therefore Γ 6|=4 ∆. 2

5.5 Proof theory

One of the most significant advantages of |=B,F is that it has corresponding proof systems, which

are both nice and efficient. In this section we consider two of them: GBL (Gentzen-type BiLattice-

based system) and HBL (Hilbert-type BiLattice-based system).

5.5.1 The system GBL

Table 5.4 contains a Gentzen-type proof system, denoted GBL. Below are some remarks on this

system:

1. The positive rules for ∧ and ⊗ are identical. Both behave as classical conjunction. The

difference is with respect to the negations of p ∧ q and p ⊗ q. Unlike the conjunction of

classical logic, the negation of p⊗q is equivalent to ¬p⊗¬q. This follows from the fact that

p≤k q iff ¬p≤k¬q. The difference between ∨ and ⊕ is similar.
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Table 5.4: The system GBL

Axioms: Γ, ψ |∼ ∆, ψ

Rules: Exchange, Contraction, and the following logical rules:

[¬¬ |∼ ]
Γ, ψ |∼ ∆

Γ,¬¬ψ |∼ ∆
[ |∼¬¬]

Γ |∼ ∆, ψ

Γ |∼ ∆,¬¬ψ

[∧|∼ ]
Γ, ψ, φ |∼ ∆

Γ, ψ ∧ φ |∼ ∆
[ |∼∧]

Γ |∼ ∆, ψ Γ |∼ ∆, φ

Γ |∼ ∆, ψ ∧ φ

[¬∧|∼ ]
Γ,¬ψ |∼ ∆ Γ,¬φ |∼ ∆

Γ,¬(ψ ∧ φ) |∼ ∆
[ |∼¬∧]

Γ |∼ ∆,¬ψ,¬φ
Γ |∼ ∆,¬(ψ ∧ φ)

[∨|∼ ]
Γ, ψ |∼ ∆ Γ, φ |∼ ∆

Γ, ψ ∨ φ |∼ ∆
[ |∼∨]

Γ |∼ ∆, ψ, φ

Γ |∼ ∆, ψ ∨ φ

[¬∨|∼ ]
Γ,¬ψ,¬φ |∼ ∆

Γ,¬(ψ ∨ φ) |∼ ∆
[ |∼¬∨]

Γ |∼ ∆,¬ψ Γ |∼ ∆,¬φ
Γ |∼ ∆,¬(ψ ∨ φ)

[⊗|∼ ]
Γ, ψ, φ |∼ ∆

Γ, ψ ⊗ φ |∼ ∆
[ |∼⊗]

Γ |∼ ∆, ψ Γ |∼ ∆, φ

Γ |∼ ∆, ψ ⊗ φ

[¬⊗|∼ ]
Γ,¬ψ,¬φ |∼ ∆

Γ,¬(ψ ⊗ φ) |∼ ∆
[ |∼¬⊗]

Γ |∼ ∆,¬ψ Γ |∼ ∆,¬φ
Γ |∼ ∆,¬(ψ ⊗ φ)

[⊕|∼ ]
Γ, ψ |∼ ∆ Γ, φ |∼ ∆

Γ, ψ ⊕ φ |∼ ∆
[ |∼⊕]

Γ |∼ ∆, ψ, φ

Γ |∼ ∆, ψ ⊕ φ

[¬⊕|∼ ]
Γ,¬ψ |∼ ∆ Γ,¬φ |∼ ∆

Γ,¬(ψ ⊕ φ) |∼ ∆
[ |∼¬⊕]

Γ |∼ ∆,¬ψ,¬φ
Γ |∼ ∆,¬(ψ ⊕ φ)

[ ⊃|∼ ]
Γ |∼ ψ,∆ Γ, φ |∼ ∆

Γ, ψ ⊃ φ |∼ ∆
[ |∼⊃ ]

Γ, ψ |∼ φ,∆
Γ |∼ ψ ⊃ φ,∆

[¬⊃|∼ ]
Γ, ψ,¬φ |∼ ∆

Γ,¬(ψ ⊃ φ) |∼ ∆
[ |∼¬⊃ ]

Γ |∼ ψ,∆ Γ |∼ ¬φ,∆
Γ |∼ ¬(ψ ⊃ φ),∆

[¬t |∼ ] Γ,¬t |∼ ∆ [ |∼ t] Γ |∼ ∆, t

[f |∼ ] Γ, f |∼ ∆ [ |∼ ¬f ] Γ |∼ ∆,¬f

[⊥|∼ ] Γ,⊥ |∼ ∆ [ |∼ >] Γ |∼ ∆,>

[¬⊥|∼ ] Γ,¬⊥ |∼ ∆ [ |∼ ¬>] Γ |∼ ∆,¬>
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2. It is easy to see that GBL is closed under weakening. We could, in fact, have taken weakening

as a primitive rule. We haven’t done so since in what follows we will be interested in relations

that are not necessarily monotonic.

3. In order to add a conflation to GBL one needs to expand it with additional rules for the left

and right combination of − with ∧,∨,⊗,⊕,⊃,− and the propositional constants t, f,>,⊥

(20 new rules altogether). These rules are the duals of the corresponding rules of negation.

For example,

[−∧|∼]
Γ,−ψ,−φ, |∼ ∆

Γ,−(ψ ∧ φ) |∼ ∆
[−⊗|∼]

Γ,−ψ |∼ ∆ Γ,−φ |∼ ∆

Γ,−(ψ ⊗ φ) |∼ ∆

In addition, one should add four more rules for the combination of negation and conflation:

[−¬|∼ ]
Γ, |∼ ∆, ψ

Γ,−¬ψ |∼ ∆
[ |∼−¬]

Γ, ψ |∼ ∆

Γ |∼ ∆,−¬ψ

[¬−|∼ ]
Γ, |∼ ∆, ψ

Γ,¬−ψ |∼ ∆
[ |∼−¬]

Γ, ψ |∼ ∆

Γ |∼ ∆,¬−ψ

Definition 5.16 We say that ∆ follows from Γ in GBL (Γ `GBL ∆) if there exist finite Γ′ ⊆ Γ,

∆′⊆∆ s.t. Γ′ |∼∆′ is provable in GBL.

Theorem 5.17

a) (soundness and completeness) Γ |=B,F∆ iff Γ`GBL∆.

b) (cut elimination) If Γ1`GBL∆1, ψ and Γ2, ψ `GBL∆2, then Γ1,Γ2`GBL∆1,∆2.

Proof: The soundness part is easy, and is left to the reader. We prove completeness and cut-

elimination together by showing that if Γ |∼∆ has no cut-free proof then Γ 6|=B,F∆. The proof is

by an induction on the complexity of the sequent Γ |∼∆:

• The base step: Suppose that Γ |∼ ∆ consists only of literals. If Γ and ∆ have a literal in

common, then Γ |∼∆ is obviously valid (and is provable without cut). If Γ and ∆ have no literal

in common, then consider the following assignment ν in FOUR:

ν(p)
def
=


> if both p and ¬p are in Γ

⊥ if both p and ¬p are in ∆

t if (p∈Γ and ¬p 6∈Γ) or (p 6∈∆ and ¬p∈∆)

f if (p 6∈Γ and ¬p∈Γ) or (p∈∆ and ¬p 6∈∆)
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Obviously, this is a well defined valuation, which gives all the literals in Γ values in {>, t}, and

all the literals in ∆ values in {⊥, f}. Hence ν refutes Γ |∼∆ in 〈FOUR〉, and so Γ 6|=B,F∆.

• The induction step: The crucial observation is that all the rules of the system GBL are reversible,

both semantically and proof-theoretically (a direct demonstration in the proof-theoretical case

requires cuts). There are many cases to consider here. We shall treat in detail only the case in

which a sentence of the form ψ∧φ is in Γ ∪∆. Before doing so we note that the case in which a

sentence of the form ¬ψ belongs to Γ ∪∆ should be split into the sub-cases ψ=¬φ, ψ=φ1∧φ2,

etc. (The case in which ψ=¬p where p is atomic was already taken care of in the base step).

(i) Suppose that ψ∧φ ∈ Γ, i.e. Γ = Γ′, ψ∧φ. Consider the sequent Γ′, ψ, φ |∼∆. By induction

hypothesis, either Γ′, ψ, φ |∼∆ is provable without a cut (and then Γ′, ψ∧φ |∼∆ is provable without

cut, using [∧|∼]), or else there is a valuation that refutes Γ′, ψ, φ |∼∆. In the latter case the same

valuation refutes Γ′, ψ∧φ |∼∆ as well.

(ii) Suppose that ψ∧φ∈∆, i.e. ∆ = ∆′, ψ∧φ. Consider the sequents Γ |∼∆′, ψ and Γ |∼∆′, φ.

Again, either both have cut-free proofs, and then Γ |∼∆′, ψ∧φ also has a proof without a cut

(using [|∼ ∧]), or there is an assignment that refutes either sequent, and the same assignment

refutes Γ |∼∆′, ψ∧φ as well. 2

Note:

1. In [Av91a] it is shown that if we add Γ,¬ψ,ψ |∼ ∆ as an axiom to the {∧,∨,¬} (or

{∧,∨,¬, f, t}) fragment of GBL, we get a sound and complete system for Kleene 3-valued

logic, while if we add Γ |∼ ∆, ψ,¬ψ we get one of the basic three-valued paraconsistent

logics LP (see Section 5.6 below). By adding both axioms, we get classical logic.

2. Using Notes (1) and (3) after Proposition 5.14 it is straightforward to extend the proof of

Theorem 5.17 to the case of ultralogical bilattices and GBL with rules for conflations. Note

that in the presence of conflation we do have provable sequents of the form Γ |∼ and |∼∆.

Corollary 5.18 The {∧,∨,⊃, t, f}-fragment of |=4 is identical to the corresponding fragment of

classical logic.

Note: The corollary above means that like modal logic, |=4 can also be viewed as an extension

of classical logic by new connectives (for example ¬). This is due to the fact that the classical
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negation of ψ can be translated into ψ ⊃ f . It is more useful, however, to view ¬ as the real

counterpart of classical negation.

Corollary 5.19

a) All the rules of GBL are reversible.

b) Given any sequent Γ |∼∆, one can construct a finite set S of clauses such that `GBLΓ |∼∆

iff `GBL s for every s∈S.6

Proof:

a) This follows easily from cut-elimination. For example, the rule [|∼¬⊃] is reversible because

both ¬(ψ⊃φ) |∼ ψ and ¬(ψ⊃φ) |∼ ¬φ are easily derivable, using [¬⊃|∼].

b) This is immediate from (a). 2

Note: The last corollary together with the equivalence of `GBL and |=4 mean that we can develop

a tableaux proof system for |=4, which is almost identical to that of classical logic.7 The main

difference is that unlike classical logic, here a clause Γ |∼∆ is valid iff Γ∩∆ 6=∅. One should note

also that it is impossible here to translate a clause Γ |∼∆ in which Γ 6= ∅ into a sentence of the

language without using the implication connective ⊃.

5.5.2 Intuitionistic GBL

Definition 5.20 GBLI (Intuitionistic GBL (without implications)) is the system obtained from

the fragment without the ⊃-rules8 of GBL, by allowing a sequent to have exactly one formula

to the r.h.s of |∼, and by replacing the rules that have more than one formula on their r.h.s (or

empty r.h.s) by the corresponding intuitionistic rules.9

For instance, in GBLI , [|∼∨] is replaced with the following two rules:

Γ |∼ ψ
Γ |∼ ψ ∨ φ

Γ |∼ φ
Γ |∼ ψ ∨ φ

Also, all the axioms of the form b |∼ (b∈{f,¬t,⊥,¬⊥}) are replaced by b |∼ψ for arbitrary ψ.

6By a “clause” we mean here a sequent that contains only literals.
7Such a system was introduced in [Fi89, Fi90a], but only validity of signed formulae is considered there and not

the consequence relation. Moreover, only k-monotonic operators are dealt with in those papers.
8The reason for excluding ⊃ will become clear by the discussion after Theorem 5.21.
9Note that ¬¬ψ |∼ψ obtains in both new systems, so the analogy with intuitionistic logic is not perfect.
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Theorem 5.21 Γ |=B,F ψ iff Γ`GBLI ψ.

Proof: We start with two lemmas:

Lemma 5.21-A: Suppose that `GBLΓ |∼∆, where ∆ is not empty, and Γ consists only of literals.

Then `GBLI Γ |∼ψ for some ψ in ∆.10

Proof: By an easy induction on the length of a cut-free proof of Γ |∼∆ in GBL: It is trivial in

the case where Γ |∼∆ is an axiom. For the induction step we use the fact that since Γ consists

of literals, all the rules employed are r.h.s rules. We will prove the case of the rules for ∨ as an

example:

• Suppose that ∆ = ∆′, φ∨τ and Γ |∼∆ was inferred from Γ |∼∆′, φ, τ . By induction hypothesis

either `GBLI Γ |∼φ, or `GBLI Γ |∼τ , or `GBLI Γ |∼ψ, for some ψ∈∆′. In the third case we are done,

while in the first two we infer `GBLI Γ |∼φ∨τ using the intuitionistic rules for introduction of ∨.

• Suppose that ∆ = ∆′,¬(φ∨τ) and Γ |∼∆ was inferred from Γ |∼∆′,¬φ and Γ |∼∆′,¬τ . By

induction hypothesis either `GBLI Γ |∼ ψ, for some ψ ∈∆′, in which case we are done, or both

`GBLI Γ |∼¬φ and `GBLI Γ |∼¬τ . In this case, Γ |∼¬(φ ∨ τ) follows immediately by [|∼¬∨].

Lemma 5.21-B: For every Γ there exist sets Γi (i = 1 . . . n) s.t:

1. For every i, Γi consists of literals.

2. For every ∆, `GBLΓ |∼∆ iff for every i, `GBLΓi |∼∆.

3. For every ∆ there is a cut-free proof of Γ |∼∆ from Γi |∼∆ (i = 1 . . . n), where ∆ is the r.h.s

of all the sequents involved, and the only rules used are l.h.s rules.

Proof: By induction on the complexity of Γ, using the fact that all the l.h.s rules of GBL are

reversible, and their active formulae belong to the l.h.s of the premises.

Proof of Theorem 5.21: Assume that `GBL Γ |∼ ψ. Then `GBL Γi |∼ ψ for the Γi’s given in

Lemma 5.21-B. Lemma 5.21-A implies, then, that `GBLI Γi |∼ψ (i = 1 . . . n). The third property

of Γ1, . . .Γn in Lemma 5.21-B implies that `GBLI Γ |∼ψ, since GBLI and GBL have the same l.h.s

rules. 2

Notice that the last theorem is still true if we add Γ, ψ,¬ψ |∼∆ to the axioms of GBL, and

Γ, ψ,¬ψ |∼ φ to the axioms of GBLI . In contrast, the theorem fails if we add Γ |∼∆, ψ,¬ψ as an

10Note that if ∆ is empty, then `GBLI Γ |∼ψ for every ψ.



5.5. PROOF THEORY 105

axiom, or the classical introduction rules of ¬, or implication with the classical rules. That is why

classical logic is not a conservative extension of intuitionistic logic. This is also the reason why

the theorem fails for the conservative extension of the whole system GBL (i.e., with the ⊃-rules).

5.5.3 The system HBL

As we have already noted, when adding ⊃ to the language, |=B,F does have valid formulae besides

t and >. This fact indicates that it is be possible to provide a sound and complete Hilbert-type

representation for |=B,F . Such a representation is given in Table 5.5.11

Theorem 5.22 GBL and HBL are equivalent. In particular:

a) ψ1, . . . , ψn`GBL φ1, . . . , φm iff `HBLψ1∧, . . . ,∧ψn ⊃ φ1∨, . . . ,∨φm (or just φ1∨, . . . ,∨φm in

case that n=0).

b) Let Γ be any set of sentences, and ψ a sentence. Then Γ `HBL ψ iff every valuation ν in

FOUR, which gives all the sentences in Γ designated values, does the same to ψ.

Proof: It is possible to prove (a) purely proof theoretically. This is easy but tedious (the well-

known fact that every {∧,∨,⊃}-classical tautology is provable from the corresponding fragment

of HBL can shorten things a lot, though). Part (b) follows then from the completeness and

the compactness of GBL. Alternatively, one can prove (b) first (and then (a) is an immediate

corollary). For this, assume that Γ 6`HBL ψ. Extend Γ to a maximal theory Γ∗, such that

Γ∗ 6`HBL ψ. By the deduction theorem for ⊃ (which obviously obtains here), and from the

maximality of Γ∗, Γ∗ 6`HBLφ iff Γ∗`HBLφ⊃ψ. Hence, if τ is any sentence, then if Γ∗ 6`HBLψ⊃ τ ,

then Γ∗`HBL (ψ⊃τ)⊃ψ and so Γ∗ `HBLψ by [⊃3]; a contradiction. It follows that Γ∗`HBLψ⊃τ

for every τ , and so for every φ and τ :

(∗) if Γ∗ 6`HBLφ then Γ∗`HBLφ⊃τ .

Define now a valuation ν as follows:

ν(φ) =


> if Γ∗ `HBL φ and Γ∗ `HBL ¬φ
⊥ if Γ∗ 6`HBL φ and Γ∗ 6`HBL ¬φ
t if Γ∗ `HBL φ and Γ∗ 6`HBL ¬φ
f if Γ∗ 6`HBL φ and Γ∗ `HBL ¬φ

11In the formulae of Table 5.5 the association of nested implications should be taken to the right.
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Table 5.5: The system HBL

Defined Connective:
ψ ≡ φ def

= (ψ ⊃ φ) ∧ (φ ⊃ ψ)

Inference Rule:
ψ ψ ⊃ φ

φ

Axioms:

[⊃1] ψ ⊃ φ ⊃ ψ

[⊃2] (ψ ⊃ φ ⊃ τ) ⊃ (ψ ⊃ φ) ⊃ (ψ ⊃ τ)

[⊃3] ((ψ ⊃ φ) ⊃ ψ) ⊃ ψ

[∧⊃] ψ ∧ φ ⊃ ψ ψ ∧ φ ⊃ φ

[⊃∧] ψ ⊃ φ ⊃ ψ ∧ φ

[⊗⊃] ψ ⊗ φ ⊃ ψ ψ ⊗ φ ⊃ φ

[⊃⊗] ψ ⊃ φ ⊃ ψ ⊗ φ

[⊃∨] ψ ⊃ ψ ∨ φ φ ⊃ ψ ∨ φ

[∨⊃] (ψ ⊃ τ) ⊃ (φ ⊃ τ) ⊃ (ψ ∨ φ ⊃ τ)

[⊃⊕] ψ ⊃ ψ ⊕ φ φ ⊃ ψ ⊕ φ

[⊕⊃] (ψ ⊃ τ) ⊃ (φ ⊃ τ) ⊃ (ψ ⊕ φ ⊃ τ)

[¬∧] ¬(ψ ∧ φ) ≡ ¬ψ ∨ ¬φ

[¬∨] ¬(ψ ∨ φ) ≡ ¬ψ ∧ ¬φ

[¬⊗] ¬(ψ ⊗ φ) ≡ ¬ψ ⊗ ¬φ

[¬⊕] ¬(ψ ⊕ φ) ≡ ¬ψ ⊕ ¬φ

[¬⊃] ¬(ψ ⊃ φ) ≡ ψ ∧ ¬φ

[¬¬] ¬¬ψ ≡ ψ
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Obviously, ν(φ) is designated whenever Γ∗ `HBL φ, while ν(ψ) is not. It remains to show that ν

is actually a valuation. We shall show that ν(φ⊃τ)=ν(φ)⊃ν(τ), and that ν(φ∨τ)=ν(φ)∨ν(τ),

leaving the other cases for the reader.

To show that ν(φ∨τ) = ν(φ)∨ν(τ), we note first that axioms [⊃∨] and [∨⊃], together with the

above characterization (∗) of the non-theorems of Γ∗, imply that Γ∗ `HBL φ∨τ iff either Γ∗ `HBL φ,

or Γ∗ `HBL τ . Axiom [¬∨], on the other hand, entails that Γ∗ `HBL ¬(φ∨τ) iff both Γ∗ `HBL ¬φ,

and Γ∗ `HBL ¬τ . From these facts the desired equation easily follows.

For showing that ν(φ⊃τ)=ν(φ)⊃ν(τ), we distinguish between two cases:

case 1: ν(φ)∈{f,⊥}. This means, on the one hand, that ν(φ)⊃ν(τ)= t. On the other hand, it

is equivalent to Γ∗ 6`HBL φ. By (∗) above, and by axiom [¬⊃] this entails that Γ∗ `HBL φ⊃ τ but

Γ∗ 6`HBL¬(φ⊃τ). Hence ν(φ⊃τ)= t=ν(φ)⊃ν(τ).

case 2: ν(φ) ∈ {t,>}. Then ν(φ)⊃ ν(τ) = ν(τ). In addition, it means that Γ∗ `HBL φ, and so

(by axioms [⊃ 1] and [¬⊃]), Γ∗ `HBL φ⊃ τ iff Γ∗ `HBL τ , and Γ∗ `HBL¬(φ⊃ τ) iff Γ∗ `HBL¬τ . It

follows that ν(φ⊃τ)=ν(τ) too. 2

Corollary 5.23 HBL is well-axiomatized: a complete and sound axiomatization of every frag-

ment of |=B,F , which includes⊃, is given by the axioms ofHBL which mention only the connectives

of that fragment.

Proof: The above proof shows, as it is, the completeness of the axioms which mention only

{∨,⊃,¬} for the corresponding fragment. All the other cases in which ¬ is included are similar.

If ¬ is not included, then the system is identical to the system for positive classical logic, which

is known to have this property.12 2

Note: The {¬,∧,∨,⊃}-fragment of GBL and HBL were called in [Av91a, Av91b] the “basic

systems”. Again, it is shown there that by adding Γ |∼∆, ψ,¬ψ to GBL, and either ¬ψ∨ψ or

(ψ ⊃ φ) ⊃ (¬ψ ⊃ φ) ⊃ φ to HBL, we get complete proof systems for the full three-valued logic

of {t, f,⊥}, which is an extension of Kleene three-valued logic (see Section 5.6 below). If, on

the other hand, we add Γ, ψ,¬ψ |∼∆ to GBL and ¬ψ⊃ (ψ⊃φ) to HBL, we get complete proof

systems for the three-valued logic of {t, f,>} (see Section 5.6 below).

12Note that without ¬ there is no difference between ∧ and ⊗, and no difference between ∨ and ⊕.
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5.5.4 Strong implications

The implication connective ⊃ has two drawbacks: As noted in Note 3 after Definition 4.6, even

in case ψ⊃φ and φ⊃ψ are both valid, ψ and φ might not be equivalent, in the sense that one

can be substituted for the other in any context. The second disadvantage is that ψ ⊃ φ may

be true, its conclusion false, without this entailing that the premise is also false (for example:

⊥⊃f= t). Next we use ⊃ for defining other implication connectives, which does not suffer from

these disadvantages:

Definition 5.24

• ψ → ψ = (ψ ⊃ φ) ∧ (¬φ ⊃ ¬ψ)

• ψ ↔ φ = (ψ → φ) ∧ (φ→ ψ)

Proposition 5.25 Let ν be a valuation in (B,F). Then ν(ψ↔ φ) ∈ F iff ν(ψ) and ν(φ) are

similar.

Proof: Follows from the definition of ⊃, →, and ↔. 2

Note: By using →, we can sometimes translate “annotated atomic formulae” from Subrahma-

nian’s annotated logic (see [Su90a, Su90b, CHLS90, KL92, KS92]): The translation of ψ : b when

b∈FOUR, and when the partial order in the (semi)lattice is ≤t, is simply b→ψ.

Proposition 5.26 Let ν be a valuation in FOUR. Then:

a) ν(ψ→φ)∈Fk(t), iff ν(ψ)≤t ν(φ).

b) ν(ψ↔φ) ∈ Fk(t), iff ν(ψ)=ν(φ).

Proof: Easily verified using, e.g., the truth tables of → and ↔. 2

Proposition 5.26 together with Theorem 5.15 provide us with an easy method of checking

validity or invalidity of sentences containing →. Using this method it is straightforward to check

the next two propositions:
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Proposition 5.27 For every logical bilattice (B,F) the following formulae are always valid in

|=B,F :

ψ → ψ

(ψ → φ)→ (φ→ τ)→ (ψ → τ)

(ψ → φ→ τ)→ φ→ ψ → τ

(ψ → φ)→ ψ → ψ → φ

ψ ∧ φ→ ψ , ψ ∧ φ→ φ

(ψ → φ) ∧ (ψ → τ)→ ψ → φ ∧ τ

ψ ⊗ φ→ ψ , ψ ⊗ φ→ φ

(ψ → φ)⊗ (ψ → τ)→ ψ → φ⊗ τ

ψ → ψ ∨ φ , φ→ ψ ∨ φ

(ψ → τ) ∨ (φ→ τ)→ ψ ∨ φ→ τ

ψ → ψ ⊕ φ , φ→ ψ ⊕ φ

(ψ → τ)⊕ (φ→ τ)→ ψ ⊕ φ→ τ

ψ ↔ ¬¬ψ

(ψ → φ)↔ (¬φ→ ¬ψ)

ψ ∧ (φ ∨ τ)↔ (ψ ∧ φ) ∨ (ψ ∧ τ)

ψ ⊗ (φ⊕ τ)↔ (ψ ⊗ φ)⊕ (ψ ⊗ τ)

¬(ψ ∧ φ)↔ ¬ψ ∨ ¬φ

¬(ψ ∨ φ)↔ ¬ψ ∧ ¬φ

¬(ψ ⊗ φ)↔ ¬ψ ⊗ ¬φ
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¬(ψ ⊕ φ)↔ ¬ψ ⊕ ¬φ

Proposition 5.28 The following are not valid in |=B,F :

ψ → φ→ ψ

(ψ → ψ → φ)→ ψ → φ

¬ψ → ψ → φ

ψ → φ→ ψ ∧ φ

ψ → φ→ ψ ⊗ φ

Another immediate consequences of Theorem 5.15 are the following propositions:

Proposition 5.29 ψ ↔ φ |=B,F Θ(ψ) ↔ Θ(φ) for every scheme Θ. In other words, ↔ is a

congruence connective.

Proof: Immediate from Theorem 5.15 and Proposition 5.26(b). 2

Proposition 5.30 |=B,F (ψ⊃φ)↔ φ∨(ψ→(ψ→φ))

Proof: This can easily be checked in FOUR. 2

The last proposition means that it is possible to choose → rather than ⊃ as the primitive

implication of the language. We prefer the latter connective, though, since the intuitive meaning

of both is then clearer. Also, the corresponding proof systems are much simpler if we follow this

choice.

5.5.5 Adding quantifiers

So far we have concentrated on propositional languages and systems. The justification for this

is that the main ideas and innovations are all on this level. Extending our notions and results

to first order languages can be done in a rather standard way. We can take ∀, for example, as a

generalization of ∧. Having then an appropriate structure D, and an assignment ν of values to
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variables and truth values to atomic formula, we let ν(∀xψ(x)) be inf≤t{ν(ψ(d) | d∈D}. Here

we are using, of course, the fact that we assume B to be a complete lattice relative to ≤t. The

corresponding Gentzen-type rules are then:

[∀|∼ ]
Γ, ψ(s) |∼ ∆

Γ,∀xψ(x) |∼ ∆
[ |∼∀] Γ |∼ ψ(y),∆

Γ |∼ ∀xψ(x),∆

[¬∀|∼ ]
Γ,¬ψ(y) |∼ ∆

Γ,¬∀xψ(x) |∼ ∆
[ |∼¬∀] Γ |∼ ¬ψ(s),∆

Γ |∼ ¬∀xψ(x),∆

In these rules we assume, as usual, that the variable y does not appear free in Γ or in ∆.

Corresponding soundness and completeness as well as cut elimination theorems can be proved

relative to 〈FOUR〉 with no great difficulties. We omit here the details. We just note that one

can introduce also, in the obvious way, quantifiers which correspond to ⊗ and ⊕.

5.6 Relations to the basic three-valued logics

In Section 5.4 we have shown that the basic logic of logical bilattices can, in fact, be characterized

using the minimal non-degenerated logical bilattice, 〈FOUR〉 (see Theorem 5.15). In this section

we show similar results in the opposite direction: 〈FOUR〉 might be used for achieving everything

that can be handled using only three values.

The main advantage of using FOUR rather than three-valued systems is, of course, that it is

associated with a semantics that allows us to simultaneously deal with both types of uncertainty.

In this section and in Chapters 6 and 7 we will show that one can in any case do with FOUR

everything one can do using only three values, sometimes even more efficiently.

Three-valued logics might be roughly divided into two families according to the decision

whether the middle element is taken to be designated or not. Logics of the first class are, in

fact, logics that are based on the subset {t, f,>} of FOUR, while logics of the other class are

based on the subset {t, f,⊥}. In both cases the languages of the corresponding standard logics

are based on some fragment of the full language. The interpretations of these connectives are the

reductions of the corresponding operators of FOUR (provided that the three values are closed

under the operations, which is the case for the classical connectives. Note that {t, f,⊥} is closed

under ⊗ while {t, f,>} is closed under ⊕).
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The functional completeness theorem concerning FOUR induces a corresponding theorem for

the three-valued subsets:

Theorem 5.31

a) The language of {¬,∧,⊃,⊗, f} is functionally complete for {t, f,⊥}.

b) The language of {¬,∧,⊃,⊕, f} is functionally complete for {t, f,>}.

Proof: This easily follows from the fifth and the seventh parts, respectively, of Theorem 4.16. 2

Note: The connective ⊃ of FOUR induces two different three-valued implications, depending on

the interpretation of the third value as either ⊥ or >. Parts (a) and (b) of Theorem 5.31 refer,

in fact, to these two different meanings of ⊃. On the other hand, the three-valued truth tables

of ⊗ in {t, f,⊥} and of ⊕ in {t, f,>} are identical. The two parts of Theorem 5.31 do provide,

therefore, two different functionally complete sets of 3-valued connectives, but this is due to the

different meanings of ⊃.

Next we show that it is possible to simulate the basic three-valued logics in the context

of FOUR. Denote by |=3
Kl the consequence relation that corresponds to Kleene’s logic (i.e.

Γ |=3
Kl ∆ iff every {t, f,⊥}-model of Γ is a {t, f,⊥}-model of some formula in ∆), and by |=3

LP

the consequence relation of the logic LP 13 (i.e., Γ |=3
LP ∆ iff every {t, f,>}-model of Γ is a

{t, f,>}-model of some formula in ∆). Then:

Proposition 5.32 Let Γ,∆ be two sets of assertions with A(Γ,∆)={p1, p2, . . .}.

a) Γ |=3
Kl ∆ iff Γ, p1∧¬p1⊃f, p2∧¬p2⊃f, . . . |=4 ∆.

b) Γ |=3
LP ∆ iff Γ, p1∨¬p1, p2∨¬p2, . . . |=4 ∆.

Proof: Part (a) follows from the fact that the {t, f,⊥}-models of Γ are the same as the four-

valued models of Γ∪{p1∧¬p1⊃f, p2∧¬p2⊃f, . . .}. Similarly, in case (b) the {t, f,>}-models of

Γ are the same as the four-valued models of Γ∪{p1∨¬p1, p2∨¬p2, . . .}. 2

13Kleene three-valued logic with middle element designated.
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For additional discussion on relations between bilattice-based logics and three-valued logics

see Sections 6.4.2.F and 7.2.7.

5.7 What next?

As we have seen, the basic logic of logical bilattices has a lot of nice properties: It is paracon-

sistent, compact, and sound and complete w.r.t. Hilbert-type and Gentzen-type cut-free proof

systems. Still, this consequence relation has some serious drawbacks as well: First, it is too

restrictive and “over-cautious”. Thus, it is strictly weaker than classical logic even for consistent

theories (a case in which one might prefer to use classical logic).14 Moreover, the basic conse-

quence relation totally rejects some very useful (and intuitively justified) inference rules, like the

Disjunctive Syllogism: From ¬p and p∨q one can never infer q by using |=B,F . Under normal

circumstances we would certainly like to be able to use this rule!

In what follows we consider several possibilities to overcome the drawbacks of |=B,F , without

losing its nice properties. We will do so by refining the reasoning process according to the

guidelines considered in Chapter 1. Following the discussion in the introduction of this work,

we shall divide our formalisms to two groups: the paraconsistent ones (see Chapter 6), and the

coherent (consistency-based) ones (see Chapter 7).

14See also the discussion in Example 5.2 on the very restricted set of conclusions that one can draw from ΓT,F ,
using |=B,F .
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Chapter 6

Bilattice-Based Paraconsistent Logics

6.1 Introduction

In this chapter we present a general method of constructing nonmonotonic consequence relations

of the strongest type among those considered in Chapter 1 (i.e., preferential and plausible sccrs).

Our approach is based on a bilattice-valued semantics. This will allow us to define nonmonotonic

consequence relations that are capable of reasoning with inconsistency in a nontrivial way.

A basic idea behind our method is that of using a set of preferential models for making

inferences. Preferential models were introduced by McCarthy [Mc80] and later proposed by

Shoham [Sh87, Sh88] as a generalization of the notion of circumscription. The essential idea is

that only a subset of the models of a given theory should be relevant for making inferences from

that theory. These models are the most preferred ones according to some conditions that can be

specified syntactically by a set of (usually second-order) propositions, the satisfaction of which

yields the desired preference.

Here we choose the preferred models according to preference criteria, specified by order re-

lations on the set of models of a given theory. In particular, we take advantage of the special

structure of bilattices and use one of their partial orders (i.e., ≤k) for defining such a preference

criterion and for reducing the amount of preferred models that should be taken into account

for making inferences. The resulting consequence relations are shown to be plausible sccrs (see

Definition 1.61, Table 1.1, and Figure 1.1). In particular, these relations manage to overcome

some of the drawbacks of |=B,F , considered in Chapter 5.

115



116 CHAPTER 6. BILATTICE-BASED PARACONSISTENT LOGICS

6.2 Preferential systems

6.2.1 The relation |=B,F≺

Definition 6.1 A preferential system is a triple P=(B,F ,≺), where (B,F) is a logical bilattice

and ≺ is a strict order1 on V (the set of all the valuations on B).

The following definition is a natural extension to the bilattice-valued case of Shoham’s idea

[Sh87, Sh88] of preferential models:

Definition 6.2 Let P = (B,F ,≺) be a preferential system, and let Γ be a set of formulae in

some language Σ. A valuation M ∈mod(Γ) is a P-preferential model of Γ if there is no valuation

M ′∈mod(Γ) s.t. M ′≺M . The set of all the preferential models of Γ in P is denoted by !(Γ,P).

Definition 6.3 A preferential system P is called stoppered2 if for every set of formulae Γ and

every M ∈mod(Γ), either M ∈ !(Γ,P), or there is an M ′∈ !(Γ,P) s.t. M ′≺M .

Note that if V is well-founded under ≺ (i.e., V does not have an infinitely descending chain

under ≺), then P is stoppered.

Definition 6.4 Let P=(B,F ,≺) be a preferential system. A set Γ of formulae P-preferentially

entails a set ∆ of formulae (notation: Γ |=B,F≺ ∆) if every M ∈ !(Γ,P) is a model of some δ∈∆.3

We say that |=B,F≺ is the consequence relation induced by P.

Note: The basic consequence relation |=B,F considered in Chapter 5 is a particular case of

Definition 6.4. It is actually the consequence relation induced by P = (B,F ,≺), where ≺ is the

degenerated relation (i.e. there are no ν1, ν2∈V s.t. ν1≺ν2).

Proposition 6.5 Every relation |=B,F≺ induced by a stoppered preferential system P=(B,F ,≺)

is a |=B,F -plausible sccr.4

For proving Proposition 6.5 we first show the following lemma:

1I.e., an irreflexive and transitive relation.
2This notions is due to Mackinson [Ma94]; In [KLM90] the same property is called smoothness.
3Note that we do not require that M ∈ !({δ},P), or that M ∈ !(Γ ∪ {δ},P).
4Mackinson [Ma94] gives an example of a preferential system that is not stoppered and that the consequence

relation induced by it does not satisfy CM. Thus stopperdness is indeed necessary here.
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Lemma 6.6 Let P be a preferential system in (B,F), and let Γ1,Γ2 be two sets of formulae s.t.

mod(Γ1)⊆mod(Γ2). Then !(Γ2,P) ∩mod(Γ1) ⊆ !(Γ1,P).

Proof: Suppose that M ∈ !(Γ2,P) ∩mod(Γ1), but M 6∈ !(Γ1,P). Then there is an N ∈mod(Γ1)

s.t. N≺M . But mod(Γ1)⊆mod(Γ2) so N ∈mod(Γ2), therefore M 6∈ !(Γ2,P). 2

Proof of Proposition 6.5: The validity of Cum immediately follows from the definition of

|=B,F≺ . This is also the case with RM. By Proposition 1.62 it remains to show CM and LCC[n]:

• |=B,F≺ satisfies cautious monotonicity:

Suppose that Γ |=B,F≺ ψ and Γ |=B,F≺ ∆. Let M ∈ !(Γ ∪ {ψ},P). In particular, M is a model of Γ.

Moreover, M ∈ !(Γ,P), since otherwise by the fact that P is stoppered, there would have been a

model N ∈ !(Γ,P) that is ≺-smaller than M . Since Γ |=B,F≺ ψ, this N would have been a model of

Γ ∪ {ψ}, which is ≺-smaller than M – a contradiction. Thus M ∈ !(Γ,P). Now, since Γ |=B,F≺ ∆,

M is a model of some δ∈∆. Hence Γ, ψ |=B,F≺ ∆.

• |=B,F≺ satisfies LCC[n] for every n:

Let M ∈ !(Γ,P). If M is a model of some δ ∈∆ we are done. Otherwise, since Γ |=B,F≺ ψi,∆

for i = 1,. . .n, M is a model of ψ1, . . . , ψn. By Lemma 6.6, M ∈ !(Γ ∪ {ψ1, . . . , ψn},P). Since

Γ, ψ1, . . . , ψn |=B,F≺ ∆, there exists δ∈∆ s.t. M ∈mod(δ) in this case as well. 2

Corollary 6.7 Let P=(B,F ,≺) be a stoppered preferential system.

a) If u is a connective s.t. the corresponding operation on B is conjunctive, then u is an

internal conjunction and a combining conjunction w.r.t. |=B,F≺ .

b) If t is a connective s.t. the corresponding operation on B is disjunctive, then t is an

internal disjunction and a “half” combining disjunction w.r.t. |=B,F≺ .5

Proof: By Proposition 6.5 |=B,F≺ is |=B,F -plausible, and so it is obviously a |=B,F -preferential

sccr. The claim now follows from Proposition 1.59. 2

5I.e., |=B,F≺ satisfies left ∨-introduction, but it does not always satisfy left ∨-elimination.
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Corollary 6.8 Let P=(B,F ,≺) be a stoppered preferential system. Then:

a) ∧ and ⊗ are internal conjunctions and combining conjunctions w.r.t. |=B,F≺ .

b) ∨ and ⊕ are internal disjunctions and “half” combining disjunctions w.r.t. |=B,F≺ . 6

Proof: Immediate from Corollary 6.7. 2

Note: The fact that ∨ and ⊕ might not be combining disjunctions w.r.t. |=B,F≺ follows from

Lemma 1.49, since it is shown there that one direction of the combining disjunction property

yields monotonicity, whereas |=B,F≺ might not be monotonic (see counter-examples in Sections

6.3.2, 6.4.2, and 6.4.3 below).

6.2.2 A note on notation conventions

In the following sections we shall consider some more specific families of preferential systems that

are particularly useful for reasoning with uncertainty. The corresponding consequence relations,

as well as all the other inference relations that will be considered in the sequel are all denoted by

the same convention, i.e. |=s
p, where s denotes the algebraic structure that provides the semantics,

and p indicates the preference criterion on V (the one that was denoted above by ≺). Note that the

notations for the consequence relations mentioned in previous chapters are in accordance with this

convention, since in the definition of |=B,F the semantics is based on bilattice-valued valuations,

and the preference criterion in these inference relations is degenerated (or empty), because every

model of the set of premises is taken into account for drawing conclusions. Similarly, in what

follows we shall use the following notation:

Notation 6.9 Γ |=2 ∆ denotes that every classical (two-valued) model of Γ is a classical model

of some formula in ∆.

6Cf. Corollary 5.6.
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6.3 Strongly pointwise preferential systems

6.3.1 Basic definitions and notation

Let P be a preferential system in (B,F). In Proposition 6.5 we have shown that a sufficient

condition to assure that the consequence relation induced by P would be a |=B,F -plausible sccr is

that P is stoppered. However, as noted in [KLM90] and in [Ma94], it is not easy to check whether

this property holds. In what follows we consider another property, which is more easily verified:

Definition 6.10

a) A relation � on V is called strongly pointwise order if there is a well-founded partial order

≤ on B s.t. ∀ν1, ν2∈V, ν1�ν2 if for every atomic formula p, ν1(p)≤ν2(p). (In this case we

say that � is based on ≤)

b) If � is a strongly pointwise order on V we denote ν1≺ν2 if ν1�ν2 and ν1 6=ν2.

It follows that for a strongly pointwise order � we have that

ν1≺ν2 iff ∀p ν1(p)≤ν2(p) and ∃p0 s.t. ν1(p0)<ν2(p0)

Note that a strongly pointwise relation � is a partial order, and the order relation ≺ defined

in 6.10(b) is a strict order, thus P=(B,F ,≺) is a preferential system.

Definition 6.11 If � is a strongly pointwise order, then the preferential system P=(B,F ,≺) is

called strongly pointwise.

Note: If B is finite, the well-foundedness property of ≤ on B is assured. Thus, in such cases

a preferential system P = (B,F ,≺) is strongly pointwise iff there is a partial order ≤ on B s.t.

∀ν1, ν2 ∈ V ν1 ≺ ν2 if for every atomic formula p, ν1(p) ≤ ν2(p) and there is an atom p0 s.t.

ν1(p0)<ν2(p0).

Proposition 6.12 Let P be a strongly pointwise preferential system in a logical bilattice (B,F).

Then P is stoppered.
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Proof: Suppose that M is some model of Γ. If M 6∈ !(Γ,P) we have to show that there is a

model N ∈ !(Γ,P) s.t. N ≺M . So let SM ={Mi | Mi is a model of Γ, Mi≺M} and let C⊆SM
be a chain w.r.t. ≺. We shall show that C is bounded below in SM , so by Zorn’s lemma SM

has a minimal element, which is the required ≺-minimal model. Indeed, define a valuation N as

follows: For each atom q let N(q)=min≤{Mi(q) | Mi∈C} (N(q) exists since C is a chain and ≤

is well-founded). Obviously N bounds C. It remains to show that N ∈SM . Indeed, assume that

ψ∈Γ and let A(ψ) = {p1, . . . , pn} be the set of the atomic formulae in ψ. For each 1≤ j≤n let

Mpj ∈ {Mi ∈C | Mi(pj) =N(pj)}. Then: N(p1) =Mp1(p1), . . . , N(pn) =Mpn(pn). Since C is a

chain we may assume, without a loss of generality, that Mp1 � . . .�Mpn , and so N is the same

as Mpn on every atom in A(ψ). Since Mpn is a model of ψ, so is N . This is true for every ψ∈Γ

and so N ∈SM as required. 2

The following result follows from Propositions 6.5 and 6.12:

Theorem 6.13 Let P = (B,F ,≺) be a strongly pointwise preferential system. Then P induces

a consequence relation |=B,F≺ that is a |=B,F -plausible sccr.

Recall that Theorem 6.13 means, in particular, that every relation |=B,F≺ induced by a strongly

preferential system P, is preferential in the sense of [KLM90] and [Ma89] (see also Chapter 1).

Corollary 6.14 Let P=(B,F ,≺) be a strongly pointwise preferential system. Then:

a) ∧ and ⊗ are internal conjunctions and combining conjunctions w.r.t. |=B,F≺ .

b) ∨ and ⊕ are internal disjunctions and “half” combining disjunctions w.r.t. |=B,F≺ .

Proof: By Proposition 6.12, a strongly pointwise preferential system must be stoppered. Thus

the claim follows from Corollary 6.7. 2

Corollary 6.15 Let P=(B,F ,≺) be a strongly pointwise preferential system. Then all the rules

of GBL that correspond to connectives in Σmon are sound w.r.t. |=B,F≺ .7

7Note, however, that unlike in the case of the basic consequence relation, some of these rules are not reversible.
For instance, as shown in Lemma 1.49, whenever |=B,F≺ is nonmonotonic, it cannot satisfy the converse of [|∼∨].
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Definition 6.16 Let (B,F) be a logical bilattice and let ≤ be a partial order on B. Denote:

a) min≤ Tx = {b∈Tx | (∀b′∈B) b′<b⇒ b′ 6∈Tx} (x∈{t, f,>,⊥}).

b) Ω≤ = min≤ Tt ∪min≤ Tf ∪min≤ T⊥ ∪min≤ T>.

The next proposition will be useful in what follows:

Proposition 6.17 Let P = (B,F ,≺) be a strongly pointwise preferential system, and let M ∈

mod(Γ). Then M ∈ !(Γ,P) only if for every atom p, M(p)∈Ω≤.

Proof: Assume that there is some atom p0 s.t. M(p0) 6∈Ω≤. Then, assuming that M(p0)∈Tx,

there is a b∈min≤ Tx s.t. b<M(p0). Consider the following valuation:

N(p) =

{
b if p = p0

M(p) if p 6= p0

By Corollary 4.5 N is similar to M , and so N is also a model of Γ. Moreover, N ≺M , thus

M 6∈ !(Γ,P). 2

An important property of |=B,F≺ is that it does not have the so called “irrelevance problem”:

If a formula ψ is a consequence of Γ, and a formula φ is composed of propositional symbols that

do not appear in the language of Γ, then it is still possible to deduce ψ from Γ ∪ {φ}.8

Proposition 6.18 Let |=B,F≺ be a relation induced by a strongly pointwise preferential system.

If Γ |=B,F≺ ∆ and A(Γ ∪∆) ∩ A({ψ})=∅, then Γ, ψ |=B,F≺ ∆.

Proof: If Γ, ψ 6|=B,F≺ ∆, then there is an M ∈ !(Γ ∪ {ψ},P) s.t. ∀δ∈∆ M(δ) 6∈F . Let b be some

≤-minimal element in B. Consider the following valuation:

N(p) =

{
M(p) if p∈A(Γ ∪∆)

b otherwise

8In particular, the example given in [LM92] for motivating the irrelevance problem is resolved in our systems:
Suppose that the rule ‘birds can fly’ is deducible from a certain knowledge-base. Then, assuming that nothing is
stated on red birds in that knowledge-base, it seems rational to deduce that ‘red birds fly’ too, since we have no
reason to believe that red birds are exceptional birds.
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Clearly, N is a model of Γ and ∀δ ∈∆ N(δ) 6∈ F . Since Γ |=B,F≺ ∆, there is a model N ′ of Γ s.t.

N ′≺N . By the definition of N , there is some p0∈A(Γ ∪∆) s.t. N ′(p0)<N(p0). Now, consider

the following valuation:

M ′(p) =

{
N ′(p) if p∈A(Γ ∪∆)

M(p) otherwise

Clearly, M ′≺M , and since M ′ is the same as N ′ on A(Γ), M ′ is also a model of Γ. Moreover,

using the fact that A(Γ∪∆)∩A({ψ})=∅ it follows that M ′ is also a model of ψ. Hence M ′ is a

model of Γ ∪ {ψ}, which is ≺-smaller than M – a contradiction. 2

Note: [LM92] resolves the “irrelevance” problem by introducing a new rule, called rational mono-

tonicity : From Γ |∼ψ and Γ 6|∼ ¬φ deduce Γ, φ |∼ψ. Consequence relations that satisfy rational

monotonicity are called “rational”. One might consider this condition as being too strong, and

indeed many preferential logics do not satisfy it (see, e.g., Note 1 after Proposition 6.27).

In the next section we consider a specific case of a preferential system that is strongly point-

wise, and which is particularly useful for reasoning with uncertainty.

6.3.2 Case study I: The consequence relation |=B,Fk

A. Motivation and definitions

A natural approach for reducing the number of models which are used for drawing conclusions

is to consider only the k-minimal ones. The intuition behind this approach is that one should

not assume anything that is not really known. Keeping the amount of information as minimal

as possible may be taken as a kind of consistency preserving method: As long as one keeps the

redundant information as minimal as possible, the tendency of getting into conflicts decreases.

Definition 6.19 Let (B,F) be a logical bilattice, ν1, ν2 two valuations on B, and Γ a set of

formulae.

a) ν1 is k-smaller than ν2 (ν1≤k ν2) if for every atomic p, ν1(p)≤k ν2(p).

b) ν is a k-minimal model of Γ if there is no model of Γ that is k-smaller than ν.
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In what follows we assume, unless otherwise stated, that the partial order ≤k is well-founded

in a bilattice B.9 Now, given a logical bilattice (B,F), the resulting bilattice-based preferential

system P = (B,F , <k) is obviously strongly pointwise, and !(Γ,P) is the set of the k-minimal

models of Γ. P induces the following consequence relation:

Definition 6.20 Γ |=B,Fk ∆ iff every k-minimal model of Γ in (B,F) is a model of some δ∈∆.

Example 6.21 (Tweety dilemma – continued) Consider again Examples 5.2. Among the

six models of Γ′T,F (see Table 5.2), two are k-minimal:

M4 = {bird(Tweety):>, penguin(Tweety):t, fly(Tweety):f},

M6 = {bird(Tweety): t, penguin(Tweety): t, fly(Tweety):>}.

Using these models we reach the same literal conclusions as in the case of |=4:

Γ′T,F |=4
k bird(Tweety), Γ′T,F |=4

k penguin(Tweety), Γ′T,F |=4
k ¬fly(Tweety),

Γ′T,F 6|=4
k ¬bird(Tweety), Γ′T,F 6|=4

k ¬penguin(Tweety), Γ′T,F 6|=4
k fly(Tweety).

Example 6.22 (Nixon diamond – continued) Consider again Examples 5.3. Among the

twelve models of ΓN listed in Table 5.3, three are k-minimal:

M4 = {quaker(Nixon):t, republican(Nixon):t, hawk(Nixon):>, dove(Nixon):>},

M8 = {quaker(Nixon):t, republican(Nixon):>, hawk(Nixon):f , dove(Nixon):t},

M12 = {quaker(Nixon):>, republican(Nixon):t, hawk(Nixon):t, dove(Nixon):f}.

Again, using these models we reach the same literal conclusions as in the case of |=4:

ΓN |=4
k quaker(Nixon), ΓN |=4

k republican(Nixon),

ΓN 6|=4
k ¬quaker(Nixon), ΓN 6|=4

k ¬republican(Nixon).

9This assumption will no longer be needed in what follows; See the note after Theorem 6.28.
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B. Basic properties

The fact that in the last two examples (6.21 and 6.22) we reached the same conclusions (at least

with respect to the literals) by using either |=4 or |=4
k is not accidental. It is an instance of the

following general proposition:

Proposition 6.23 Let B be an interlaced bilattice with a well-founded ≤k, and let F be a prime

bifilter in B. If the formulae of ∆ are in the language without ⊃ (i.e., Σmon), then Γ |=B,F ∆ iff

Γ |=B,Fk ∆.

Proof: The “only if” direction is trivial. For the other direction, suppose that Γ |=B,Fk ∆, and

let M be some model of Γ. Since (B,F , <k) is strongly pointwise, then by Proposition 6.12 there

is a ≤k-minimal model N of Γ s.t. M ≥kN . Thus there is a δ∈∆ s.t. N(δ)∈F . Now, since B

is interlaced, all the operations that correspond to the connectives of ∆ are monotone w.r.t. ≤k,

and so M(δ) ≥k N(δ). But F is upwards-closed w.r.t. ≤k, therefore M(δ)∈F as well. 2

Corollary 6.24 Let B be an interlaced bilattice with a well-founded ≤k. Then in Σmon, the

logics |=B,F and |=B,Fk are identical.

Proposition 6.23 shows that in many cases we can limit ourselves to k-minimal models without

any loss of generality. This property allows a considerable reduction in the number of models

that should be checked. This is, however, no longer true when ⊃ appears in the r.h.s. of |=B,Fk :

Example 6.25 (Tweety dilemma – continued) For Γ′T,F of Examples 5.2 and 6.21 we have

that Γ′T,F |=4
k ¬penguin(Tweety)⊃f, although Γ′T,F 6|=4 ¬penguin(Tweety)⊃f.10

It follows that in the full language, |=4
k 6= |=4. This can be strengthen as follows:

Proposition 6.26 |=B,Fk is in general nonmonotonic.

Proof: Let (B,F) be any logical bilattice in which bF = inf≤k{b | b ∈ F} ∈ F ,11 and let b> =

inf≤k T>. By Lemma 6.28-B below b>,¬b>∈F . Now, q |=B,Fk ¬q⊃p, since M(p)=⊥, M(q)=bF

10The meaning of ψ⊃f is that ψ cannot be true. This, of course, is stronger than saying that ψ is not a theorem,
or even that ¬ψ is a consequence of the assumptions.

11See also Proposition 3.10.
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is the only k-minimal model of {q} in (B,F), and since ¬bF 6∈F (see again Lemma 6.28-B below).

On the other hand, q,¬q 6|=B,Fk ¬q⊃p, since N(p)=⊥, N(q)=b> is a counter k-minimal model of

{q, ¬q}. 2

By the last proposition it follows that |=B,Fk is not an scr. |=B,Fk is not an scr also since it

is not closed under (multiplicative) cut (see Definitions 1.20(a) and 1.37(a)). Indeed, using the

example of the last proof, one can easily see that q |=B,Fk ¬q⊃ p and also ¬q,¬q⊃ p |=B,Fk p, but

¬q, q 6|=B,Fk p. On the other hand, |=B,Fk is an sccr, and even of the strongest type in the context

considered in Chapter 1:

Proposition 6.27 For every logical bilattice (B,F) in which ≤k is well founded, |=B,Fk is a

|=B,F -plausible sccr.

Proof: Follows from Propositions 6.5 and 6.12. 2

The properties of |=B,Fk considered above can be used for providing examples to previously

discussed issues:

1. |=B,Fk is not rational in the sense of [LM92] (see the note after Proposition 6.18). For

example, p, q ⊃ ¬p |=4
k ¬p ⊃ ¬q and p, q ⊃ ¬p 6|=4

k ¬q, but p, q, q ⊃ ¬p 6|=4
k ¬p ⊃ ¬q.

However, by Proposition 6.18 it does not suffer from the “irrelevance problem” (see the

discussion before Proposition 6.18), so this is not a real drawback.

2. Unlike in the case of |=B,F , ⊃ is not an internal implication w.r.t. |=B,Fk . Indeed, p |=4
k¬p⊃q

while p,¬p 6|=4
k q (see the note after Proposition 1.17).

3. The connective ∨, which is a combining disjunction w.r.t. |=B,F , does not remain a com-

bining disjunction w.r.t |=B,Fk . For instance, (p∧¬p)∨ p |=4
k¬p⊃f , while (p∧¬p) 6|=4

k¬p⊃f

(see the note after Proposition 1.17).
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C. Characterization in 〈FOUR〉

Theorem 6.28 Let (B,F) be a logical bilattice s.t. inf≤k F ∈F .12 Then Γ |=B,Fk ∆ iff Γ |=4
k∆.

Proof: First, we prove some lemmas:

Lemma 6.28-A: Suppose that ∅ 6=X⊆B and let ¬X={¬x | x∈X}. Then inf≤k ¬X=¬ inf≤k X.

Proof: x ∈ ¬X ⇒ ¬x ∈X ⇒ ¬x≥k inf≤k X ⇒ x≥k ¬ inf≤k X. Thus: inf≤k ¬X ≥k ¬ inf≤k X.

On the other hand, replacing X with ¬X yields that inf≤k ¬¬X ≥k ¬ inf≤k ¬X, i.e. inf≤k X ≥k
¬ inf≤k ¬X. Therefore ¬ inf≤k X≥k inf≤k ¬X, and so ¬ inf≤k X=inf≤k ¬X.

Lemma 6.28-B: For every x ∈ {t, f,>,⊥} inf≤k Tx ∈ Tx. Moreover: inf≤k T⊥ = ⊥, inf≤k Tt =

inf≤k F=min≤k F , inf≤k Tf =¬ inf≤k F=¬min≤k F , and inf≤k T>=min≤k F⊕¬min≤k F .

Proof: (i) The case x=⊥ is trivial, since ⊥∈T⊥.

(ii) The case x= t: Let a= inf≤k F . Since Tt ⊆F , inf≤k Tt ≥k a. Now, a ∈ F (given). On the

other hand, t ∈ F . Hence t≥k a, and so f ≥k ¬a. It follows that ¬a 6∈ F (otherwise f ∈ F – a

contradiction). Therefore a∈Tt, and so a=min≤k Tt.

(iii) The case x= f . Let again a= inf≤k F . Since ¬Tf ⊆F , by Lemma 6.28-A ¬ inf≤k Tf ≥k a.

Hence inf≤k Tf ≥k¬a. On the other hand we just have shown that ¬a 6∈F , while ¬¬a=a∈F . It

follows that ¬a∈Tf , and so ¬a=min≤k Tf .

(iv) The case x = >: Since ¬ inf≤k F = inf≤k F ∈ F , we have that min≤k F ⊕¬min≤k F ∈ F

and also ¬(min≤k F⊕¬min≤k F) =¬min≤k F⊕min≤k F ∈F . Thus min≤k F⊕¬min≤k F ∈T>.

On the other hand, ∀b ∈ T> b ≥k min≤k F and ¬b ≥k min≤k F , thus b ≥k ¬min≤k F . Hence

∀b∈T> b≥k min≤k F⊕¬min≤k F , and so min≤k T>=min≤k F⊕¬min≤k F .

Lemma 6.28-C: Suppose that M is a k-minimal model of Γ in (B,F), and let h : B → FOUR

be the homomorphism defined in 5.13. Then h◦M is a k-minimal model of Γ in 〈FOUR〉.

Proof: Suppose not. Then there is another model N of Γ, which is k-smaller than h◦M in

〈FOUR〉. By Theorem 5.11, N is also a model of Γ in (B,F). Define a valuation N ′ in B by

N ′(p)=inf≤k TN(p) (p atomic). By Corollary 4.5, N ′ is also a model of Γ in (B,F). Note that N

and N ′ are similar, and so are M and h◦M . Now, let p be an atomic formula.

• Case A: If N(p) and (h◦M)(p) are similar, then so are N ′(p) and M(p). By the construction

12This is clearly the case whenever B is finite.
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of N ′, N ′(p)≤kM(p).

• Case B: If N(p) and (h◦M)(p) are not similar then since N(p)≤k (h◦M)(p), there are three

possible cases: (i) N(p)=⊥ and (h◦M)(p)∈{t, f,>}, or (ii) N(p)= t and (h◦M)(p)=>, or (iii)

N(p)=f , and (h◦M)(p)=>. Let’s consider each case:

? Case B-(i): In this caseN ′(p)=⊥ as well, whileM(p) 6∈T⊥, thusM(p) 6=⊥ and soN ′(p)<kM(p).

? Case B-(ii): Since by Lemma 6.28-B N ′(p) = min≤k F and M(p)∈F , so N ′(p)≤kM(p). But

N ′(p) 6=M(p) since ¬M(p)∈F , while ¬N ′(p) 6∈F . Therefore N ′(p)<kM(p).

? Case B-(iii): Similar to B-(ii) (here N ′(p)=min≤k ¬F).

Now, since N is a model of Γ in 〈FOUR〉, which is strictly k-smaller than h◦M , there is at least

one atom p0 that falls under case B above. For this p0, N ′(p0) <k M(p0) while for any other

atom p, N ′(p) ≤k M(p). Hence N ′ is a model of Γ in (B,F) which is k-smaller than M – a

contradiction.

The “if” direction of Theorem 6.28 now easily follows from Lemma 6.28-C: Suppose that for some

logical bilattice (B,F), Γ 6|=B,Fk ∆. Let M be a k-minimal model of Γ s.t. M(δ) 6∈ F for every

δ ∈∆. By Lemma 6.28-C h◦M is a k-minimal model of Γ in 〈FOUR〉, which is similar to M .

Therefore (h◦M)(δ) 6∈{t,>} for every δ∈∆, and so Γ 6|=4
k∆.

The other direction: Suppose that Γ 6|=4
k∆. Then there is a k-minimal model M of Γ in 〈FOUR〉

s.t. M(δ) 6∈{t,>} for every δ∈∆. Define a valuation M ′ on B as follows: M ′(p)=inf≤k TM(p) (p

atomic). By Lemma 6.28-B, h◦M ′=M . Hence (by Proposition 5.14) M ′ is a model of Γ, and

M ′(δ) 6∈F for every δ∈∆. Moreover, M ′ is a k-minimal model of Γ, and so Γ 6|=B,Fk ∆. Indeed, if

N is another model of Γ s.t. N<kM
′, then h◦N≤k h◦M ′=M . Also, there is p s.t. N(p)<M ′(p)

and so N(p) 6∈TM(p). Hence h(N(p)) 6=M(p), and so actually h◦N <kM . Since h◦N is a model

of Γ in 〈FOUR〉 (because N is a model of Γ), M is not k-minimal – a contradiction. 2

Note: A careful inspection of the proof of Theorem 6.28 implies that in case that inf≤k F ∈F , we

don’t have to assume that ≤k is well-founded in (B,F), and still |=B,Fk is well-defined, so Theorem

6.28 obtains.

By Theorem 6.28 it follows that the property of Proposition 6.23 holds even in a more general

case, where (B,F) might not be interlaced, and ≤k is not necessarily well-founded:
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Corollary 6.29 If (B,F) is a logical bilattice s.t. inf≤k F ∈ F , and the formulae of ∆ do not

contain ⊃, then Γ |=B,F∆ iff Γ |=B,Fk ∆.

Proof: Γ |=B,Fk ∆ iff (Theorem 6.28) Γ |=4
k ∆, iff (Proposition 6.23) Γ |=4 ∆, iff (Theorem 5.15)

Γ |=B,F∆. 2

By Propositions 5.7, 5.10, and Corollary 6.29, it follows that |=B,Fk is paraconsistent, and is

also monotonic w.r.t. conclusions without ⊃.

|=B,Fk appears to be a very natural consequence relation for theories with bilattice-valued

semantics. However, despite the nice properties of |=B,Fk , this consequence relation appears to be

“too conservative”: In Example 5.2, for instance, we have noted that the only literal conclusion

that one can deduce from ΓT,F by using |=B,F is that Tweety is a bird (which is, in fact, only a

repetition of what is explicitly stated in the knowledge-base). By Corollary 6.29, in many logical

bilattices this is also the only literal conclusion allowed by |=B,Fk . It seems, therefore, that |=B,Fk
is indeed too restrictive in this case.13 In the next section we will consider some other, related

consequence relations, which overcome this drawback.

6.4 Modularly pointwise preferential systems

6.4.1 Basic definitions and notation

Consider the following two valuations: For some atomic formula p0 let ν1(p0)= t, ν2(p0)=f , and

for every other atom p, let ν1(p)=⊥ and ν2(p)=>. Then ν1 and ν2 are ≤k-incomparable, where

≤k is the strongly pointwise order defined in 6.19. This is so due to the fact that these valuations

assign ≤k-incomparable values to p0. However, one might want to consider ν1 as strictly more

consistent than ν2, at least w.r.t. the language Σmon. This can be explained by the fact that

there is no formula ψ in Σmon for which ν2(ψ) <k ν1(ψ), while there are many formulae φ for

which ν1(φ)<k ν2(φ) (this, for instance, is the case for every φ s.t. p0 6∈A(φ)).

13Another drawback of |=B,Fk is that it sometimes allows to draw non-intuitive conclusions that contain implica-
tion. For instance, |=B,Fk p⊃ q. However, one might consider this property as only a minor drawback, since while
it is common to use implications in the premises (e.g., in knowledge-bases), it is less common to draw conclusion
that are not in Σmcl (and furthermore, in many cases only literal conclusions are of interest). In these cases |=B,Fk
does behave as expected (see, e.g., Corollary 6.29).
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In this section we therefore present another kind of pointwise preferential systems, which are

based on modular pointwise orders. This will allow us to treat ≤-incomparable assignments as if

they are equal.

Definition 6.30 A partial order < on a set S is called modular if t<s2 for every s1, s2, t∈S s.t.

s1 6<s2, s2 6<s1, and t<s1.

Proposition 6.31 [LM92] Let < be a partial order on S. The following conditions are equivalent:

a) < is modular.

b) If s1<s2 then either t<s2 or s1<t for every s1, s2, t∈S.

c) There is a totally ordered set S′ with a strict order <S′ and a function g :S → S′ s.t. s1<s2

iff g(s1)<S′ g(s2).

Given a modular order ≤ on B, it induces an equivalence relation on B, in which two elements

in B are equivalent if they are equal or ≤-incomparable. For every b ∈ B, denote by [b] the

equivalence class w.r.t. this equivalence relation. I.e.,

[b]={b′ | b′=b, or b and b′ are ≤-incomparable}.

The order relation on these classes is defined as usual by representatives: [b1] ≤ [b2] iff either

b1≤b2, or b1 and b2 are ≤-incomparable.

Definition 6.32

a) A relation � on V is called modularly pointwise order if there is a well-founded modular

order ≤ on B s.t. ∀ν1, ν2∈V, ν1�ν2 if for every atomic formula p, [ν1(p)]≤ [ν2(p)]. (In this

case we say that � is based on ≤)

b) If � is a modularly pointwise order on V we denote ν1≺ν2 if ν1�ν2 and there is an atom

p0 s.t. [ν1(p0)]< [ν2(p0)].

It follows that if � is a modularly pointwise order, then

ν1≺ν2 iff ∀p [ν1(p)]≤ [ν2(p)] and ∃p0 s.t. [ν1(p0)]< [ν2(p0)]
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It is easy to verify that the following property is equivalent to the definition of ≺:

ν1≺ν2 iff ∀p ν2(p) 6≤ν1(p) and ∃p0 s.t. ν1(p0)<ν2(p0)

Note that a modularly pointwise relation � is a preorder, and the order relation ≺ defined in

6.32(b) is a strict order on V (since ≤ is modular), thus P=(B,F ,≺) is a preferential system.

Definition 6.33 If � is a modularly pointwise order, then the preferential system P=(B,F ,≺)

is called modularly pointwise.

If B is finite, the well-foundedness property of ≤ on B is assured. Thus, in such cases a

preferential system P= (B,F ,≺) is modularly pointwise if there is a modular order ≤ on B s.t.

∀ν1, ν2 ∈ V ν1 ≺ ν2 if for every atomic formula p, [ν1(p)] ≤ [ν2(p)] and there is an atom p0 s.t.

[ν1(p0)]< [ν2(p0)].

Note: Modularly pointwise preferential systems induce different consequence relations than those

induced by strongly pointwise preferential systems, even in cases that both systems are defined in

the same logical bilattice (B,F), and are based on the same partial order on B. To see this, use

Definition 6.32 and the partial order ≤k on FOUR for defining a four-valued preferential system

P=(FOUR, {t,>}, <k) that is modularly pointwise.14 Then in this system, the only <k-minimal

model of Γ = {p ∨ ¬p, p⊃ q} assigns f to p and ⊥ to q. Hence, Γ P-preferentially entails ¬p.

However, in the corresponding four-valued strongly pointwise system P ′ = (FOUR, {t,>}, <k)

(i.e., when <k is defined according to Definition 6.19), M ={p : t, q : t} is also a k-minimal model

of Γ, therefore ¬p is not a P ′-consequence of Γ.

Proposition 6.34 Let P = (B,F ,≺) be a modularly pointwise system, where (B,F) is a finite

logical bilattice, and let Γ be a set of formulae in ΣB. If A(Γ) is finite, then for every M ∈mod(Γ)

either M ∈ !(Γ,P), or there is an M ′∈ !(Γ,P) s.t. M ′≺M .

Proof: Let M be a model of Γ. Since B is finite, for every p∈A(Γ) there are only finite number

of elements that are either ≤-smaller than M(p) or ≤-incomparable with M(p). Thus, since A(Γ)

is finite, the amount of valuations ν s.t. ∀p∈A(Γ) M(p) 6≤ν(p) and ∃p0∈A(Γ) s.t. ν(p0)<M(p0)

is also finite. Hence there is some ν0�M s.t. ν0∈ !(Γ,P). 2

14One can do so since ≤k is a well-founded modular order on FOUR.
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Proposition 6.35 Let P = (B,F ,≺) be a modularly pointwise system, where (B,F) is a finite

logical bilattice. Then with respect to finite sets of formulae, P induces a consequence relation

|=B,F≺ that is a |=B,F -plausible sccr.

Proof: By Proposition 6.34, in this case P is stoppered. The claim then follows from Proposition

6.5. 2

Proposition 6.36 Let P=(B,F ,≺) be a modularly pointwise preferential system, and let M ∈

mod(Γ). Then M ∈ !(Γ,P) only if for every atom p, M(p)∈Ω≤.

Proof: Similar to that of Proposition 6.17. 2

Like strongly pointwise systems, modularly pointwise systems do not have the irrelevance

problem either:

Proposition 6.37 Let |=B,F≺ be a relation induced by a modularly pointwise preferential system.

If Γ |=B,F≺ ∆ and A(Γ ∪∆) ∩ A({ψ})=∅, then Γ, ψ |=B,F≺ ∆.

Proof: Similar to that of Proposition 6.18, using equivalence classes. 2

In the next sections we consider two families of modularly pointwise preferential systems that

are particularly useful for reasoning with inconsistency.

6.4.2 Case study II: The consequence relation |=B,FI
A. Motivation and definitions

The motivation for reasoning with the k-minimal models (case study I, Section 6.3.2) was to avoid

meaningless (or redundant) information. A “by-product” of this approach is a reduction in the

amount of inconsistency of the set of assumptions. When we assume less, the tendency of getting

into conflicts decreases. In what follows we shall use a more direct approach of preserving con-

sistency: Given a (possibly inconsistent) theory Γ, the idea is to give precedence to those models

of Γ that minimize the amount of inconsistent belief in Γ. This approach reflects the intuition

that while one has to deal with conflicts in a nontrivial way, contradictory data corresponds to

inadequate information about the real world, and therefore should be minimized.
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Definition 6.38 Let (B,F) be a logical bilattice. A subset I of B is called an inconsistency set

of B if it has the following properties:

a) b ∈ I iff ¬b ∈ I.

b) F ∩ I = T>.

Lemma 6.39 Suppose that I is an inconsistency set in (B,F). Then:

a) T> ⊆ I ⊆ T>∪T⊥.

b) >∈I and t, f 6∈I.

Proof: Immediate from Definition 6.38. 2

Corollary 6.40 T> is the minimal inconsistency set in (B,F).

Proof: It is easy to verify that T> is an inconsistency set in (B,F). The claim follows, therefore,

from Lemma 6.39(a). 2

Example 6.41 In 〈FOUR〉 there are two inconsistency sets: I1 = {>} and I2 = {>,⊥}. The

use of I1 means preference of consistent values, while the use of I2 means preference of classical

values.

Notation 6.42 Inc(ν, I) = {p | p is atomic and ν(p)∈I}.

Intuitively, I is a set of inconsistent values of (B,F), and Inc(ν, I) corresponds to the incon-

sistent assignments of ν w.r.t. I.

Definition 6.43 Let (B,F) be a logical bilattice and let I be an inconsistency set in B.

a) ν1 is more consistent than ν2 w.r.t. I (ν1<I ν2) if Inc(ν1, I)⊂Inc(ν2, I).

b) ν is a most consistent model of Γ w.r.t. I (I-mcm, for short), if there is no model of Γ that

is more consistent than ν. The set of the I-mcms of Γ is denoted by mcm(Γ, I).
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The definition above induces a preferential system P=(B,F , <I), which is modularly point-

wise. To see this, consider the following well-founded modular order on B: a<B,FI b iff a 6∈I and

b∈I. Now, the relation ≤I defined on V by ν1≤I ν2 iff Inc(ν1, I)⊆Inc(ν2, I) can also be defined

by using <B,FI exactly as in Definition 6.32(a). Hence ≤I is a modularly pointwise order, and

the relation <I defined in 6.43(a) is obtained from ≤I by Definition 6.32(b). It follows therefore

that P = (B,F , <I) is a modularly pointwise preferential system, and !(Γ,P) =mcm(Γ, I). The

induced consequence relation is the following:

Definition 6.44 Γ |=B,FI ∆ if every I-mcm of Γ in (B,F) is a model of some formula in ∆.

Example 6.45 (Tweety dilemma – continued) Consider again Examples 5.2, 6.21 and

6.25. In the notations of Table 5.1, mcm(ΓT,F , {>}) = {M17,M18} and mcm(ΓT,F , {>,⊥}) =

{M17}. Thus, when using either |=4
{>} or |=4

{>,⊥} one can infer from ΓT,F that bird(Tweety)

(but ¬bird(Tweety) is not true), and fly(Tweety) (while ¬fly(Tweety) is not true). On the

other hand, ¬penguin(Tweety) is deducible only by |=4
{>,⊥} (while penguin(Tweety) is not

deducible by either of them).

Let’s consider now the modified knowledge-base, Γ′T,F . This time, in the notations of Table

5.2, mcm(Γ′T,F , {>}) = mcm(Γ′T,F , {>,⊥}) = {M4,M6}. According to both consequence rela-

tions, then, bird(Tweety), penguin(Tweety), and ¬fly(Tweety) are deducible from Γ′T,F . The

complements of these assertions cannot be inferred by neither |=4
{>} nor |=4

{>,⊥}, as indeed one

expects.

B. Basic properties

Proposition 6.46 For every logical bilattice (B,F) and an inconsistency set I in B,

a) |=B,FI is nonmonotonic.

b) |=B,FI is paraconsistent.

Proof:

a) Consider, e.g., Γ = {p,¬p∨q}. Every I-mcm M of Γ must assign to both p and q consistent

values (since the valuation that assigns t to p and f to q is an I-mcm of Γ). Now, since M(p)∈F ,
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it follows that M(¬p) 6∈ F (otherwise M(p)∈I). Thus, in order that M(¬p∨q)∈F , necessarily

M(q)∈F . Therefore Γ |=B,FI q. On the other hand, let Γ′=Γ ∪ {¬p}. Then Γ′ 6|=B,FI q (N(p)=>,

N(q)=f is a counter I-mcm of Γ′).

b) Using the notations of proof of the part (a), Γ′ is an inconsistent theory and still Γ′ 6|=B,FI q. 2

Proposition 6.47 For every logical bilattice (B,F) and an inconsistency set I in B,

a) If Γ |=B,F∆ then Γ |=B,FI ∆.

b) If Γ |=B,Fk ∆ then Γ |=B,FI ∆, provided that the formulae of ∆ do not contain ⊃.

c) |=B,FI 6= |=B,F and |=B,FI 6= |=B,Fk .

Proof:

a) Immediately follows from the definitions of |=B,F and |=B,FI .

b) Follows from part (a) and Corollary 6.29.

c) Follows from Proposition 6.46(a) and its proof, since both |=B,F and |=B,Fk are monotonic w.r.t.

the language of {¬,∨}. 2

Proposition 6.48 If (B,F) is a finite logical bilattice with an inconsistency set I, then |=B,FI is

a |=B,F -plausible sccr w.r.t. finite sets of formulae.15

Proof: By Proposition 6.34. 2

Proposition 6.49 (Weak Soundness) If Γ`GBL∆ then Γ |=B,FI ∆.

Proof: Obvious from the fact that |=B,F is sound w.r.t. GBL, and by Propositions 6.47(a). 2

Note that what the previous proposition claims is that GBL is sound for |=B,FI in the weak

sense; Once we add another rule to GBL there is no guarantee that the extended system would

be sound for |=B,FI anymore, even if the new rule itself is sound for |=B,FI . Moreover, the last

corollary does not claim that every single rule of GBL is sound for |=B,FI . In fact, as part (b) of

the following proposition shows, this is not the case.

15In the next section, after characterizing |=B,FI in 〈FOUR〉, we will be able to extend this proposition to every
logical bilattice and every set of assertions; See Corollary 6.53.
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Proposition 6.50

a) (Strong Soundness) All the rules of GBL except [⊃|∼] are valid for |=B,FI .

b) [⊃|∼] is not valid for |=B,FI , but the following weakened version is valid:

[⊃|∼]W
Γ, ψ⊃φ |∼ ψ,∆ Γ, ψ⊃φ, φ |∼ ∆

Γ, ψ⊃φ |∼ ∆

Note: In every monotonic system with contraction, [⊃|∼]W is equivalent to [⊃|∼]: [⊃|∼]W fol-

lows from [⊃|∼] by using contraction, and [⊃|∼] is obtained from [⊃|∼]W by the addition of ψ⊃φ

to the l.h.s. of both premises. However, most of the consequence relations that we discuss are

nonmonotonic, and so the non-weakened version of [⊃|∼] will not be sound for them.

Proof of Proposition 6.50:

a) The validity of Exchange and Contraction follows immediately from the definition of |=B,FI .

All the introduction rules on the right, except [|∼⊃] (i.e., [|∼ ∧], [|∼ ¬∧], [|∼ ∨], [|∼ ¬∨], [|∼ ⊗],

[|∼¬⊗], [|∼⊕], [|∼¬⊕], [|∼¬⊃], and [|∼¬¬]) are valid since the same formulae appear in them on

the l.h.s. of the premises and on the l.h.s. of the conclusion, hence the same I-mcms are involved,

and the arguments in the case of |=B,F can be repeated. Similarly, the rules [∧|∼], [¬∨|∼], [⊗|∼],

[¬⊗ |∼], [¬⊕ |∼], [¬⊃|∼], and [¬¬ |∼] are valid since the l.h.s. of the premise and conclusion of

each one of them have the same set of models. The validity of [¬∧ |∼], [∨ |∼], and [⊕ |∼] easily

follows from Lemma 6.6 (applied to I-mcms). Finally, to show the validity of [|∼⊃], suppose that

Γ 6|=B,FI ψ⊃φ,∆. Then there is an I-mcm M of Γ so that M(ψ)∈F , M(φ) 6∈F , and M(δ) 6∈F for

every δ∈∆. In particular M is a model of Γ∪{ψ}. By Lemma 6.6, M is an I-mcm of Γ∪{ψ}.

Therefore, Γ, ψ 6|=B,FI φ,∆ – a contradiction.

b) A counter-example: Let p, q be atomic formulae, and let I be an inconsistency set in a

logical bilattice (B,F). Then |=B,FI (p∧¬p) ⊃ f, q (this is so, since by the definition of ⊃, the

formulae (p ∧ ¬p) ⊃ f has a designated value unless p ∧ ¬p is designated, i.e. unless p ∈ T>.

Thus (p∧¬p)⊃f is designated unless p has an inconsistent value, and so every consistent model

assigns a designated value to (p ∧ ¬p)⊃ f). Also, q ∧ ¬q |=B,FI q (this is so even in |=B,F ), but

((p∧¬p)⊃f)⊃(q ∧¬q) 6|=B,FI q (a counter I-mcm assigns > to p and f to q. This is an I-mcm in
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every (B,F), since in order that ((p∧¬p)⊃f)⊃(q∧¬q) would be valid, either p∈T> or q∈T>, so

in this case at least one of p, q must get an inconsistent value by every model of the premises).

For showing the validity of [⊃|∼]W , suppose that Γ, ψ⊃φ 6|=B,FI ∆. Then there is an I-mcm

M of Γ ∪ {ψ ⊃ φ} such that M(δ) 6∈ F for every δ ∈∆. Since Γ, ψ ⊃ φ |=B,FI ψ,∆, necessarily

M(ψ)∈F . But M is a model of ψ⊃φ, thus M(φ)∈F , and so M is a model of Γ ∪ {ψ⊃φ, φ}.

Moreover, by Lemma 6.6 M must be an I-mcm of Γ∪ {ψ⊃φ, φ}. Now, Γ, ψ⊃φ, φ |=B,FI ∆, hence

there is a δ∈∆ s.t. M(δ)∈F – a contradiction. 2

Notes:

1. Unlike the case of GBL and |=B,F , not all the rules of GBL that are valid w.r.t. |=B,FI are

also reversible. [|∼⊃], for instance, is not (Consider, e.g., Γ = {¬p}, ψ = p, and φ = q).

This property for itself should not be considered as a drawback, and it is even desirable in

nonmonotonic systems: Whenever Γ, φ |∼ψ⊃φ holds (which is the case with |=B,FI ), then

the assumption that Γ |∼ φ, together with (Cautious) Cut (which, by Proposition 6.48, is

also valid w.r.t. |=B,FI ) yield Γ |∼ψ⊃φ. This, and the inverse of [|∼⊃], imply that Γ, ψ |∼φ.

Therefore, had [|∼⊃] been reversible w.r.t. |=B,FI , this consequence relation would have been

monotonic.

2. Proposition 6.50(a) implies that given some valid sequents, one can deduce others without

checking all the models. Here is a simple example: Since for atomic formula p, q it holds

that ¬p, p∨q |=B,FI q, then by [|∼⊃] we have p∨q |=B,FI ¬p⊃q.

C. Characterization in 〈FOUR〉

Theorem 6.51 For every logical bilattice (B,F) and an inconsistency set I in B there is a

consistency set J in FOUR s.t. Γ |=B,FI ∆ iff Γ |=4
J ∆.

Proof: In the course of this proof we shall use the following conventions: whenever ν is a function

from the atomic formulae to {t, f,>,⊥}, ν4 denotes its expansion to complex formulae in FOUR,

and νB denotes the corresponding valuation on B.16 Now, let (B,F) be a logical bilattice, and

16Note that although ν4(p)=νB(p) when p is atomic, this might not be the case in general, unless B is interlaced.
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let h : B → FOUR be the homomorphism onto FOUR, defined in 5.13.

Lemma 6.51-A: ν4 =h◦νB.

Proof: We show by induction on the structure of a formula ψ that ν4(ψ)=h◦νB(ψ). For atomic

formulae this follows from the fact that on {t, f,>,⊥}, h is the identity function. For more

complicated formulae we use the fact that h is an homomorphism.

Lemma 6.51-B: νB is a model of Γ in (B,F) iff ν4 is a model of Γ in 〈FOUR〉.

Proof: Immediate from Lemma 6.51-A and the fact that νB(ψ)∈F iff ν4(ψ)=h◦νB(ψ)∈{t,>}.

The rest of the proof is divided into two cases that correspond to the two possibilities of defining

an inconsistency set in 〈FOUR〉:

• case A: T⊥ ⊆ I,

• case B: T⊥ \ I 6= ∅.

For each case define a corresponding inconsistency set in 〈FOUR〉. In terms of Example 6.41, in

case A let J =I2 ={>,⊥}, and in case B let J =I1 ={>}.

Lemma 6.51-C: In case A, M is an I-mcm of Γ in (B,F) iff h◦M is an I2-mcm of Γ in 〈FOUR〉.

Proof: By Lemma 6.39(a), in case A, I=T>∪T⊥ and so b∈I iff h(b)∈I2. Therefore, for every

two valuations M1 and M2 in B,

M1 <
B,F
I M2

⇐⇒ {p | M1(p)∈I} ⊂ {p | M2(p)∈I}
⇐⇒ {p | (h◦M1)(p)∈I2} ⊂ {p | (h◦M2)(p)∈I2}
⇐⇒ h◦M1 <

4
I2 h◦M2.

It immediately follows that if h◦M is an I2-mcm of Γ in 〈FOUR〉, then M is an I-mcm of Γ

in (B,F). For the converse, assume that h◦M is not an I2-mcm of Γ in 〈FOUR〉. Let ν be an

assignment in FOUR s.t. ν4 is a model of Γ in 〈FOUR〉 and ν4 <4
I2 h◦M . By Lemma 6.51-A,

ν4 =h◦νB. Thus h◦νB<4
I2 h◦M , and so νB<B,FI M . Moreover, by 6.51-B νB is a model of Γ in
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B. Hence M is not an I-mcm of Γ in (B,F).

Corollary 6.51-D: In case A, Γ |=B,FI ∆ iff Γ |=4
I2 ∆.

Proof: Suppose that Γ 6|=4
I2 ∆. Then there is an assignment ν in FOUR s.t. ν4 is an I2-mcm of

Γ in 〈FOUR〉 that is not a model of any δ ∈∆. By Lemma 6.51-A, ν4 =h◦νB and by Lemmas

6.51-B, 6.51-C, νB is an I-mcm of Γ in (B,F) s.t. νB(δ) 6∈ F for every δ∈∆. Hence Γ 6|= B,FI ∆.

For the converse, assume that M is an I-mcm of Γ in (B,F), which is not a model of any formula

in ∆. Then, by Lemma 6.51-B and Lemma 6.51-C, h◦M is an I2-mcm of Γ in 〈FOUR〉, and

h◦M(δ)∈{f,⊥} for every δ∈∆. Therefore Γ 6|=4
I2 ∆.

Let us turn now to case B, in which there is an α∈T⊥\I. Suppose that M is a model of Γ in

(B,F). Consider the valuation Mα, defined for every atomic formula p as follows:

Mα(p) =

{
α if M(p)∈T⊥ ∩ I
M(p) otherwise

Since obviously h◦M=h◦Mα, then in particular:

(1) Inc(h◦M, I1) = Inc(h◦Mα, I1)

Lemma 6.51-E: For every ψ∈Γ, M(ψ)∈F iff Mα(ψ)∈F .

Proof: Immediate from Proposition 4.4, since M and Mα are similar.

Corollary 6.51-F: If M is an I-mcm of Γ then M=Mα.

Proof: In other words, we have to show that there is no atom p such that M(p)∈T⊥∩I. Assume

otherwise. Then Mα<
B,F
I M . Since by Lemma 6.51-E Mα is also a model of Γ, this implies that

M is not an I-mcm of Γ.

Lemma 6.51-G: If M=Mα then:

(2) Inc(M, I) = Inc(h◦M, I1)

Proof: If M = Mα, there is no atom p such that M(p) ∈ T⊥ ∩ I. Hence, by Lemma 6.39,

M(p)∈I ⇐⇒M(p)∈T> ⇐⇒ (h◦M)(p)∈I1, and so Inc(M, I)=Inc(h◦M, I1).
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Lemma 6.51-H: In case B, if M is an I-mcm of Γ in (B,F) then h◦M is an I1-mcm of Γ in

〈FOUR〉.

Proof: Suppose that M is an I-mcm of Γ in (B,F). Assume that ν is a valuation in FOUR s.t.

ν4 is a model of Γ in 〈FOUR〉 and ν4<4
I1 h◦M . By Lemma 6.51-B, νB is a model of Γ in (B,F).

Now, since obviously (νBα )α=νBα , we have:

Inc(νBα , I) = Inc(h◦νBα , I1) by Lemma 6.51-G

= Inc(h◦νB, I1) by Equation (1)

= Inc(ν4, I1) by Lemma 6.51-A

⊂ Inc(h◦M, I1) by the assumption

= Inc(M, I) by Corollary 6.51-F, Lemma 6.51-G

Hence νBα <
B,F
I M , and so M is not an I-mcm of Γ in (B,F), a contradiction.

Corollary 6.51-I: In case B, Γ |=B,FI ∆ iff Γ |=4
I1∆.

Proof: If Γ 6|=B,FI ∆ then there exists an I-mcm M of Γ s.t. M(δ) 6∈F for every δ∈∆. By Lemma

6.51-H, h◦M is an I1-mcm of Γ in 〈FOUR〉 and (h◦M)(δ) 6∈ {t,>} for every δ ∈∆. Therefore

Γ 6|=4
I1 ∆. For the converse, assume that Γ 6|=4

I1 ∆. Suppose that ν is an assignment in FOUR s.t.

ν4 is an I1-mcm of Γ in 〈FOUR〉 and ν4(δ) 6∈{t,>} for every δ∈∆. By Lemma 6.51-A ν4 =h◦νB.

By Lemma 6.51-B and its proof, νB is a model of Γ in (B,F) s.t. νB(δ) 6∈F for every δ∈∆. By

Lemma 6.51-E the same is true for νBα . It remains to show, then, that νBα is an I-mcm of Γ in

(B,F). Suppose otherwise. Then there is a model M of Γ, s.t. M <B,FI νBα . Since (νBα )α = νBα

clearly M=Mα, we have:

Inc(h◦M, I1) = Inc(M, I) by Lemma 6.51-G

⊂ Inc(νBα , I) by the assumption

= Inc(h◦νBα , I1) by Lemma 6.51-G

= Inc(h◦νB, I1) by Equation (1)

Therefore (h ◦M)<4
I1 (h ◦ νB)=ν4. Since h ◦M is a model of Γ (since M is a model of Γ), this

is a contradiction.

This concludes the proof of Corollary 6.51-I and the proof of Theorem 6.51. 2

Corollary 6.52 Let (B,F) and I be some logical bilattice and an inconsistency set in it. Then:
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a) If T B,F⊥ 6⊂I then |=B,FI ≡ |=4
I1 ,

b) If T B,F⊥ ⊂I then |=B,FI ≡ |=4
I2 .

Proof: Easily follows from the proof of Theorem 6.51. 2

Corollary 6.53 For every logical bilattice (B,F) and an inconsistency set I in it, |=B,FI is a

|=B,F -plausible sccr.

Proof: By Theorem 6.51, |=B,FI is the same as |=4
J for some inconsistency set J is 〈FOUR〉. The

claim now follows from Proposition 6.48. 2

By the Corollary 6.52 |=4
I1 and |=4

I2 fully characterize |=B,FI . In general, neither of |=4
I1 and

|=4
I2 is stronger than the other. Consider, for instance, Γ={p⊃¬p,¬p⊃p}. The only I1-mcm of

Γ assigns ⊥ to p, while this valuation as well as the one in which p is assigned > are the I2-mcms

of Γ. Therefore, e.g., Γ |=4
I1 p⊃q while Γ 6|=4

I2 p⊃q. On the other hand, |=4
I2 p∨¬p but 6|=4

I1 p∨¬p.

Proposition 6.54 Suppose that A(Γ, ψ) = {p1, p2, . . .}. Then Γ, p1∨¬p1, p2∨¬p2, . . . |=4
I1 ψ iff

Γ, p1∨¬p1, p2∨¬p2, . . . |=4
I2 ψ

Proof: Denote: Γ′ = Γ∪{p1∨¬p1, p2∨¬p2, . . .}. Then mcm(Γ′, I1) = mcm(Γ′, I2), since each

model of Γ′ assigns to the formulae in A(Γ, ψ) values from {t, f,>}. 2

D. The ≤k-minimal I-mcms

As we have already noted, one of the advantages of |=B,FI w.r.t. |=B,F is that the set of models

needed for drawing conclusions from the formers is never bigger than that of the latter. In this

subsection we consider cases in which it is possible to reduce the amount of the relevant models

even further, without changing the logic. The idea is to take the composition of ≤k and ≤I ;

Instead of considering every I-mcm of Γ, we use only the k-minimal models in this set. In what

follows we consider the case of 〈FOUR〉, I1, and I2 (which, by Theorem 6.51 and Corollary 6.52,

are canonical w.r.t. |=B,FI ).

Proposition 6.55 Suppose that the formulae of ∆ are in Σmon. Then Γ |=4
I1 ∆ iff every k-

minimal element of mcm(Γ, I1) is a model of some δ∈∆.
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Proof: If Γ |=4
I1 ∆ then in particular every k-minimal element of mcm(Γ, I1) is a model of

some formula of ∆. For the converse, let M be an I1-mcm of Γ. By Proposition 6.12 there

exists a k-minimal model N of Γ s.t. N ≤k M .17 It follows that for every atom p for which

N(p) =>, then M(p) => as well. Thus Inc(N, I1)⊆ Inc(M, I1). But M is an I1-mcm of Γ, so

Inc(N, I1)=Inc(M, I1), and N is also an I1-mcm of Γ. In particular, N is k-minimal among the

I1-mcms of Γ, and so there is a δ∈∆ s.t. N(δ)∈F . Since FOUR is interlaced, all the operations

that correspond to the connectives of ∆ are monotone w.r.t. ≤k, thus M(δ) ≥k N(δ), and so

M(δ)∈F as well. Therefore Γ |=4
I1 ∆. 2

Note: Proposition 6.55 is no longer true when ⊃ occurs in the conclusions. For a counter-example

consider, e.g., Γ={p, p∨q}. The only k-minimal element of mcm(Γ, I1) assigns t to p and ⊥ to

q, therefore q⊃¬q is true in it. However, p, p∨q 6|=4
I1 q⊃¬q.

Proposition 6.56 Proposition 6.55 is not true for |=4
I2 ; It is not sufficient to consider only the

k-minimal elements of mcm(Γ, I2) for inferring Γ |=4
I2 ∆, even if the formulae in ∆ are all in the

language without ⊃.

Proof: Consider the following infinite set: Γ={(pi∨¬pi)⊃(pi+1∧¬pi+1) | i≥1}. It is easy to verify

that mcm(Γ, I2)={M t
1,M

f
1 ,M

t
2,M

f
2 , . . .}, where for every j≥1, M t

j assigns ⊥ to {p1, . . . , pj−1},

t to pj , and > to {pj+1, pj+2, . . .}. Mf
j is the same valuation as M t

j , except that pj is assigned f

instead of t. Therefore Γ 6|=4
I2 p1. On the other hand, mcm(Γ, I2) has no k-minimal element (since

for every j ≥ 1, M t
j+1 <kM

t
j and Mf

j+1 <kM
f
j ), therefore everything would have followed from

this set (in particular p1), had we used only the k-minimal I2-mcms of Γ for drawing conclusions.

2

Despite the previous proposition, we still have the following result:

Proposition 6.57 Suppose that Γ is finite, and the formulae of ∆ are in Σmon. Then Γ |=4
I2 ∆

iff every k-minimal element of mcm(Γ, I2) is a model of some δ∈∆.

Proof: Again, the “only if” direction is obvious. For the other direction, assume that the con-

dition holds. Since Γ is finite, it has a finite number of (k-minimal models among the I2-most

17Since we are considering 〈FOUR〉 here, ≤k is obviously well-founded, and so Proposition 6.12 can be applied.
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consistent) models. Therefore, for every I2-mcm M of Γ there is a model N which is k-minimal

among the I2-mcms of Γ, and N≤kM . By our assumption, there is a δ∈∆ s.t. N(δ)∈F . As in

the proof of the Proposition 6.55, this implies that M(δ)∈F as well, and so Γ |=4
I2 ∆. 2

Note: As in Proposition 6.55, the condition about ∆ is necessary in Proposition 6.57 as well: For

giving a counter-example in this case note that Γ must be inconsistent (otherwise the I2-mcms of Γ

are its {t, f}-models, and so each I2-mcm is k-minimal). Consider, therefore, Γ={p⊃¬p,¬p⊃p}.

The only k-minimal element of mcm(Γ, I2) assigns ⊥ to p, and so p⊃f is true in it. On the other

hand, Γ 6|=4
I2 p⊃f .

The usage of the≤k-minimal I-mcms for reasoning with inconsistent theories is also considered

in Section 7.2.4.

E. |=B,FI and Σmcl

Next we consider some results concerning |=B,FI and the {∨,∧,¬, t, f}-fragment of the full lan-

guage (i.e., Σmcl). This fragment is extensively discussed in the literature, and although it has

relatively weak expressive power in the multiple-valued setting, the corresponding fragments of

our logics have many nice properties. By the characterization theorem of |=B,FI it suffices to

consider only (B,F)=〈FOUR〉 and the consequence relations |=4
I1 and |=4

I2 .

First we note that as in the classical case, every formulae in Σmcl can be translated to an

equivalent formula in standard conjunctive normal form (CNF) or standard disjunctive normal

form (DNF):

Proposition 6.58 Every formula ψ in the monotonic classical language Σmcl can be translated

to a CNF-formula ψ′ and to a DNF-formula ψ′′ s.t. for every valuation ν in FOUR, ν(ψ) =

ν(ψ′)=ν(ψ′′).

Proof: The proof is similar to that of the classical case, using the fact that de-Morgan’s laws,

distributivity, commutativity, associativity, and the double negation rule (¬¬φ!φ) remain valid

in the four-valued case. 2
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The next important observation is that relative to Σmcl, |=4
I2 is really a three valued logic:

Proposition 6.59 Suppose that the formulae of Γ are in Σmcl and that M is an I2-mcm of Γ.

Then there is no formula ψ s.t. M(ψ)=⊥.

Proof: Since {t, f,>} is closed under ¬,∨ and ∧, it is sufficient to show the proposition only

for atomic formulae. Define a transformation g : FOUR → {t, f,>} as follows: g(⊥) = t, and

g(b) = b otherwise. Obviously, for every atom p, g◦M(p)≥kM(p). Since FOUR is interlaced,

every connective in the language of Γ is k-monotone, and so ∀γ ∈Γ g◦M(γ)≥kM(γ). Now, F

is upward-closed w.r.t. ≤k, and so ∀γ ∈Γ g◦M(γ)∈F . Thus g◦M is also a model of Γ. Since

g◦M≤I2M , necessarily g◦M=M . 2

Next we compare the reasoning with |=4
Ii (i= 1, 2) in Σmcl to the classical reasoning in this

language:

Proposition 6.60 Let Γ be a classically consistent set in Σmcl, and suppose that ψ is a formula

in CNF, none of its conjuncts is a tautology.18 Then Γ |=2ψ iff Γ |=4
I1 ψ.

Proof: (⇒) Assume first that ψ is a disjunction of literals, which is not a tautology. Suppose

also that Γ 6|=4
I1 ψ. Let M be an I1-mcm of Γ s.t. M(ψ) 6∈F . Since Γ is classically consistent, it

has a classical model, N . Since Inc(N, I1)=∅, Inc(M, I1)=∅ as well. Now, define:

M ′(p) =

{
t M(p)= t, or (M(p)=⊥ and ¬p∈L(ψ)).

f otherwise.

All the connectives in Γ are k-monotonic. Therefore, since M ′≥kM , and M is a model of Γ, M ′

is a (classical) model of Γ as well. It is easy to see that M ′(ψ)=f , therefore ψ does not classically

follow from Γ.

Suppose now that ψ is a formula in CNF, none of its conjuncts is a tautology, and Γ 6|=4
I1 ψ.

Then it must have a conjunct ψ′ s.t. Γ 6|=4
I1 ψ

′. We have shown that ψ′ cannot classically follow

from Γ, therefore ψ also does not classically follow from Γ.

18Classically, every formulae which is not a tautology is equivalent to some formula of this form.
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(⇐) This is a specific case of Proposition 6.65. 2

The last two propositions together with Proposition 6.55 entail that for checking whether a

formula classically follows from a consistent set Γ, it is sufficient to perform the following steps:

1. convert the formula to a conjunctive normal form,

2. drop all the conjuncts which are tautologies, and

3. check the remaining formula only w.r.t. the k-minimal I1-mcms of Γ.19

Corollary 6.61 Let Γ∪{ψ} be a classically consistent set in Σmcl, and suppose that φ is a clause

that does not contain any atomic formula and its negation. Then Γ |=4
I1 φ implies that Γ, ψ |=4

I1 φ.

Proof: By Proposition 6.60, and since the classical consequence relation in monotonic. 2

In the case of |=4
I2 we have an even stronger similarity (Cf. Proposition 6.60 and Corollary

6.61):

Proposition 6.62 Suppose that Γ, ψ, φ are in Σmcl.

a) Suppose that Γ is classically consistent. Then Γ |=2ψ iff Γ |=4
I2 ψ.

b) Let Γ∪{ψ} be a classically consistent. Then Γ |=B,FI2 φ implies that Γ, ψ |=B,FI2 φ.

Proof: This is a particular case of Proposition 6.66(b) and Corollary 6.67 below. 2

The next proposition should be compared with Proposition 6.56:

Proposition 6.63 Suppose that the formulae of Γ are in Σmcl. Then Γ |=4
I2 ∆ iff every k-minimal

element of mcm(Γ, I2) is a model of some δ∈∆.

19This process might be useful in case Γ is a fixed theory, but the check should be made for many different
potential conclusions. As noted in section 6.4.2.D, if Γ is classically consistent than the number of k-minimal
I1-mcms is never greater than the number of classical models and is frequently smaller.
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Proof: By Proposition 6.59, in this case every I2-mcm of Γ is also k-minimal in mcm(Γ, I2), and

so the claim follows. 2

We now compare |=4
I1 and |=4

I2 in the monotonic classical language. We have already noted

that in general, neither of these relations is stronger than the other. As Proposition 6.64 below

shows, this is no longer true in the case of the {∨,∧,¬, t, f}-fragment:

Proposition 6.64 Let Γ,∆, ψ be in Σmcl.

a) If Γ |=4
I1 ∆ then Γ |=4

I2 ∆.

b) If ψ is a CNF-formula, none of its conjuncts is a tautology, then Γ |=4
I1 ψ iff Γ |=4

I2 ψ.

Proof:

a) This follows from the fact that in the classical monotonic language every I2-mcm of Γ is also

an I1-mcm of Γ. Indeed, let M be an I2-mcm of Γ, and suppose that N is another model of Γ s.t.

N <I1 M . Consider a valuation M ′, defined as follows: M ′(p) = t if N(p) =⊥ and M ′(p) =N(p)

otherwise. Since the language is k-monotonic and M ′ ≥k N , M ′ ∈mod(Γ). Now, Inc(M ′, I2) =

Inc(M ′, I1) = Inc(N, I1)⊂ Inc(M, I1). Moreover, by Proposition 6.59, Inc(M, I1) = Inc(M, I2),

thus Inc(M ′, I2)⊂Inc(M, I2), and so M ′<I2M – a contradiction.

b) Obviously, it suffices to show the claim for a disjunction ψ of literals that does not contain an

atomic formula and its negation. So assume that Γ 6|=4
I1 ψ. Then there is an I1-mcm M of Γ s.t.

M(ψ) 6∈F . Consider the valuation M ′, defined as follows:

M ′(p) =


t if M(p)=⊥ and p 6∈L(ψ)

f if M(p)=⊥ and p∈L(ψ)

M(p) otherwise

1. M ′ is a model of Γ, since ∀γ∈Γ M ′(γ)≥kM(γ) and F is upward-closed w.r.t. ≤k,

2. M ′ is an I2-mcm of Γ, since if ∃N ∈mod(Γ) s.t. N <I2 M
′ then Inc(N, I1)⊆ Inc(N, I2)⊂

Inc(M ′, I2)=Inc(M ′, I1)=Inc(M, I1), so N<I1M – a contradiction.

3. M ′(ψ) 6∈F – This follows from the structure of ψ and from the fact that for every l∈L(ψ),

M ′(l)∈F iff M(l)∈F .
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By (1) – (3) it follows that Γ 6|=4
I2 ψ. The converse is a particular case of part (a). 2

Note: The converse of part (a) of Proposition 6.64 is not true in general. For instance, |=4
I2 p∨¬p

while 6|=4
I1 p ∨ ¬p.

F. Related consequence relations

F-1. |=B,FI and classical logic

Proposition 6.65 If Γ, ψ are in Σcl and Γ |=4
I1 ψ, then Γ |=2ψ.

Proof: Let M be a classical model of Γ. M is, of course, also a valuation in 〈FOUR〉, and for

formulae in Σcl there is really no difference between viewing M as a valuation in 〈FOUR〉 and

viewing it as a valuation in {t, f}.20 It follows that M is a model of Γ in 〈FOUR〉, and since

Inc(M, I1) = ∅, M must be an I1-mcm of Γ. Thus M(ψ) is designated. But we also know that

M(ψ) ∈ {t, f}, so M(ψ) = t. It follows that M is a classical model of ψ, and so ψ classically

follows from Γ. 2

Proposition 6.66 Suppose that Γ, ψ are in Σcl.

a) If Γ |=4
I2 ψ then Γ |=2ψ.

b) Suppose that Γ is classically consistent. Then Γ |=2ψ iff Γ |=4
I2 ψ.

Proof: The proof of part (a) is the same as that of Proposition 6.65. Part (b) follows from the

fact that if Γ is classically consistent then the set of its classical models is the same of the set of

the I2-mcms of Γ in 〈FOUR〉. 2

Corollary 6.67 Suppose that Γ, ψ, φ are in Σcl and that Γ∪{ψ} is classically consistent. Then

Γ |=4
I2 φ implies that Γ, ψ |=4

I2 φ.

Proof: By Proposition 6.66(b), and since the classical consequence relation is monotonic. 2

It follows that |=4
I2 is a nonmonotonic consequence relation that is equivalent to classical logic

on consistent theories, and is nontrivial w.r.t. inconsistent theories.

20This is so because the set {t, f} is closed under the corresponding operations.
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F-2. |=B,FI and LPm

In [Pr89, Pr91] Priest uses a similar consequence relation, |=3
LPm, for defining the logic LPm from

the three-valued logic LP (see Section 5.6). It is well known that LP invalidates the Disjunctive

Syllogism (i.e., if |=3
LP denotes the consequence relation of LP, then ψ,¬ψ∨φ 6|=3

LPφ). Priest argues

that a consistent theory should preserve classical conclusions. He suggests to resolve this drawback

by considering as the relevant models of a set Γ only those that are minimally inconsistent . Such

models assign > only to some minimal set of atomic formulae. The consequence relation |=3
LPm

of the resulting logic, LPm, is then defined as follows: Γ |=3
LPmψ iff every minimally inconsistent

model of Γ is a model of ψ.

In our terms, Priest considers the inconsistency set I = {b | b ∈ F ,¬b ∈ F} = T>. In the

3-valued semantics this is the only inconsistency set,21 and it consists only of >. In the general

(multiple-valued) case, however, there are many others. It follows that |=B,FI might be viewed as

a generalization of LPm. Moreover, as we will see below, a switch to a bilattice-based semantics

might improve the inference process of LPm.

In chapter 5 we have shown that the basic three-valued logics can be simulated by using the

basic consequence relation |=B,F and the smallest logical bilattice, 〈FOUR〉. This is also the case

with the logic of Priest and |=B,FI , respectively:

Proposition 6.68 Suppose that A(Γ, ψ)={p1, p2, . . .}. The following conditions are equivalent:

a) Γ |=3
LPmψ.

b) Γ, p1∨¬p1, p2∨¬p2, . . . |=4
I1 ψ.

c) Γ, p1∨¬p1, p2∨¬p2, . . . |=4
I2 ψ.

Proof: The three-valued models of Γ are the same as the four-valued models of Γ∪{p1∨¬p1, p2∨

¬p2, . . .}. Since each one of them assigns to the atomic formulae in A(Γ, ψ) values from {t, f,>},

the LPm models of Γ are the same as the I1-mcms and the I2-mcms of Γ∪{p1∨¬p1, p2∨¬p2, . . .}. 2

21This follows from Lemma 6.39(a) and the fact that in this structure T⊥=∅.
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Although the motivation for defining |=4
I2 and |=4

I1 is similar to that behind Priest’s definition

for |=3
LPm (all of them try to minimize the amount of inconsistency), these are not the same logic.

For instance, p⊃¬p,¬p⊃p |=3
LPm p, while p⊃¬p,¬p⊃p 6|=4

Ij p for j=1, 2. On the other hand, the

following proposition shows that in the monotonic classical language |=3
LPm is identical to |=4

I2 ,

and has strong connections to |=4
I1 .

Proposition 6.69 Let Γ,∆ be two sets of formulae and let ψ be a formula in Σmcl. Then:

a) Γ |=3
LPm ∆ iff Γ |=4

I2 ∆.

b) Suppose that ψ is a formula in CNF, none of its conjuncts is a tautology. Then Γ |=3
LPmψ

iff Γ |=4
I1 ψ.

Proof: Part (a) follows from Proposition 6.59. Part (b) immediately follows from part (a) and

Proposition 6.64(b). 2

Proposition 6.69(b) together with Proposition 6.55 imply that a switch to four-valued se-

mantics might improve the three-valued inference process of LPm: Let ψ be a formula in the

monotonic classical language. For checking whether Γ |=3
LPm ψ, it is sufficient to convert ψ to

a conjunctive normal form, remove every conjunct that contains some atomic formula together

with its negation, and check the resulting formula only w.r.t. the k-minimal I1-mcms of Γ. The

number of such models is usually smaller (and never bigger!) than the number of the LPm-

models. This is due to the fact that from every k-minimal I1-mcm one can construct several

LPm-models by changing every ⊥-assignment to either t or f . Here is a very simple example:

Let Γ={¬p∨q, p∨q}. q follows from Γ according to |=3
LPm and according to |=4

I1 (and classically

as well, of course). Now, Γ has two LPm-models: M1(p) = t,M1(q) = t and M2(p) = f,M2(q) = t

(these are also its classical models). On the other hand, there is only one k-minimal I1-mcm of Γ:

N(p) =⊥, N(q) = t. This single model suffices for inferring that q follows from Γ. Clearly, when

the number of the atomic formulae that appear in the language of Γ increases, the amount of the

k-minimal I1-mcms might become considerably smaller than the amount of the LPm-models of

Γ.
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F-3. |=B,FI and RI

Kifer and Lozinskii [KL89, KL92] proposed a similar relation (denoted by |≈∆, where ∆ is a set

of values that intuitively represent inconsistent knowledge). The resulting logic, RI, is considered

in the framework of annotated logics ([Su90a, Su90b, CHLS90, KS92, Su94]). This logic and its

relations to |=B,FI will be considered in a greater details in Chapter 7 (see Section 7.2.7).

6.4.3 Case study III: The consequence relation |=B,Fc

A. Motivation, definitions, and basic properties

When we considered the family of consequence relations of the form |=B,FI we roughly divided

the truth values into two types: those that are considered as representing consistent information,

and those that are considered as representing inconsistent data. The idea behind the family of

bilattice-based preferential systems presented in this section is to refine this categorization. This

is done by arranging the truth values in a modular order, ≤c, that intuitively reflects differences

in their degrees of (in)consistency .

Definition 6.70 Let (B,F) be a logical bilattice. An inconsistency order in (B,F) is a well-

founded modular order ≤c on B, such that:

a) t and f are minimal and > is maximal w.r.t. ≤c,

b) if a∈T> and b 6∈T>, then a 6<c b,

c) a and ¬a are either equal or ≤c-incomparable (i.e., [a]=[¬a]).

The reason for requiring that a consistency order would be modular is to disallow non-intuitive

orders such as {{t}, {f <c⊥<c>}} in which, e.g., > is incomparable with t w.r.t. the amount of

inconsistency that they represent (while > is strictly more inconsistent than ¬t). We also require

that truth values that intuitively represent inconsistent belief should not be less inconsistent than

others, which reflect consistent belief. Finally, a truth value is supposed to represent the same

amount of inconsistency as its negation.
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Example 6.71 There are four inconsistency orders in 〈FOUR〉:

(a) The degenerated inconsistency order, <c0 , in which t, f,⊥,> are all incomparable.

(b) <c1 , in which ⊥ is considered as minimally inconsistent: {t, f,⊥}<c1>.

(c) <c2 , in which ⊥ is maximally inconsistent: {t, f}<c2 {>,⊥}.

(d) <c3 , in which ⊥ represents some intermediate level of inconsistency: {t, f}<c3⊥<c3>.

As the following propositions show, the notion of inconsistency orders is a refinement of the

notion of inconsistency sets:

Proposition 6.72 Let I be an inconsistency set in (B,F). The order relation ≤B,FI , defined on

B by a≤B,FI b if a 6∈I and b∈I, is an inconsistency order.

Proof: It is easy to verify that ≤B,FI satisfies all the conditions in Definition 6.70. 2

Proposition 6.73 Let (B,F) be a logical bilattice, and let I=T>. Then for every inconsistency

order ≤c in (B,F) there is an “intermediate” inconsistency class [i] s.t. for every bc∈ [i] and every

b∈B, if b>c bc then b∈I, and if b<c bc then b 6∈I.

Proof: Let [i]=min≤c{[b] | ∃b′∈ [b] s.t. b′∈T>}.22 This definition entails the second part of the

claim, since if b<c bc for some b∈B and bc ∈ [i], then [b]< [i], and so there is no element in [b]

(especially b itself) that belongs to I. For the converse, let bc∈ [i] and let b∈B s.t. b>c bc. By the

definition of [i], there is some b′∈ [bc] s.t. b′∈T>. In particular, bc and b′ are either equal or ≤c-

incomparable, and since ≤c is modular, necessarily b>c b
′. By Definition 6.70(b), b∈T> as well. 2

As usual, inconsistency orders can be used for defining preferential orders among valuations:

ν1 ≤c ν2 iff for every atom p, [ν1(p)] ≤c [ν2(p)].23 Clearly, ≤c on V corresponds to the modu-

larly pointwise order � of Definition 6.32(a). Now, denote ν1 <c ν2 if ν1 ≤c ν2 and there is an

atomic formula q for which [ν1(q)] <c [ν2(q)]. This relation corresponds to the strict order ≺

of Definition 6.32(b).24 It follows, then, that the resulting preferential system P = (B,F , <c) is

modularly pointwise. The corresponding set !(Γ,P) consists of the c-most consistent models of Γ

(abbreviation: c-mcms of Γ). The induced relation is therefore defined as follows:

22Note that since ≤c is well-founded, [i] cannot be empty.
23As usual, we use the same notation (≤c) to denote the order relation among equivalence classes and the order

relation among their elements.
24Note that the definition of ≤I is a particular case of this definition. In this case [b]< [b′] iff b 6∈I and b′∈I.
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Definition 6.74 Γ |=B,Fc ∆ if for every c-mcm M of Γ there is a δ∈∆ s.t. M(δ)∈F .

Example 6.75 Consider one direction of the well-known barber paradox:

Γ = {¬Shaves(x, x)⊃Shaves(Barber, x)}.

Denote by M1, M2, and M3 the valuations that assign t, ⊥, and > (respectively) to the asser-

tion Shaves(Barber,Barber). Let P (ci) = (V, |=4,≤ci), where ≤ci (0 ≤ i ≤ 3) are the inconsis-

tency orders in 〈FOUR〉 considered in Example 6.71. Then: !(Γ,P(c2)) = !(Γ,P(c3)) = {M1},

!(Γ,P(c1)) = {M1,M2}, and !(Γ,P(c0)) = {M1,M2,M3}. Thus Γ 6|=4
ci Shaves(Barber,Barber) in

case that i=0, 1, while Γ |=4
ci Shaves(Barber,Barber) in case that i=2, 3.

Proposition 6.76 |=B,Fc is paraconsistent.

Proof: Indeed, p,¬p 6|=B,Fc q. To see that consider, e.g., M(p) = b>, M(q) = f , where b> ∈

min≤c T>. 2

Proposition 6.77 The family of consequence relations |=B,Fc strictly contains the family of the

consequence relations relations |=B,FI .

Proof: Follows from the fact that in terms of Proposition 6.72, |=B,FI is equal to |=B,F
≤B,FI

. 2

Note: As Proposition 6.81 and the discussion before it show, the converse of Proposition 6.77

does not hold, not even in 〈FOUR〉.

B. Characterization in 〈FOUR〉

Theorem 6.78 Let P = (B,F ,≤c) be a stoppered pointwise preferential system that is based

on an inconsistency order ≤c in (B,F), and let |=B,Fc be the consequence relation induced by P.

Then there is an inconsistency order ≤ci in 〈FOUR〉 s.t. Γ |=B,Fc ∆ iff Γ |=4
ci ∆.

Proof: In the sequel ≤ci (i = 0, . . . , 3) will denote the four possible inconsistency orders in

〈FOUR〉, considered in Example 6.71. Also, we shall denote by bx some element in min≤c Tx
(x∈{t, f,>,⊥}), and by ω :B→FOUR the “categorization” function: ω(b)=x iff b∈Tx. Finally,
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in the rest of this proof we shall abbreviate [b]∩Ω≤c by [b] (thus we shall refer here to subclasses

that consist only of elements in Ω≤c).

Now, let ≤c be an inconsistency order in a logical bilattice (B,F). Since ≤c is well-founded

and since Tx is nonempty for every x ∈ {t, f,>,⊥}, then min≤c Tx is nonempty as well, and so

there is at least one element of the form bx for every x ∈ {t, f,>,⊥}. Also, it is clear that for

every bx, b
′
x∈min≤c Tx, [bx]=[b′x] (otherwise either bx<c b

′
x or bx>c b

′
x, and so either bx 6∈min≤c Tx

or b′x 6∈min≤c Tx). It follows, therefore, that there are no more than three equivalence classes in

Ω≤c : For some b⊥∈min≤c T⊥ and b>∈min≤c T>,

min≤c Tt ∪min≤c Tf ⊆ [t], min≤c T⊥ ⊆ [b⊥], min≤c T> ⊆ [b>].

By Definition 6.70, [t] must be a minimal inconsistency class among those in Ω≤c , and [b>] must

be a maximal one. It follows, then, that the inconsistency classes in Ω≤c are ordered in one of

the following orders:

0. [t] = [b⊥] = [b>] 1. [t] = [b⊥] <c [b>] 2. [t] <c [b⊥] = [b>] 3. [t] <c [b⊥] <c [b>]

If the order relation among the inconsistency classes in Ω≤c corresponds to case i above (0≤ i≤3)

we say that the inconsistency order ≤c is of type i.25

Claim 6.78-A: If ≤c is an inconsistency order of type i, then for every b, b′∈Ω≤c we have that

[b]<c [b′] iff [ω(b)]<ci [ω(b′)].

Proof: Immediate from the definition of inconsistency order of type i, and the definition of ≤ci .

Claim 6.78-B: If ≤c is a well-founded inconsistency order of type i in (B,F), then |=B,Fc is the

same as |=4
ci .

Proof: Suppose that Γ |=B,Fc ∆ but Γ 6|=4
ci ∆. Then there is a four-valued ci-mcm M4 of Γ s.t.

∀δ∈∆ M4(δ) 6∈{t,>}. Now, for every atom p let MB(p) be some element in min≤c TM4(p). Thus

ω◦MB=M4, and MB is similar to M4. By Proposition 4.4 and Note 4 after Definition 4.6, MB

is a model of Γ that does not satisfy any formula in ∆. It remains to show, therefore, that MB

is a c-minimal model of Γ in (B,F) (and so we will have a contradiction to Γ |=B,Fc ∆). Indeed,

otherwise there is a c-mcm NB of Γ s.t. NB <cM
B. So for every atom p, [NB(p)]≤c [MB(p)],

25In particular, for every 0≤ i≤3, the inconsistency order ≤ci in 〈FOUR〉 is of type i.
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and there is an atom p0 s.t. [NB(p0)]<c [MB(p0)]. Let N4 =ω◦NB. Again, N4 is similar to NB,

so it is a (four-valued) model of Γ. Also, by its definition, ∀p MB(p)∈Ω≤c and by Proposition

6.36, ∀p NB(p)∈Ω≤c . Thus, by Claim 6.78-A,

[N4(p)] = [ω◦NB(p)] ≤ci [ω◦MB(p)] = [M4(p)].

Also, by the same claim,

[N4(p0)] = [ω◦NB(p0)] <ci [ω◦MB(p0)] = [M4(p0)].

It follows that N4<ci M
4, but this contradicts the assumption that M4 is a ci-mcm of Γ.

For the converse, suppose that Γ |=4
ci ∆, but Γ 6|=B,Fc ∆. Then there is a c-mcm MB of Γ in

(B,F) s.t. ∀δ ∈∆ MB(δ) 6∈ F . Define, for every atom p, M4(p) =ω◦MB(p). By the definition

of ω, M4 is similar to MB and so M4 is a model of Γ in 〈FOUR〉, and it does not satisfy any

formula in ∆. It remains to show, then, that M4 is a ci-minimal model of Γ. Indeed, otherwise

there is a model N4 of Γ s.t. N4 <ci M
4, that is: For every atom p [N4(p)] ≤ci [M4(p)], and

there is an atom p0 s.t. this inequality is strict: [N4(p0)]<ci [M4(p0)]. Now, for every atom p,

let NB(p) be some element in min≤c TN4(p). Thus ω◦NB =N4, and also NB is similar to N4.

By Proposition 4.4 and Note 4 after Definition 4.6, NB is in particular a model of Γ in (B,F).

Moreover, for every atom p,

[ω◦NB(p)] = [N4(p)] ≤ci [M4(p)] = [ω◦MB(p)]

and so, since ∀p MB(p), NB(p)∈Ω≤c , by Claim 6.78-A we have that [NB(p)]≤c [MB(p)]. Simi-

larly,

[ω◦NB(p0)] = [N4(p0)] <ci [M4(p0)] = [ω◦MB(p0)]

and again this entails that [NB(p0)]<c [MB(p0)]. It follows that NB<cM
B, but this contradicts

the assumption that MB is a c-mcm of Γ.

This concludes the proof of Claim 6.78-B and Theorem 6.78. 2

Note: By the proof of Theorem 6.78, the basic inconsistency orders are those denoted ≤c0 , . . .,

≤c3 in Example 6.71. In what follows we shall continue to use these notations.
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Corollary 6.79 Let ≤c be an inconsistency order in (B,F), b⊥∈min≤c T⊥, and b>∈min≤c T>.

a) if [b>]=[t], then |=B,Fc is the same as |=4
c0 .

b) if [b>] 6=[t] and [b⊥]=[t], then |=B,Fc is the same as |=4
c1 .

c) if [b>] 6=[t] and [b⊥] 6=[t] and [b>]=[b⊥], then |=B,Fc is the same as |=4
c2 .

d) if [b>] 6=[t] and [b⊥] 6=[t] and [b>] 6=[b⊥], then |=B,Fc is the same as |=4
c3 .

Proof: Follows from the proof of Theorem 6.78. For instance, in terms of that proof, the condi-

tion of part (a) assures that ≤c is of type i=0. Thus |=B,Fc must be the same as |=4
c0 in this case.

Similar considerations hold for the other cases. 2

Corollary 6.79 induces a simple algorithm for determining which four-valued consequence

relation is the same as a given consequence relation of the form |=B,Fc : Given an inconsistency

order ≤c in (B,F). If it is true that [b>] = [t], then |=B,Fc is the same as |=4
c0 . Otherwise, if

[b⊥]=[t], then |=B,Fc is the same as |=4
c1 . Otherwise, if [b>]=[b⊥], then |=B,Fc is the same as |=4

c2 .

Otherwise |=B,Fc is the same as |=4
c3 .

Corollary 6.80 |=B,Fc is nonmonotonic iff [t] ∩min≤c T>=∅.

Proof: By Corollary 6.79 [t] ∩min≤c T>= ∅ iff |=B,Fc is the same as |=4
c0 , and in any other case

|=B,Fc is the same as |=4
ci for some 1≤ i≤3. Since |=4

c0 is the only monotonic consequence relation

among |=4
ci (0≤ i≤3), we are done. 2

C. The consequence relation |=4
c3

As it immediately follows from their definitions, |=4
c0 is the same as |=4, |=4

c1 is the same as |=4
I1 ,

and |=4
c2 is the same as |=4

I2 . By Theorem 6.78, then, the only new type of consequence relations

of the form |=B,Fc consists of those relations that are the same as |=4
c3 . In this section we consider

the main properties of this consequence relation. First we show that |=4
c3 is indeed different from

the other consequence relations |=4
ci (i=0, 1, 2).
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Proposition 6.81 Let Γ,∆ be in ΣB.

a) The basic consequence relations |=4
ci , 0≤ i≤3, are all different.

b) If Γ |=4
c0 ∆ then Γ |=4

c3 ∆.

c) There are no two consequence relations among |=4
ci , i=1. . .3, such that one is stronger than

the other.

Proof:

a) Consider the set Γ={¬q, (p⊃q)∨(¬q⊃¬p), (¬p⊃q)∨(¬q⊃p)}. Table 6.1 lists the ci-mcms

of Γ. It is easy to verify that for every 0≤ i≤3 the consequences of Γ are different w.r.t. |=4
ci . Let

Table 6.1: The ci-mcms of Γ (Proposition 6.81)

p q c0-mcms c1-mcms c2-mcms c3-mcms

M1 ⊥ f + + + +
M2 > f + – + –
M3 t > + – + +
M4 f > + – + +
M5 ⊥ > + – – –
M6 > > + – – –

Thi(Γ) = {ψ | Γ |=4
ci ψ}. Then from Table 6.1 it follows that Th0(Γ)⊆Th2(Γ)⊆Th3(Γ)⊆Th1(Γ).

Moreover, q⊃ p∈Th1(Γ) \ Th3(Γ), p⊃ q∈Th3(Γ) \ Th2(Γ), and q⊃ (p∨¬p)∈Th2(Γ) \ Th0(Γ), so

the inclusions are proper.

b) Obvious.

c) In part (a) we have considered an example in which Th2(Γ)⊂Th3(Γ)⊂Th1(Γ). On the other

hand, p∨¬p∈Th2(∅) and p∨¬p∈Th3(∅), while p∨¬p 6∈Th1(∅). It remains to show, then, that |=4
c3

is not stronger than |=4
c2 . For that consider the following set: Γ′={p, (¬p⊃q)⊃q, q⊃¬q, ¬q⊃q}.

The only c2-mcm of Γ′ is M1(p)= t, M1(q)=>, while the c3-mcms of Γ′ are M1 and M2(p)=>,

M2(q)=⊥. Thus, e.g., Γ′ |=4
c2 q while Γ′ 6|=4

c3 q. In this case, therefore, Th3(Γ′)⊂Th2(Γ′). 2

Proposition 6.82 Suppose that the formulae of Γ are in Σmcl. Then |=4
c3 is actually three-valued:

If M is a c3-mcm of Γ, then there is no formula ψ s.t. M(ψ)=⊥.

Proof: Similar to that of Proposition 6.59. 2
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Proposition 6.83 Let Γ,∆, ψ be in Σmcl. Then

a) Γ |=4
c2 ∆ iff Γ |=4

c3 ∆.

b) If ψ is a CNF-formula, none of its conjuncts is a tautology, then Γ |=4
c1 ψ iff Γ |=4

c2 ψ iff

Γ |=4
c3 ψ.

Proof:

a) By proposition 6.82, in Σmcl the c2-mcms and the c3-mcms have no ⊥-assignments. Thus, in

this case the set of the c2-mcms of Γ is the same as the set of the c3-mcms of Γ (consider the

models of Γ with no ⊥-assignments, and order them relative to {t, f}<c>).

b) Since |=4
c1 is the same as |=4

I1 , and |=4
c2 is the same as |=4

I2 , the claim follows from Proposition

6.64(b) and part (a). 2

Another important property of |=4
c3 is that as in the case of |=4

I , it is sometimes sufficient to

consider only the k-minimal models among the c3-mcms:

Corollary 6.84 Suppose that Γ is a finite set of formulae and let ∆ be a set of formulae in Σmon.

Then Γ |=4
c3 ∆ iff every k-minimal c3-mcm of Γ is a model of some δ∈∆.

Proof: Similar to that of Proposition 6.57. 2

Notes: In Corollary 6.84, the requirement that Γ must be finite is indeed necessary. To see this

consider the set Γ in the proof of Proposition 6.56.

Proposition 6.85 If the formulae in ∆ are in Σmon, then Γ |=B,Fk ∆ implies that Γ |=B,Fc3 ∆.

Proof: Follows from Corollary 6.29 and the fact that if Γ |=B,F∆ then Γ |=B,Fc3 ∆. 2

Proposition 6.86 (Relations to classical logic)

a) If Γ, ψ are in the language Σcl and Γ |=4
c3 ψ, then Γ |=2ψ.

b) If Γ, ψ are in the language Σcl and Γ is classically consistent, then Γ |=4
c3 ψ iff Γ |=2ψ.
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Proof:

a) Let M be a classical model of Γ. Since for formulae in Σcl there is no difference between

viewing M as a valuation in FOUR and viewing it as a valuation in {t, f}, it follows that M is

a model of Γ in 〈FOUR〉 as well. Now, ∀p M(p) ∈ [t], so clearly M is a c3-mcm. Thus M(ψ)

is designated. But we also know that M(ψ) ∈ {t, f}, and so M(ψ) = t. It follows that M is a

classical model of ψ, and so ψ classically follows from Γ.

b) One direction follows from part (a). The other direction follows from the fact that if Γ is

classically consistent, then the set of its classical models is the same as !(Γ,P(c3)). 2

Proposition 6.87 Denote by |=3
LPm the consequence relation of Priest’s LPm (see Section 6.4.2.F),

and let A(Γ ∪ ψ)={p1, p2, . . .}. Then Γ |=3
LPmψ iff Γ, p1∨¬p1, p2∨¬p2, . . . |=4

c3 ψ.

Proof: Similar to that of Proposition 6.68. 2

Proposition 6.88 Let Γ,∆ be sets of formulae in the Σmcl. Then Γ |=3
LPmψ iff Γ |=4

c3 ψ.

Proof: Follows from the fact that |=4
c2 is the same as |=4

I2 , and from Propositions 6.69(a) and

6.83(a). 2
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Chapter 7

Consistency-Based Logics

7.1 Introduction

A common property shared by all the logics considered in the previous chapter is that they allow

us to make nontrivial conclusions from an inconsistent theory without throwing pieces of informa-

tion away. In particular, the original theory remains the same, i.e. with the contradictory data.

In this chapter we consider another approach of handling inconsistent theories. This approach

(sometimes called “coherent” [BDP95] or “conservative” [Wa94a]) revises inconsistent informa-

tion and restores consistency. Such “consistency-based” methods consider contradictory data as

useless, and only a consistent part of the original information is used for making inferences. Thus,

while the paraconsistent approaches tolerate contradictions when the theory is inconsistent, the

coherent approaches rule out contradictions in order to maintain the consistency of the theory

under consideration. The resulting process can therefore be described as a two step procedure,

which first restores the coherence by selecting preferred consistent subsets of the (possibly in-

consistent) knowledge-base, and then draws conclusions from these subsets according to some

entailment principle.

The approach of using preferred models in logical bilattices, proposed in the previous chapter,

seems very suitable for being the basis behind the consistency-based methods as well. The idea

this time is to give the inconsistent knowledge-base a bilattice-based semantics, and then to

compute the I-mcms of the knowledge-base for two purposes:

159
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1. Detect and isolate the cause of the inconsistency together with what is related to it. Any

data that is not related to the conflicting information should not be affected or changed.

2. Make sure that the remaining information yields conclusions that are semantically coherent

with the original data (i.e., only inferences that do not contradict any previously drawn

conclusions are allowed).

In general, by computing I-mcms we would be able to construct subsets of the knowledge-base

(called “recovered sets”), which are useful means to override the contradictions. The common

property shared by all the recovered sets is that they restore consistency: some contradictory

information is considered useless, and all the remaining information not depending on it is not

affected. The recovered sets are the candidates to be the recovered knowledge-base, from which

one can draw classical conclusions. Recovered sets and methods of constructing them are consid-

ered in Section 7.2.2.

Creating several sets of formulae that represent alternative beliefs of a reasoner is a common

approach in consistency-based formalisms. Such sets are sometimes called extensions (e.g., in

default logic [Re80]), or expansions (e.g., in autoepistemic logic [Mo85]). This raises the question

how to define the derivable formulae in a situation where multiple recovered sets exist. One

possibility is to consider every recovered set. This method corresponds to a skeptical point of

view, where a belief is only adopted in case that there is no conflicting evidence at all. Such a

consequence relation is denoted here by |=B,FR , and its properties are considered in Section 7.2.6.

On the other hand, there are also cases where each one of the recovered sets has its own

meaning. In Chapter 9, for instance, we use our approach for a model-based diagnostic reason-

ing, where each of the recovered sets corresponds to a different diagnosis. It also may be the case

that not all the recovered sets are of equal importance (for example, when the knowledge-base

itself is prioritized). We treat such cases in Section 7.2.5.

The rest of this chapter is divided to two parts: The first part (Section 7.2) is the major

one, in which we describe our method of using logical bilattices and I-mcms for defining a

consistency-based method for reasoning with uncertainty. In the second part (Section 7.3) we
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consider cases in which the knowledge-base under consideration is prioritized, i.e. a function for

making preferences among the formulae of the knowledge-base is supplied. We take advantage

of this additional information for refining the recovery method considered in Section 7.2. We

also compare both these approaches for recovering “regular” knowledge-bases and “prioritized”

knowledge-bases to several related consistency-based formalisms for reasoning with incomplete

and inconsistent data (see the comparative study in Sections 7.2.7 and 7.3.4).

7.2 Recovery of knowledge-bases

7.2.1 Preliminaries

Definition 7.1 A formula ψ is an extended clause if:

ψ is a literal (an atom or a negated atom), or

ψ = φ ∨ ϕ, where φ and ϕ are extended clauses, or

ψ = φ⊕ ϕ, where φ and ϕ are extended clauses.

Definition 7.2 A formula ψ is said to be normalized if it has no subformula of the forms φ∨φ,

φ∧φ, φ⊕φ, φ⊗φ, or ¬¬φ.1

The following lemma is clearly valid in every logical bilattice (B,F):

Lemma 7.3 For every formula ψ there is an equivalent normalized formula ψ′ such that for every

valuation ν, ν(ψ)∈F iff ν(ψ′)∈F .

From now on, unless otherwise stated, the sets of assertions that we consider in this chapter are

sets of normalized extended-clauses. As the following proposition shows, as far as the monotonic

language is concerned, representing the formulae in a (normalized) extended clause form does not

reduce the generality:

Proposition 7.4 For every formula ψ in Σmon there is a finite set S of normalized extended

clauses such that for every valuation ν, ν |=B,F ψ iff ν |=B,F S.

Proof: First, translate ψ into its extended negation normal form, ψ′, where the negation operator

precedes atomic formulae only. This can be done in every bilattice. The rest of the proof is by

1We could have defined stronger notions of normalized formulae, but this one is sufficient for our needs.



162 CHAPTER 7. CONSISTENCY-BASED LOGICS

an induction on the structure of ψ′:

If ψ′ = ψ′1∧ψ′2 or ψ′ = ψ′1⊗ψ′2, then by induction hypothesis, there exists Si s.t. ν |=B,F Si iff

ν |=B,F ψ′i (i=1, 2). Take: S=S1∪S2, then: ν |=B,F S iff ν |=B,F S1 and ν |=B,F S2, iff ν |=B,F ψ′.

If ψ′=ψ′1∨ψ′2 or ψ=ψ′1⊕ψ′2, then again, there exist S1 ={φi}ni=1 and S2 ={ϕj}mj=1 s.t. ν |=B,F ψ′i
iff ν |=B,F Si (i=1, 2). Take: S={φi∨ϕj | 1≤ i≤n , 1≤j≤m}. Now, since F is a prime bifilter,

we have the following:

• If ν |=B,F ψ′, then ν |=B,F ψ′1 or ν |=B,F ψ′2. Suppose that ν |=B,F ψ′1. Then ν |=B,F φi for i=1...n.

So, for every 1≤ i≤n and for every 1≤j≤m: ν |=B,F φi∨ϕj , hence ν |=B,F S.

• If ν 6|=B,F ψ′, then ν 6|=B,F ψ′1 and ν 6|=B,F ψ′2, i.e. ν 6|=B,F φi and ν 6|=B,F ϕj for some 1≤ i≤n and

some 1≤j≤m. Then, for those i and j, ν 6|=B,F φi∨ϕj , hence ν 6|=B,F S. 2

Here is another useful property of extended clauses over logical bilattices. It will be used

several times in the sequel:

Lemma 7.5 Let (B,F) be a logical bilattice, ψ an extended clause, and L(ψ)={l1, . . . , ln}. For

every valuation ν in B, ν(ψ)∈F iff there is an 1≤ i≤n s.t. ν(li)∈F .

Proof: By an induction on the structure of ψ. 2

Definition 7.6 A knowledge-base KB is a pair (S,Exact), where S is a set of extended clauses,

and Exact is a set of atoms in A(S) that are assumed to have only classical values.

Definition 7.7 Let KB=(S,Exact) be an arbitrary knowledge-base.

a) mod(KB)=mod(S,Exact) is the set of the exact models of S, i.e. the models of S in which

every element of Exact is assigned a classical value. Formally:

mod(S,Exact)={M ∈mod(S) | ∀p∈Exact M(p)∈{t, f}}.

b) mcm(KB, I)=mcm((S,Exact), I) is the set of the most consistent exact models of S w.r.t.

I (I-mcems, in short) i.e., the I-most consistent elements of mod(KB).

Note that while a set S of extended clauses always has a bilattice-based model (By Lemma

7.5, {p :> | p∈A(S)} is always a model of S), a knowledge-base KB=(S,Exact) might not have

any exact model. For a trivial example consider S={p,¬p} and Exact={p}.
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We introduced the set Exact because there are cases in which we do not want to leave room

to any doubts.2 For example, what a law says about something should be very clear; It might

not be very obvious, however, if the law is obeyed. More concrete examples will be considered in

the sequel.

7.2.2 The recovery process

In this section we describe what we mean by saying “recovering an inconsistent knowledge-base”.

In particular, we define and characterize the “recovered” parts of a knowledge-base.

As we will see in what follows, the I-mcems and their inconsistent assignments play a funda-

mental role in the recovery process; Given a knowledge-base KB=(S,Exact) and an I-mcem M

of it, we will be interested in the set of atoms that occur in S and that are assigned inconsistent

values by M .

Notation 7.8 Inc(M,S, I) = Inc(M, I) ∩ A(S) = {p∈A(S) | M(p)∈I}.3

Definition 7.9 Let S be a set of extended clauses.

a) A model M of S is I-consistent if Inc(M,S, I)=∅.

b) A set S is I-consistent if it has an I-consistent model.

c) A knowledge-base KB=(S,Exact) is I-consistent if S is I-consistent.

Lemma 7.10 For every inconsistency set I, S is I-consistent iff it is classically consistent.

Proof: One direction is obvious. For the other, assume that M is an I-consistent model of S.

Then there is no p∈A(S) s.t. both M(p)∈F and ¬M(p)∈F . Consider the valuation M ′ defined

for every l∈L(S) as follows: M ′(l)= t if M(l)∈F , and M ′(l)=f otherwise. By Lemma 7.5, M ′

is also a model of S. 2

In what follows we will sometimes omit the notation of the inconsistency set, and just say

that a given set is (in)consistent instead of I-(in)consistent.

2This, actually, is a kind of integrity constraint that we impose on the system.
3Cf. Notation 6.42.
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Definition 7.11 Let S′ ⊆ S, and suppose that M ′ ∈ mod(S′), M ∈ mod(S). Then M ′ is ex-

pandable to M (alternatively: M ′ is the reduction to A(S′) of M) if M(p) = M ′(p) for every

p∈A(S′).

The next proposition shows that the space of valuations V of extended clauses is stoppered

w.r.t. ≤I . This property will be significant in what follows.

Proposition 7.12 Let I be an inconsistency set in a logical bilattice (B,F), and let KB =

(S,Exact) be a (possibly infinite) set of extended clauses. For every model M of KB there is an

I-mcem M ′ of KB s.t. M ′≤IM .

Proof: The idea of the proof is similar to that of 6.12: Suppose that M is some model of KB,

and SM = {N | N ∈mod(KB), N ≤I M}. Let C ⊆ SM be a chain w.r.t. <I . We shall show

that C is bounded, so by Zorn’s Lemma C has a minimal element, which is the required I-mcem.

Indeed, if C is finite we are done. Otherwise, consider the following sets:

C ′ =
⋂
{Inc(N,S, I) | N ∈C}

S′ = {ψ ∈ S | A(ψ) ∩ C ′ = ∅}

Let S′′ be a finite subset of S′. Since S′′ is finite and C is a chain, there exists some N ∈C s.t.

A(φ)∩Inc(N,S, I) = ∅ for every φ ∈ S′′. Since N is a model of KB and the reduction of N to

A(S′′) is a consistent model of S′′, it follows that every finite subset of S′ is consistent. Hence, by

Lemma 7.10 and the classical compactness theorem, S′ is consistent, and so it has a consistent

model, N ′. Now, consider the following valuation defined for every p∈A(S):

M ′(p) =

{
> if p∈C ′

N ′(p) otherwise.

Clearly, M ′≤I N for every N ∈C. It remains to show that M ′ ∈mod(KB), but this is obvious,

since for every ψ∈S′ and for every p∈A(ψ), p 6∈C ′ hence M ′(p)=N ′(p), and so M ′(ψ)=N ′(ψ)∈

F . Also, for every ψ∈S\S′ there is a p∈A(ψ) s.t. p∈C ′, thus M ′(p) =>, and by Lemma 7.5,

M ′(ψ)∈F . 2

Definition 7.13 A subset S′⊆S is consistent in the context of S and Exact, if S′ has a consistent

exact model that is expandable to a (not necessarily consistent) exact model of S.
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Example 7.14 S′={p} is a consistent set, but it is not consistent in the context of S={p,¬p}

and any set Exact, since there is no consistent model of S′ that is expandable to a model of S.

Similarly, S′={p} is consistent in the context of S={p, ¬p∨q, ¬p∨¬q} and Exact={p}, but it

is not consistent in the context of S and Exact={q}, since there is no consistent exact model of

S′ that is expandable to an exact model of S.

Definition 7.15 Let M be an exact model of a knowledge-base KB= (S,Exact). The set that

is associated with M is: SM ={ψ∈S | A(ψ) ∩ Inc(M,S, I)=∅}.

Example 7.16 Consider the knowledge-base KB=(S,Exact), where

S = {p, q, ¬p ∨ r, ¬q ∨ ¬r, p ∨ s, ¬r ∨ e, ¬r ∨ ¬e}, Exact = {e}.

The valuation M={p :>, q : t, r :f, s :⊥, e : t} is an exact model of KB, and

SM = {q, ¬q ∨ ¬r, ¬r ∨ e, ¬r ∨ ¬e}.

Proposition 7.17 Every nonempty set that is associated with an exact model ofKB is consistent

in the context of KB.

Proof: Let M be an exact model of KB = (S,Exact) and suppose that M ′ is its reduction to

A(S) \ Inc(M,S, I). Obviously, SM ⊆S. It is a consistent set in the context of KB, since M ′ is

a consistent exact model of SM that is expandable to an exact model (M) of KB. 2

Definition 7.18

a) A recovered set of (S,Exact) is a maximal subset of S that is consistent in the context of

S and Exact.

b) A knowledge-base KB = (S,Exact) that contains a nonempty recovered set S′ is called

recoverable, and the pair KB′=(S′, Exact) is called a recovered knowledge-base of KB.

Example 7.19 Consider again Example 7.16. SM is a recovered set of KB, since it is a maximal

subset of S that has a consistent model (e.g., {q : t, r : f, s : t, e : t}) which is expandable to an

exact model (e.g., {p :>, q : t, r :f, s : t, e : t}) of KB.
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The following proposition shows that there is a strong relation between I-mcems of a knowledge-

base and its recovered sets:

Proposition 7.20 Every nonempty recovered set of KB is associated with some I-mcem of KB.

Proof: Suppose that S′ is a set that is consistent in the context of KB=(S,Exact). Let N ′ be

a consistent exact model of S′, and N – its expansion to S. Consider any I-mcem M such that

M ≤I N .4 Since A(S′)⊆A(S)\Inc(N,S, I)⊆A(S)\Inc(M,S, I), every formula ψ ∈S′ consists

only of literals that are assigned consistent truth values by M . Hence S′⊆SM . Proposition 7.17

assures that SM is consistent in the context of KB, hence S′=SM in case that S′ is maximal. 2

7.2.3 Classification of the atomic formulae

In [KL89, KL92], Kifer and Lozinskii handle inconsistent situations by dividing the atomic for-

mulae in the language of a knowledge-base into difference subsets. Intuitively, each such subset

indicates to what extent its elements are involved in the conflicts. In this section we follow this

approach and show that such a classification is naturally induced by our method as well.5

Definition 7.21 [KL89, KL92] Let |= be a consequence relation and let S be a set of assertions.

Suppose that l∈L(S), and denote by l its complement.

a) If S |= l and S |= l then l is called spoiled (w.r.t. |=).

b) If S |= l and S 6|= l then l is called recoverable (w.r.t. |=).

c) If S 6|= l and S 6|= l then l is called incomplete (w.r.t. |=).6

Obviously, for each l ∈ L(S), either l is spoiled, or l is recoverable, or l is incomplete, or l is

recoverable.

Here we follow the formalism introduced in the previous section and use |=B,FI as the conse-

quence relation of Definition 7.21. We note, however, that one might use e.g. |=B,Fc instead of

|=B,FI (see Section 6.4.3), in which case similar results can be obtained.

4By Proposition 7.12, such a valuation exists.
5Actually, the cases considered in [KL89, KL92] are special cases of the present ones, where Exact=∅.
6In [KL89, KL92] literals of this kind are called “damaged”. We feel that this terminology is somewhat too

strong.
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Notation 7.22 Let (B,F) be a logical bilattice and let I be an inconsistency set in it. Denote by

Spoiled(KB), Recover(KB), and Incomplete(KB) the respective sets of the spoiled, recoverable,

and incomplete literals of KB w.r.t. |=B,FI .

Example 7.23 Consider the knowledge-base KB=(S,Exact), where

S = {s, ¬s, r1, r1;¬r2, r2; i}, Exact = {r2}.

The exact models of KB in 〈FOUR〉 are listed in Table 7.1.

Table 7.1: The exact models of KB in 〈FOUR〉 (Example 7.23)

Model No. s r1 r2 i Model No. s r1 r2 i

M1 > t f ⊥ M4 > t f >
M2 > t f t M5 −M6 > > t t,>
M3 > t f f M7 −M10 > > f ⊥, t, f,>

It follows that mcm(KB, {>}) = {M1,M2,M3}, and mcm(KB, {>,⊥}) = {M2,M3}. Thus, in

both cases, Spoiled(KB)={s}, Recover(KB)={r1,¬r2}, and Incomplete(KB)={i}.

A. The spoiled literals

We first treat those literals that form, as their name suggests, the “core” of the inconsistency

in KB. As Proposition 7.25 and Corollary 7.26 below show, whenever there are no integrity

constraints imposed on KB, these literals can easily be detected:

Proposition 7.24 Let KB=(S,Exact).

a) If mod(KB) 6=∅ then Exact ∩ Spoiled(KB)=∅.

b) If mod(KB)=∅ then Exact ∩ A(S) 6=∅.

Proof:

a) If mod(KB) 6=∅ then by Proposition 7.12 mcem(KB, I) 6=∅ as well. Let M ∈mcem(KB, I). If

p∈Exact∩ Spoiled(KB) then on one hand M(p)∈{t, f} 6⊆I. On the other hand, KB |=B,FI p and

KB |=B,FI ¬p. Thus M(p)∈F and M(¬p)∈F and so M(p)∈I – a contradiction.
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b) If Exact ∩ A(S) = ∅ then by Lemma 7.5 {p :> | p∈A(S)} is an exact model of KB and so

mod(KB) 6=∅. 2

In what follows we shall always assume that mod(KB) 6= ∅ (thus, in particular, there is no

l∈Exact ∩ Spoiled(KB)).

Proposition 7.25 Let KB=(S, ∅). For every logical bilattice (B,F) and inconsistency set I in

it, the following conditions are equivalent:

a) l ∈ Spoiled(KB).

b) M(l) ∈ T> for every M ∈mod(KB).

c) M ′(l) ∈ T> for every M ′∈mcem(KB, I).

d) {l, l} ⊆ S.

Proof: Without loss of generality, let l=p, where p∈A(S); The case l=¬p is similar.

(a)→ (c): If p is spoiled, i.e. KB |=B,FI p and KB |=B,FI ¬p, then for every I-mcem M ′ of KB,

M ′(p)∈F , and also ¬M ′(p)=M ′(¬p)∈F . Hence M ′(l)∈T>.

(c) → (d): Suppose that for every I-mcem M ′ of KB, M ′(l) ∈ T>. By Proposition 7.12, l is

assigned some inconsistent truth value by every model of KB. Assume that l ∈ {p,¬p}, and

consider the following valuations:

νt = {q :> | q∈A(S), q 6=p} ∪ {p : t},

νf = {q :> | q∈A(S), q 6=p} ∪ {p :f}.

Now, νt is not a model of KB (because p is assigned a consistent value by νt), and so ¬p ∈ S

(in any other case every formula ψ∈S contains a literal l′ s.t. νt(l
′)∈F , and so by Lemma 7.5,

νt(ψ)∈F . Thus, since Exact=∅, in this case νt must be an exact model of KB – a contradiction).

Similarly, since νf is not a model of KB, necessarily p∈S.

(d)→ (b): If {l, l} ⊆ S, then obviously, for every model M of KB, M(l)∈F , and ¬M(l)∈F .

Hence M(l)∈T>.



7.2. RECOVERY OF KNOWLEDGE-BASES 169

(b) → (a): If for every model M of KB M(l) ∈ T>, then M(l) ∈ F and M(l) ∈ F . Hence

KB |=B,F l and KB |=B,F l, which implies that KB |=B,FI l and KB |=B,FI l. Thus l is spoiled. 2

Note: The condition Exact=∅ is indeed necessary for assuring the equivalence of conditions (a)

and (d) in Proposition 7.25. To see this, consider, e.g., S = {p, q,¬p∨¬q} and Exact= {q}. In

this case p is spoiled in KB=(S,Exact), although ¬p 6∈S.

Corollary 7.26 It takes O(|S|) running time to discover the spoiled literals of KB=(S, ∅).

Proof: Immediate from the equivalence of conditions (a) and (d) of Proposition 7.25. 2

B. The recoverable literals

The recoverable literals are those that may be viewed as the “robust” part of a given inconsistent

knowledge-base, since all the I-mcems “agree” on their validity. As it is shown below, the

recoverable literals of a knowledge-base are strongly related to its recovered sets.

Definition 7.27 Let (B,F) be a logical bilattice and let I be an inconsistency set in it. We say

that a set S supports a literal l if S |=B,FI l and S 6|=B,FI l.

Example 7.28 In Example 7.23, r1 and ¬r2 are recoverable literals of KB. The recovered set

R=S\{s,¬s} supports both of them w.r.t. any B, F , and I.

The recoverable literals of KB=(S,Exact) are therefore those literals that are supported by

S. As the following proposition shows, the recoverable literals are also supported by recovered

sets of KB:

Proposition 7.29 For every recoverable literal l of KB there is a nonempty recovered set of KB

that supports l.

Proof: Without loss of generality suppose that l = p, where p ∈A(S) is recoverable; The case

l= ¬p is similar. Let M ′ be an I-mcem of KB such that M ′(p) ∈F \ I. By Proposition 7.17,

SM ′ is consistent in the context of KB. Now, either SM ′ is a maximal subset of KB with this

property, or else (by Proposition 7.20) there is another I-mcem, M ′′, s.t. SM ′ ⊂SM ′′ and SM ′′
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is a recovered set of KB. In the former case let R=SM ′ and in the latter case let R=SM ′′ . By

the choice of R it is obvious that R is a recovered set of KB. Denote by M the I-mcem with

whom R is associated (i.e., either M ′ or M ′′). It remains to show that: (a) R is nonempty, (b)

R |=B,FI l, and (c) R 6|=B,FI l:

a) Had R been empty, then ∀ψ∈S L(ψ) ∩ Inc(M,S, I) 6=∅. Define:

N={r :f | r∈A(S) \ Inc(M,S, I)} ∪ {s :> | s∈Inc(M,S, I)}.

By Lemma 7.5, N is a model of S. It is also an exact model of KB since M is an exact

model of KB and the atomic formulae that are assigned classical values by M are also assigned

classical values by N . Moreover, N is an I-mcem of KB, since Inc(N,S, I)=Inc(M,S, I)). But

p∈A(S) \ Inc(M,S, I), hence N(p)=f . This is a contradiction to KB |=B,FI p.

b) R |=B,FI p: Suppose that N ′ is an I-mcem of (R,Exact) but N ′(p) 6∈F . Notice that N ′ must

be consistent, otherwise since M is a consistent model of R, then relative to A(R), N ′>IM , and

so N ′ cannot be an I-mcem of R. Let N be the following expansion of N ′ to S:

N = {N ′(q) | q∈A(S) \ Inc(M,S, I)} ∪ {q :> | q∈Inc(M,S, I)}.

Clearly, N is an exact model of KB (Indeed, if ψ∈R then N(ψ) =N ′(ψ)∈F , and if ψ∈S \ R,

then Inc(M,S, I) ∩ A(ψ) 6=∅, and since N(s)=> for every s∈Inc(M,S, I), then by Lemma 7.5,

N(ψ)∈F 7). Furthermore, N is an I-mcem of KB, since Inc(N,S, I) = Inc(M,S, I), and M is

an I-mcem of KB. But N(p)=N ′(p) 6∈F , thus KB 6|=B,FI p; A contradiction.

c) R 6|=B,FI ¬p: Otherwise, for every I-mcem N of R, ¬N(p) = N(¬p) ∈ F , and since we have

shown that R |=B,FI p, N(p)∈F as well. Thus N(p)∈I for every I-mcem of R, and so R cannot

be a consistent set. 2

As a matter of fact, as the following proposition shows, the relation between recoverable

literals and recovered sets is even stronger:

Proposition 7.30 If l is a recoverable literal of KB then there is no nonempty recovered set R

of KB s.t. R |=B,FI l.

7Another reason that N is a model of S is that N≥kN ′, and since N ′(ψ)∈F , N(ψ)∈F as well.
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Proof: Without loss of generality suppose that l = p. Assume also that there exists a subset

R⊆S that is nonempty, consistent in the context of KB, and R |=B,FI ¬p. Since R is consistent in

the context of KB, it has a consistent exact model, M ′, which is expandable to an exact model

M of KB (i.e., ∀q∈A(R) M(q)=M ′(q)). In particular, M(q) 6∈I for every q∈A(R). Now, let N

be an I-mcem of KB s.t. N≤IM .8 Since N≤IM , N(q) 6∈I for every q∈A(R). Also, since N is

an I-mcem of KB and p is a recoverable atom of KB, then N(p)∈F . Let N ′ be the reduction of

N to A(R). Since N ′ is identical to N on A(R), and since N is an exact model of KB, then: (a)

N ′ is an exact model of (R,Exact), (b) N ′(q) 6∈ I for every q∈A(R), and (c) N ′(p)∈F . By (a)

and (b), then, N ′ is a consistent exact model of (R,Exact) and so, by (c), N ′(¬p) 6∈F (otherwise,

N ′(p)∈F and N ′(¬p)∈F , hence N ′(p)∈I and so N ′ cannot be consistent). Thus R 6|=B,FI ¬p; A

contradiction. 2

Note: The proof of Proposition 7.30 shows that one can formulate a stronger claim, since the set

R that is mentioned in Proposition 7.30 need not be a recovered set of KB, but just consistent

in the context of KB.

The converse of the combination of Propositions 7.29 and 7.30 does not necessarily hold.

Consider, e.g., S={p, ¬p∨q, ¬p∨¬r, ¬q∨r}, Exact=∅, and B=FOUR. Then R={p, ¬p∨q}

is a recovered set of S, and R |=4
I q, R 6|=4

I ¬q for either I={>} or I={>,⊥}. Also, there is no

recovered set that supports ¬q, although q is not a recoverable literal of (S,Exact), but rather

incomplete. Nevertheless, there are certain important cases in which the converse of Proposition

7.29 is true. The following propositions specify such cases:

Proposition 7.31 Let l be a literal s.t. KB |=B,FI l. l is a recoverable literal of KB=(S,Exact)

iff there is a subset R⊆S that is consistent in the context of KB and supports l.

Proof: The “only if” direction was proved in Proposition 7.29. For the “if” direction note that

if there is a set R that is consistent in the context of KB and R 6|=B,FI l, then l cannot be spoiled.

Nor l can be incomplete, since KB |=B,FI l. This is also the reason why l cannot be recoverable.

The only possibility left, then, is that l is recoverable. 2

8By Proposition 7.12 such an N exists.
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As a corollary of the last proposition we can specify another condition that guarantees that a

given literal is recoverable. This time, however, instead of considering exact models of the whole

knowledge-base, it is sufficient to check only the exact models of one of its recovered sets:

Corollary 7.32 Let KB=(S,Exact) and suppose that

(1): there is a subset R⊆S that is consistent in the context of KB and supports l, and

(2): there is a subset S′⊂S (possibly S′=R) s.t. KB′ |=B,F l for KB′=(S′, Exact).

Then l is recoverable.

Proof: Since |=B,F is monotonic, the assumption that KB′ |=B,F l implies that KB |=B,F l as well,

and so KB |=B,FI l. By Proposition 7.31, then, l is recoverable. 2

By the last corollary, in cases that there are no integrity constraints on KB, one can deduce

another way of assuring that a given literal is recoverable:

Corollary 7.33 Every literal l such that l∈S and l 6∈S is recoverable in KB=(S, ∅).

Proof: Without loss of generality, suppose that l = p. Then {p : t} is a consistent model of

R= {p}. Since ¬p 6∈ S and Exact= ∅, it is expandable to {p : t} ∪ {q :> | q 6= p}, which is an

exact model of KB. It follows that R is consistent in the context of KB, and so it satisfies both

conditions of Corollary 7.32. By that corollary, then, p is recoverable. 2

Notes:

1. The condition Exact=∅ is indeed necessary here. To see this, consider the example in the

note after Proposition 7.25. p is not recoverable in that example, although p∈S and ¬p 6∈S.

The other condition in Corollary 7.33 is also necessary, since, e.g., l is not recoverable in

KB=({l, l}, ∅).

2. The converse of Corollary 7.33 is, of course, not true. To see that, consider, e.g., S′={p, p;

q}, or S′′={p;q, ¬p;q} with Exact=∅. q is recoverable in both these knowledge-bases,

although q 6∈S′ and q 6∈S′′. Moreover, S′′ is an example of a set that contains a recoverable

literal although there is no l∈L(S′′) s.t. l∈S′′.
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Proposition 7.34 Every recovered set that supports a recoverable literal l is associated with

some I-mcem M s.t. M(l) 6∈I.

Proof: Again, we shall show the claim just for the case l= p, where p∈A(S). Suppose that R

is a recovered set of KB that supports p. Let N ′ be a consistent model of R, and let N be its

expansion to S. Consider any I-mcem M of S s.t. M ≤IN . Since A(R)⊆A(S)\Inc(N,S, I)⊆

A(S)\Inc(M,S, I), then every formula ψ∈R consists only of literals that are assigned consistent

truth values by M . Hence R⊆SM . Since R is also a recovered set of KB, then R=SM . Clearly,

N(p)=N ′(p) 6∈I, and so M(p) 6∈I. 2

Corollary 7.35 For every recoverable literal l there is an I-mcem M of KB for which M(l)= t

and SM is a recovered set of KB.

Proof: Suppose that l=p. Consider an I-mcem N of KB s.t. N(p)∈F \I, and whose associated

set SN is a recovered set of KB and supports p (by Proposition 7.34, such an I-mcem exists).

Let M be the valuation that assigns t to p, and which is identical to N on every element of

A(S) \ {p}. Suppose that ψ is an extended clause of KB. If p ∈ A(ψ), then since M(p) = t,

necessarily M(ψ)∈F by Lemma 7.5. Otherwise, by Lemma 7.5 again, there must be some literal

of ψ, other than p, or ¬p that is assigned a designated truth value by N . Such a literal is assigned

a designated truth value by M as well, hence M(ψ)∈F in this case also. It follows that M is a

model of S. Since ∀q∈A(S) if N(q)∈{t, f} then M(q)∈{t, f} as well, M is an exact model of

KB. Moreover, Inc(M,S, I) = Inc(N,S, I), thus M is also an an I-mcem of KB, and SM =SN .

Hence, M and SM are the required I-mcem and recovered set, respectively. 2

Proposition 7.36 Every knowledge-base that has a recoverable literal is recoverable.

Proof: Without a loss of generality, assume that KB |=B,FI p and KB 6|=B,FI ¬p. By Corollary

7.35 there is an M ∈mcm(KB, I) s.t. M(p)= t. Consider the set SM . It cannot be empty, since

otherwise every ψ∈S contains some element of Inc(M,S, I) or its negation. In this case consider

the following valuation:

N={r :f | r∈A(S) \ Inc(M,S, I)} ∪ {s :> | s∈Inc(M,S, I)}.
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By Lemma 7.5, N is an exact model of KB. Moreover, N is an I-mcem of KB, since Inc(N,S, I)=

Inc(M,S, I). But N(p) = f , and so KB 6|=B,FI p – a contradiction. Therefore SM is a nonempty

set, and by Proposition 7.17 it is consistent in the context of KB. Now, if SM is a maximal set

with this property then it is the required recovered set of KB, otherwise it is included in another

nonempty recovered set of KB. In any case there is a nonempty recovered set in KB, thus KB is

recoverable. 2

C. The “absolutely recoverable” formulae

Despite the fact that every recoverable literal has a recovered set that supports it, there is no

guarantee that all the recoverable literals would be part of the same recovered set (that is, they

might not all be simultaneously recovered). In particular, not every recoverable literal must be a

part of every recovered knowledge-base. In this section we consider some conditions that assure

that a formula ψ would be an element of every recovered set of KB.

Definition 7.37 A formula is absolutely recoverable (in KB) if it is an element of every recovered

set of KB.

Proposition 7.38 Let ψ be a formula of a recoverable knowledge-base KB. If for every I-mcem

M of KB and for every p∈A(ψ), M(p) 6∈I, then ψ is absolutely recoverable.

Proof: If for every I-mcem M and for every p∈A(ψ), M(p) 6∈ I, then in particular ψ∈SM for

every I-mcem M . By Proposition 7.20, every recovered knowledge-base of KB is of this form,

hence ψ is absolutely recoverable in KB. 2

Corollary 7.39 Every formula ψ∈S s.t. ∀l∈L(ψ) l 6∈L(S) is absolutely recoverable.

Proof: Suppose that ψ′∈{ψ∈S | ∀l∈L(ψ) l 6∈L(S)}. By the previous proposition it is sufficient

to show that every I-mcem M assigns to every p ∈ A(ψ′) consistent truth values. Suppose

otherwise. Then there is an I-mcem M ′ and an atomic formula p′ ∈ A(ψ′) s.t. M ′(p′) ∈ I.

Consider the valuation N ′, defined as follows:

N ′(q) =


M ′(q) if q 6=p′

t if q=p′, p′∈L(S), and ¬p′ 6∈L(S)

f if q=p′, p′ 6∈L(S), and ¬p′∈L(S)
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It is easy to verify that for every ψ ∈ S, N ′(ψ) ∈ F whenever M ′(ψ) ∈ F , thus N ′ is an exact

model of KB. But Inc(M ′, S, I) = Inc(N ′, S, I)∪{p′}, thus N ′ is more consistent than M ′ – a

contradiction. 2

Corollary 7.40 Let S′ and S′′ be two subsets of S, s.t. S = S′ ∪ S′′, and A(S′) ∩ A(S′′) = ∅

(in such a case we say that S′ and S′′ form a partition of S). If S′ [S′′] is consistent, then every

ψ∈S′ [ψ∈S′′] is absolutely recoverable.

Proof: Suppose that S′ is consistent, and ψ ∈ S′. Let N ′ be a consistent exact model of S′.

Again, in order to prove that ψ is absolutely recoverable, it is sufficient to show that for every

I-mcem M of (S,Exact), and for every p∈A(ψ), M(p) 6∈I. Otherwise, let M ′ be an I-mcem of

KB and let p′∈A(ψ) s.t. M ′(p′)∈I. Consider the following valuation, defined for every q∈A(S)

as follows:

N(q) =

{
N ′(q) if q∈A(S′)

M ′(q) if q∈A(S′′)

N is a model of S, since by using the fact that S′ and S′′ form a partition on S, it is easy to see

that for every formula φ∈S, N(φ)=N ′(φ) if φ∈S′, and N(φ)=M ′(φ) if φ∈S′′. Also, ∀p∈Exact

N(p)∈{t, f} since N ′ and M ′ are exact models of S. Moreover,

Inc(N,S, I) = Inc(M ′, S′′, I) ⊂ {p′} ∪ Inc(M ′, S′′, I) ⊆ Inc(M ′, S, I),

thus N is more consistent than M ′ – a contradiction. 2

Example 7.41 Consider again the example given in Examples 7.23 and 7.28. Here, S′={s, ¬s}

and S′′={r1, r1;¬r2, r2; i} form a partition of S, and S′′ is consistent. Hence, by Corollary

7.40, every ψ ∈ S′′ is absolutely recoverable. Note that r2 ; i is absolutely recoverable also by

Corollary 7.39.

D. The incomplete literals

The last class of literals according to the |=B,FI -categorization consists of those literals that a

consistent truth value cannot be reliably attached to them (at least not according to the most

consistent exact models of the knowledge-base). The following proposition strengthens this intu-

ition:
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Proposition 7.42 l is an incomplete literal iff there exist I-mcems M1 and M2 such that M1(l)=

f and M2(l)= t.

Proof: The “if” direction directly follows from the definition of incomplete literals. For the other

direction, suppose that p is the atomic part of l. Since l is incomplete iff p is incomplete, it suffices

to prove the claim for p. Now, p is incomplete, so KB 6|=B,FI p and KB 6|=B,FI ¬p. Thus, there are

I-mcems N1 and N2 s.t. N1(p) 6∈F and N2(¬p) 6∈F . Suppose that M1 is a valuation that assigns

f to p and is equal to N1 for all the other elements of A(S). Let M2 be a valuation that assigns t

to p and is equal to N2 for all the other elements of A(S). As in the proof of Corollary 7.35, one

can easily show that since N1 and N2 are I-mcems of KB, M1 and M2 are also I-mcems of KB. 2

Here are some more observations concerning incomplete literals:

• Unlike the case of recoverable literals, the existence of a recovered set that supports an

incomplete literal is not assured. Consider for example S = {p, ¬p, p∨ q}. Here q is

incomplete and there is no recovered set that supports it. For another example, consider

again Examples 7.23, 7.28, and 7.41. The incomplete literal i is in the recovered set R of

KB, but R does not support i.

• Even if there are recovered sets that support an incomplete literal, there can be other

recovered sets that support its negation (cf. Proposition 7.30): For example, q is incomplete

in S={p, ¬p∨q, r, ¬r∨¬q}, Exact=∅. There are two recovered sets here: R1={p, ¬p∨q}

that supports q, and R2={r, ¬r∨¬q} that supports ¬q.

• Consider S={p∨q, ¬p∨¬q}. Here both p and q are incomplete although S is a consistent

set. Intuitively, this is so because there isn’t enough data in S about either p or q. Indeed,

this knowledge-base has two classical models ({p : t, q :f} and {q : t, p :f}), both of which are

minimal. Without further information there is no way to choose between the two, and so the

truth values of the atoms cannot be recovered safely. Until such new information arrives,

the two atoms should therefore be considered problematic because of a lack of information.

These particular two models, and the fact that we cannot choose between them, exactly

reflect the information that is contained in S.
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7.2.4 Recovery with the k-minimal I-mcems

In the previous chapter (Section 6.4.2.D) we have shown that in many cases it is not necessary

to compute all the I-mcms of a given theory, but it is sufficient to consider only those that are

≤k-minimal. In what follows we show that for recovering an inconsistent knowledge-base KB it

is again sufficient to consider only the ≤k-minimal I-mcems of KB. Unless otherwise stated, we

shall assume that the partial order ≤k in the bilattice B under consideration is well-founded.

Notation 7.43

a) kmin(KB) = kmin(S,Exact) denotes the set of the ≤k-minimal exact models of S, i.e.

{M ∈mod(S,Exact) | N<kM ⇒ N 6∈mod(S,Exact)}.

b) The set of the k-minimal I-mcems of KB will be denoted henceforth by Υ(KB), or just Υ.

I.e., Υ={M ∈mcm(KB, I) | N<kM ⇒ N 6∈mcm(KB, I)}.

c) Denote KB |=B,FΥ ∆ if every k-minimal I-mcem of KB is a model of some δ∈∆.

One can view the construction of Υ as a composition of the two consequence relations |=B,FI
and |=B,Fk . First, we confine ourselves to the I-mcems of KB by using |=B,FI , then we minimize

the valuations that we have by using |=B,Fk . This process is a special case of what is called

“stratification” in [BS88].

Lemma 7.44 For every I-mcem M of a knowledge-base KB there is an N ∈Υ(KB) s.t. N≤kM

and Inc(N,S, I)=Inc(M,S, I).

Proof: The proof is similar to that of Proposition 6.12.9 We give here another proof for the case

that KB is finite (in this case we don’t have to assume that ≤k is well-founded in B):

Let M be an I-mcem of KB. Since KB is finite, there is an N ∈Υ(KB) s.t. N≤kM . Suppose that

Inc(N,S, I) 6=Inc(M,S, I). Since both M and N are I-mcems of KB, there are q1, q2∈A(S) s.t.

q1∈ Inc(N,S, I) \ Inc(M,S, I) and q2∈ Inc(M,S, I) \ Inc(N,S, I). Assume first that N(q1)∈F .

Since N(q1)∈I, it follows by Definition 6.38(b) that N(¬q1)∈F as well. Now, M(q1)≥kN(q1)∈F

9Since we have assumed that ≤k is well-founded, the proof of this Proposition can indeed be applied here.
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and M(¬q1)≥k N(¬q1) ∈ F , and so M(q1) ∈ I – a contradiction. Hence N(q1) 6∈ F . Similarly,

N(¬q1) 6∈F . Now, consider the valuation N ′ defined for every p∈A(S) as follows:

N ′(p) =

{
t if p=q1

N(p) otherwise.

By an induction on the structure of a formula ψ ∈ S is it easy to verify (using Lemma 7.5)

that N ′(ψ) ∈ F whenever N(ψ) ∈ F , and so N ′ is an exact model of KB. But Inc(N,S, I) =

Inc(N ′, S, I) ∪ {q1}, therefore N ′<I N . It follows that N cannot be an I-mcem of KB, and in

particular N 6∈Υ(KB) – a contradiction. 2

Proposition 7.45 KB |=B,FI ψ iff KB |=B,FΥ ψ.

First proof: Follows from Propositions 6.55, 6.63, and Corollary 6.52.

Second proof: One direction is immediate. For the other, suppose that KB 6|=B,FI ψ. Then there

is an I-mcem M of KB s.t. M(ψ) 6∈ F . By Lemma 7.5, ∀l ∈ L(ψ) M(l) 6∈ F . By Lemma 7.44

∃N ∈ Υ(KB) s.t. N ≤k M . Since F is upward-closed w.r.t. ≤k, ∀l ∈ L(ψ) N(l) 6∈ F as well.

Therefore KB 6|=B,FΥ ψ. 2

Corollary 7.46 Let KB=(S,Exact) be a knowledge-base, and l∈L(S).

a) l∈Spoiled(KB) iff for every M ∈Υ(KB), M(l)∈F and M(l)∈F .

b) l∈Recover(KB) iff ∀M ∈Υ(KB) M(l)∈F , and ∃N ∈Υ(KB) s.t. N(l)∈F \ I.

c) l∈Incomplete(KB) iff there are M1,M2∈Υ(KB) s.t. M1(l) 6∈F and M2(l) 6∈F .

Proof: Immediate from Definition 7.21, Notation 7.22, and Proposition 7.45. 2

Another result related to k-minimal I-mcems is the following refinement of Proposition 7.34.

The outcome is a characterization of recovered sets in terms of k-minimal I-mcems:

Proposition 7.47 Every recovered set R of a knowledge-base KB is associated with some M ∈

Υ(KB). If R supports a recoverable literal l then M(l) 6∈I.
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Proof: Follows easily from Proposition 7.34 and Lemma 7.44. 2

The next result, which is the analogue of Proposition 7.38 for k-minimal I-mcems, shows that

Υ might as well be used in order to discover the absolutely recoverable formulae of KB:

Corollary 7.48 Let KB = (S,Exact), and let ψ ∈ S. If for every M ∈ Υ(KB), and for every

p∈A(ψ) M(p) 6∈I, then ψ is absolutely recoverable in KB.

Proof: Similar to that of Proposition 7.38, using Proposition 7.47. 2

Note: The results of this section demonstrate the advantage of using bilattices, and not just

lattices, for reasoning with incomplete and inconsistent knowledge-bases: While the partial order

≤t is used to determine the semantics of the classical connectives, the other partial order (≤k)

can be used to considerably reduce the number of the models that should be taken into account.

7.2.5 Heuristics for making precedences among recovered sets

As we have already noted, the recovered sets of a knowledge-base KB may be viewed as repre-

senting possible consistent interpretations (states) of the world that is inconsistently described

by KB. Since in general there are several recovered sets that can be produced from a “polluted”

knowledge-base, one has to develop means that would guide one to an interpretation that is most

likely to be the accurate description. Alternatively, one may consider all of the recovered set for

drawing conclusions from KB.

In this section we suggest some possible criteria for choosing the preferred recovered set. In

the next section (7.2.6) we consider reasoning with all the recovered sets.

A. Maximal information considerations

A possible approach for making precedences among the recovered sets is to define some quanti-

tative estimation on the plausibility of each set. Lozinskii [Lo94], for example, takes the quantity

of semantic information to be the criterion for such estimations.10 The quantity of information

10As a matter of fact, the quantitative approach is used in [Lo94] for a slightly different goal: giving semantics
to inconsistent systems.
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of a set S of classical formulae is defined there to be

I(S)= |A(S)| − log2 |mod(MC(S))|,

where mod(MC(S)) is the set of all the models of the maximal consistent subsets of S.11 A

possible analogue in the case of a logical bilattice (B,F) may be

I1(S)= |A(S)| − log2|F| |mod(MC(S))|.

Since we consider the I-mcems as the most relevant interpretations for the recovery process, we

can use a different definition:

I2(S)= |A(S)| − logc |mcm(MC(S), I)|,

where: c= |Tt|+ |Tf | (see Proposition 7.49 below for some justifications for taking this particular

c as the base of the logarithm). Since c≥2 (always {t, f}∈Tt ∪ Tf ), I2(S) is well defined.

A possible strategy, then, prefers recovered sets with maximal information. Since recovered

sets are in particular consistent, then for every recovered set R we have that MC(R) = {R}.

Hence, in our case,

I1(R) = |A(R)| − log2|F| |mod(R)|,

I2(R) = |A(R)| − logc |mcm(R, I)|.

The following proposition shows that both I1(S) and I2(S) are in accordance with Lozinskii’s

intuition regarding the notion of semantic information (cf. [Lo94, Theorem 3.1]):

Proposition 7.49 Let S be a set of extended clauses, and suppose that Exact=∅.

a) An empty set contains no information; I1(∅)=I2(∅)=0.

b) A set S that consists of complementary literals p,¬p for every p∈A(S) contains no semantic

information.

c) If S is a consistent set of formulae, and ψ is a formula s.t. A(ψ)⊆A(S) and S |=B,F ψ, then

I1(S)=I1(S ∪ {ψ}) and I2(S)=I2(S ∪ {ψ}).
11See [Lo94] for a detailed discussion and justifications for taking this formula as representing information.
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d) If S is a consistent set of formulae, and ψ is a consistent formula s.t. A(ψ) ⊆ A(S) and

S ∪ {ψ} is inconsistent, then I2(S)>I2(S ∪ {ψ}).

e) If S has only one exact model, then I1(S)=0; If S is consistent and has one I-mcem, then

I2(S) is maximal.12

Proof:

a) M = {p : > | p ∈ A(S)} is a model of every set S (without integrity constraints), hence

|mod(MC(S))| ≥ 1. On the other hand, if S = ∅ then S itself is the only most consistent

subset, hence: |mod(MC(S))|= |mod(S)| ≤ |B||A(S)| = 1. Thus, |mod(MC(S))|= |mod(S)|= 1,

and so, by the definition of I1, I1(S) = 0. Regarding I2, since the set of the I-mcems of S

consists of minimal elements of a nonempty set (that of the models of S), then |mcm(S, I)|≥1.

On the other hand, we have shown that whenever S = ∅, |mcm(S, I)| ≤ |mod(S)| = 1. Thus

|mcm(MC(S), I)|= |mcm(S, I)|=1, and so I2 =0.

b) Consider S={pi,¬pi | 1≤ i≤n}. This particular S has 2n maximal consistent subsets, each

one has |F|n models, and ( c2)n I-mcems (since there is no b ∈ B such that b ∈ Tt and b ∈ Tf ,

simultaneously, every pi in a possible subset can be assigned exactly c
2 (= |Tt| = |Tf |) different

values. Hence, I1(S)=n− log2|F| 2
n|F|n=0, and I2(S)=n− logc 2n( c2)n=0.

c) SinceA(ψ)⊆A(S), thenA(S∪{ψ})=A(S). Also, the assumptions that S is consistent and that

S |=B,F ψ easily imply that mod(MC(S))=mod(MC(S∪{ψ})) and mcm(S, I)=mcm(S∪{ψ}, I).

Thus I1(S)=I1(S ∪ {ψ}) and I2(S)=I2(S ∪ {ψ}).

d) The proof in [Lo94, Theorem 3.1, part (v)] is suitable for the present case as well. We repeat

the proof adjusted to our notations: S is a maximal consistent subset of S ∪{ψ}, and since ψ 6∈S

(because S∪{ψ} is inconsistent, while S is not), there must be another maximal consistent subset

S′⊂S ∪ {ψ} s.t. ψ∈S′. S and S′ have no I-mcems in common, since such a model would have

been a consistent model (as a model of S), which is also a model of the inconsistent set S ∪ {ψ}.

Hence mcm(MC(S), I)=mcm(S, I)⊂mcm(MC(S ∪ {ψ}), I), and so I2(S)>I2(S ∪ {ψ}).
12In this particular case I1(S) and Lozinskii’s I(S) do not behave in the same way (cf. [Lo94, Theorem 3.1,

part vi]). The difference is due to the nature of logical bilattices as multiple-valued: Under the assumption that
Exact=∅, if S has only one (degenerate) model in a logical bilattice, this single model is {p : > | p∈A(S)}. This
model actually tells us nothing, hence S contains no meaningful information. However, this is certainly not the
case for consistent sets that have one I-mcem. In this case the single I-mcem is meaningful, and the fact that
there are no other possible models just increases the validity of that single model as well as its relevance to S.
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e) If S has only one model, this model must assign > to every element of A(S) (this is an exact

model of every S provided that Exact=∅). Hence, using the equivalence of items (b) and (d) in

Proposition 7.25, S must be of the form {p,¬p | p∈A(S)}. Thus, by part (b) of this proposition,

I1(S)=0. On the other hand, if S is consistent and has exactly one I-mcem, then I2(S)= |A(S)|,

which is the maximal possible value of I2(S) for every set S. 2

B. Largest size approach

Another reasonable approach for making precedence among recovered sets is to prefer those sets

with the largest size. According to this method some prioritization formula f is defined on the

recovered sets, and f(S1) > f(S2) whenever |S1| > |S2|. The intuition behind this is that the

larger the size of the recovered set, the stronger similarity it has to the original knowledge-base.

An example of the use of this approach is the heuristic of “weighted maximal consistent subsets”

in [Lo94].

C. Entailment of maximal number of recoverable literals

Since the truth values of the recoverable literals are the ones which are most likely to be recovered

truthfully, then a plausible system may prefer those recovered sets that simultaneously entail as

much recoverable literals as possible.

D. Prioritization on the domain of discourse

There might be cases in which the reasoner has reasons to believe that some assertions are more

trustable than others (for example, when there are different resources with different reliability,

or when one receives several news reports about something that has happened, and he tends

to believe that the more recent reports are more accurate). In such situations the reasoner

might prioritize the atomic formulae, and choose the recovered set whose literal consequences

are the greatest with respect to his ordering. For example, suppose that a, b, c, d and e are

the prioritizations of some reasoner in a descending order, and that in this order every atom is

considered equal to its negation. Then a subset that entails a,¬c, and d is preferable to a subset

that entails, say, a, d and e.13 More on prioritized knowledge-bases see in Section 7.3 below.

13This approach has often been considered in the literature. One should note, however, that the use of this
criterion for making precedences among sets is highly arguable. In the example considered above, for instance, it
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E. Example

Example 7.50 The following example is one of the benchmark problems for evaluating non-

monotonic formalisms, presented in [Li88] (in category A – “default reasoning”): Let KB=(S, ∅)

where S is the following set:

heavy(A)

heavy(B)

heavy(x) ; on the table(x)

heavy(x) ; red(x)

¬on the table(A)

¬red(B)

The k-minimal {>}-mcems of KB in 〈FOUR〉 are given in Table 7.2.14 The recovered set of KB

Table 7.2: The k-minimal {>}-mcems of KB (Example 7.50)

mcem heavy(A) heavy(B) red(A) red(B) on the table(A) on the table(B)

M1 t t t > > t
M2 t > t f > ⊥
M3 > t ⊥ > f t
M4 > > ⊥ f f ⊥

(those that are associated with the models of Table 7.2) are listed below:

SM1 = {heavy(A), heavy(B), heavy(A) ; red(A), heavy(B) ; on the table(B)}

SM2 = {heavy(A), ¬red(B), heavy(A) ; red(A)}

SM3 = {¬on the table(A), heavy(B), heavy(B) ; on the table(B)}

SM4 = {¬on the table(A), ¬red(B)}

is not clear which of the two sets {a, d} and {b, c} should be preferred.
14KB has, in fact, 16 {>}-mcems. We omit the other 12, which are not ≤k-minimal. As was shown in Section

7.2.4, by doing so we are not losing any meaningful data.
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Note that SM1 is the preferable recovered set according to many criteria that were mentioned

above: It is the largest set, it supports more literals than any other recovered set, and it contains

maximal information. To see the last claim, note that |A(SM1)|= 4, |A(SM2)|= |A(SM3)|= 3,

|A(SM4)|= 2, |mcm(SM1 , {>})|= |mcm(SM2 , {>})|= |mcm(SM3 , {>})|= |mcm(SM4 , {>})|= 1.

Hence: I2(SM1)=4, while I2(SM2)=I2(SM3)=3, and I2(SM4)=2.

It seems, therefore, that the most reasonable set that recovers KB is indeed SM1 . SM1 implies

that on the table(B) and red(A). These are also the conclusions in [Li88, Problem A3].

7.2.6 Reasoning with all the recovered sets

A more conservative approach of drawing conclusions from an inconsistent knowledge-base is to

consider every possible recovered set. This approach views the recovered sets as possible “worlds”

and draws conclusions that are true in the whole “universe”. In this section we examine some of

the properties of the corresponding consequence relation.

Given a knowledge-base KB, denote by RS(KB) the set of its recovered sets. By Proposition

7.20 we have the following result:

Proposition 7.51 RS(KB)={SM | M ∈mcm(KB, I) and ¬∃N ∈mcm(KB, I) s.t. SM ⊂SN}.

Definition 7.52 KB |=B,FR ψ if ∀R∈RS(KB) R |=B,FI ψ.

Example 7.53 Consider the knowledge-base KB= (S, ∅) where S= {p, q, h, ¬p ∨ ¬q}. Then

RS(KB) = {R1, R2}, where R1 = {p, h} and R2 = {q, h}. Thus KB 6|=B,FR p, KB 6|=B,FR q, and

KB |=B,FR h. This might be explained by the fact that unlike p, q, the assertion h is not involved

in any conflict in KB, and so it is a more reliable conclusion than p or q.

The example above shows, in particular, that |=B,FR is not reflexive.15 However, in many rea-

soning systems (especially those for making nontrivial inferences from inconsistent data) reflex-

ivity needs not be valid in general (see, e.g., [Ga85, Wa94a]). Below we consider some important

cases in which |=B,FR is reflexive:

15Hence, in particular, |=B,FR is not the same as |=B,FI (Cf. Proposition 7.60 below).
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Proposition 7.54 If ψ is an absolutely recoverable formula of KB then KB |=B,FR ψ.

Proof: immediate from the definition of |=B,FR . 2

Corollary 7.55 If ∀M ∈mcm(KB, I) ∀p∈A(ψ) M(p) 6∈I, then KB |=B,FR ψ.

Proof: By Propositions 7.38 and 7.54. 2

Example 7.56 Consider again Example 7.41. By Corollary 7.40 and Proposition 7.54, for every

ψ∈S′′, KB |=B,FR ψ.

Definition 7.57 Con(KB) =
⋂
{R | R∈RS(KB)}.

Proposition 7.58 Let ψ be a clause that does not contain any atomic formula and its negation.

If Con(KB) 6=∅ and Con(KB) |=B,FI ψ, then KB |=B,FR ψ.

Proof: Since Con(KB)⊆R for every R∈RS(KB), then by Corollaries 6.61, 6.67 (and the fact

that |=B,FI is equivalent to either |=4
I1 or |=4

I2), ∀R∈RS(KB) R |=B,FI ψ. Thus KB |=B,FR ψ. 2

The converse of the last proposition is not true: In Example 7.53, for instance, Con(KB)={h}

and so although Con(KB) 6|=B,FI p∨q, still KB |=B,FR p∨q.

Below are some other basic properties of |=B,FR :

Proposition 7.59 |=B,FR is nonmonotonic and paraconsistent.

Proof: p, q |=B,FR q, but p, q,¬q 6|=B,FR q. 2

Proposition 7.60 If KB is consistent then KB |=B,FR ψ iff KB |=B,FI ψ.

Proof: Follows from the fact that if KB=(S,Exact) is consistent, then RS(KB)={S}. 2

Corollary 7.61 Suppose that KB∪{φ} is a consistent knowledge-base and ψ is a clause that does

not contain any atomic formula and its negation. Then KB |=B,FR ψ implies that KB,φ |=B,FR ψ.

Proof: By Corollary 6.61, Proposition 6.62(b), and Corollary 6.52, we have that if KB |=B,FI ψ

then KB,φ |=B,FI ψ. The claim now follows from Proposition 7.60. 2
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Corollary 7.62 If KB is consistent and ψ is a clause that is not a classical tautology, then

KB |=B,FR ψ iff KB |=2ψ.

Proof: By Propositions 6.60, 6.66, and 7.60. 2

Proposition 7.63 If RS(KB) 6=∅ and KB |=B,FR ψ, then KB 6|=B,FR ¬ψ.

Proof: Follows from the fact that every element of RS(KB) is consistent, and so if R is a

recovered set s.t. R |=B,FI ψ, then R 6|=B,FI ¬ψ. Hence KB 6|=B,FR ¬ψ. 2

7.2.7 Related systems

Many systems for consistency-based reasoning have been considered in the literature. Here we

briefly survey some of those that are related to our formalisms (at least as far as the intuition

behind them is concerned).

A. Reasoning with (maximally) consistent subsets

A standard way of handling an inconsistent knowledge-base is to consider its maximal consistent

subsets (see, e.g., [Po88, BCDLP93, Lo94]). The main drawback of this method is that none of

these subsets necessarily corresponds to the intended semantics of the original knowledge-base.

Consider, for instance, the knowledge-base of Example 7.23 (also considered in Examples 7.28,

7.41, and 7.56). Every maximal consistent subset of this knowledge-base must contain either s

or ¬s. Hence, either s or its complement, but not both, must be a consequence of every such

subset, but this consequence contradicts another assertion that is explicitly stated in the orig-

inal knowledge-base. For another example, consider the knowledge-base KB = {p,¬p∨q,¬q}.

This time, there is no spoiled literal in KB, but still every maximal consistent subset of KB

entails (both classically and w.r.t. |=B,FI ) an assertion that contradicts an explicit data of KB.

The recovered sets {p} and {¬q} of this knowledge-base as well as any recovered set of other

knowledge-bases do not have such a drawback. The requirement that every recovered set should

be consistent in the context of the original knowledge-base assures that their conclusions would

not contradict any data entailed by the original knowledge-base.16 17

16In particular, recovered sets do not contradict any explicit data of the knowledge-base, as it is the case with
the knowledge-bases and their maximal subsets considered above.

17We note here that a possible way of dealing with the problem mentioned above is to consider every maximally
consistent subset of the knowledge-base. This approach has several drawbacks of it own. First, as the amount of
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Denote by |=2
MC the consequence relation that accepts formulae provided that they can classi-

cally be inferred from all the maximal consistent subsets of the knowledge-base. As it was shown

in [CLS98], the |=2
MC-entailment problem is of high complexity:

Notation 7.64 As usual, we denote the classes of the polynomial hierarchy inductively as follows:

Σp
0 = ∆p

0 = Πp
0 = P

and for all k≥0:

Σp
k+1 = NPΣpk , ∆p

k+1 = PΣpk , Πp
k+1 = co-Σp

k+1

where P denotes the set of decision problems that can be answered by a Turing machine in poly-

nomial time, NP denoted the set of decision problems that can be solved by a non-deterministic

Turing machine in a polynomial time, co-NP denote the class of problems whose answer is always

the complement of those in NP, and XY is a class of decision problems in X that use an oracle

(subroutine) for problems in Y .

Proposition 7.65 [CLS98] Let Γ, ψ be a set of propositional formulae and a propositional for-

mula, respectively. Then the question whether Γ |=2
MC ψ is Πp

2-complete.

Next we compare reasoning with maximal consistent subsets (|=2
MC) to reasoning with all the

recovered sets (|=B,FR – See Section 7.2.6). As the following proposition shows, |=B,FR is usually at

least as cautious as |=2
MC :

Proposition 7.66 Suppose that the formulae in KB are clauses (i.e., in the language Σmcl) and

that Con(KB) 6=∅. Suppose also that ψ is a clause that does not contain an atomic formula and

its negation. Then KB |=B,FR ψ implies that KB |=2
MC ψ.

Proof: Denote by MC(KB) the set of the maximal consistent subsets of KB. If KB 6|=2
MC ψ

then ∃T ∈MC(KB) s.t. T 6|=2 ψ. By Corollary 6.52 and Propositions 6.60 6.66, for every I,

the maximally consistent sets increases exponentially with the number of the conflicts, this approach might become
very costly (see Proposition 7.65). Second, such universal consequence relations cannot take advantage of priorities
or any other layered structure of the knowledge-base (as we do in Section 7.3). Third, by taking all the maximally
consistent subsets into consideration, there is no way to distinguish between default information and certain facts.
Both the latter problems can be avoided in prioritized knowledge-bases – see Section 7.3 below.
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T 6|=B,FI ψ as well. Since T is a maximal consistent subset of KB, and Con(KB) is an intersection

of consistent subsets of KB, then Con(KB)⊆ T . But Con(KB) 6= ∅, thus there is a nonempty

subset of T that is consistent in the context of KB, and so there is a set which is maximal

among the subsets of T that are consistent in the context of KB. Denote this set by R. Since

T 6|=B,FI ψ then by Corollaries 6.52, 6.61, and 6.67, R 6|=B,FI ψ as well (otherwise R |=B,FI ψ, thus

R |=2 ψ, hence T |=2 ψ, and so T |=B,FI ψ – A contradiction). To conclude it remains to show,

therefore, that R ∈RS(KB). Indeed, otherwise there is a set R′ ∈RS(KB) s.t. R⊂R′. Thus

∃φ∈R′ \ R s.t. R ∪ {φ} is consistent in the context of KB (since R ∪ {φ} ⊆R′), and so φ 6∈ T

(otherwise R ∪ {φ} would have been a subset of T that is consistent in the context of KB and

properly contains R – a contradiction to the choice of R). Since T is a maximal subset of KB

that is classically consistent, necessarily T ∪ {φ} is classically inconsistent. Hence T |=2 ¬φ. By

Corollary 6.52 and Propositions 6.60, 6.66 once again, T |=B,FI ¬φ. Now, by Proposition 7.10 R′

is in particular classically consistent. So let M be a classical model of R′, and let N ∈mod(KB)

s.t. ∀p∈A(R′) N(p)=M(p) (i.e., N is an expansion of M . It exists since R′ is a recovered set of

KB). Since φ∈R′, so M(φ)= t. Thus N(φ)= t as well. On the other hand, N is also a model of

T , and T |=B,F ¬φ, therefore either N(φ)∈Tf or N(φ)∈T> – a contradiction. 2

The following proposition shows that reasoning with |=B,FR is analogous in spirit to reasoning

with |=2
MC : Instead of making classical conclusions from (all) the maximal consistent subsets, we

draw classical conclusions from (all) the recovered sets of KB:

Proposition 7.67 Let ψ be a clause which is not a classical tautology. Then KB |=B,FR ψ iff ψ

classically follows from every recovered set of KB.

Proof: KB |=B,FR ψ iff ∀R∈RS(KB) R |=B,FI ψ, iff ∀R∈RS(KB) R |=2ψ (By Propositions 6.60,

6.66 and Corollary 6.52). 2

B. Annotated logics; Kifer’s and Lozinskii’s formalisms

Annotated logics were introduced by Subrahmanian [Su90a, Su90b], and further developed by

him and others (see, e.g., [CHLS90, KL92, KS92, Su94]). This formalism also uses multi-valued

algebraic structures in order to provide a semantics for rule-based systems with uncertainty.
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As we have already noted in Section 7.2.3, in [KL89, KL92] annotated logic is used for similar

purposes to ours. However, the present treatment of inconsistency in knowledge-bases is free of

some of the drawbacks of the formalism of [KL89, KL92]. In these papers, for example, just

semi-lattices were used, in which the partial order relation corresponds, intuitively, to ≤k. Hence,

no direct interpretation of the standard logical connectives (which correspond, in fact, to the

≤t partial order) was available to the authors. They were forced, therefore, to use a language,

in which the atomic formulae are of the form p : b (where p is an atomic formula of the basic

language, and b – a value from a semilattice). According to [KL89, KL92], ψ :b is meaningless for

nonatomic ψ. Our treatment needs no such restriction; The use of bilattices enables assignments

of truth values to any formula. Moreover, the present definitions follow the common method of

logic systems, in which syntax and semantics are separated, while in the logic of [KL89, KL92]

(and in annotated logics in general) semantical notions interfere with the syntax. In particular,

the present formalism does not require any syntactical embedding of first-order formulae into

the multi-valued language (like the ones denoted Ξepi and Ξont in [KL92]), and the syntactical

structure of each assertion remains the same.

C. Priest’s minimally consistent LPm

Priest logic LPm [Pr89, Pr91] has already been mentioned here when we considered paraconsistent

logics in Chapter 6. This logic might be used as a basis for coherent reasoning as well, in a similar

manner to the way we used I-mcems in logical bilattices for defining recovered sets.

Once again, the difference between the resulting systems is related to the fact that Priest

is using the {¬,∨,∧}-closed subset {t, f,>} (with I = {>}) instead of, say, the logical bilattice

〈FOUR〉. As the following example shows, the cost of using only this subset of FOUR might be

an exponential growth in the number of models that should be examined:

Example 7.68 Consider again the block world description of Example 7.50 and its k-minimal

{>}-mcems (Table 7.2). This example demonstrates the practical importance of having the truth

value ⊥. One can reach, in fact, the same conclusions using LPm. In that case, however, nine

{>}-mcems should be considered instead of the four of Table 7.2. The reason is that had we used

only t, f , and >, then every occurrence of ⊥ in Table 7.2 should have been replaced by a classical

truth value, and both of the two possibilities would have produced models that should have been
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taken into account.

In the general case, every {>}-mcem M in 〈FOUR〉 s.t. M(p)=⊥ for some atomic p induces

two LP-minimal models, which are identical to M , except that one assigns t to p, while the other

assigns f to it.18

7.3 Prioritized knowledge-bases

7.3.1 Motivation and basic definitions

In many cases a knowledge-base contains formulae with different importance or certainty. For in-

stance, rules that state default assumptions are usually considered as less reliable than rules with-

out exceptions. Also, inference rules are usually given a lower priority than atomic facts. These

kinds of considerations are particularly common when reasoning with inconsistent knowledge-

bases; If some formulae are more certain than others, one would probably like to reject the least

certain first.

A common method of prioritizing formulae assigns them different ranks. Different ranks

reflect differences in the certainty or reliability attached to the assertions, and all the formulae

with the same rank intuitively have the same importance (see, e.g., [BCDLP93, BDP95, DLP94,

GP96, LM92, Su94]). In this section we use this additional information for refining the inference

mechanism discussed in the previous section.

Notation 7.69 A prioritized (layered) knowledge-base is a triple KB = (S,Exact, r) where

(S,Exact) is a (“regular”) knowledge-base in the sense of Definition 7.6, and r is a ranking

function from the set of clauses in S to {1, 2, . . .}.

The ranking function determines a preference relation on the clauses of a knowledge-base.

Intuitively, a clause with a lower rank has a higher priority. Thus, a formula ψ s.t. r(ψ) = i is

considered as more reliable (or: has a higher priority) than a formula φ s.t. r(φ) = j, provided

that i<j.

18One should note, however, that the converse is not true: The existence of two LPm models M1 and M2 s.t.
M1(p)= t, M2(p)=f and M1(q)=M2(q) for every q 6=p does not necessarily imply the existence of a corresponding
{>}-mcem M in 〈FOUR〉 s.t. M(p)=⊥. The clause p∨¬p provides a counterexample.
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Notation 7.70

a) Si={ψ∈S | r(ψ)≤ i}.

b) KBi=(Si, Exact ∩ A(Si), r).

Definition 7.71

a) RSi(KB)={Sν(KB) | ν∈mcm(KBi, I)}.

b) RSi(KB)={R∈RSi(KB) | ¬∃R′∈RSi(KB) s.t. R⊂R′}.19

In what follows we fix a knowledge-base KB, so we shall sometimes write RSi instead of

RSi(KB).

Each set RSi consists of a collection of possible worlds that correspond to the situation

described in KB. Following [BCDLP93] we provide some criteria for choosing the preferred set

of worlds:

• set cardinality: RSi≥scRSj iff ∀R∈RSi ∃R′∈RSj s.t. |R′|≤|R|.

• set inclusion: RSi≥siRSj iff ∀R∈RSi ∃R′∈RSj s.t. R′⊆R.

• cardinality of consistent consequences: RSi≥ccRSj iff the following condition is satisfied:

∀R∈RSi ∃R′∈RSj s.t. |{l∈L(S) | R′ |=B,F l, R′ 6|=B,F l}| ≤ |{l∈L(S) | R |=B,F l, R 6|=B,F l}|.

• inclusion of consistent consequences: RSi ≥ci RSj iff the following condition is satisfied:

∀R∈RSi ∃R′∈RSj s.t. {l∈L(S) | R′ |=B,F l, R′ 6|=B,F l} ⊆ {l∈L(S) | R |=B,F l, R 6|=B,F l}.

Definition 7.72 Let ≤ be a preference criterion among RSi(KB), i = 1,. . ., n. The optimal

recovery level of KB w.r.t. ≤ is defined as follows: i0 =max{i | ¬∃j 6= i s.t. RSj≥RSi}.

The induced consequence relation is a natural generalization of |=B,FR (cf. Definition 7.52):

Definition 7.73 Let i0 be the optimal recovery level of KB w.r.t. a preference criterion ≤.

Define: KB |=B,F≤R ψ if ∀R∈RSi0(KB) R |=B,FI ψ.

19In other words, RSi(KB) = {Sν | ν ∈mcm(KBi, I), and ¬∃ν′ ∈mcm(KBi, I) s.t. Sν ⊂Sν′}. Cf. Proposition
7.51.
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7.3.2 Tweety dilemma – revisited

Let’s consider Tweety dilemma (Examples 5.2, 6.21, 6.25, 6.45) once again. In the previous

considerations of this example, different implication connectives with different strengths (i.e.

⊃,;) were used in order to express precedence among the assertions. Alternatively, one may

express this information in the meta-language by using, e.g., a ranking function. This allows to

remain with the monotonic classical language Σmcl as the language of the knowledge-base.

bird(x) ; fly(x)

penguin(x) ; ¬fly(x)

penguin(x) ; bird(x)

bird(Tweety)

bird(Fred)

penguin(Tweety)

Suppose that (B,F) = 〈FOUR〉 and I={>}. Denote the above knowledge-base by KBT,F =

(ST,F , ∅). A ranking function for this case should give higher priorities to the second and the

third rules than to the first rule. This is because the former rules are more specific, and unlike

the latter one they do not have exceptions. Also, it seems reasonable to give a high priority to

explicit facts. A possible ranking r of ST,F is therefore the following:

r(bird(Tweety)) = r(bird(Fred)) = r(penguin(Tweety)) = 1,

r(penguin(x) ; ¬fly(x)) = r(penguin(x) ; bird(x)) = 2,

r(bird(x) ; fly(x)) = 3.

By Proposition 7.79 below it follows that the optimal recovery level when the preference

criterion is either ≤ci or ≤cc is i0 =2. In this case,
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(ST,F )2 = ST,F \ {bird(x) ; penguin(x)} =

= {bird(Tweety), bird(Fred), penguin(Tweety),

penguin(x) ; ¬fly(x), penguin(x) ; bird(x)}.

The most consistent models of (KBT,F )2 are given in Table 7.3. 20

Table 7.3: The mcms of (KBT,F )2 (Tweety dilemma)

mcem bird(T) penguin(T) fly(T) bird(F) penguin(F) fly(F)

N1 t t f t f f
N2 t t f t f t
N3 t t f t f ⊥
N4 t t f t t f
N5 t t f t ⊥ f

The set that are associated with the mcems of (KBT,F )2 are the following:

SN1 =SN3 =SN4 =SN5 =SUT,F \ {bird(T) ; fly(T), bird(F) ; fly(F)}

SN2 =SUT,F \ {bird(T) ; fly(T)}21

It follows that RS2(KBT,F )={SN2}. Thus, according to |=B,F≤ccR and |=B,F≤ciR one can deduce that

Tweety is a bird, a penguin, and cannot fly, while Fred is a bird that can fly and it is not a

penguin. The converse assertions are not deducible, as expected. It also can be shown that these

conclusions are also obtained by |=B,F≤scR and by |=B,F≤siR.

7.3.3 Basic properties

First we show that the definition of |=B,F≤R is a generalization of the definition of |=B,FR :

Proposition 7.74 Suppose that all the clauses in KB have the same priority. Then KB |=B,F≤R ψ

iff KB |=B,FR ψ.

Proof: Immediate from Proposition 7.51 and Definition 7.71, since in this case KB=KB1. 2

Some basic properties of |=B,FR remain valid also in the case of |=B,F≤R :

20T and F abbreviate here, respectively, Tweety and Fred.
21Recall that SU denotes the set of ground instances of S w.r.t. its Herbrand universe, U .
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Proposition 7.75 If KB is consistent then KB |=B,F≤R ψ iff KB |=B,FI ψ.

Proof: Let n be the maximal rank in KB. If KB is consistent, then the optimal recovery level

w.r.t. either ≤sc, ≤si, ≤cc, or ≤ci is n, and KBn = {KB}. The claim now immediately follows

from Definition 7.73. 2

Corollary 7.76 If KB is consistent and ψ is a clause that is not a classical tautology, then

KB |=B,F≤R ψ iff KB |=2ψ.

Proof: By Propositions 6.60, 6.66 and Corollary 6.52, in this case KB |=B,FI ψ iff KB |=2ψ. The

claim then follows from Proposition 7.75. 2

Proposition 7.77 |=B,F≤R is nonmonotonic and paraconsistent.

Proof: The same as that of Proposition 7.59, with r s.t. either r(p)<r(q) or r(¬q)<r(q). 2

Proposition 7.78 Let i0 be the optimal recovery level of KB w.r.t. a preference criterion ≤. If

RSi0 6= ∅ and KB |=B,F≤R ψ then KB 6|=B,F≤R ¬ψ.

Proof: The same as that of Proposition 7.63, replacing RS(KB) with RSi0(KB). 2

In the rest of this section, unless otherwise stated, we will use either≤cc or≤ci as the preference

criterion, and so |=B,F≤R will abbreviate either |=B,F≤ccR or |=B,F≤ciR. Also, i0 will henceforth denote the

optimal recovery level w.r.t. either one of these criteria. Finally, in what follows we assume that

the set of the assertions with the highest priority (i.e. KB1) is consistent.

Proposition 7.79 Let either ≤cc or ≤ci be the preferential relation defined on the sets RSi, and

suppose that KB1 is consistent. Then:

a) The optimal recovery level of KB is the maximal rank i s.t. KBi is consistent.

b) Every recovered knowledge-base of KB is associated with a classical model on A(KB).

Proof: By the assumption on KB1, there exists at least one set RSi for which KBi is consistent.

Each such RSi is maximal w.r.t both <cc and <ci, since by Proposition 7.10 mcm(KBi, I)



7.3. PRIORITIZED KNOWLEDGE-BASES 195

consists only of consistent models of KBi, which can be modified to classical models in the same

way as in the proof of Proposition 7.10. These models can be extended to classical valuations

νij on A(KB) by assigning classical values to every atom in A(KB \KBi). Each valuation νij

has a set Sνij
(KB) with which it is associated, and for every p ∈ A(KB), either p or ¬p is in

{l∈L(KB) | Sνij (KB) |=B,F l, Sνij (KB) 6|=B,F l}. Therefore, Sνij
(KB)∈RSi, and so part (b) of the

claim obtains. On the other hand, if KBm is inconsistent, then for every model M of KBm there

is a pM ∈A(KBm) s.t. M(pM )=>. Thus, if SM (KB)∈RSm, then neither pM nor ¬pM is in the

set {l∈L(KB) | SM (KB) |=B,F l, SM (KB) 6|=B,F l}. Therefore RSi >cc RSm and RSi >ci RSm.

2

Proposition 7.80 Let KB=(S,Exact) and let R∈RSi0(KB). Then there is a (most) consistent

exact model M of KBi0 s.t. R=KBi0 ∪ SM (KB\KBi0).

Proof: By Definition 7.71, R = SM (KB) for some M ∈mcem(KBi0). Thus, R = SM (KBi0) ∪

SM (KB\KBi0). But by Proposition 7.79 KBi0 is consistent, and so SM (KBi0)=KBi0 . It follows,

therefore, that R=KBi0 ∪ SM (KB\KBi0). 2

Definition 7.81 Coni0(KB) =
⋂
{R | R∈RSi0(KB)}.

Proposition 7.82 Let ψ be a clause that does not contain any atomic formula and its negation.

a) If KBi0 |=
B,F
I ψ then KB |=B,F≤R ψ.

b) If Coni0(KB) |=B,FI ψ then KB |=B,F≤R ψ.

Proof: First note that since there are no tautologies w.r.t. |=B,FI , the conditions of parts (a) and

(b) assure (respectively) that KBi0 6= ∅ and Coni0(KB) 6= ∅. Now, part (a) follows from the fact

that by Proposition 7.80, ∀R∈RSi0(KB) KBi0⊆R. Thus, since KBi0 |=
B,F
I ψ then by Corollaries

6.52, 6.61, 6.67, ∀R∈RSi0(KB) R |=B,FI ψ. The proof of part (b) is similar, and follows from the

fact that ∀R∈RSi0(KB) Coni0(KB)⊆R. 2

Corollary 7.83 Suppose that ψ∈Coni0(KB). Then KB 6|=B,F≤R ¬ψ.

Proof: Follows from Propositions 7.82(b) and 7.78. 2
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Corollary 7.84 If ψ∈KBi0 then KB 6|=B,F≤R ¬ψ.

Proof: By Corollary 7.83 and the fact that by Proposition 7.80, KBi0⊆Coni0(KB). 2

By Proposition 7.82 and Corollary 7.84 it follows that |=B,F≤ccR and |=B,F≤ciR preserve the semantics

of the clauses with the i0-highest priorities. In addition, it is possible to deduce conclusions that

are based on assertions with lower priorities than the optimal recovery level, provided that they

are not involved in any conflict. In the example of Section 7.3.2, for instance, bird(x) ; fly(x)

cannot be inferred in general, since it causes conflicts when x = Tweety. However, the instance

bird(Fred) ; fly(Fred) is deducible, since it does not harm the consistency of any possible

recovered knowledge-base. In particular, this shows that |=B,F≤R does not suffer from the so called

“drowning effect”, which is a common property of other formalisms of similar kind (e.g., possi-

bilistic logics, Pearl’s system Z, etc.; See more details in the next section).

7.3.4 Related systems

A. Reasoning with layered knowledge-bases

In what follows we compare our approach of recovering prioritized knowledge-base22 to some

other formalisms for reasoning with layered knowledge-bases.23

One way of taking advantage of the additional information supplied with the knowledge-base

(i.e., the priorities among its formulae), is to give up each stratum concerned by an inconsistency,

and to continue adding strata with lower certainty level, provided that consistency is preserved.

The “recovered” knowledge-base is therefore obtained by the iterative process of Figure 7.1, which

computes the “layered consistency set” (LCS).

Relative to |=B,F≤R , reasoning with LCS(KB) still seems to be too crude. Consider, for instance

the knowledge-base (S, ∅, r), where S = {ψ,¬ψ, φ,¬φ, τ} and r(ψ) = 1, r(¬ψ) = r(φ) = r(τ) = 2,

r(¬φ)=3. Here, ψ, φ and τ seem to be intuitive conclusions of KB (and this what indeed happens

22Since the related systems sketched here do not treat integrity constraints, when saying “prioritized knowledge-
base” we will assume that the set of exact literals is empty; I.e., we will refer to triples of the form (S, ∅, r).

23For a survey on such formalisms see, e.g., [BDK97, BDP95, BDP97].
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LCS(KB) = ∅;
for i = 1 to n do { /* n = number of layers in KB */

Li={ψ∈S | r(ψ) = i}
if LCS(KB) ∪ Li is consistent then set LCS(KB) = LCS(KB) ∪ Li;

}

Figure 7.1: Computing layered consistency sets

in the case of |=B,F≤R ), but LCS(KB) 6|=B,F τ 24 and LCS(KB) |=B,F ¬φ.

Another way of taking advantage of the data encoded in the layered structure of the knowledge-

bases is to use it for making precedences among the subtheories, for instance: making inference

only according to certain preferred maximal consistent subsets. Here is an example for such

method:

Definition 7.85 [Br89, BDK97] Let KB be a prioritized knowledge-base with n different layers.

a) A subset R = R1 ∪ R2∪, . . . ,∪Rn is a preferred subtheory of KB if for every 1 ≤ i ≤ n,

R1∪, . . . ,∪Ri is a maximally consistent subset of Si (see Notation 7.70).

b) KB |=2
inclψ if ψ classically follows from every preferred subtheory of KB.

Notation 7.86 Li={ψ∈S | r(ψ)= i}.25

Example 7.87 [BDK97] Consider the following prioritized knowledge-base:

L1 = {attack(A, B), injures(B, A)}

L2 = {attack(x, y) ; defense(y), defense(x) ; ¬guilty(x)}

L3 = {injures(x, y) ; guilty(x)}

KB has one preferred subtheory, from which ¬guilty(B) is provable and guilty(B) is not.

24This is the “drowning effect”; See Example 7.92 blow, and the note before it.
25In term of Notation 7.70, L1 =S1, and Li=Si\Si−1 for every i>1.
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Proposition 7.88 [CLS98] Let KB be a prioritized knowledge-base in Σmcl, and let ψ be a

formula in Σmcl. Then:

a) The questions whether KB |=2
inclψ is Πp

2-complete.

b) If each stratum in KB contains exactly one formula, then the questions whether KB |=2
inclψ

is ∆p
2-complete.

c) If KB is as in part (b) and it consists only of Horn clauses, then the questions whether

KB |=2
inclψ is in P.

By Definition 7.85, R=R1 ∪ R2 ∪ . . . ∪ Rn is a preferred subtheory if there is no consistent

subset T =T1 ∪ T2 ∪ . . . ∪ Tn s.t. (∀i)Ri, Ti⊆Si and ∃1≤ i≤n such that Ri⊂Ti and Rj =Tj for

every j≤ i. Thus, the preference criterion taken here is set inclusion. Similarly, one might make

preferences among subsets according to their cardinality:

Definition 7.89 [BCDLP93]

a) A maximally consistent subset R is preferable on another maximally consistent subset T if

there is 1≤ i≤n s.t. |T ∩ Li|< |R ∩ Li| and |T ∩ Lj |= |R ∩ Lj | for every 1≤j<i.

b) KB |=2
card ψ if ψ classically follows from subset of KB that is maximal w.r.t. the order

specified in (a).

The following results should be compared with those of Proposition 7.88:

Proposition 7.90 [CLS98] Let KB be a prioritized knowledge-base in Σmcl, and let ψ be a

formula in Σmcl. Then:

a) The questions whether KB |=2
cardψ is ∆p

2-complete.

b) This is also the case if each stratum in KB contains exactly one formula.

c) If KB is as in part (b) and it consists only of Horn clauses, then the questions whether

KB |=2
cardψ is in P.
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Notes:

1. Every maximally preferred subset obtained by Definition 7.89(a) is also preferred in the

sense of Definition 7.85(a), but not vice-versa.

2. Both |=2
incl and |=2

card are syntax sensitive, i.e. they depend on the exact form of the formulae

in the knowledge-base. For example, as noted in [BDP95], these consequence relations are

clausal form sensitive. This means that if KB’ is a knowledge-base obtained from KB

by replacing each formula in KB by its clausal form, then the |=2
incl-conclusions [|=2

card-

conclusions] of KB are not necessarily the same as the |=2
incl-conclusions [|=2

card-conclusions]

of KB’. Moreover, |=2
card is even redundancy sensitive [BDP95] in the sense that, e.g., the

consequences of S={ψ} are not the same as those of S={ψ,ψ}.

B. The possibilistic approach

In [DLP94, BDP97] Benferhat, Dubois, Lang, and Prade, present another approach for reasoning

with inconsistency in prioritized knowledge-bases, called possibilistic logic. Briefly, the idea is to

consider a consistent subset π(KB) of KB, so that in terms of Notation 7.70 π(KB)=KBi, where

i is the maximal index for which KBi is classically consistent (in the extreme cases, π(KB) = ∅

if KB1 is classically inconsistent, and π(KB) = KB if the whole knowledge-base is classically

consistent). A formula ψ is a possibilistic consequence of KB (KB |=2
π ψ) if it classically follows

from π(KB). The basic intuition in the possibilistic approach is to take into account the first

i consistent strata which are the most important ones it terms of consistency. The remaining

subset KB \ π(KB) is inhibited. From a computational complexity point of view the possibilistic

approach is therefore quite attractive, since it needs at most log(n) satisfiability (SAT) tests.

However, this approach seems to be too “liberal”, since the amount of formulae given up may be

significant, and may cause a loss of important conclusions.

Proposition 7.91 Suppose that KB1 is consistent, and let ψ be a clause that does not have an

atomic formula and its negation. If KB |=2
πψ then KB |=B,F≤ccRψ and KB |=B,F≤ciRψ.

Proof: If KB |=2
π ψ then π(KB) |=2ψ. But by Propositions 7.10 and 7.79 π(KB) =KBi0 , where

i0 is the optimal recovery level w.r.t. ≤cc or ≤ci. Thus KBi0 |=2ψ. Since ψ is not a classical tau-

tology and KBi0 is consistent, then by Corollary 6.52 and Propositions 6.60, 6.66, KBi0 |=
B,F
I ψ.
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Hence, by Proposition 7.82(a), KB |=B,F≤ccRψ and KB |=B,F≤ciRψ. 2

The converse of the last proposition is not true. This follows from the fact that unlike

the case of |=B,F≤R , the possibilistic consequence relation has the so called “drowning problem”

[BDP95, BDP97]: Formulae with ranks that are greater than the inconsistency level are inhibited

even if they are not involved in any conflict. We demonstrate this phenomenon in the following

example:

Example 7.92 Consider again the knowledge-base of Example 7.53, and suppose that r(¬p∨

¬q) = 1, r(p) = 2, r(q) = 3, r(h) = 4. Then π(KB) = {¬p∨¬q, p}, and so according to the

possibilistic approach h is not a consequence of KB, even though it is not involved in the incon-

sistency. As Proposition 7.82(b) shows, this is not the case with |=B,F≤R : Since h∈Con2(KB), then

Con2(KB) |=B,FI h, and so KB |=B,F≤R h.

C. Other methods that are based on prioritization

There are many other formalisms that use some ranking function defined on the formulae of a

(possibly inconsistent) knowledge-base, in order draw plausible conclusions from it. Among the

better-known ones is Pearl’s System Z ([Pe90, GP96]). As notes in [BDP95], this formalism, like

possibilistic logic (but unlike the case of |=B,F≤R , see Example 7.92), suffers from the drowning effect.

Another related approach, proposed by Benferhat et al. in [BDP95], is based on the idea of

“argumentation”.

Definition 7.93 Let KB be a prioritized knowledge-base. A consistent subset A of KB is an

argument to a rank i for a formula ψ, if it satisfies the following conditions:

(1) A |=2ψ, (2) ∀φ∈A A\{φ} 6|=2ψ, (3) i=max{r(φ) | φ∈A}.

Clearly, and argument to a rank i for ψ is a best argument iff each argument for ψ is of rank

j>i.

Definition 7.94 A formula ψ is an argued consequence of KB iff there exists an argument of

rank i for ψ in KB, and any argument for ¬ψ is of rank j>i.
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Note that this approach is not even cumulative in the sense of [KLM90] (Definition 1.1), since

in the argumentation approach ∧ is not a combining conjunction w.r.t. |=2; Even if ψ and φ are

argued consequences of KB, ψ∧φ is not necessarily an argued consequence of KB. To see this

consider, e.g., KB={ψ∨φ, ¬ψ∨τ, ψ, ¬ψ} with r(ψ∨φ)=1, r(¬ψ∨τ)=r(ψ)=r(¬ψ)=2. Then

φ and τ are argued consequences of KB, while there is no argument for φ∧τ .
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Part III

Applications
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Chapter 8

Recovery of Stratified
Knowledge-Bases

8.1 Introduction

This is the first of two chapters in which we consider some applications of the general formalisms

presented in part II. In this chapter we develop practical ways of implementing the coherent ap-

proach, discussed in Chapter 7, for recovering consistent data from knowledge-bases that might

be inconsistent.

As we have already noted before, both the paraconsistent methods considered in Chapter 6,

and the coherent methods of Chapter 7, are based on computing some “preferred” subset of the

models of a given theory, e.g. it’s most consistent (exact) models. In general, however, computing

I-mcems for a given knowledge-base KB=(S,Exact), or discovering its recovered sets, might not

be an easy task. Even in relatively simple cases, where S is consistent and Exact=A(S), finding

a recovered set for (S,Exact) reduces to the problem of logical satisfaction, since in these cases

one has to provide a classical model for S. Since we are interested here in practical approaches

for recovering knowledge-bases, we confine ourselves in this chapter to a special (nevertheless

common) family of knowledge-bases, which we call stratified . We take advantage of the special

syntactical structure of these knowledge-bases for providing a relatively efficient procedure of data

recovery.

205
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8.2 Basic definitions

Notation 8.1 Denote by b>, bt, and bf the elements inf≤k T>, inf≤k Tt, and inf≤k Tf , respectively.

We also denote by b⊥ an arbitrary element which is k-minimal among the consistent elements of

B, i.e. b⊥=inf≤k(B \ I).

Example 8.2 Let (B,F) be a logical bilattice in which inf≤k F ∈F . Characterizations of bt, bf ,

and b> in this case appear in Lemma 6.28-B. Here are some specific examples: If (B,F)=〈FOUR〉

and I={>}, then b>=>, bt= t, bf =f , and b⊥=⊥. If (B,F)=〈DEFAULT 〉 and I={b | b 6=¬b},

then b>=>, bt= t, bf =f , and b⊥∈{dt, df}. If B=NINE, F=Fk(dt), and I={b | b≥k d>}, then

b>=d>, bt=dt, bf =df , and b⊥=⊥.

Definition 8.3 Let S be a set of formulae. S[ν] — the dilution of S w.r.t. a given partial

valuation ν — is constructed from S by the following transformations:

1. Deleting every ψ∈S that contains either > or a literal l s.t. ν(l)∈F ,

2. Removing from every formula other than ⊥ that remains in S every occurrence of ⊥ and

every occurrence of a literal l such that ν(l) 6∈F . 1 2

Proposition 8.4 If ν can be extended to an exact model of S, then S[ν] has an exact model.

Moreover, the union of ν with any exact model of S[ν] is an exact model of S.

Proof: Obvious. 2

Definition 8.5 Let S be a set of assertions. An atom p∈A(S) is called a positive (negative) fact

of S if p∈S (¬p∈S). p is called strictly positive (negative) fact of S if it is a positive (negative)

fact of S and ¬p 6∈S (p 6∈S).

Definition 8.6 A knowledge-base KB = (S,Exact) is called stratified , if there is a sequence of

“stratifications” S0 =S, S1, S2, . . ., Sn=∅, so that the following conditions are satisfied:

1To simplify matters we shall take here the empty clause as identical to ⊥ rather than f (as the definition of ∨
actually dictates).

2Note the similarity between the the dilution process and the Gelfond–Lifschitz transformation [GL88], used for
providing semantics to logic programs with negations.
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a) No Si (0≤ i≤n) contains a pair of complementary exact facts,

b) For every 0≤ i<n there is a (positive or negative) fact pi∈A(Si) s.t. Si+1 is the dilution of

Si w.r.t. the partial valuation pi :bt [pi : t] iff pi is a strictly positive [exact] fact, pi :bf [pi :f ]

iff pi is a strictly negative [exact] fact, and pi :b> iff pi is both a positive and a negative fact

of Si.
3

In almost all the examples given here, as well as in most of the known puzzles in the literature,

the knowledge-bases under consideration are stratified. This is also the case in reality, since

usually most the data (and sometime all the data) of “typical” knowledge-bases consists of atomic

facts.

Example 8.7 Let (B,F)=〈FOUR〉.

a) Let KB = (S, {e}) be the same knowledge-base as of Examples 7.16 and 7.19. A possible

stratification of S is the following:

S0 = S = {p, q, ¬p ∨ r, ¬q ∨ ¬r, p ∨ s, ¬r ∨ e, ¬r ∨ ¬e},

S1 = S0[q : t] = {p, ¬p ∨ r, ¬r, p ∨ s, ¬r ∨ e, ¬r ∨ ¬e},

S2 = S1[r :f ] = {p, ¬p, p ∨ s},

S3 = S2[p :>] = ∅.

b) The knowledge-base KB=(S, {r2}) of Examples 7.23, 7.28, 7.41, and 7.56 is also stratified.

A possible stratification in this case is the following:

S0 = S = {s, ¬s, r1, r1;¬r2, r2; i},

S1 = S0[s :>] = {r1, r1;¬r2, r2; i},

S2 = S1[r1 : t] = {¬r2, r2; i},

S3 = S2[r2 :f ] = ∅.

3Note that while B, F , and I affect the particular values of b>, bt, bf , and b⊥, they do not determine whether
KB is stratified.
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8.3 Algorithm for an efficient recovery

The algorithm presented in Figure 8.1 checks whether a given knowledge-base (S,Exact) is strat-

ified. If so, the algorithm produces stratifications, and allows to construct recovered sets by

providing corresponding (k-minimal) I-mcems of (S,Exact) (see Theorem 8.10 below).4

Example 8.8 In the knowledge-base of Examples 7.16, 7.19, and 8.7(a), the algorithm produces

two (k-minimal) {>}-mcems in 〈FOUR〉:

M1 = {p : t, q : t, r :>, s :⊥, e : t},

M2 = {p :>, q : t, r :f, s :⊥, e : t}.

Figure 8.2 illustrates the processing of the algorithm in this case.

Proposition 8.9 Let KB = (S,Exact) be a finite knowledge-base. If it is stratified then the

algorithm of Figure 8.1 finds every stratification of KB and outputs corresponding well-defined

valuations for A(S). The algorithm halts without giving any valuation iff KB is not stratified.

Outline of proof: Every stratification of (S,Exact) is produced by the algorithm since it

performs a breadth first search on the atomic facts of every stratification level. The other parts

of the proposition are easily verified, using the following facts:

(a) If a knowledge-base is stratified, then any order in which the facts are chosen determines

stratification. This is so since dilution does not change facts; A fact (positive, negative, or

both) of a certain level remains a fact in the successive levels, unless it is used for the next

dilution.

(b) The order in which the facts are chosen might be significant for checking condition (b) in

the definition of stratification (Definition 8.6). This is the case, e.g., in the example of

Figure 8.2. 2

It follows from Proposition 8.9 that the algorithm halts with a valuation for a finite KB iff

KB is stratified. For the rest of this section suppose, then, that KB is finite and stratified.

4Every valuation ν produced by the algorithm is determined by a sequence of picked atoms p0, p1, . . . , pn of the
calls to RECOVER. For shortening notations we shall just write ν instead of ν(p0, p1, . . . , pn).
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input: a logical bilattice (B,F) and a knowledge-base KB = (S,Exact).
initial step: call RECOVER(S,∅,0)

procedure RECOVER(S,ν,i)
/* S = the i-th stratification level, ν = the valuation constructed so far */
{

if (S == ∅) then output ν and return; /* ν∈Υ(KB) */

pos := {p ∈ A(S) | p ∈ S }; /* positive-facts */
neg := {p ∈ A(S) | ¬p ∈ S }; /* negative-facts */
if (pos == ∅ ∧ neg == ∅) halt; /* KB is not stratified */
if (⊥ ∈ S) return; /* backtracking; not a stratification */
if (∃p ∈ Exact ∩ pos ∩ neg) return; /* not a stratification */

while ((∃p ∈ Exact ∩ pos) ∨ (∃p ∈ Exact ∩ neg) ∨ (∃p ∈ pos ∩ neg)) {
pick such an atom p;
if (p ∈ Exact ∩ pos) {

pos := pos \ {p};
νi := {p : t};

}
if (p ∈ Exact ∩ neg) {

neg := neg \ {p};
νi := {p : f};}

else {
pos := pos \ {p};
neg := neg \ {p};
νi := {p : b>};}

Si+1 := S[νi]; /* dilution */
do (∀q s.t νi(q) is undefined and q ∈ A(S) \ A(Si+1)) /* filling */

if (q 6∈ Exact) then νi := νi ∪ {q : b⊥} else νi := νi ∪ {q : t};
RECOVER(Si+1, ν ∪ νi, i+1);}

while (∃p ∈ pos ∪ neg) {
pick such an atom p;
if (p ∈ pos) {

pos := pos \ {p};
νi := {p : bt};}

else {
neg := neg \ {p};
νi := {p : bf};}

Si+1 := S[νi]; /* dilution */
do (∀q s.t νi(q) is undefined and q ∈ A(S) \ A(Si+1)) /* filling */

if (q 6∈ Exact) then νi := νi ∪ {q : b⊥} else νi := νi ∪ {q : t};
RECOVER(Si+1, ν ∪ νi, i+1);}}

Figure 8.1: An algorithm for recovering stratified knowledge-bases
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∅ not a stratification ∅ ∅

Figure 8.2: Construction of k-minimal {>}-mcems and recovered sets (Example 8.8)

Theorem 8.10 Let (B,F) be a logical bilattice with an inconsistency set I. Let ν be a valuation

on B, produced by our algorithm for a stratified knowledge-base KB. Then:

a) ν∈mcm(KB, I).

b) if b⊥=⊥ then ν∈ kmin(KB).

c) ν∈Υ(KB).

Proof: We show the claim using three lemmas:

Lemma 8.10-A: Every valuation ν produced by the algorithm is an exact model of KB.

Proof: Let ψ be a clause that appears in S. By Definition 8.3 and the algorithm of Figure 8.1 it is

obvious that some part of ψ is eliminated from some Si+1 during the dilution of Si. This happens

iff (at least) one of its literals l is assigned a designated truth value by ν (note that a formula

cannot be eliminated by sequently removing every literal of it according to (2) of Definition 8.3,

since the last literal that remains must be assigned a designated value). By Lemma 7.5, then,

ν(ψ)∈F , and so ν is a model of KB. ν is an exact model of KB, since every element of Exact

is assigned either t or f by the algorithm.

Lemma 8.10-B: Every valuation produced by the algorithm is an I-mcem of KB.

Proof: The proof is by an induction on the number of the recursive steps (n) that are required
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for creating a valuation ν. If n=0 then S1 =∅, so there is only the initial step in which ν might

assign b> only to a literal l that is both a positive and a negative fact of S. Since in this case l is

assigned an inconsistent value by every model of S, ν must be I-most consistent. Suppose now

that it takes n≥ 1 recursive steps to create ν. Denote by νi the part of the valuation ν that is

determined during step i. Then,

(1): Inc(ν, S, I) =
⋃

0≤i≤n
Inc(νi, Si, I) = Inc(ν0, S, I) ∪ Inc(ν ′, S1, I),

where ν ′ =
⋃

1≤i≤n νi. Now, let M be an exact model of KB. We show that M 6<I ν. For this

suppose that M1 is the reduction of M to A(S1). Then,

(2): Inc(M,S, I) = {p∈A(S)\A(S1) | M(p)∈I} ∪ {p∈A(S1) | M(p)∈I}

= {p∈A(S)\A(S1) | M(p)∈I} ∪ Inc(M1, S1, I).

By its definition, ν0 might assign b> only to l∈L(S) s.t. l, l∈S. Obviously, such an l must be

assigned an inconsistent value by every model of S, and in particular M(l)∈I. Thus,

(3): Inc(ν0, S, I) ⊆ {p∈A(S)\A(S1) | M(p)∈I}.

• Suppose first that M1 is an exact model of S1. Since the creation of ν ′ requires only n−1 steps,

then by the induction hypothesis ν ′ is an I-mcem of S1. In particular, either Inc(ν ′, S1, I) and

Inc(M1, S1, I) are incomparable w.r.t. the containment relation, or else:

(4): Inc(ν ′, S1, I) ⊆ Inc(M1, S1, I).

From (1) – (4), either Inc(ν, S, I) and Inc(M,S, I) are incomparable, or else Inc(ν, S, I) ⊆

Inc(M,S, I).

• If M1 is not an exact model of S1, then M1 cannot be a model of S1 either, since it is a reduction

of an exact model (M) of S. Thus, there is a formula ψ1∈S1 s.t. M1(ψ1) 6∈F . Since M is a model

of S, then by Lemma 7.5 there is a ψ ∈ S and l ∈L(ψ) s.t. M(l)∈F , and {l} ∪ L(ψ1)⊆L(ψ).

Obviously, l∈A(S)\A(S1). But then ν0(l) 6∈F (otherwise ψ is eliminated in the dilution of S, and

so ψ1 6∈S1). Moreover, ν0(l)∈F , since if ν0(l) 6∈ F then necessarily ν0(l) = b⊥, and this happens

only if ψ is eliminated in the dilution of S, i.e. ψ1 6∈ S1. Therefore, ν0(l) 6∈ F and ν0(l)∈F , so

ν0(l) = bf or ν0(l) = f . l is not assigned this value in the filling process, since again, this would

imply that ψ is eliminated in the dilution of S, and so ψ1 6∈S1. Thus, by the definition of ν0, and
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since S is stratified, necessarily l∈S and l 6∈S. Hence KB |=B,F l. But M is an exact model of

KB and so M(l)∈F . Since we have shown that M(l)∈F as well, it follows that M(l)∈I, while

ν(l)∈{bf , f}. Therefore Inc(M,S, I) 6⊆Inc(ν, S, I) in this case as well.

Lemma 8.10-C: If b⊥=⊥ then the algorithm produces k-minimal exact models of KB.

Proof: Again, we denote by νi the part of the valuation ν that is created in the i-th recursive

call to the procedure RECOVER. The proof is by an induction on the number of recursive steps

required to create ν:

n= 0 : ν0 may assign b> only to a literal l s.t. l∈S and l∈S. In this case b> is the k-minimal

possible value for l. This is also true for any literal l 6∈ Exact s.t. l ∈ S and l 6∈ S (for that l,

ν(l)=bt), for all the literals in Exact, and for the literals that are assigned ⊥.

n≥1 : Let M be an exact model of KB. We show that M 6<k ν. Let M1 be the reduction of M

to A(S1), and suppose first that M1 is an exact model of S1. By the induction hypothesis ν1 is

a k-minimal exact model of S1, thus there exists some p∈A(S1), s.t. M1(p) 6≤k ν1(p), therefore

M 6<k ν. The other possibility is that M1 is not an exact model of S1. In this case M1 cannot

be a model of S1 either, therefore there must be a clause ψ1 ∈ S1 s.t. M1(ψ1) 6∈ F . Since M

is an exact model of S, then by Lemma 7.5 there is a ψ ∈ S and an l ∈ L(ψ) s.t. M(l) ∈ F ,

and {l} ∪ L(ψ1)⊆L(ψ). But then ν(l) 6∈F (Otherwise, ψ is eliminated in the dilution of S and

so ψ1 6∈ S1), while M(l) ∈ F . Since F is upward-closed w.r.t. ≤k, it follows that M(l) 6<k ν(l),

therefore again M 6<k ν.

Now, by Lemma 8.10-B, ν ∈ mcm(KB, I), and by Lemma 8.10-C ν ∈ kmin(KB) in case that

b⊥=⊥. The same proof of 8.10-C might be used again, this time without the assumption that

b⊥ = ⊥, for showing that ν is k-minimal among the I-mcems of KB, thus ν ∈ Υ(KB). This

completes the proof of Theorem 8.10. 2

Notes:

1. Let ν be a valuation produced by the algorithm of Figure 8.1 for KB=(S, ∅). Suppose that

l ∈A(KB) was assigned a value by ν during the i-th recursive step of the algorithm. By

Proposition 7.25, if ν(l)=b>, then l is a spoiled literal of Si. Similarly, by Corollary 7.33 if

ν(l)=bt then l is a recoverable literal of Si, and if ν(l)=bf then l is a recoverable literal in
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Si. By Theorem 8.10, if ν(l)=b⊥ then l is an incomplete literal in Si.

2. It is possible to assign any other truth value to the atoms that are assigned b⊥ (during the

“filling” process, see Figure 8.1), and still ν would be an exact model of KB. However,

in such a case ν cannot be k-minimal I-mcem, and if this value is inconsistent, then the

output of the algorithm cannot be an I-mcem of KB (see the proof of Theorem 8.10 above).

It is also possible to assign f to (some of) the elements of Exact that are assigned t during

the filling process without losing any of the properties discussed above.

Theorem 8.11 Let ν be a valuation produced by the algorithm for KB= (S,Exact). Then Sν

is a recovered set of KB.

Example 8.12 Consider again the knowledge-base of Examples 7.16 and 8.8. The recovered sets

w.r.t. I={>} of this knowledge-base are the following:

SM1 = {p, q, p ∨ s}

SM2 = {q, ¬q ∨ ¬r, ¬r ∨ e, ¬r ∨ ¬e}

Both sets are producible by the algorithm (they correspond, respectively, to the first and the last

subtrees of Figure 8.2).

Proof of Theorem 8.11: By Theorem 8.10, every valuation ν that is generated by the algorithm

is an exact model of KB. Thus, by Propositions 7.17, Sν is consistent in the context of KB. It

remains to show that Sν is also a maximal subset with this property. Suppose not. Then by

Proposition 7.20 there is an I-mcem M of KB s.t. Sν ⊂SM . We refute this by an induction on

the number of the recursive steps (n) that are required for creating ν: If n=0 then there is only

the initial step in which ν assigns b> only to a literal l that is both a positive and a negative fact

of S. Thus Sν =S\{ψ∈S | ∃l∈L(ψ) ∩ Spoiled(S)}. But since M is an I-mcem of KB, M(l)∈I

for every spoiled l, and so SM ∩ {ψ∈S | ∃l∈L(ψ)∩ Spoiled(S)}=∅, thus Sν 6⊂SM . Suppose now

that it takes n≥ 1 recursive steps to create ν. Denote by νi the part of the valuation ν that is

determined during step i and by l0 the first literal that is picked by ν. Suppose first that l0 is

spoiled in KB. In this case every ψ∈S\S1 has an atom that is assigned an inconsistent value, and

so it is not included in the set that is associated with ν. Thus: Sν =(S1)ν′ , where ν ′=
⋃

1≤i≤n νi.
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From the same reason, for every I-mcem N of KB, SN =(S1)N . But since it takes n−1 steps to

create ν ′, by the induction hypothesis Sν =(S1)ν′ 6⊂ (S1)M =SM .

Suppose now that l0 is not spoiled. Then:

(∗) Sν = {ψ | l0∈L(ψ)} ∪ {σν0(φ) | φ∈(S1)ν′} = (S\S1) ∪ {σν0(φ) | φ∈(S1)ν′}

where σµ(φ) restores the original formulae before a dilution w.r.t. µ (i.e., σµ(φ)=ψ iff {ψ}[µ]=φ).

By (∗), then, each set SM that properly contains the set Sν must also contain a subset of the

form {σM (φ) | φ∈(S1)M} that properly contain the set {σν0(φ) | φ∈(S1)ν′} (this is so, since all

the other formulae of S are in S\S1, and so they are already in Sν). But this is a contradiction

to the induction hypothesis that (S1)ν′ is a recovered set of (S1, Exact), and so it is in particular

maximal. 2

Finally, let’s consider some complexity issues. As we have noted before, the problem of

recovering arbitrary knowledge-base is at least NP-complete. Denote by O(AB) that it takes

O(A) running time to solve a certain problem when using an oracle for solving problems with

complexity O(B).5 Then our algorithm requires O(|S||A(S)|) running time to recover a knowledge-

base (S,Exact) that is stratified.6 As the following proposition shows, the complexity of the

algorithm might sometimes be considerably reduced:

Proposition 8.13 Whenever each stratification level of KB=(S,Exact) does not contain a pair

of complementary exact literals, it takes only O(|S| · |A(S)|) running time to check whether KB

is stratified, and if so, this is also the time needed to construct a recovered set of it.

Proof: By the conditions of the proposition, in order to find some recovered set of KB it is

sufficient to execute the algorithm on a single sequence of recursive calls to RECOVER, without

backtracking. Now, computing stage i of the recursion requires only O(|Si|) running time. Since

there are at most |A(S)| recursive calls to RECOVER, the whole process does not take more than

O(|S|·|A(S)|) running time. By Theorem 8.11, this is also the time required to supply a recovered

set Sν for KB. 2

5See also Notation 7.64.
6In our case, at every stratification level the oracle chooses a fact that yields, eventually, a stratification.
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Obvious cases in which the condition of the last proposition is met are when Exact=∅, or if

there is no l∈Exact s.t. both l∈L(S) and l∈L(S).

8.4 Further considerations and improvements of the algorithm

In what follows we briefly consider some improvements of the algorithm of Figure 8.1. In partic-

ular, we discuss the following issues:

• A better search engine; Pruning of the search tree.

• Extending the algorithm to allow a recovery of knowledge-bases that are not necessarily

stratified.

8.4.1 Pruning

Consider once again Figure 8.2 above. The third flow (subtree) yields a stratification which

is the same as the one produced in the first flow. It is possible to avoid such a duplication by

performing a backtracking once we find out that we are constructing a valuation which is the same

as another one that has already been produced before: Each flow i of the algorithm corresponds

to a stratification Si0 =S, Si1, S
i
2, . . . , S

i
ni . Therefore, this flow might be associated with a sequence

of partial valuations νi0, ν
i
1, . . . , ν

i
ni−1 s.t. Sij+1 is the dilution of Sij w.r.t. νij (i.e., Sij+1 =Sij [ν

i
j ]).

Denote by A(S) ↓ ν the elements of A(S) on which ν is defined. It is possible to terminate the

j-th flow of the algorithm (terminology: to prune the j-th subtree) at stage m iff there is a flow

i<j, s.t.
⋃m
k=1A(S)↓νik =

⋃m
k=1A(S)↓νjk.

Obviously, the pruning consideration might drastically improve the search mechanism of strat-

ification. The tradeoff is that for checking of the condition that yields pruning, we have to use

much more memory space, since the algorithm has to keep track to valuations that correspond

to previous search flows.

8.4.2 Recovery of weakly stratified knowledge-bases

It is possible to generalize our algorithm so that it will be suitable for a larger family of knowledge-

bases, not only the stratified ones. Let KB= (S,Exact) be a knowledge-base, and suppose that

there are no facts at a certain stratification level Si. Let p∈A(ψ) for some ψ∈Si, and consider
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Si ∪ {p}. If KB′= (Si∪{p}, Exact) is stratified, then by Theorem 8.10 our algorithm produces

an I-mcem of (Si∪{p}, Exact), denote it M . Since M(p)∈{t, bt}, p 6∈Inc(M,Si∪{p}, I), and so

M is an I-mcem of (Si, Exact) as well. Now, Proposition 8.4 entails that the valuation that the

algorithm has produced in this case is an I-mcem of KB.

It follows that our algorithm is capable of recovering inconsistent knowledge-bases that satisfy

only condition (a) and a weaker version of condition (b) in Definition 8.6. We call such knowledge-

bases weakly stratified :

Definition 8.14 A knowledge-base KB = (S,Exact) is called weakly stratified , if there is a

sequence of stratifications S0 = S, S1, S2, . . ., Sn = ∅, so that the following conditions are

satisfied:

a) no Si (0≤ i≤n) contains a pair of complementary exact facts.

b) for every i<n Si+1 is the dilution of Si w.r.t. a partial valuation νi that assigns either bt

or bf to some l∈L(S) \Exact. If l∈L(S)∩Exact then l is assigned a classical value by νi.

To adjust the algorithm s.t. weakly stratified knowledge-bases will be recovered, it is neces-

sary to do the following modifications. First, another argument, list, is passed as a parameter

to RECOVER. This is a list of the atoms that are picked in cases that there are no facts available.7

Second, it is needed to replace the line

if (pos == ∅ ∧ neg == ∅) halt;

with those of Figure 8.3.

The first call to RECOVER is now of the form RECOVER(S,∅,∅,0), and the two other recursive

calls to RECOVER in Figure 8.1 are of the form RECOVER(Si+1,ν ∪ νi,list,i+1).

Proposition 8.15 Let ν be a valuation produced by the modified algorithm for a weakly strat-

ified knowledge-base KB. Then

a) ν∈mcem(KB, I), and

7We maintain this list to prevent picking atoms that were already picked before, so that infinite loops will not
occur.
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if (pos == ∅ ∧ neg == ∅) {
if (list == A(Si)) halt;

do (∀p ∈A(Si)\ list) {
RECOVER (Si∪{p}, ν, list∪{p}, i);

RECOVER (Si∪{¬p}, ν, list∪{p}, i);
}

}

Figure 8.3: Modification for weakly stratified knowledge-bases

b) Sν is a recovered set of KB.

Proof: The proof of parts (a) and (b) of Theorem 8.10 remains the same if KB is either stratified

or weakly stratified. This entails part (a). Part (b) follows from part (a) and Theorem 8.11. 2



218 CHAPTER 8. RECOVERY OF STRATIFIED KNOWLEDGE-BASES



Chapter 9

Model-based Diagnostic Systems

9.1 Background and motivation

Consider the following problem: Given a description of some system (physical device, for example)

together with an observation of its behavior. Suppose that this observation is in contradiction

with the way the system is meant to behave. The obvious goal is to identify the components

of the system that behave abnormally, so that the collective behavior of these components can

explain the discrepancy between the observed and the correct behavior of the system. Formalisms

for dealing with such problems are called diagnostic systems.1

When examining a device that behaves differently than expected, it seems reasonable to as-

sume that some minimal number of its components are faulty. This is a key observation in Reiter’s

[Re87] general approach of using nonmonotonic inferences for diagnostic tasks. The fundamental

role in this area of concepts like minimalization (of the amount of failing components), and the

fact that diagnostic systems have to deal with inconsistent (and sometimes incomplete) situations,

imply that the use of preferential models of the observed devices (in our case: the k-minimal ones

or the most consistent ones) may provide accurate diagnoses on the cause of the malfunction.

In this chapter we show that both the paraconsistent and the coherent techniques considered

here are indeed useful for constructing diagnostic systems. Specifically, the approaches that

will be presented here compute most consistent models and k-minimal models for detecting the

malfunction part(s) of faulty devices.

1See [HCdK92] for a survey on diagnostic systems.
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For showing the use of our formalisms in the area of model-based diagnostic, we consider the

following example:

Example 9.1 Figure 9.1 depicts a circuit that consists of six components: two and-gates A1

and A2, two xor-gates X1 and X2, and two or-gates O1 and O2. It also shows the results of an

experiment that was done with this circuit. According to this experiment the circuit is faulty;

The output values of gates X2 and O1 are not the expected ones. The third output wire (that of

O2) does have the expected value, although one of its inputs wires has an unknown value.
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Figure 9.1: A faulty circuit

9.2 Coherent diagnostic systems

Let’s describe first a coherent approach for dealing with the problem presented in Example 9.1.

For that we first have to represent the given circuit and the results of the experiment in a

knowledge-base structure of the form (S,Exact) (see Definition 7.6). A description in Σmon of

the circuit of Figure 9.1, together with the results of the experiment, is given in Figure 9.2. 2

For choosing the elements in Exact, note first that the predicates in1(x), in2(x), and out(x)

are assigned values that correspond to binary values of the wires of the system, therefore they

2To avoid overloading, we use here + (rather than ⊕) for the xor operation.
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(gates behavior:)

andG(x) ∧ ok(x) ; (out(x) ! (in1(x) ∧ in2(x))),

xorG(x) ∧ ok(x) ; (out(x) ! (in1(x) + in2(x))),

orG(x) ∧ ok(x) ; (out(x) ! (in1(x) ∨ in2(x))),

(integrity constraints:)

¬(andG(x) ∧ orG(x)) ∧ ¬(andG(x) ∧ xorG(x)) ∧ ¬(xorG(x) ∧ orG(x)),

(inter-connections:)

in1(X1) ! in1(A1), in1(X1) ! in1(O2), in2(X1) ! in2(A1),

in1(A2) ! in2(X2), out(X1) ! in2(A2), out(X1) ! in1(X2),

out(A1) ! in2(O1), out(A2) ! in1(O1),

(system components:)

andG(A1), andG(A2), xorG(X1), xorG(X2), orG(O1), orG(O2),

(observations:)

in1(X1), ¬in2(X1), in1(A2), out(X2), ¬out(O1), out(O2),

(correct behavior assumption:)

ok(A1), ok(A2), ok(X1), ok(X2), ok(O1), ok(O2).

Figure 9.2: A description of the circuit of Figure 9.1 in Σmon

should have only classical values. Also, it seems reasonable to restrict the values of the predicates

andG, orG, and xorG to be only classical. This is because we know in advance what is the type

of each gate G in the system, and so the only open question about G is whether it behaves as

expected.

The knowledge-base that represents the circuit of Figure 9.1 is then (S,Exact), where S is

the set of assertions given in Figure 9.2, and Exact={in1,in2,out,andG,orG,xorG}.

In 〈FOUR〉, (S,Exact) has 232 exact models, but just three of them are {>}-mcems (in this

case these are also the only k-minimal ones). Table 9.1 lists these models. We have omitted

from the table predicates that have the same truth value in all the exact models of (S,Exact).
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Predicate that always has the same value as some other predicate that already appears in the

table, were also omitted.

Table 9.1: The k-minimal models of (S,Exact) (Example 9.1)

Model in2 in1 in2 in2 ok ok ok ok ok ok

No. A2 O1 O1 O2 A1 A2 X1 X2 O1 O2

M1 f f f ⊥ t t > t t t
M2 t f f ⊥ t > t > t t
M3 t t f ⊥ t t t > > t

The I-mcems of (S,Exact), and the recovered sets that are associated with them preserve

what Reiter [Re87] calls the principle of parsimony ; They represent the conjecture that some

minimal number of components are faulty. For instance, according to M1 the only component

that behaves incorrectly is the xor gate X1. The set that is associated with M1 reflects this

indication:

SM1 = S \ {ok(X1), xorG(X1) ∧ ok(X1) ; (out(X1) ! (in1(X1) + in2(X1)))}

In particular, KBM1 entails (w.r.t. both |=B,F and |=B,FI ) ok(x) for x∈{A1, A2, X2, O1, O2}, but

it does not entail ok(X1). Similarly, the other two I-mcems M2 and M3, together with their

associated recovered sets represent (respectively) situations, in which gates {X2, A2} and gates

{X2, O1} are faulty. These are the generally accepted diagnoses of this case (see, e.g., [Re87,

Example 2.2], [Gi88, Sections 15,16], [Ra92, Examples 1,4], and many others).

Note: One might treat here SM1 as the preferred recovered set, since it is the only set that

entails that only a single component is faulty, and one normally expects components to fail inde-

pendently of each other. This kind of diagnosis is known as a single fault diagnosis.

Next we show that the correspondence here between the fault diagnoses of Example 9.1 and

the inconsistent assignments of the I-mcems is not accidental. For this, we first present two basic

notions from the literature on model-based diagnosis (see also [HCdK92]):

Definition 9.2 [Re87] A system is a triple (Sd,Comps,Obs), where: Sd, the system description,

is a set of first order sentences; Comps, the system components, is a finite set of constants; and
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Obs, the observations set , is a finite set of sentences.

Definition 9.3 [Re87] A diagnosis is a minimal set ∆⊆Comps s.t. the set

Sd ∪Obs ∪ {ok(c) | c∈Comps \∆} ∪ {¬ok(c) | c∈∆}

is classically consistent.

Definition 9.4 A correct behavior assumption for a given set of components ∆⊆Comps is the

set CBA(∆) = {ok(c) | c∈∆}.

Notation 9.5 For a given system (Sd,Comps,Obs), and a set of components ∆⊆Comps, denote

S(∆) = Sd ∪Obs ∪ CBA(∆). Whenever ∆ = Comps we shall write just S instead of S(Comps).

In what follows we shall continue to assume that S(∆) is a set of clauses.

Proposition 9.6 [Re87]

a) ∆ is a diagnosis for (Sd,Comps,Obs) iff ∆ is a minimal set s.t. S(Comps \∆) is classically

consistent.

b) If ∆ is a diagnosis for (Sd,Comps,Obs), then S(Comps \∆) |=2¬ok(c) for every c∈∆.

In the present treatment, unlike in the classical case, an inconsistency does not yield trivial

reasoning, and only a subset of the atomic formulae must have classical values. In our terms,

then, a diagnostic system is defined as follows:

Definition 9.7 A diagnostic knowledge-base is a knowledge-base KB = (S,Exact), where S =

Sd ∪ Obs ∪ CBA(Comps), and Exact consists of every ground atom of S except the elements of

CBA(Comps).3

Theorem 9.8 Let (S,Exact) be a diagnostic knowledge-base. An exact model M of (S,Exact)

is an I-mcem of (S,Exact) iff Inc(M,S, I)=CBA(∆) for some diagnosis ∆ of S.

3Note that this requirement is met in Example 9.1.
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Proof: (⇐) Assume that M is an exact model of (S,Exact) and suppose that ∆ is a diagnosis

of S s.t. Inc(M,S, I) =CBA(∆). If M is not an I-mcem of S, then by Proposition 7.12 there

is an exact model M ′ s.t. Inc(M ′, S, I) ⊂ Inc(M,S, I) = CBA(∆), i.e. there is a c0 ∈ ∆ s.t.

M ′(ok(c0)) 6∈ I. But (a): M ′ is a model of S and ok(c0)∈ S thus M ′(ok(c0))∈F , and (b): By

Proposition 9.6(b), S(Comps \∆) |=2 ¬ok(c0). Hence, by Propositions 6.60, 6.66, and Corollary

6.52, S(Comps\∆) |=B,FI ¬ok(c0). Since M is a (I-most) consistent exact model of S(Comps \∆),

so is M ′. Therefore M ′(¬ok(c0))∈F . By (a) and (b), M ′(ok(c0))∈I; A contradiction.

(⇒) From the condition on Exact it follows that for every exact model M of (S,Exact), we have

that Inc(M,S, I)⊆CBA(Comps). Suppose, then, that M is an I-mcem of (S,Exact) and that

Inc(M,S, I) =CBA(∆) for some ∆⊆Comp. By Proposition 9.6, in order to prove that ∆ is a

diagnosis for S it is sufficient to show that ∆ is a minimal set such that S(Comps\∆) is classically

consistent. Suppose not. Then there is a proper subset ∆′⊂∆ s.t. S(Comps\∆′) is classically

consistent, and so S(Comps\∆′) has a consistent model, N . Let M ′ be the following valuation:

M ′(p) =

{
N(p) if p∈A(S(Comps\∆′)).
> otherwise.

It is easy to verify (by Lemma 7.5) that M ′ is a model of S. Therefore, since Exact(S) ⊂

A(S(Comps\∆′)), M ′ is an exact model of mod(S,Exact). Moreover, Inc(M ′, S, I) =CBA(∆′),

and ∆′⊂∆, thus Inc(M ′, S, I)=CBA(∆′)⊂CBA(∆)=Inc(M,S, I). It follows that M cannot be

an I-mcem of (S,Exact). 2

Corollary 9.9 Let (S,Exact) be a diagnostic knowledge-base. If ∆ is a diagnosis of S then

there exists an I-mcem M of (S,Exact) s.t. Inc(M,S, I)=CBA(∆).

Proof: By Proposition 9.6(a), S(Comps\∆) is classically consistent, therefore there is an exact

model M of (S,Exact) that assigns inconsistent values only to the elements of CBA(∆). This M

is an I-mcem of (S,Exact) by Theorem 9.8. 2

Corollary 9.10 Let (S,Exact) be a diagnostic knowledge-base. Then ok(c) is absolutely recov-

erable in KB iff c cannot be faulty in KB.

Proof: Obviously follows from Proposition 7.38 and Theorem 9.8. 2
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Whenever the condition of Theorem 9.8 is met and KB is stratified, one can use the algorithm

presented in Chapter 8 (see Section 8.3) for finding diagnoses and constructing recovered sets for

KB. Alternatively, one can use any other algorithm for finding diagnoses, and then use the results

for recovering KB. The process is as follows: First, such an algorithm is executed (this algorithm

can be, for example, Reiter’s DIAGNOSE [Re87, GSW89]); Suppose that ∆ is returned as a

diagnosis of KB. Given a Herbrand universe U of KB, we denote

SU\∆ = {ρ(ψ) | ψ∈S ρ : var(ψ)→ (U \∆)}

By Theorem 9.8, CBA(∆) corresponds to the inconsistent assignments of some I-mcem M , so by

the proof of Theorem 7.29, SU\∆ is a recovered set of KB.

9.3 Paraconsistent diagnostic systems

In this section we describe another way of constructing diagnostic systems. This time we use

paraconsistent techniques of managing inconsistency, like those discussed in Chapter 6. In par-

ticular, unlike the method presented in the previous section, which seeks to restore consistency

in the diagnostic knowledge-base, the present ones use consequence relations that tolerate in-

consistency. Another difference between the two approaches is that instead of having integrity

constraints in the “meta-level”, like those presented by the set Exact, here we shall use a stronger

language (i.e., Σfull instead of Σmon) for representing malfunction devices, and so we will be able

to represent integrity constraints within the language.

Let’s consider again the circuit presented in Example 9.1. A possible description in Σfull of

this circuit is given in Figure 9.3. Here 2ψ abbreviates the formula ψ∧(¬ψ ⊃ f). Its intuitive

meaning is that ψ is “absolutely true”, i.e. ψ is known to be true, while its negation can never

be valid. Since we know in advance the values of three input wires and of all the output wires,

as well as the kind of each gate in the system, we attached this certainty operator (2) to the

corresponding predicates. The correct behavior of each gate, on the other hand, is only a default

assumption, therefore the predicate ok is not preceded by the 2-operator. Clearly, once again

the resulting knowledge-base is classically inconsistent.



226 CHAPTER 9. MODEL-BASED DIAGNOSTIC SYSTEMS

(gates behavior:)

andG(x) ∧ ok(x) ; (out(x)↔ (in1(x) ∧ in2(x))),

xorG(x) ∧ ok(x) ; (out(x)↔ (in1(x) + in2(x))),

orG(x) ∧ ok(x) ; (out(x)↔ (in1(x) ∨ in2(x))),

(integrity constraints:)

¬(andG(x) ∧ orG(x)) ∧ ¬(andG(x) ∧ xorG(x)) ∧ ¬(xorG(x) ∧ orG(x)),

(inter-connections:)

in1(X1)↔ in1(A1), in1(X1)↔ in1(O2), in2(X1)↔ in2(A1),

in1(A2)↔ in2(X2), out(X1)↔ in2(A2), out(X1)↔ in1(X2),

out(A1)↔ in2(O1), out(A2)↔ in1(O1),

(system components:)

2andG(A1), 2andG(A2), 2xorG(X1), 2xorG(X2), 2orG(O1), 2orG(O2),

(observations:)

2in1(X1), 2¬in2(X1), 2in1(A2), 2out(X2), 2¬out(O1), out(O2),

(correct behavior assumption:)

ok(A1), ok(A2), ok(X1), ok(X2), ok(O1), ok(O2).

Figure 9.3: A description of the circuit of Figure 9.1 in Σfull

Denote the knowledge-base listed in Figure 9.3 by Γ. The models in Table 9.1 are the k-

minimal models of Γ in 〈FOUR〉. Thus, by Theorem 6.28, in every logical bilattice (B,F) in

which inf≤k F ∈F , we have that

Γ |=B,Fk ¬ok(X1) ∨ (¬ok(X2) ∧ ¬ok(A2)) ∨ (¬ok(X2) ∧ ¬ok(O1))

Note that the models in Table 9.1 are also the I1-most consistent models of Γ in 〈FOUR〉,

therefore by Theorem 6.51 and Corollary 6.52, in every logical bilattice (B,F) with an inconsis-

tency I s.t. T B,F⊥ 6⊂I one might draw the same conclusion, i.e.

Γ |=B,FI ¬ok(X1) ∨ (¬ok(X2) ∧ ¬ok(A2)) ∨ (¬ok(X2) ∧ ¬ok(O1))
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Again, these conclusions exactly correspond to the diagnoses for the possible causes of the

malfunction of the similar (but simpler) circuit, considered in [Re87, Example 2.2], [Gi88, Sections

15,16], and [Ra92, Examples 1,4].
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Summary, Conclusions, and Further
Work

Let us briefly review what we have done in this work: We started with a syntactical investigation

of what a general consequence relation for reasoning with uncertainty should look like. This study

yielded intuitive justifications as well as generalizations of conditions that have been proposed in

previous studies, and clarified the connections among some of the corresponding systems (Chapter

1). The next step was to seek semantics that would enable us to define uniformly those conse-

quence relations that meet the specified syntactical conditions. We considered here bilattices as

the primary semantical structures for this purpose (Chapter 2). To demonstrate that bilattices

are indeed suitable for defining useful formalisms for reasoning with uncertainty, we used them in

a “logical manner” by introducing and investigating the structures of logical bilattices and their

corresponding logics (Chapter 3). Logical bilattices were used for defining logics in a way which

was as analogous as possible to the way Boolean algebras are constructed from classical logic.4

In Chapter 4 we completed the presentation of our framework and justified its usefulness.

After defining our framework we turned to our primary goal, which was to use this frame-

work for reasoning with incomplete and inconsistent information. First, we considered a family

of consequence relations (the “basic” consequence relations) that seemed to be the most natural

extension of classical logic to bilattice-valued logic (Chapter 5). These logics were considered both

proof theoretically and from a semantical point of view. We have claimed that although having

many desirable properties, the basic consequence relations do not satisfy all our goals. In order to

overcome some of the drawbacks of the basic bilattice-based consequence relations, we incorpo-

rated Shoham’s approach of preferential reasoning, and considered corresponding paraconsistent

4Indeed, as shown in Chapter 5, the role that the classical two-valued lattice has among Boolean algebras was
taken here by the smallest (logical) bilattice, 〈FOUR〉.
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consequence relations (Chapter 6), as well as coherent approaches for reasoning with incomplete

and inconsistent data (Chapter 7). In the definitions of these formalisms we took advantage of

the special structure of bilattices. Whereas one partial order (≤t) was used to determine the

semantics of the classical connectives, the other one (≤k) was used for reducing the number of

models of a given theory that should be taken into account, and for making preferences among

these models.

We have shown that well-known formalisms, such as Kleene’s three-valued logics, Belnap’s

four-valued logic, and Priest’s LPm, can be simulated in our framework. Other approaches to rea-

soning with uncertainty, such as Subrahmanian’s annotated logic, Lozinskii’s coherent approach

for recovering knowledge-bases, and Prade/Dubois’s possiblistic logic were also related to our

formalisms.

In the last part of this work (Chapters 8 and 9) we considered some possible applications of

our formalisms in two practical problems: An efficient recovery of consistent data from inconsis-

tent knowledge-bases, and a fault analysis of malfunction devices.

The main drawback of the formalisms discussed here is their high complexity. We have

addressed this problem in Chapter 8, where we investigated a specific family of (possibly incon-

sistent) knowledge-bases, and took advantage of its special structure for providing an algorithm

for efficient recovery of consistent data. Another possible approach for dealing with the compu-

tational complexity of the formalisms presented here is discussed in [Le86, Wa94a], where it was

proposed to restrict the underlying language, taking again into account the trade-off between ex-

pressiveness and efficiency. As we have shown in Sections 6.4.2.D and 7.2.4, the use of restrictive

languages may lead to a considerable reduction in the number of models that should be taken

into account.

Another approach for handling problems of high complexity is to use binary decision diagram

(BDD) techniques. These techniques are routinely used in digital system design and testing for

solving problems above NP, and may be useful here as well.5

There is still much work to be done in order to obtain reasoning processes that are general

5See [CLS98] for some theoretical and experimental results of using BDDs for solving some coherent-based
entailment problems.
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and powerful enough on one hand, and computationally feasible on the other hand. Among the

subjects that should be addressed in this context is whether it is possible to construct the subset

of the preferred models of a given theory without computing the whole set of its models. This

issue is also related to the problem of efficient belief revision, i.e. reducing the amount of com-

putations needed for revising the set of conclusions when the knowledge-base is altered.

We conclude with some other issues considered in the sequel to this work, which deserve

further study:

• Our investigations here were mainly at the propositional level. This was justified because

the main ideas and innovations were all at this level. The next natural thing to do is to

explore first-order languages.

• An open question is whether the semantical approach for paraconsistent reasoning intro-

duced in Chapter 6 fully characterizes the general patterns for nonmonotonic and uncer-

tain reasoning discussed in Chapter 1. Formally, is it true that for every scr ` and a

`-plausible sccr |∼, there is a logical bilattice (B,F) and a (pointwise?) preferential system

P= (B,F ,≺), such that for every sets of formulae Γ,∆ in a language Σ we have Γ |∼∆ iff

Γ |=B,F≺ ∆.

• Relating the modularly pointwise and the strongly pointwise preferential systems, intro-

duced in Chapter 6. We have analyzed in detail one family of strongly pointwise consequence

relations (|=B,Fk ) and two families of modularly pointwise consequence relations (|=B,FI and

|=B,Fc ). It is still unclear what is the exact relation (if any) between the consequence rela-

tions induced by modularly pointwise and strongly pointwise systems, which one has more

desirable properties, and which one yields more intuitive conclusions.

• As we have shown, the consequence relations |=B,F , |=B,Fk , |=B,FI , and |=B,Fc , are charac-

terized by the smallest logical bilattice, 〈FOUR〉. A question that remains open is what

properties of preferential systems assure that they are characterizable in 〈FOUR〉. More

generally: How is the way a preferential system is defined related to its corresponding

canonical (logical bi-)lattice.
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• Improvements of the algorithm for recovering stratified knowledge-bases (Figure 8.1), es-

pecially for diagnostic purposes. For example, adding “don’t care” conditions for those

parts of the device that we do not want to examine (“black-boxes”), allowing hierarchical

diagnoses by merging “standard cells” into larger components, etc.
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Appendix A

Notations

Symbol Description First Appearance

p, q, r Atomic formulae. Section 1.2

ψ, φ, τ Complex formulae. Section 1.2

Γ,∆,Σ Sets of formulae. Section 1.2

A(Γ) The atomic formulae in the language of Γ. Section 1.2

L(Γ) The literals in the language of Γ. Section 1.2

; The material implication. Section 1.2

! The ; equivalence operator. Section 1.2

Σprop The propositional classical language. Section 1.2

Σ An arbitrary language. Section 1.2

∧Γ Conjunction of the formulae in Γ. Notation 1.8

≡ The ⊃ equivalence operator. Notation 1.9

` Tarskian/Scott consequence relation. Definitions 1.20(a), 1.37(a)

|∼ Tarskian/Scott cautious consequence relation. Definitions 1.20(b), 1.37(b)

∨∆ Disjunction of the formulae in ∆. Proposition 1.39(b)

B A bilattice. Definition 2.1

B The carrier of a bilattice B. Definition 2.1

≤t,≤k Partial orders of bilattices. Definition 2.1

¬ Negation operator. Definition 2.1
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Symbol Description First Appearance

∨,∧,⊕,⊗ Basic operations of bilattices. Section 2.2

− Conflation operator. Definition 2.2

t, f,>,⊥ Basic elements of bilattices. Note after Def. 2.2

L�L A composition of a lattice L with itself. Definition 2.9

I(L) Intervals of a lattice L. Definition 2.19

F A (prime) bifilter. Definition 3.1

Ft(b),Fk(b) Special types of bifilters. Definition 3.8

(B,F) A logical bilattice. Definition 3.16

〈B〉 A logical bilattice with F=Fk(t). Notation 3.17

ν A valuation. Definition 4.1(a)

|=B,F A satisfaction relation in (B,F). Definition 4.1(b)

M,N Models of theories. Definition 4.1(c)

V The set of valuations on B. Note after Def. 4.1

: Assignment operator. Note after Def. 4.1

T>, Tt, Tf , T⊥ Types of truth values and valuations. Notation 4.3

⊃ The basic multi-valued implication. Definition 4.6

Σscl The language of {¬,∧,∨,⊃}. Notation 4.7

Σmcl The language of {¬,∧,∨, t, f}. Notation 4.7

Σcl The language of {¬,∧,∨,⊃, t, f}. Notation 4.7

Σmon The language of {¬,∧,∨,⊗,⊕, t, f,>,⊥}. Notation 4.7

Σfull, ΣB The language of {¬,∧,∨,⊗,⊕,⊃, t, f,>,⊥}. Notation 4.7

|=B,F The basic consequence relation. Definition 5.1

|=4 The basic consequence relation in 〈FOUR〉. Note after Def. 5.1

GBL Gentzen-type Bilattice-based proof system. Section 5.5.1

`GBL Entailment w.r.t. GBL. Definition 5.16

GBLI The intuitionistic version of GBL. Definition 5.20

HBL Hilbert-type Bilattice-based proof system. Section 5.5.3

`HBL Entailment w.r.t. HBL. Section 5.5.3
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Symbol Description First Appearance

→, ↔ “Strong” implication and equivalence. Definition 5.24

P Preferential system. Definition 6.1

� Preferential order on V. Notation 6.1

!(Γ,P) The preferred models of Γ in P. Definition 6.2

|=B,F≺ Entailment by the ≺-preferred models. Definition 6.4

min≤ Tx The ≤-minimal elements of Tx. Definition 6.16(a)

Ω≤ Union of min≤ Tx. Definition 6.16(b)

|=B,Fk Consequence relation w.r.t. ≤k-min. models. Definition 6.20

[b] Equivalence class of b. Note before Def. 6.32

I,J Inconsistency sets. Definition 6.38

Inc(ν, I) Atoms with inconsistent assignments by ν. Definition 6.42

≤I Inconsistency order (based on the set I). Definition 6.43(a)

mcm(Γ, I) The most consistent models of Γ w.r.t. I. Definition 6.43(b)

|=B,FI Consequence relation w.r.t. I-mcms. Definition 6.44

≤c Inconsistency order. Definition 6.70

|=B,Fc Consequence relation w.r.t. ≤c-mcms. Definition 6.74

KB A knowledge-base. Definition 7.6

Exact Set of exact literals. Definition 7.6

mod(KB) The exact models of KB. Definition 7.7(a)

mcm(KB, I) The I-most consistent exact models of KB. Definition 7.7(b)

SM The set that is associated with M . Definition 7.15

Spoiled(KB) The spoiled literals of KB. Notation 7.22

Recover(KB) The recoverable literals of KB. Notation 7.22

Incomplete(KB) The incomplete literals of KB. Notation 7.22

kmin(KB) The k-minimal exact models of KB. Definition 7.43(a)

Υ(KB) The k-minimal I-mcem of KB. Definition 7.43(b)

|=B,FΥ Consequence relation w.r.t. k-min. I-mcems. Definition 7.43(c)

RS(KB) The recovered sets of KB. Note before 7.51
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Symbol Description First Appearance

|=B,FR Consequence relation w.r.t. recovered sets. Definition 7.52

Con(KB) Intersection of the recovered sets of KB. Definition 7.57

MC(KB) Maximal consistent subsets of KB. Proof of Prop. 7.66

|=2
MC Reasoning with maximal consistent subsets. Section 7.2.7

Σp
k+1, ∆p

k+1, Πp
k+1 Classes in the polynomial hierarchy. Notation 7.64

r A ranking function. Definition 7.69

KBi i-layered knowledge-base Definition 7.70

|=B,F≤R Consequence relation w.r.t. ≤-preferred sets. Definition 7.73

Coni(KB) Intersection of elements in RSi(KB). Definition 7.81

|=2
incl Entailment by inclusion preference. Definition 7.85(b)

Li Layer i of a layered knowledge-base. Definition 7.86

|=2
card Entailment by cardinality preference. Definition 7.89(b)

|=2
π The possibilistic consequence relation. Note before 7.91

S[ν] The dilution of S w.r.t. ν. Definition 8.3

S1, S2, . . . Stratification levels of S. Definition 8.6

(Sd,Comps,Obs) A diagnostic system. Definition 9.2

∆ A diagnosis. Definition 9.3

CBA Correct behavior assumption. Definition 9.4

S(∆) Sd ∪Obs ∪ CBA(∆). Notation 9.5
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Logical Rules

Symbol The rule Rule name

If Γ, ψ, ψ |∼ ∆ then Γ, ψ |∼ ∆. Contraction (left)

If Γ |∼ ψ,ψ,∆ then Γ |∼ ψ,∆. Contraction (right)

If Γ, ψ, φ |∼ ∆ then Γ, φ, ψ |∼ ∆. Permutation (left)

If Γ |∼ ψ, φ,∆ then Γ |∼ φ, ψ,∆. Permutation (right)

If Γ |∼ ∆ and Γ 6|∼ ¬ψ then Γ, ψ |∼ ∆. Rational Monotonicity

C If Γ1, ψ |∼ ∆1 and Γ2 |∼ ψ,∆2 then Γ1,Γ2 |∼ ∆1,∆2. Cut

CC If Γ, ψ |∼∆ and Γ |∼ψ,∆ then Γ |∼∆. Cautious Cut

CC[1] If Γ, ψ |∼ ∆ and Γ |∼ ψ then Γ |∼ ∆. Cautious 1-Cut

CC[n] If Γ, ψi |∼∆ (i=1, . . . , n) and Γ |∼ψ1, . . . , ψn then Γ |∼∆. Cautious n-Cut

CM If Γ |∼ ψ and Γ |∼ ∆ then Γ, ψ |∼ ∆. Cautious Monotonicity

CM[n] If Γ |∼ψi (i=1,. . ., n) and Γ |∼ ∆ then Γ, ψ1, . . . , ψn |∼∆. n-Cautious Monotonicity

Cum If Γ ` ∆ then Γ |∼ ∆. Cumulativity

LCC[n] If Γ |∼ ψi,∆ (i=1,. . ., n) and Γ, ψ1, . . . , ψn |∼ ∆ then Γ |∼ ∆. Left Cautious Cut

LLE If Γ, ψ`φ and Γ, φ`ψ and Γ, ψ |∼∆, then Γ, φ |∼∆. Left Logical Equivalence

M If Γ`∆ and Γ⊆Γ′, ∆⊆∆′ then Γ′`∆′. Monotonicity

RM If Γ |∼ ∆ then Γ |∼ ∆, ψ. Right Monotonicity

RW, If Γ, ψ`φ and Γ |∼ψ,∆ then Γ |∼φ,∆. Right Weakening

RW[n] If Γ |∼ψi,∆ (i=1, . . . , n) and Γ, ψ1, . . . , ψn`φ then Γ |∼φ,∆. n-Right Weakening
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Symbol The rule Rule name

s-AC If Γ |∼ ψ,∆1 and Γ, ψ |∼ ∆2 then Γ |∼ ∆1,∆2. strong Additive Cut

s-R Γ, ψ |∼ ∆, ψ. strong Reflexivity

[¬¬|∼] If Γ, ψ |∼ ∆ then Γ,¬¬ψ |∼ ∆. Left double negation

[|∼¬¬] If Γ |∼ ∆, ψ then Γ |∼ ∆,¬¬ψ. Right double negation

[∧|∼] If Γ, ψ, φ |∼ ∆ then Γ, ψ ∧ φ |∼ ∆. Left-∧ (ICR)

[|∼∧] If Γ |∼ ∆, ψ and Γ |∼ ∆, φ then Γ |∼ ∆, ψ ∧ φ. Right-∧

[¬∧|∼] If Γ,¬ψ |∼ ∆ and Γ,¬φ |∼ ∆ then Γ,¬(ψ ∧ φ) |∼ ∆. Left-¬∧

[|∼¬∧] If Γ |∼ ∆,¬ψ,¬φ then Γ |∼ ∆,¬(ψ ∧ φ). Right-¬∧

[∨|∼] If Γ, ψ |∼ ∆ and Γ, φ |∼ ∆ then Γ, ψ ∨ φ |∼ ∆. Left-∨

[|∼∨] If Γ |∼ ∆, ψ, φ then Γ |∼ ∆, ψ ∨ φ. Right-∨ (Or, IDR)

[¬∨|∼] If Γ,¬ψ,¬φ |∼ ∆ then Γ,¬(ψ ∨ φ) |∼ ∆. Left-¬∨

[|∼¬∨] If Γ |∼ ∆,¬ψ and Γ |∼ ∆,¬φ then Γ |∼ ∆,¬(ψ ∨ φ). Right-¬∨

[⊗|∼] If Γ, ψ, φ |∼ ∆ then Γ, ψ ⊗ φ |∼ ∆. Left-⊗

[|∼⊗] If Γ |∼ ∆, ψ and Γ |∼ ∆, φ then Γ |∼ ∆, ψ ⊗ φ. Right-⊗

[¬⊗|∼] If Γ,¬ψ,¬φ |∼ ∆ then Γ,¬(ψ ⊗ φ) |∼ ∆. Left-¬⊗

[|∼¬⊗] If Γ |∼ ∆,¬ψ and Γ |∼ ∆,¬φ then Γ |∼ ∆,¬(ψ ⊗ φ). Right-¬⊗

[⊕|∼] If Γ, ψ |∼ ∆ and Γ, φ |∼ ∆ then Γ, ψ ⊕ φ |∼ ∆. Left-⊕

[|∼⊕] If Γ |∼ ∆, ψ, φ then Γ |∼ ∆, ψ ⊕ φ. Right-⊕

[¬⊕|∼] If Γ,¬ψ |∼ ∆ and Γ,¬φ |∼ ∆ then Γ,¬(ψ ⊕ φ) |∼ ∆. Left-¬⊕

[|∼¬⊕] If Γ |∼ ∆,¬ψ,¬φ then Γ |∼ ∆,¬(ψ ⊕ φ). Right-¬⊕

[⊃|∼] If Γ |∼ ψ,∆ and Γ, φ |∼ ∆ then Γ, ψ ⊃ φ |∼ ∆. Left-⊃

[|∼⊃] If Γ, ψ |∼ φ,∆ then Γ |∼ ψ ⊃ φ,∆. Right-⊃

[¬⊃|∼] If Γ, ψ,¬φ |∼ ∆ then Γ,¬(ψ ⊃ φ) |∼ ∆. Left-¬ ⊃

[|∼¬⊃] If Γ |∼ ψ,∆ and Γ |∼ ¬φ,∆ then Γ |∼ ¬(ψ ⊃ φ),∆. Right-¬⊃

[¬t |∼] Γ,¬t |∼ ∆. Left-¬t

[|∼ t] Γ |∼ ∆, t. Right-t

[f |∼] Γ, f |∼ ∆. Left-f

[|∼¬f ] Γ |∼ ∆,¬f . Right-¬f
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Symbol The rule Rule name

[⊥|∼] Γ,⊥ |∼ ∆. Left-⊥

[¬⊥|∼] Γ,¬⊥ |∼ ∆. Left-¬⊥

[|∼>] Γ |∼ ∆,>. Right->

[|∼ ¬>] Γ |∼ ∆,¬>. Right-¬>
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List of my works

The following papers are cited in this work without their reference:

Journals

1. O.Arieli, A.Avron.

Reasoning with logical bilattices. Journal of Logic, Language, and Information. Vol.5, No.1,

pages 25–63, 1996. 1

2. O.Arieli, A.Avron.

The value of the four values. Artificial Intelligence, Vol.102, No.1, pages 97–141, 1998. 2

3. O.Arieli, A.Avron.

A model theoretic approach to recover consistent data from inconsistent knowledge-bases.

Journal of Automated Reasoning, Vol.22, No.3, pages 263–309, 1999. 3

4. O.Arieli, A.Avron.

General patterns for nonmonotonic reasoning: from basic entailments to plausible relations.

Submitted to the Journal of Logic and Computation. 4

1A preliminary version of this paper appears as Technical Report No. 291/94, Dept. of Computer Science,
Tel-Aviv University, June 1994.

2A preliminary version of this paper appears as Technical Report No. 319/97, Dept. of Computer Science,
Tel-Aviv University, June 1997.

3A preliminary version of this paper appears as Technical Report No. 317/97, Dept. of Computer Science,
Tel-Aviv University, March 1997.

4A preliminary version of this paper appears as Technical Report No. 331/98, Dept. of Computer Science,
Tel-Aviv University, November 1998.
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Conferences

1. O.Arieli, A.Avron.

Logical bilattices and inconsistent data. Proc. 9th Annual IEEE Symposium on Logic in

Computer Science (LICS’94). Paris, France. IEEE Press, pages 468–476, July 1994.

2. O.Arieli, A.Avron.

A bilattice-based approach to recover consistent data from inconsistent knowledge-bases.

Proc. 4th Bar-Ilan Symposium on Foundations of Artificial Intelligence (BISFAI’95) (M.Koppel

and E.Shamir – eds.). Ramat-Gan and Jerusalem, Israel. AAAI Press, pages 14–23, June

1995.

3. O.Arieli, A.Avron.

Automatic diagnoses for properly stratified knowledge-bases. Proc. 8th IEEE International

Conference on Tools with Artificial Intelligence (ICTAI’96). Toulouse, France. IEEE Press,

pages 392–399, November 1996.

4. O.Arieli, A.Avron.

Four-valued diagnoses for stratified knowledge-bases. Proc. of the 1996 Annual Conference

of the European Association for Computer Science Logic (CSL’96), Utrecht, the Nether-

lands, September 1996 – Selected Papers. Lecture Notes in Computer Science No.1258

(D.Van-Dalen, M.Benzem – eds.), Springer Verlag, pages 1–17, 1997.

5. O.Arieli.

A four-valued approach for handling inconsistency in prioritized knowledge-bases. Proc.

10th Annual Conference of the Florida Artificial Intelligence Research Society (FLAIRS’97).

Daytona Beach, Florida, USA. pages 92–96, May 1997.

6. O.Arieli, A.Avron.

Bilattices and paraconsistency. First World Congress on Paraconsistency (WCP’97), Ghent,

Belgium, August 1997.



245

7. O.Arieli, A.Avron.

The logical role of the four-valued bilattice. Proc. 13th IEEE Annual Symposium on Logic

in Computer Science (LICS’98). Indianapolis, Indiana, USA, IEEE Press, pages 218–226,

June 1998.

8. O.Arieli.

Four-valued logics for reasoning with uncertainty in prioritized data. Proc. 7th Conference

on Information Processing and Management of Uncertainty in Knowledge-Base Systems

(IPMU’98). Paris, France, Editions EDK publishers, pages 503–510, July 1998.

9. O.Arieli, A.Avron.

Using four values for computerized reasoning. The 1998 Annual Conference of the European

Association for Computer Science Logic (CSL’98). Brno, Czech Republic, August 1998.

10. O.Arieli, A.Avron.

Nonmonotonic and paraconsistent reasoning: From basic entailments to plausible relations.

To appear in: Proc. 5th European Conference on Symbolic and Quantitative Approaches

to Reasoning with Uncertainty (ecsqaru’99). Lecture Notes in Computer Science, Springer-

Verlag, July 1999.

Others

1. O.Arieli, A.Avron.

Bilattices and paraconsistency. To appear in: “Frontiers in Paraconsistent Logic” (D.Batens,

J.P.Van-Bendegem, C.Mortensen, G.Priest – eds.), King’s College Publications and Re-

search Studies Press.

2. O.Arieli.

Four-valued logics for reasoning with uncertainty in prioritized Data. To appear in: “Infor-
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Academic Publishers.
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classical, 58

construction, 60

distributive, 58

interlaced, 58

logical, 72

potential, 62

binary decision diagrams (BDD), 230

classical bilattice, 58

classical logic

comparison to |=B,FI , 146

comparison to |=B,FR , 188

clausal form sensitivity, 199

coherent theories, 18, 159

coherent values, 63

combining conjunction, 30, 38, 45

combining disjunction, 30, 38, 45, 125

conflation, −, 57

conjunction, ∧

combining, 30, 38, 45

conjunct, 31

internal, 38, 45
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semi-, 31

conjunctive operator, 69

consequence relations

|=B,F , 89, 116

|=B,FΥ , 177

|=B,F≤R , 191

|=B,FI , 131

|=B,Fc , 149

|=B,Fk , 122

|=B,FR , 184

|=B,F≺ , 116
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model, 163
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−}-, 34
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diagnosis, 223

single fault-, 222

diagnostic knowledge-bases, 223

diagnostic systems, 219, 222

coherent-, 220
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dilution, 206

disjunction, ∨

combining, 30, 38, 45, 125

internal, 45

disjunctive operator, 69

distributive bilattice, 58

drowning effect, 196, 197, 200

equivalence class, 129

equivalence, ≡, 32

exact values, 63

expansion, 164
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facts

negative-, 206

positive-, 206

functional completeness, 81

Gentzen-type system, 99
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Hilbert-type system, 105

implication

internal, 31, 125

material, ;, 77

multi-valued, ⊃, 77

strong, →, 108

incomplete literal, 166, 175

inconsistency order, 149

inconsistency set, 132

interlaced bilattice, 58

internal conjunction, 38, 45

internal disjunction, 45
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internal implication, 31, 125

intuitionistic system, 103

irrelevance problem, 121, 131

Kleene’s logic, 63, 82

|=3
Kl, 112

|=3
LP, 112

relations to |=4, 111

representation theorem, 112

knowledge-bases, 162

consistent, 163

diagnostic, 223

exact models of-, 162

layered, 190, 196

mcems of-, 162

prioritized, 190

recoverable, 165

recovered, 165

recovery of-, 163

stratified, 206

weakly stratified, 216
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classical, Σcl, 78

expressive power, 78
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monotonic classical, Σmcl, 78

monotonic, Σmon, 78

representation theorem, 81, 83

strict classical, Σscl, 78

literal

incomplete, 166, 175

recoverable, 166, 169

spoiled, 166, 167

supported, 169

literals, 28

logical bilattices, 72

minimal bifilters, 70

models, 75
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c-most consistent-, 150
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exact, 162

expansion of-, 164

reduction of-, 164

modular order, 129
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modularly pointwise systems, 128, 130

negation, ¬, 55

negative facts, 206

Nixon diamond, 92, 123

nonmonotonicity, 18

normalized formula, 161

paraconsistency, 18

paraconsistent theories, 115

partition, 175

Pearl’s system Z, 200

plausibility logic, 52
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plausible logic, 28

pointwise order
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modularly, 129
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preferential entailment, 116

preferential models, 115, 116

preferential relation

{∨,∧,⊃, t, |
1

−}-, 34

{∧, |
1

−}-, 34

KLM-, 29

preferential system, 116

based on ≤, 119, 130

modularly pointwise-, 128, 130

stoppered-, 116

strongly pointwise-, 119
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proof system

Gentzen-type, GBL, 99
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quantity of information, 179
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recoverable literal, 166, 169

recovered set, 165
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recovery, 163
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redundancy sensitivity, 199

representable operation, 81

RI, 149

comparison to |=B,FI , 149
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sccr, 44

`-cumulative, 48
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`-preferential, 52
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weakly `-preferential, 50
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scr, 44
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truth values, 76
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single fault diagnosis, 222

spoiled literal, 166, 167

stratification, 206

stratified knowledge-bases, 206

strong implication, 108
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