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Abstract. In this paper we consider two points of views to the problem
of coherent integration of distributed data. First we give a pure model-
theoretic analysis of the possible ways to ‘repair’ a database. We do so
by characterizing the possibilities to ‘recover’ consistent data from an in-
consistent database in terms of those models of the database that exhibit
as minimal inconsistent information as reasonably possible. Then we in-
troduce an abductive application to restore the consistency of a given
database. This application is based on an abductive solver (A-system)
that implements an SLDNFA-resolution procedure, and computes a list
of data-facts that should be inserted to the database or retracted from it
in order to keep the database consistent. The two approaches for coherent
data integration are related by soundness and completeness results.

1 Introduction

Integration of data coming from different databases is a very common,
nevertheless nontrivial, task. There are number of different phases in-
volved in this process, the most important of which are the following:

1. Resolving the different ontologies and/or database scheme, setting a
single unified schema, and translating the integrity constraints® of
each database to the new ontology.

2. Resolving contradictions among the integrity constraints of different
local databases.

3. Integrating distributed databases w.r.t. the unified set of integrity
constraints, computed in the previous phase.

3 1.e., the rules that represent intentional truths of a database domain.



Each one of the phases mentioned above has its own difficulties and
challenges. For instance, we are not aware of any work that gives a com-
plete and robust solution to the problem of the first phase. Most of the for-
malisms for database integration implicitly assume that all the databases
to be integrated have the same ontology, so the first phase is not needed.

The reason for separating the remaining two phases is that integrity
constraints represent truths that should be valid in all situations, while a
database instance represents an existentional truth, i.e., an actual situa-
tion. Consequently, the policy of resolving contradictions among integrity
constraints is often different than the one that is applied on database
facts, and the former should be applied first.

Despite their different nature, both these phases are based on some
formalisms that maintain contradictions and allow to draw plausible con-
clusions from inconsistent situations. Roughly, there are two approaches
to handle this problem:

— Paraconsistent formalisms, in which the amalgamated data may re-
main inconsistent, but the set of conclusions implied by it is not
explosive, i.e.: not every fact follows from an inconsistent database.
Paraconsistent procedures for integrating data (e.g., [14,41]) are of-
ten based on a paraconsistent reasoning process, such as LFI [13],
annotated logics [30,40], or other non-classical proof systems [5, 37].

— Coherent (consistency-base) methods, in which the amalgamated data
is revised in order to restore consistency (see, e.g., [6,8,11,25,31]). In
many cases the underlying formalism of these approaches are closely
related to the theory of belief revision [1, 23]. In the context of database
systems the idea is to construct consistent databases that are “as close
as possible” to the original database. These “repaired” instances of the
spoiled database correspond to plausible and compact ways of restor-
ing consistency.

In this paper we follow the latter approach, and consider two points
of views for the last phase of the process, namely: coherent methods of
integrating distributed databases (with the same ontology) w.r.t. a consis-
tent set of integrity constraints. The main difficulty in this process stems
from the fact that even when each local database is consistent, the col-
lective information of all the distributed databases may not be consistent
anymore. In particular, facts that are specified in a particular database
may violate some integrity constraints defined elsewhere, and so it might
contradict some elements in the unified set of integrity constraints. Our
goal is therefore to find ways to properly “repair” a combined database,
and restore its consistency.



One way of viewing this problem is by a model-theoretic analysis
that characterizes database repairs in terms of a certain set of models of
the inconsistent database (those that, intuitively, minimize the amount
of inconsistent information). The other approach is based on abductive
reasoning. For this we use an abductive solver (A-system, [27]) that im-
plements SLDNFA-resolution [16,17] for computing a list of data-facts
that should be inserted to the database or retracted from it in order to
keep the data consistent. A corresponding application was introduced and
described in greater details in [7]. Here we review it in order to keep this
paper self contained, and putting our results in the right context. We then
show that the abductive process of coherent integration of databases is
sound and complete w.r.t. the semantics that is induced by the model
theoretic analysis. 4

2 Coherent integration of databases

In this paper we assume that we have a first-order language L, based on a
fixed database schema S, and a fixed domain D. Every element of D has
a unique name. A database instance D consists of atoms in the language
L that are instances of the schema S. As such, every instance D has a
finite active domain, which is a subset of D. A database is a pair (D, ZC),
where D is a database instance, and ZC, the set of integrity constraints,
is a finite set of formulae in L (assumed to be satisfied by D).

Given a database DB = (D, ZC), we apply to it the closed word as-
sumption, so only the facts that are explicitly mentioned in D are consid-
ered true. The underlying semantics corresponds, therefore, to minimal
Herbrand interpretations.

Definition 1. The minimal Herbrand model HP of a database instance
D is the model of D that assigns true to all the ground instances of atomic
formulae in D, and false to all the other atoms.

Definition 2. A formula 1) follows from a database instance D (notation:
D |= 1) if the minimal Herbrand model of D is also a model of .

Definition 3. A database DB= (D, ZC) is consistent if ZC is a classically
consistent set, and each formula of it follows from D (notation: D = ZC).

Our goal is to integrate n consistent databases, DB; = (D;, ZC;), i =
1,...n, in such a way that the combined data will contain everything

* Due to a lack of space some proofs are reduced or omitted altogether. Full proofs
will appear in an extended version of this paper.



that can be deduced from one source of information, without violating
any integrity constraint of another source. The idea is to consider the
union of the distributed data, and then to restore its consistency. A key
notion in this respect is the following:

Definition 4. A repair of DB = (D, IC) is a pair (Insert, Retract) such
that (1) Insert N D=0, (2) Retract C D,? and (3) (D Ulnsert \ Retract, ZC)
is a consistent database.

Intuitively, Insert is a set of elements that should be inserted into D
and Retract is a set of elements that should be removed from D in order
to obtain a consistent database.

Definition 5. A repaired database of DB= (D, ZC) is a consistent database
(D U Insert \ Retract, ZC), where (Insert, Retract) is a repair of DB.

As there may be many ways to repair an inconsistent database,’® it
is often convenient to make preferences among the possible repairs, and
consider only the most preferred ones. Below are two common preference
criteria.

Definition 6. Let (Insert, Retract) and (Insert’, Retract’) be two repairs.

— set inclusion preference criterion : (Insert’, Retract’) <; (Insert, Retract),
if Insert C Insert’ and Retract C Retract’.

— cardinality preference criterion: (Insert’, Retract’) <. (Insert, Retract)
if |Insert| + |Retract| <|Insert’| + |Retract’|. 7

In what follows we assume that < is a fixed pre-order that represents
some preference criterion on the set of repairs.

Definition 7. A <-preferred repair of DB is a repair (Insert, Retract)
of DB, s.t. for every repair (Insert’, Retract’) of DB, if (Insert, Retract) <
(Insert’, Retract’) then (Insert’, Retract’) < (Insert, Retract). The set of all
the <-preferred repairs of DB is denoted by !(DB, <).

Definition 8. A <-repaired database of DB is a repaired database of DB,
constructed from a <-preferred repair of DB. The set of all the <-repaired
databases of DB is denoted by

R(DB,<) ={ (D Ulnsert \ Retract, ZC) | (Insert, Retract) € (DB, <) }.

® Note that by conditions (1) and (2) it follows that Insert N Retract= 0.

 Some of them may be trivial and/or useless. For instance, the inconsistency in
(D, IC) = ({p,q,r},{—p}) may be removed by deleting every element in D, but
this is certainly not the optimal way of restoring consistency in this case.

7 Set inclusion is also considered in [3, 11, 14, 25]; cardinality is considered, e.g., in [31]



Note that if DB is consistent, and the preference criterion is a partial
order that is monotonic in the total size of the repairs’ components (as in
Def. 6), then R(DB, <) ={DB}, so there is nothing to repair, as expected.

It is usual to refer to the <-preferred databases of DB as the consis-
tent databases that are ‘as close as possible’ to DB itself (see, e.g., [3, 14,
31]). Indeed, denote Th(D) = {P(t) | D = P(t)}, where P is a relation
name and ¢ is a ground tuple, and let dist(D;, D) be the following set:

dist(D1, Dy) = (Th(Dy) \ Th(D2)) U (Th(D2) \ Th(D1))
It is easy to see that DB = (D', ZIC) is a <;-repaired database of DB =
(D, ZIC), if the set dist(D’, D) is minimal (w.r.t. set inclusion) among all
the sets of the form dist(D”,D), where D" = ZC. Similarly, if #(S5)
denotes the number of elements in S, then DB’ = (D',ZC) is a <.
repaired database of DB = (D, ZC), if #(dist(D’,D) is minimal in
{#(dist(D",D)) | D" = IC}.

Definition 9. For DB; = (D;, IC;), i = 1,...n, let UDB = (D, IC),
where D = |JI'_, D; and IC = J;-, ZC;.

Given n distributed databases and a preference criterion <, our goal
is to compute the set R(UDB, <) of the <-repaired databases of UDB
(or to be able to compute, in an efficient way, some elements in this set).
Below are test-cases for such database integration. 8 *

Ezample 1. Consider a distributed database with a relation teaches of
the following scheme: (course name,teacher name). Suppose also that
each database contains a single integrity constraint, stating that the same
course cannot be taught by two different teachers:

IC = {VXVYVZ (teaches(X,Y) A teaches(X,Z) — Y =2Z) }.
Consider now the following two databases:

DBy = ({teaches(ci,n1), teaches(ca,n2)}, IC),
DBy = ({teaches(cz,mn3)}, ZC)
Clearly, the unified database DB; U DBy is inconsistent. Its preferred

repairs are (0, {teaches(ca,n2)}) and (0, {teaches(ca,n3)}). Hence, the
two repaired databases are the following:

R1 = ({teaches(c1,n1), teaches(ca,na)}, ZC),
Ro = ({teaches(c1,n1), teaches(ca,n3)}, ZC).

® See, e.g., [3,11,25] for more discussions on the examples below.

% In all the following examples we use set inclusion as the preference criterion. In what
follows we shall fix a preference criterion for choosing the “best” repairs and omit
its notation whenever possible.



Ezample 2. Let D1 ={p(a),p(b)}, Da={q(a),q(c)}, and ZC={VX (p(X) —
q(X))}. Again, (D1, 0) U (D2, ZC) is inconsistent. The corresponding pre-
ferred repairs are ({g(b)}, 0) and (0, {p(b)}). The repaired databases are

R1 = ({p(a),p(b), q(a), q(b),q(c)}, IC) and Ry = ({p(a), q(a), q(c)}, ZC).

3 Database repair — A model-theoretic point of view

In this section we characterize the repairs of a given database in terms
of its models. First, we consider arbitrary repairs, and show that they
can be represented either by two-valued models of the theory of integrity
constraints, or by three-valued models of the set of integrity constraints
and the set of literals, obtained by applying the closed world assumption
on the database facts. Then we focus on the most preferred repairs, and
show that a certain subset of the three-valued models considered above
can be used for characterizing <-preferred repairs.

Definition 10. Given a valuation v and a truth value z. Denote:

v® = {p | p is an atomic formula, and v(p) = z}. '°

The following two propositions characterize repairs in terms of two-
valued structures.

Proposition 1. Let (D, ZC) be a database and let M be a two-valued
model of IC. Let Insert = M*\D and Retract = D\M?". Then (Insert, Retract)
is a repair of (D, IC).

Proof: The definitions of Insert and Retract immediately imply that Insertn
D = and Retract C D. For the the last condition in Definition 4, note
that in our case D U Insert \ Retract = DU (M!'\ D) \ (D \ M) = M*. Tt
follows that M is the least Herbrand model of D U Insert \ Retract and it
is also a model of ZC, therefore D U Insert \ Retract = ZC. O

Proposition 2. Let (Insert,Retract) be a repair of a database (D, ZC).
Then there is a classical model M of ZC,'* such that Insert = M\ D and
Retract = D\ M'.

Proof: Consider a valuation M, defined for every atom p as follows:

M(p) =

t if peDUInsert\ Retract,
f  otherwise.

10 Note, in particular, that (Hv)t =1D.
' Recall that we assume that ZC is classically consistent, thus it has classical models.



By its definition, M is a minimal Herbrand model of D U Insert \ Retract.
Now, since (Insert,Retract) is a repair of (D, ZC), we have that D U
Insert \ Retract = ZC, thus M is a (two-valued) model of ZC. Moreover,
Insert N D=1{ and Retract C D, hence we have the following:

e M!\ D = (DU lnsert \ Retract) \ D = Insert,
e D\ M' =D\ (DU Insert\ Retract) = Retract. O

The above formalization in terms of two-valued models has the draw-
back that a unified database UDB in need of a repair is inconsistent.
In order to avoid reasoning on inconsistent theories, and since classical
logic can infer everything from an inconsistent theory, we develop another
formalization, based on a three-valued semantics. The benefit of this is
that, as we show below, any database has models w.r.t. appropriate three-
valued semantics, from which it is possible to pinpoint the inconsistent
information, and thus it is also possible to extract repairs for UDB.

The underlying 3-valued semantics considered here is induced by the
algebraic structure THREE, shown in the double-Hasse diagram of Figure
1. Intuitively, the elements ¢t and f in THREE correspond to the usual
classical elements true and false, while the third element, T, represents
inconsistent information (or belief).

<k

Fig. 1. The structure THREE

Viewed horizontally, THREE is a complete lattice. We denote the
meet, join, and the order reversing operation on the corresponding or-
der relation (i.e., <) by A, V, and — (respectively). Viewed vertically,
THREE is a semi-upper lattice. We denote by @& the meet operation
w.r.t. the corresponding order (<j). We note that THREE is the algebraic
structure that defines the semantics of several three-valued formalisms,
such as LFI [13] and LP [36, 37].



The various semantic notions are defined on 7THREE as natural gener-
alizations of similar classical ones: a valuation v is a function that assigns
a truth value in THREE to each atomic formula. Any valuation is ex-
tended to complex formulae in the obvious way. The set of the designated
truth values in THREE (i.e., those elements in THREE that represent
true assertions) consists of ¢ and T. A valuation v satisfies a formula 1) iff
v(1) is designated. A valuation that assigns a designated value to every
formula in a theory 7 is a (three-valued) model of T.

Next we characterize the repairs of a database DB by its three-valued
models:

Proposition 3. Let (D, ZC) be a database and let M be a two-valued
model of ZC. Consider the three-valued valuation N, defined for every
atom p by N(p) = HP(p) @ M(p), and let Insert = N7 \ D, Retract =
N ND. Then N is a three-valued model of D UZC, and (Insert, Retract)
is a repair of (D, ZIC).

Proof: For the first claim, note that for three-valued valuations v and u,
if for every atom p, v(p) >y pu(p), then for every formula 1, v (1) >j (1))
(the proof is by an easy induction on the structure of /). We denote this
fact by v >y u. Note also, that if v > u and p is a model of some theory T,
then v is also a model of 7. Now, since by the definition of N, N >, HP,
and since HP is a model of D, N is a model D. Similarly, N >, M, and
M is a model of ZC, thus N is also a model of ZC.

For the second part one has to show that the three conditions of Defi-
nition 4 are satisfied. Indeed, the first two conditions obviously hold. For
the last condition, note that DUInsert\Retract = DU(N "\D)\ (N ND) =
DU(M!\ D)\ (M/ND) =DU(M'\D)\(D\ M) = M Tt follows that
M is the minimal Herbrand model of D U Insert \ Retract and it is also a
model of ZC, therefore D U Insert \ Retract |= ZC. 0

Again, it is possible to show that the converse is also true:

Proposition 4. Let (Insert, Retract) be a repair of a database (D, ZC).
Then there is a three-valued model N of DUZC, such that Insert = N\ D
and Retract = N N D.

Outline of proof: Consider a valuation N, defined as follows:

T if p€lnsert U Retract,
N(p) =<t if pélnsert URetract but peD,

f  otherwise.



Clearly, N is a (three-valued) model of D and ZC, and N "\ D = (Insert U
Retract) \ D = Insert, NT ND = (Insert U Retract) N D = Retract. 0

The last two propositions characterize the repairs of UDB in terms of
pairs that are associated with three-valued models of D U ZC. We shall
denote the elements of these pairs as follows:

Definition 11. Let N be a three-valued model and let DB = (D, ZC)
be a knowledge-base. Denote: Insert™ = N7\ D and Retract’ = NTND.

We conclude this model-theoretic analysis by characterizing the set of
the <-preferred repairs, where < is one of the preference criteria, consid-
ered in Definition 6 (i.e., set inclusion or differences in cardinality).

Definition 12. Given a knowledge-base DB = (D, ZC), denote:
MPB =[N | N >, HP @ M, M is a classical model of ZC}. 12

Ezample 3. In what follows we shall write M = {p;:z;} for M(p;) = =;
(x; €{t,f, T}, i=1,...,n). Let DB = ({p,r}, {p — q}). We have that
HP = {p:t, q: f, r:t}, and so MPB = {N | N(p)>,t, N(q)=T, N(r)>}
t} UA{N | N(p)=T,N(q) 2k f, N(r) 2t}

Definition 13. Let S be a set of three-valued valuations, and Ny, No €S.

— Ny is <;-more consistent than Ny, if NlT C NQT.

— Ny is <.-more consistent than No, if #(N|') < #(N, ). 13

— N €S is <;-mazimally consistent in S (respectively, N is <.-mazimally
consistent in S), if there is no N’ €S that is <;-more consistent than
N (respectively, no N' €S is <.-more consistent than N).

Proposition 5. If N is a <;-mazimally consistent element in MPB,
then (Insert™, Retract’) is a <;-preferred repair of DB.

Proposition 6. Suppose that (Insert, Retract) is a <;-preferred repair
of DB. Then there is a <;-mazimally consistent element N in MPEB s.t.
Insert = Insert’" and Retract = Retract” .

Note 1. Propositions 5 and 6 hold also when <; is replaced by <..

12 Note that N is a three-valued valuation and M is a two-valued model of ZC.
13 Recall that #(S) denotes the size of S.



Ezample /. Consider again Example 2. We have that:

UDB = (D, IC) = ({p(a), p(b), q(a), q(c)}, {VX(p(X)—=q(X))}).
Thus HP = {p(a) :t, p(b) : t, p(c): f, q(a) : t, q(b): f, q(c) : t}, and the
classical models of ZC are those in which either p(y) is false or ¢(y) is true
for every y € {a,b,c}. Now, since in HP neither p(b) is false nor q(b) is
true, it follows that every element in MYPB must assign T either to p(b)
or to ¢(b). Hence, the <;-maximally consistent elements in MYPB (which
in this case are also the <.-maximally consistent elements in M“P5) are
the following:

My = {pla):t, p(b): T, p(c): f, qla):t, q(b):f, q(c):t}

My = {p(a):t, p(b):t, p(c): f, qla):t, q(b): T, q(c):t }
By Propositions 5 and 6, then, the <;-preferred repairs of UDB (which
are also its <.-preferred repairs) are (Insert!, Retract™!) = (0, {p(b)})
and (Insert™?, Retract?) = ({¢(b)}, 0) (cf. Example 2).

Similarly, the <;-maximally consistent (and the <,-maximally con-
sistent) elements in MPB, where DB is the database of Example 3, are
Ny ={p:it,q:T,r:t}and Ny ={p:T,q:f, r:t}. It follows that the
preferred repairs in this case are ({q}, ) and (0, {p}).

4 Database repair — An abductive approach

In [7] we have presented an abductive approach to the problem of com-
bining inconsistent databases. In this section we give an outline of this
method. For more detailed description the reader is referred to [7]; the ap-
plication itself is available at http://www.cs.kuleuven.ac.be/~dtai/kt.

A high level description of the integration problem under considera-
tion is given in ID-logic [15], which is a framework for declarative knowl-
edge representation that extends classical logic with inductive definitions.
This logic incorporates two types of knowledge: definitional and asser-
tional. Assertional knowledge is a set of first-order statements, represent-
ing a general truth about the domain of discourse. Definitional knowledge
is a set of rules of the form p< B, in which the head p is a predicate and
the body B is a first order formula. A predicate that appears in a head
of a rule is called defined; a predicate that does not occur in any head is
called open, or abducible.

A theory T in ID-logic is therefore a pair (Def, Fol), where Def (the
definitional knowledge) is a set of rules as described above, and Fol (the
assertional knowledge) is a set of first order statements. The meaning of
T is defined by the extended well-founded semantics [35] as follows: let M



be an arbitrary two-valued interpretation for the open predicates in Def.
Once M is determined, Def becomes a standard logic program, with a
unique well-founded model [42]. This model is then a model of the whole
theory 7 if it is also a model of Fol.

ID-logic is a generalization of the notion of abductive logic programs
(ALP) [18]. For instance, the open predicates of a theory in ID-logic cor-
respond to the abducibles in an abductive logic program. Consequently,
solutions of abductive logic programs that are computed by an abduc-
tive solver are also models of the corresponding ID-logic theory. Here
we use such a solver, called the A-system [7,27] for computing solutions.
The main idea of this solver is to reduce a high level specification into a
lower level constraint store, which is managed by a constraint solver. The
solver combines the refutation procedures SLDNFA [17] and ACLP [29],
and uses an improved control strategy. In our case, solutions are repairs of
a database, and in order to compute preferred solutions (i.e., preferred re-
pairs for the integrated database), the A-system has been extended with
a simple branch and bound component, called optimizer (see [7]). This
is actually a “filter” on the solutions space that speeds-up execution and
makes sure that only the desired solutions will be obtained.

The elements of the distributed databases are uniformly represented
by the unary predicate db, and the elements of a repaired database are
represented by the unary predicate fact. In order to compute these ele-
ments, two open predicates are used: retract and insert. These predi-
cates represent, respectively, the facts that may be removed and those that
may be introduced for restoring the consistency of the unified database.
The rules for computing the elements of a repaired database are then
defined as follows:

fact(X) :- db(X), not retract(X).
fact(X) :- insert(X).

In addition, the following integrity constraints are specified: '4

— It is inconsistent to have a retracted element that does not belong to
some database:
ic :- retract(X), not db(X).

— It is inconsistent to have an inserted element that belongs to a database:
ic :- insert(X), db(X).

To make sure that all the integrity constraints will hold w.r.t. the
combined data, every occurrence of a database fact R(x) in some integrity
constraint is replaced by fact(R(x)).

' In what follows we use the notation “ic :- B” to denote the denial “false <« B”.



Below is a code for implementing Example 1: 1
defined(fact(_)). defined(db(_)). open(insert(_)). open(retract(_.)).

fact(X) :- db(X), not(retract(X)).
fact(X) :- insert(X).

ic :- insert(X), db(X).

ic :- retract(X), not db(X).

db(teaches(1,1)). db(teaches(2,2)). % D1
db(teaches(2,3)). % D2
ic :- fact(teaches(X,Y)), fact(teaches(X,Z)), Y\=Z. % IC

We have executed this code as well as other examples from the liter-
ature in our system. The soundness and completeness theorems given in
the next section guarantee that the output in each case is indeed the set
of the most preferred solutions of the corresponding problem.

5 Soundness and Completeness

In this section we relate the two approaches of the previous sections
through soundness and completeness theorems. For that we first recall
some related results from [7] (Propositions 7 — 10 below). In what follows
we denote by 7 an abductive theory, constructed as described in Section
4 for defining a composition problem of n databases DBy, ..., DB,.

Proposition 7. Every abductive solution that is obtained by the A-system
for T is a repair of UDB.

Proposition 8. Suppose that the query ‘“— true’ has a finite SLDNFA-
tree w.r.t. T. Then every repair of UDB is obtained by running T in the
A-system .

Proposition 9. FEvery output that is obtained by running T in the A-system
together with an <;-optimizer [respectively, together with a <.-optimizer]
is an <;-preferred repair [respectively, a <.-preferred repair| of UDB.

Proposition 10. Suppose that the query “— true’ has a finite SLDNFA-
tree w.r.t. T. Then every <;-preferred repair [respectively, every <.-preferred
repair] of UDB is obtained by running T in the A-system together with
an <;-optimizer [respectively, together with a <.-optimizer].

By the propositions above and those of Section 3, we have:

5 The code for Example 2 is similar.



Corollary 1. Suppose that the query ‘% true’ has a finite SLDNFA
refutation tree w.r.t. T. Then:

1. for every output (Insert, Retract) of the A-system for T, there is a
classical model M of ZC s.t. Insert = M'\ D and Retract = D\ M".

2. for every two-valued model M of ZC there is an output (Insert, Retract)
of the A-system for T, s.t. Insert = M*\ D and Retract = D\ M*.

Corollary 2. Under the same assumption as that of Corollary 1,

1. for every output (Insert, Retract) of the A-system for T there is a 3-
valued model N of DUZC, s.t. Insert’y =Insert and Retract” = Retract.

2. for every 3-valued model N of DUZC there is an output (Insert, Retract)
of the A-system for T, s.t. Insert=Insert" and Retract=Retract? .

Corollary 3. In the notations of Corollary 1 and under its assumption,

1. for every output (Insert, Retract) that is obtained by running T as
an input to the A-system together with an <;-optimizer [respectively,
together with a <.-optimizer], there is an <;-mazimally consistent
element [respectively, a <.-mazimally consistent element] N in MUPE
s.t. Insert” = Insert and Retract’ = Retract.

2. for every <;-mazimally consistent element [respectively, <.-mazimally
consistent element] N in MYPB there is a solution (Insert, Retract)
that is obtained by running T in the A-system together with an <;-
optimizer [respectively, together with a <.-optimizer| s.t. Insert = Insert™

and Retract = Retract? .

6 Related works

Coherent integration and proper representation of amalgamated data is
extensively studied in the literature (see, e.g., [8,12, 22,24, 25, 31-34, 38,
41]). Common approaches for dealing with this task are based on tech-
niques of belief revision [31], methods of resolving contradictions by quan-
titative considerations (such as “majority vote” [32]) or qualitative ones
(e.g., defining priorities on different sources of information or preferring
certain data over another [4,9]), and approaches that are based on rewrit-
ing rules for representing the information in a specific form [25]. As in
our case, abduction is used for database updating in [28] and an extended
form of abduction is used in [26, 39] to explain modifications in a theory.

The use of three-valued logics is also a well-known technique for main-
taining incomplete or inconsistent information; such logics are often used



for defining fixpoint semantics of incomplete logic programs [19, 42], and
so in principle they can be applied on integrity constraints in an (ex-
tended) clause form [15]. Three-valued formalisms such as LFI [13] are
also the basis of paraconsistent methods to construct database repairs
[14] and are useful in general for pinpointing inconsistencies [37]. As noted
above, this is also the role of the three-valued semantics in our case.

Other approaches are based on semantics with arbitrarily many truth
values, which allow to decode within the language itself some “meta-
information” such as confidence factors, amount of belief for or against
a specific assertion, etc. These approaches combine corresponding for-
malisms of knowledge representation (such as annotated logic programs
[40,41] or bilattice-based logics [5,21,33]) together with non-classical
refutation procedures [20, 30,40] that allow to detect inconsistent parts
of a database and maintain them.

A closely related topic is the problem of giving consistent query an-
swers in inconsistent database [3, 10, 25]. The idea is to answer database
queries in a consistent way without computing the repairs of the database.

There are some other applications for integrating possibly conflicting
information and updating databases (e.g., LUPS [2], BReLS [31], RI [30],
Subrahmanian’s mediator of annotated databases [41], and the system
of Franconi et al. [22]). In comparison with such systems, we note that
the main advantages of the present application are its expressive power
(to the best of our knowledge, our approach is more expressive than any
other available application for coherent data integration), the fact that no
syntactical embedding of first-order formulae into other languages nor any
extensions of two-valued semantics are necessary (our approach is a pure
generalization of classical refutation procedures), and the encapsulation
of the way that the underlying data is kept coherent (no input from
the reasoner nor any other external policy for making preferences among
conflicting sources is compulsory in order to resolve contradictions).

7 Future work

We conclude by sketching some issues for future work. First, as we have
already noted, two more phases, which have not been considered here,
might be needed for a complete data integration: (a) translation of dif-
ference concepts to a unified ontology, and (b) resolving contradictions
among different integrity constraints. Another issue for future work is to
allow definitions of concepts (and not only integrity constraints) in the
databases (see [15] for a sketch on how this may be done). This data may



be further combined with (possibly inconsistent) temporal information,
(partial) transactions, and (contradictory) update information. Finally,
since different databases may have different information about the same
predicate, it is reasonable to use some weakened version of the closed word
assumption as part of the integration process (for instance, an assump-
tion that something is false unless it is in the database, or some other
database has some information about it). An alternative approach may
be to replace the closed word assumption with partial valuations (in case
that databases may contain negative facts and not only positive ones).
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