
Repairing Inonsistent Databases:A Model-Theoreti Approahand Abdutive ReasoningOfer Arieli1 Mar Deneker2 Bert Van Nu�elen2 Maurie Bruynooghe21 Department of Computer Siene, The Aademi College of Tel-AvivAntokolski 4, Tel-Aviv 61161, Israeloarieli�mta.a.il2 Department of Computer Siene, The Catholi University of LeuvenCelestijnenlaan 200A, B-3001 Heverlee, Belgiumfmard,bertv,maurieg�s.kuleuven.a.beAbstrat. In this paper we onsider two points of views to the problemof oherent integration of distributed data. First we give a pure model-theoreti analysis of the possible ways to `repair' a database. We do soby haraterizing the possibilities to `reover' onsistent data from an in-onsistent database in terms of those models of the database that exhibitas minimal inonsistent information as reasonably possible. Then we in-trodue an abdutive appliation to restore the onsisteny of a givendatabase. This appliation is based on an abdutive solver (A-system)that implements an SLDNFA-resolution proedure, and omputes a listof data-fats that should be inserted to the database or retrated from itin order to keep the database onsistent. The two approahes for oherentdata integration are related by soundness and ompleteness results.1 IntrodutionIntegration of data oming from di�erent databases is a very ommon,nevertheless nontrivial, task. There are number of di�erent phases in-volved in this proess, the most important of whih are the following:1. Resolving the di�erent ontologies and/or database sheme, setting asingle uni�ed shema, and translating the integrity onstraints3 ofeah database to the new ontology.2. Resolving ontraditions among the integrity onstraints of di�erentloal databases.3. Integrating distributed databases w.r.t. the uni�ed set of integrityonstraints, omputed in the previous phase.3 I.e., the rules that represent intentional truths of a database domain.



Eah one of the phases mentioned above has its own diÆulties andhallenges. For instane, we are not aware of any work that gives a om-plete and robust solution to the problem of the �rst phase. Most of the for-malisms for database integration impliitly assume that all the databasesto be integrated have the same ontology, so the �rst phase is not needed.The reason for separating the remaining two phases is that integrityonstraints represent truths that should be valid in all situations, while adatabase instane represents an existentional truth, i.e., an atual situa-tion. Consequently, the poliy of resolving ontraditions among integrityonstraints is often di�erent than the one that is applied on databasefats, and the former should be applied �rst.Despite their di�erent nature, both these phases are based on someformalisms that maintain ontraditions and allow to draw plausible on-lusions from inonsistent situations. Roughly, there are two approahesto handle this problem:{ Paraonsistent formalisms, in whih the amalgamated data may re-main inonsistent, but the set of onlusions implied by it is notexplosive, i.e.: not every fat follows from an inonsistent database.Paraonsistent proedures for integrating data (e.g., [14, 41℄) are of-ten based on a paraonsistent reasoning proess, suh as LFI [13℄,annotated logis [30, 40℄, or other non-lassial proof systems [5, 37℄.{ Coherent (onsisteny-base) methods, in whih the amalgamated datais revised in order to restore onsisteny (see, e.g., [6, 8, 11, 25, 31℄). Inmany ases the underlying formalism of these approahes are loselyrelated to the theory of belief revision [1, 23℄. In the ontext of databasesystems the idea is to onstrut onsistent databases that are \as loseas possible" to the original database. These \repaired" instanes of thespoiled database orrespond to plausible and ompat ways of restor-ing onsisteny.In this paper we follow the latter approah, and onsider two pointsof views for the last phase of the proess, namely: oherent methods ofintegrating distributed databases (with the same ontology) w.r.t. a onsis-tent set of integrity onstraints. The main diÆulty in this proess stemsfrom the fat that even when eah loal database is onsistent, the ol-letive information of all the distributed databases may not be onsistentanymore. In partiular, fats that are spei�ed in a partiular databasemay violate some integrity onstraints de�ned elsewhere, and so it mightontradit some elements in the uni�ed set of integrity onstraints. Ourgoal is therefore to �nd ways to properly \repair" a ombined database,and restore its onsisteny.



One way of viewing this problem is by a model-theoreti analysisthat haraterizes database repairs in terms of a ertain set of models ofthe inonsistent database (those that, intuitively, minimize the amountof inonsistent information). The other approah is based on abdutivereasoning. For this we use an abdutive solver (A-system, [27℄) that im-plements SLDNFA-resolution [16, 17℄ for omputing a list of data-fatsthat should be inserted to the database or retrated from it in order tokeep the data onsistent. A orresponding appliation was introdued anddesribed in greater details in [7℄. Here we review it in order to keep thispaper self ontained, and putting our results in the right ontext. We thenshow that the abdutive proess of oherent integration of databases issound and omplete w.r.t. the semantis that is indued by the modeltheoreti analysis. 42 Coherent integration of databasesIn this paper we assume that we have a �rst-order language L, based on a�xed database shema S, and a �xed domain D. Every element of D hasa unique name. A database instane D onsists of atoms in the languageL that are instanes of the shema S. As suh, every instane D has a�nite ative domain, whih is a subset of D. A database is a pair (D; IC),where D is a database instane, and IC, the set of integrity onstraints,is a �nite set of formulae in L (assumed to be satis�ed by D).Given a database DB = (D; IC), we apply to it the losed word as-sumption, so only the fats that are expliitly mentioned in D are onsid-ered true. The underlying semantis orresponds, therefore, to minimalHerbrand interpretations.De�nition 1. The minimal Herbrand model HD of a database instaneD is the model of D that assigns true to all the ground instanes of atomiformulae in D, and false to all the other atoms.De�nition 2. A formula  follows from a database instane D (notation:D j=  ) if the minimal Herbrand model of D is also a model of  .De�nition 3. A database DB=(D; IC) is onsistent if IC is a lassiallyonsistent set, and eah formula of it follows from D (notation: D j= IC).Our goal is to integrate n onsistent databases, DBi=(Di; ICi), i=1; : : : n, in suh a way that the ombined data will ontain everything4 Due to a lak of spae some proofs are redued or omitted altogether. Full proofswill appear in an extended version of this paper.



that an be dedued from one soure of information, without violatingany integrity onstraint of another soure. The idea is to onsider theunion of the distributed data, and then to restore its onsisteny. A keynotion in this respet is the following:De�nition 4. A repair of DB = (D; IC) is a pair (Insert;Retrat) suhthat (1) Insert\D=;, (2) Retrat � D,5 and (3) (D[ Insert nRetrat; IC)is a onsistent database.Intuitively, Insert is a set of elements that should be inserted into Dand Retrat is a set of elements that should be removed from D in orderto obtain a onsistent database.De�nition 5. A repaired database ofDB=(D; IC) is a onsistent database(D [ Insert n Retrat ; IC), where (Insert;Retrat) is a repair of DB.As there may be many ways to repair an inonsistent database,6 itis often onvenient to make preferenes among the possible repairs, andonsider only the most preferred ones. Below are two ommon prefereneriteria.De�nition 6. Let (Insert;Retrat) and (Insert0;Retrat0) be two repairs.{ set inlusion preferene riterion : (Insert0;Retrat0) �i (Insert;Retrat),if Insert � Insert0 and Retrat � Retrat0.{ ardinality preferene riterion: (Insert0;Retrat0) � (Insert;Retrat)if jInsertj+ jRetratj�jInsert0j+ jRetrat0j. 7In what follows we assume that � is a �xed pre-order that representssome preferene riterion on the set of repairs.De�nition 7. A �-preferred repair of DB is a repair (Insert;Retrat)of DB, s.t. for every repair (Insert0;Retrat0) of DB, if (Insert;Retrat)�(Insert0;Retrat0) then (Insert0;Retrat0) � (Insert;Retrat). The set of allthe �-preferred repairs of DB is denoted by !(DB;�).De�nition 8. A �-repaired database of DB is a repaired database of DB,onstruted from a �-preferred repair of DB. The set of all the �-repaireddatabases of DB is denoted byR(DB;�) = f (D [ Insert n Retrat ; IC) j (Insert;Retrat) 2(DB;�) g.5 Note that by onditions (1) and (2) it follows that Insert \ Retrat=;.6 Some of them may be trivial and/or useless. For instane, the inonsisteny in(D; IC) = (fp; q; rg; f:pg) may be removed by deleting every element in D, butthis is ertainly not the optimal way of restoring onsisteny in this ase.7 Set inlusion is also onsidered in [3, 11, 14, 25℄; ardinality is onsidered, e.g., in [31℄



Note that if DB is onsistent, and the preferene riterion is a partialorder that is monotoni in the total size of the repairs' omponents (as inDef. 6), thenR(DB;�)=fDBg, so there is nothing to repair, as expeted.It is usual to refer to the �-preferred databases of DB as the onsis-tent databases that are `as lose as possible' to DB itself (see, e.g., [3, 14,31℄). Indeed, denote Th(D) = fP (t) j D j= P (t)g, where P is a relationname and t is a ground tuple, and let dist(D1;D2) be the following set:dist(D1;D2) = (Th(D1) n Th(D2)) [ (Th(D2) n Th(D1))It is easy to see that DB0 = (D0;IC) is a �i-repaired database of DB =(D; IC), if the set dist(D0;D) is minimal (w.r.t. set inlusion) among allthe sets of the form dist(D00;D), where D00 j= IC. Similarly, if #(S)denotes the number of elements in S, then DB0 = (D0;IC) is a �-repaired database of DB = (D; IC), if #(dist(D0;D) is minimal inf#(dist(D00;D)) j D00 j= ICg.De�nition 9. For DBi = (Di; ICi), i = 1; : : : n, let UDB = (D; IC),where D = Sni=1Di and IC = Sni=1 ICi.Given n distributed databases and a preferene riterion �, our goalis to ompute the set R(UDB;�) of the �-repaired databases of UDB(or to be able to ompute, in an eÆient way, some elements in this set).Below are test-ases for suh database integration. 8 9Example 1. Consider a distributed database with a relation teahes ofthe following sheme: (ourse name; teaher name). Suppose also thateah database ontains a single integrity onstraint, stating that the sameourse annot be taught by two di�erent teahers:IC = f 8X8Y 8Z (teahes(X;Y ) ^ teahes(X;Z) ! Y = Z) g.Consider now the following two databases:DB1 = ( fteahes(1; n1); teahes(2; n2)g; IC ),DB2 = ( fteahes(2; n3)g; IC)Clearly, the uni�ed database DB1 [ DB2 is inonsistent. Its preferredrepairs are (;; fteahes(2; n2)g) and (;; fteahes(2; n3)g). Hene, thetwo repaired databases are the following:R1 = ( fteahes(1; n1); teahes(2; n2)g; IC ),R2 = ( fteahes(1; n1); teahes(2; n3)g; IC ).8 See, e.g., [3, 11, 25℄ for more disussions on the examples below.9 In all the following examples we use set inlusion as the preferene riterion. In whatfollows we shall �x a preferene riterion for hoosing the \best" repairs and omitits notation whenever possible.



Example 2. LetD1=fp(a); p(b)g;D2=fq(a); q()g, and IC=f8X(p(X)!q(X))g. Again, (D1; ;) [ (D2;IC) is inonsistent. The orresponding pre-ferred repairs are (fq(b)g; ;) and (;; fp(b)g). The repaired databases areR1 = ( fp(a); p(b); q(a); q(b); q()g; IC ) andR2 = ( fp(a); q(a); q()g; IC ).3 Database repair { A model-theoreti point of viewIn this setion we haraterize the repairs of a given database in termsof its models. First, we onsider arbitrary repairs, and show that theyan be represented either by two-valued models of the theory of integrityonstraints, or by three-valued models of the set of integrity onstraintsand the set of literals, obtained by applying the losed world assumptionon the database fats. Then we fous on the most preferred repairs, andshow that a ertain subset of the three-valued models onsidered abovean be used for haraterizing �-preferred repairs.De�nition 10. Given a valuation � and a truth value x. Denote:�x = fp j p is an atomi formula, and �(p) = xg. 10The following two propositions haraterize repairs in terms of two-valued strutures.Proposition 1. Let (D; IC) be a database and let M be a two-valuedmodel of IC. Let Insert =M tnD and Retrat = DnM t. Then (Insert;Retrat)is a repair of (D; IC).Proof: The de�nitions of Insert and Retrat immediately imply that Insert\D = ; and Retrat�D. For the the last ondition in De�nition 4, notethat in our ase D [ Insert n Retrat = D [ (M t n D) n (D nM t) =M t. Itfollows that M is the least Herbrand model of D [ Insert n Retrat and itis also a model of IC, therefore D [ Insert n Retrat j= IC. 2Proposition 2. Let (Insert;Retrat) be a repair of a database (D; IC).Then there is a lassial model M of IC,11 suh that Insert =M t nD andRetrat = D nM t.Proof: Consider a valuation M , de�ned for every atom p as follows:M(p) = ( t if p2D [ Insert n Retrat,f otherwise.10 Note, in partiular, that (HD)t = D.11 Reall that we assume that IC is lassially onsistent, thus it has lassial models.



By its de�nition, M is a minimal Herbrand model of D [ Insert n Retrat.Now, sine (Insert;Retrat) is a repair of (D; IC), we have that D [Insert n Retrat j= IC, thus M is a (two-valued) model of IC. Moreover,Insert \D=; and Retrat�D, hene we have the following:� M t n D = (D [ Insert n Retrat) n D = Insert,� D nM t = D n (D [ Insert n Retrat) = Retrat. 2The above formalization in terms of two-valued models has the draw-bak that a uni�ed database UDB in need of a repair is inonsistent.In order to avoid reasoning on inonsistent theories, and sine lassiallogi an infer everything from an inonsistent theory, we develop anotherformalization, based on a three-valued semantis. The bene�t of this isthat, as we show below, any database has models w.r.t. appropriate three-valued semantis, from whih it is possible to pinpoint the inonsistentinformation, and thus it is also possible to extrat repairs for UDB.The underlying 3-valued semantis onsidered here is indued by thealgebrai struture T HREE , shown in the double-Hasse diagram of Figure1. Intuitively, the elements t and f in T HREE orrespond to the usuallassial elements true and false, while the third element, >, representsinonsistent information (or belief).6�k
-�tuf

u> ut������������Fig. 1. The struture T HREEViewed horizontally, T HREE is a omplete lattie. We denote themeet, join, and the order reversing operation on the orresponding or-der relation (i.e., �t) by ^, _, and : (respetively). Viewed vertially,T HREE is a semi-upper lattie. We denote by � the meet operationw.r.t. the orresponding order (�k). We note that T HREE is the algebraistruture that de�nes the semantis of several three-valued formalisms,suh as LFI [13℄ and LP [36, 37℄.



The various semanti notions are de�ned on T HREE as natural gener-alizations of similar lassial ones: a valuation � is a funtion that assignsa truth value in T HREE to eah atomi formula. Any valuation is ex-tended to omplex formulae in the obvious way. The set of the designatedtruth values in T HREE (i.e., those elements in T HREE that representtrue assertions) onsists of t and >. A valuation � satis�es a formula  i��( ) is designated. A valuation that assigns a designated value to everyformula in a theory T is a (three-valued) model of T .Next we haraterize the repairs of a database DB by its three-valuedmodels:Proposition 3. Let (D; IC) be a database and let M be a two-valuedmodel of IC. Consider the three-valued valuation N , de�ned for everyatom p by N(p) = HD(p) �M(p), and let Insert = N> n D, Retrat =N> \D. Then N is a three-valued model of D [ IC, and (Insert;Retrat)is a repair of (D; IC).Proof: For the �rst laim, note that for three-valued valuations � and �,if for every atom p, �(p)�k �(p), then for every formula  , �( )�k �( )(the proof is by an easy indution on the struture of  ). We denote thisfat by ��k�. Note also, that if ��k� and � is a model of some theory T ,then � is also a model of T . Now, sine by the de�nition of N , N�kHD,and sine HD is a model of D, N is a model D. Similarly, N �kM , andM is a model of IC, thus N is also a model of IC.For the seond part one has to show that the three onditions of De�-nition 4 are satis�ed. Indeed, the �rst two onditions obviously hold. Forthe last ondition, note that D[InsertnRetrat = D[(N>nD)n(N>\D) =D[ (M t nD) n (Mf \D) = D[ (M t nD) n (D nM t) =M t. It follows thatM is the minimal Herbrand model of D [ Insert n Retrat and it is also amodel of IC, therefore D [ Insert n Retrat j= IC. 2Again, it is possible to show that the onverse is also true:Proposition 4. Let (Insert;Retrat) be a repair of a database (D; IC).Then there is a three-valued model N of D[IC, suh that Insert = N>nDand Retrat = N> \ D.Outline of proof: Consider a valuation N , de�ned as follows:N(p) = 8><>:> if p2 Insert [ Retrat,t if p 62 Insert [ Retrat but p2D,f otherwise.



Clearly, N is a (three-valued) model of D and IC, and N> nD = (Insert[Retrat) n D = Insert, N> \ D = (Insert [ Retrat) \ D = Retrat. 2The last two propositions haraterize the repairs of UDB in terms ofpairs that are assoiated with three-valued models of D [ IC. We shalldenote the elements of these pairs as follows:De�nition 11. Let N be a three-valued model and let DB = (D; IC)be a knowledge-base. Denote: InsertN = N> nD and RetratN = N>\D.We onlude this model-theoreti analysis by haraterizing the set ofthe �-preferred repairs, where � is one of the preferene riteria, onsid-ered in De�nition 6 (i.e., set inlusion or di�erenes in ardinality).De�nition 12. Given a knowledge-base DB = (D; IC), denote:MDB = fN j N �k HD �M; M is a lassial model of ICg: 12Example 3. In what follows we shall write M = fpi :xig for M(pi) = xi(xi 2 ft; f;>g, i= 1; : : : ; n). Let DB = (fp; rg; fp ! qg). We have thatHD = fp : t; q :f; r : tg, and soMDB = fN j N(p)�k t; N(q)=>; N(r)�ktg [ fN j N(p)=>; N(q)�k f; N(r)�k tg:De�nition 13. Let S be a set of three-valued valuations, and N1; N22S.{ N1 is �i-more onsistent than N2, if N>1 � N>2 .{ N1 is �-more onsistent than N2, if #(N>1 ) < #(N>2 ). 13{ N 2S is�i-maximally onsistent in S (respetively,N is�-maximallyonsistent in S), if there is no N 02S that is �i-more onsistent thanN (respetively, no N 02S is �-more onsistent than N).Proposition 5. If N is a �i-maximally onsistent element in MDB,then (InsertN ; RetratN ) is a �i-preferred repair of DB.Proposition 6. Suppose that (Insert; Retrat) is a �i-preferred repairof DB. Then there is a �i-maximally onsistent element N in MDB s.t.Insert = InsertN and Retrat = RetratN .Note 1. Propositions 5 and 6 hold also when �i is replaed by �.12 Note that N is a three-valued valuation and M is a two-valued model of IC.13 Reall that #(S) denotes the size of S.



Example 4. Consider again Example 2. We have that:UDB = (D; IC) = ( fp(a); p(b); q(a); q()g; f8X(p(X)!q(X))g ):Thus HD = fp(a) : t; p(b) : t; p() : f; q(a) : t; q(b) : f; q() : tg, and thelassial models of IC are those in whih either p(y) is false or q(y) is truefor every y 2 fa; b; g. Now, sine in HD neither p(b) is false nor q(b) istrue, it follows that every element inMUDB must assign > either to p(b)or to q(b). Hene, the �i-maximally onsistent elements inMUDB (whihin this ase are also the �-maximally onsistent elements inMUDB) arethe following:M1 = f p(a) : t; p(b) :>; p() :f; q(a) : t; q(b) :f; q() : t gM2 = f p(a) : t; p(b) : t; p() :f; q(a) : t; q(b) :>; q() : t gBy Propositions 5 and 6, then, the �i-preferred repairs of UDB (whihare also its �-preferred repairs) are (InsertM1 ; RetratM1) = (;; fp(b)g)and (InsertM2 ; RetratM2) = (fq(b)g; ;) (f. Example 2).Similarly, the �i-maximally onsistent (and the �-maximally on-sistent) elements in MDB, where DB is the database of Example 3, areN1 = f p : t; q :>; r : t g and N2 = f p :>; q : f; r : t g. It follows that thepreferred repairs in this ase are (fqg; ;) and (;; fpg).4 Database repair { An abdutive approahIn [7℄ we have presented an abdutive approah to the problem of om-bining inonsistent databases. In this setion we give an outline of thismethod. For more detailed desription the reader is referred to [7℄; the ap-pliation itself is available at http://www.s.kuleuven.a.be/�dtai/kt.A high level desription of the integration problem under onsidera-tion is given in ID-logi [15℄, whih is a framework for delarative knowl-edge representation that extends lassial logi with indutive de�nitions.This logi inorporates two types of knowledge: de�nitional and asser-tional. Assertional knowledge is a set of �rst-order statements, represent-ing a general truth about the domain of disourse. De�nitional knowledgeis a set of rules of the form p B, in whih the head p is a prediate andthe body B is a �rst order formula. A prediate that appears in a headof a rule is alled de�ned ; a prediate that does not our in any head isalled open, or abduible.A theory T in ID-logi is therefore a pair (Def, Fol), where Def (thede�nitional knowledge) is a set of rules as desribed above, and Fol (theassertional knowledge) is a set of �rst order statements. The meaning ofT is de�ned by the extended well-founded semantis [35℄ as follows: letM



be an arbitrary two-valued interpretation for the open prediates in Def.One M is determined, Def beomes a standard logi program, with aunique well-founded model [42℄. This model is then a model of the wholetheory T if it is also a model of Fol.ID-logi is a generalization of the notion of abdutive logi programs(ALP) [18℄. For instane, the open prediates of a theory in ID-logi or-respond to the abduibles in an abdutive logi program. Consequently,solutions of abdutive logi programs that are omputed by an abdu-tive solver are also models of the orresponding ID-logi theory. Herewe use suh a solver, alled the A-system [7, 27℄ for omputing solutions.The main idea of this solver is to redue a high level spei�ation into alower level onstraint store, whih is managed by a onstraint solver. Thesolver ombines the refutation proedures SLDNFA [17℄ and ACLP [29℄,and uses an improved ontrol strategy. In our ase, solutions are repairs ofa database, and in order to ompute preferred solutions (i.e., preferred re-pairs for the integrated database), the A-system has been extended witha simple branh and bound omponent, alled optimizer (see [7℄). Thisis atually a \�lter" on the solutions spae that speeds-up exeution andmakes sure that only the desired solutions will be obtained.The elements of the distributed databases are uniformly representedby the unary prediate db, and the elements of a repaired database arerepresented by the unary prediate fat. In order to ompute these ele-ments, two open prediates are used: retrat and insert. These predi-ates represent, respetively, the fats that may be removed and those thatmay be introdued for restoring the onsisteny of the uni�ed database.The rules for omputing the elements of a repaired database are thende�ned as follows:fat(X) :- db(X), not retrat(X).fat(X) :- insert(X).In addition, the following integrity onstraints are spei�ed: 14{ It is inonsistent to have a retrated element that does not belong tosome database:i :- retrat(X), not db(X).{ It is inonsistent to have an inserted element that belongs to a database:i :- insert(X), db(X).To make sure that all the integrity onstraints will hold w.r.t. theombined data, every ourrene of a database fat R(x) in some integrityonstraint is replaed by fat(R(x)).14 In what follows we use the notation \i :- B" to denote the denial \false  B".



Below is a ode for implementing Example 1: 15defined(fat(_)). defined(db(_)). open(insert(_)). open(retrat(_)).fat(X) :- db(X), not(retrat(X)).fat(X) :- insert(X).i :- insert(X), db(X).i :- retrat(X), not db(X).db(teahes(1,1)). db(teahes(2,2)). % D1db(teahes(2,3)). % D2i :- fat(teahes(X,Y)), fat(teahes(X,Z)), Y\=Z. % ICWe have exeuted this ode as well as other examples from the liter-ature in our system. The soundness and ompleteness theorems given inthe next setion guarantee that the output in eah ase is indeed the setof the most preferred solutions of the orresponding problem.5 Soundness and CompletenessIn this setion we relate the two approahes of the previous setionsthrough soundness and ompleteness theorems. For that we �rst reallsome related results from [7℄ (Propositions 7 { 10 below). In what followswe denote by T an abdutive theory, onstruted as desribed in Setion4 for de�ning a omposition problem of n databases DB1; : : : ;DBn.Proposition 7. Every abdutive solution that is obtained by the A-systemfor T is a repair of UDB.Proposition 8. Suppose that the query ` true' has a �nite SLDNFA-tree w.r.t. T . Then every repair of UDB is obtained by running T in theA-system .Proposition 9. Every output that is obtained by running T in the A-systemtogether with an �i-optimizer [respetively, together with a �-optimizer℄is an �i-preferred repair [respetively, a �-preferred repair℄ of UDB.Proposition 10. Suppose that the query ` true' has a �nite SLDNFA-tree w.r.t. T . Then every �i-preferred repair [respetively, every �-preferredrepair℄ of UDB is obtained by running T in the A-system together withan �i-optimizer [respetively, together with a �-optimizer℄.By the propositions above and those of Setion 3, we have:15 The ode for Example 2 is similar.



Corollary 1. Suppose that the query ` true' has a �nite SLDNFArefutation tree w.r.t. T . Then:1. for every output (Insert; Retrat) of the A-system for T , there is alassial model M of IC s.t. Insert =M t n D and Retrat = D nM t.2. for every two-valued modelM of IC there is an output (Insert; Retrat)of the A-system for T , s.t. Insert =M t n D and Retrat = D nM t.Corollary 2. Under the same assumption as that of Corollary 1,1. for every output (Insert; Retrat) of the A-system for T there is a 3-valued model N of D[IC, s.t. InsertN= Insert and RetratN=Retrat.2. for every 3-valued model N of D[IC there is an output (Insert; Retrat)of the A-system for T , s.t. Insert= InsertN and Retrat=RetratN .Corollary 3. In the notations of Corollary 1 and under its assumption,1. for every output (Insert; Retrat) that is obtained by running T asan input to the A-system together with an �i-optimizer [respetively,together with a �-optimizer℄, there is an �i-maximally onsistentelement [respetively, a �-maximally onsistent element℄ N inMUDBs.t. InsertN = Insert and RetratN = Retrat.2. for every �i-maximally onsistent element [respetively, �-maximallyonsistent element℄ N in MUDB there is a solution (Insert; Retrat)that is obtained by running T in the A-system together with an �i-optimizer [respetively, together with a �-optimizer℄ s.t. Insert = InsertNand Retrat = RetratN .6 Related worksCoherent integration and proper representation of amalgamated data isextensively studied in the literature (see, e.g., [8, 12, 22, 24, 25, 31{34, 38,41℄). Common approahes for dealing with this task are based on teh-niques of belief revision [31℄, methods of resolving ontraditions by quan-titative onsiderations (suh as \majority vote" [32℄) or qualitative ones(e.g., de�ning priorities on di�erent soures of information or preferringertain data over another [4, 9℄), and approahes that are based on rewrit-ing rules for representing the information in a spei� form [25℄. As inour ase, abdution is used for database updating in [28℄ and an extendedform of abdution is used in [26, 39℄ to explain modi�ations in a theory.The use of three-valued logis is also a well-known tehnique for main-taining inomplete or inonsistent information; suh logis are often used



for de�ning �xpoint semantis of inomplete logi programs [19, 42℄, andso in priniple they an be applied on integrity onstraints in an (ex-tended) lause form [15℄. Three-valued formalisms suh as LFI [13℄ arealso the basis of paraonsistent methods to onstrut database repairs[14℄ and are useful in general for pinpointing inonsistenies [37℄. As notedabove, this is also the role of the three-valued semantis in our ase.Other approahes are based on semantis with arbitrarily many truthvalues, whih allow to deode within the language itself some \meta-information" suh as on�dene fators, amount of belief for or againsta spei� assertion, et. These approahes ombine orresponding for-malisms of knowledge representation (suh as annotated logi programs[40, 41℄ or bilattie-based logis [5, 21, 33℄) together with non-lassialrefutation proedures [20, 30, 40℄ that allow to detet inonsistent partsof a database and maintain them.A losely related topi is the problem of giving onsistent query an-swers in inonsistent database [3, 10, 25℄. The idea is to answer databasequeries in a onsistent way without omputing the repairs of the database.There are some other appliations for integrating possibly onitinginformation and updating databases (e.g., LUPS [2℄, BReLS [31℄, RI [30℄,Subrahmanian's mediator of annotated databases [41℄, and the systemof Franoni et al. [22℄). In omparison with suh systems, we note thatthe main advantages of the present appliation are its expressive power(to the best of our knowledge, our approah is more expressive than anyother available appliation for oherent data integration), the fat that nosyntatial embedding of �rst-order formulae into other languages nor anyextensions of two-valued semantis are neessary (our approah is a puregeneralization of lassial refutation proedures), and the enapsulationof the way that the underlying data is kept oherent (no input fromthe reasoner nor any other external poliy for making preferenes amongoniting soures is ompulsory in order to resolve ontraditions).7 Future workWe onlude by skething some issues for future work. First, as we havealready noted, two more phases, whih have not been onsidered here,might be needed for a omplete data integration: (a) translation of dif-ferene onepts to a uni�ed ontology, and (b) resolving ontraditionsamong di�erent integrity onstraints. Another issue for future work is toallow de�nitions of onepts (and not only integrity onstraints) in thedatabases (see [15℄ for a sketh on how this may be done). This data may
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