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.beAbstra
t. In this paper we 
onsider two points of views to the problemof 
oherent integration of distributed data. First we give a pure model-theoreti
 analysis of the possible ways to `repair' a database. We do soby 
hara
terizing the possibilities to `re
over' 
onsistent data from an in-
onsistent database in terms of those models of the database that exhibitas minimal in
onsistent information as reasonably possible. Then we in-trodu
e an abdu
tive appli
ation to restore the 
onsisten
y of a givendatabase. This appli
ation is based on an abdu
tive solver (A-system)that implements an SLDNFA-resolution pro
edure, and 
omputes a listof data-fa
ts that should be inserted to the database or retra
ted from itin order to keep the database 
onsistent. The two approa
hes for 
oherentdata integration are related by soundness and 
ompleteness results.1 Introdu
tionIntegration of data 
oming from di�erent databases is a very 
ommon,nevertheless nontrivial, task. There are number of di�erent phases in-volved in this pro
ess, the most important of whi
h are the following:1. Resolving the di�erent ontologies and/or database s
heme, setting asingle uni�ed s
hema, and translating the integrity 
onstraints3 ofea
h database to the new ontology.2. Resolving 
ontradi
tions among the integrity 
onstraints of di�erentlo
al databases.3. Integrating distributed databases w.r.t. the uni�ed set of integrity
onstraints, 
omputed in the previous phase.3 I.e., the rules that represent intentional truths of a database domain.



Ea
h one of the phases mentioned above has its own diÆ
ulties and
hallenges. For instan
e, we are not aware of any work that gives a 
om-plete and robust solution to the problem of the �rst phase. Most of the for-malisms for database integration impli
itly assume that all the databasesto be integrated have the same ontology, so the �rst phase is not needed.The reason for separating the remaining two phases is that integrity
onstraints represent truths that should be valid in all situations, while adatabase instan
e represents an existentional truth, i.e., an a
tual situa-tion. Consequently, the poli
y of resolving 
ontradi
tions among integrity
onstraints is often di�erent than the one that is applied on databasefa
ts, and the former should be applied �rst.Despite their di�erent nature, both these phases are based on someformalisms that maintain 
ontradi
tions and allow to draw plausible 
on-
lusions from in
onsistent situations. Roughly, there are two approa
hesto handle this problem:{ Para
onsistent formalisms, in whi
h the amalgamated data may re-main in
onsistent, but the set of 
on
lusions implied by it is notexplosive, i.e.: not every fa
t follows from an in
onsistent database.Para
onsistent pro
edures for integrating data (e.g., [14, 41℄) are of-ten based on a para
onsistent reasoning pro
ess, su
h as LFI [13℄,annotated logi
s [30, 40℄, or other non-
lassi
al proof systems [5, 37℄.{ Coherent (
onsisten
y-base) methods, in whi
h the amalgamated datais revised in order to restore 
onsisten
y (see, e.g., [6, 8, 11, 25, 31℄). Inmany 
ases the underlying formalism of these approa
hes are 
loselyrelated to the theory of belief revision [1, 23℄. In the 
ontext of databasesystems the idea is to 
onstru
t 
onsistent databases that are \as 
loseas possible" to the original database. These \repaired" instan
es of thespoiled database 
orrespond to plausible and 
ompa
t ways of restor-ing 
onsisten
y.In this paper we follow the latter approa
h, and 
onsider two pointsof views for the last phase of the pro
ess, namely: 
oherent methods ofintegrating distributed databases (with the same ontology) w.r.t. a 
onsis-tent set of integrity 
onstraints. The main diÆ
ulty in this pro
ess stemsfrom the fa
t that even when ea
h lo
al database is 
onsistent, the 
ol-le
tive information of all the distributed databases may not be 
onsistentanymore. In parti
ular, fa
ts that are spe
i�ed in a parti
ular databasemay violate some integrity 
onstraints de�ned elsewhere, and so it might
ontradi
t some elements in the uni�ed set of integrity 
onstraints. Ourgoal is therefore to �nd ways to properly \repair" a 
ombined database,and restore its 
onsisten
y.



One way of viewing this problem is by a model-theoreti
 analysisthat 
hara
terizes database repairs in terms of a 
ertain set of models ofthe in
onsistent database (those that, intuitively, minimize the amountof in
onsistent information). The other approa
h is based on abdu
tivereasoning. For this we use an abdu
tive solver (A-system, [27℄) that im-plements SLDNFA-resolution [16, 17℄ for 
omputing a list of data-fa
tsthat should be inserted to the database or retra
ted from it in order tokeep the data 
onsistent. A 
orresponding appli
ation was introdu
ed anddes
ribed in greater details in [7℄. Here we review it in order to keep thispaper self 
ontained, and putting our results in the right 
ontext. We thenshow that the abdu
tive pro
ess of 
oherent integration of databases issound and 
omplete w.r.t. the semanti
s that is indu
ed by the modeltheoreti
 analysis. 42 Coherent integration of databasesIn this paper we assume that we have a �rst-order language L, based on a�xed database s
hema S, and a �xed domain D. Every element of D hasa unique name. A database instan
e D 
onsists of atoms in the languageL that are instan
es of the s
hema S. As su
h, every instan
e D has a�nite a
tive domain, whi
h is a subset of D. A database is a pair (D; IC),where D is a database instan
e, and IC, the set of integrity 
onstraints,is a �nite set of formulae in L (assumed to be satis�ed by D).Given a database DB = (D; IC), we apply to it the 
losed word as-sumption, so only the fa
ts that are expli
itly mentioned in D are 
onsid-ered true. The underlying semanti
s 
orresponds, therefore, to minimalHerbrand interpretations.De�nition 1. The minimal Herbrand model HD of a database instan
eD is the model of D that assigns true to all the ground instan
es of atomi
formulae in D, and false to all the other atoms.De�nition 2. A formula  follows from a database instan
e D (notation:D j=  ) if the minimal Herbrand model of D is also a model of  .De�nition 3. A database DB=(D; IC) is 
onsistent if IC is a 
lassi
ally
onsistent set, and ea
h formula of it follows from D (notation: D j= IC).Our goal is to integrate n 
onsistent databases, DBi=(Di; ICi), i=1; : : : n, in su
h a way that the 
ombined data will 
ontain everything4 Due to a la
k of spa
e some proofs are redu
ed or omitted altogether. Full proofswill appear in an extended version of this paper.



that 
an be dedu
ed from one sour
e of information, without violatingany integrity 
onstraint of another sour
e. The idea is to 
onsider theunion of the distributed data, and then to restore its 
onsisten
y. A keynotion in this respe
t is the following:De�nition 4. A repair of DB = (D; IC) is a pair (Insert;Retra
t) su
hthat (1) Insert\D=;, (2) Retra
t � D,5 and (3) (D[ Insert nRetra
t; IC)is a 
onsistent database.Intuitively, Insert is a set of elements that should be inserted into Dand Retra
t is a set of elements that should be removed from D in orderto obtain a 
onsistent database.De�nition 5. A repaired database ofDB=(D; IC) is a 
onsistent database(D [ Insert n Retra
t ; IC), where (Insert;Retra
t) is a repair of DB.As there may be many ways to repair an in
onsistent database,6 itis often 
onvenient to make preferen
es among the possible repairs, and
onsider only the most preferred ones. Below are two 
ommon preferen
e
riteria.De�nition 6. Let (Insert;Retra
t) and (Insert0;Retra
t0) be two repairs.{ set in
lusion preferen
e 
riterion : (Insert0;Retra
t0) �i (Insert;Retra
t),if Insert � Insert0 and Retra
t � Retra
t0.{ 
ardinality preferen
e 
riterion: (Insert0;Retra
t0) �
 (Insert;Retra
t)if jInsertj+ jRetra
tj�jInsert0j+ jRetra
t0j. 7In what follows we assume that � is a �xed pre-order that representssome preferen
e 
riterion on the set of repairs.De�nition 7. A �-preferred repair of DB is a repair (Insert;Retra
t)of DB, s.t. for every repair (Insert0;Retra
t0) of DB, if (Insert;Retra
t)�(Insert0;Retra
t0) then (Insert0;Retra
t0) � (Insert;Retra
t). The set of allthe �-preferred repairs of DB is denoted by !(DB;�).De�nition 8. A �-repaired database of DB is a repaired database of DB,
onstru
ted from a �-preferred repair of DB. The set of all the �-repaireddatabases of DB is denoted byR(DB;�) = f (D [ Insert n Retra
t ; IC) j (Insert;Retra
t) 2(DB;�) g.5 Note that by 
onditions (1) and (2) it follows that Insert \ Retra
t=;.6 Some of them may be trivial and/or useless. For instan
e, the in
onsisten
y in(D; IC) = (fp; q; rg; f:pg) may be removed by deleting every element in D, butthis is 
ertainly not the optimal way of restoring 
onsisten
y in this 
ase.7 Set in
lusion is also 
onsidered in [3, 11, 14, 25℄; 
ardinality is 
onsidered, e.g., in [31℄



Note that if DB is 
onsistent, and the preferen
e 
riterion is a partialorder that is monotoni
 in the total size of the repairs' 
omponents (as inDef. 6), thenR(DB;�)=fDBg, so there is nothing to repair, as expe
ted.It is usual to refer to the �-preferred databases of DB as the 
onsis-tent databases that are `as 
lose as possible' to DB itself (see, e.g., [3, 14,31℄). Indeed, denote Th(D) = fP (t) j D j= P (t)g, where P is a relationname and t is a ground tuple, and let dist(D1;D2) be the following set:dist(D1;D2) = (Th(D1) n Th(D2)) [ (Th(D2) n Th(D1))It is easy to see that DB0 = (D0;IC) is a �i-repaired database of DB =(D; IC), if the set dist(D0;D) is minimal (w.r.t. set in
lusion) among allthe sets of the form dist(D00;D), where D00 j= IC. Similarly, if #(S)denotes the number of elements in S, then DB0 = (D0;IC) is a �
-repaired database of DB = (D; IC), if #(dist(D0;D) is minimal inf#(dist(D00;D)) j D00 j= ICg.De�nition 9. For DBi = (Di; ICi), i = 1; : : : n, let UDB = (D; IC),where D = Sni=1Di and IC = Sni=1 ICi.Given n distributed databases and a preferen
e 
riterion �, our goalis to 
ompute the set R(UDB;�) of the �-repaired databases of UDB(or to be able to 
ompute, in an eÆ
ient way, some elements in this set).Below are test-
ases for su
h database integration. 8 9Example 1. Consider a distributed database with a relation tea
hes ofthe following s
heme: (
ourse name; tea
her name). Suppose also thatea
h database 
ontains a single integrity 
onstraint, stating that the same
ourse 
annot be taught by two di�erent tea
hers:IC = f 8X8Y 8Z (tea
hes(X;Y ) ^ tea
hes(X;Z) ! Y = Z) g.Consider now the following two databases:DB1 = ( ftea
hes(
1; n1); tea
hes(
2; n2)g; IC ),DB2 = ( ftea
hes(
2; n3)g; IC)Clearly, the uni�ed database DB1 [ DB2 is in
onsistent. Its preferredrepairs are (;; ftea
hes(
2; n2)g) and (;; ftea
hes(
2; n3)g). Hen
e, thetwo repaired databases are the following:R1 = ( ftea
hes(
1; n1); tea
hes(
2; n2)g; IC ),R2 = ( ftea
hes(
1; n1); tea
hes(
2; n3)g; IC ).8 See, e.g., [3, 11, 25℄ for more dis
ussions on the examples below.9 In all the following examples we use set in
lusion as the preferen
e 
riterion. In whatfollows we shall �x a preferen
e 
riterion for 
hoosing the \best" repairs and omitits notation whenever possible.



Example 2. LetD1=fp(a); p(b)g;D2=fq(a); q(
)g, and IC=f8X(p(X)!q(X))g. Again, (D1; ;) [ (D2;IC) is in
onsistent. The 
orresponding pre-ferred repairs are (fq(b)g; ;) and (;; fp(b)g). The repaired databases areR1 = ( fp(a); p(b); q(a); q(b); q(
)g; IC ) andR2 = ( fp(a); q(a); q(
)g; IC ).3 Database repair { A model-theoreti
 point of viewIn this se
tion we 
hara
terize the repairs of a given database in termsof its models. First, we 
onsider arbitrary repairs, and show that they
an be represented either by two-valued models of the theory of integrity
onstraints, or by three-valued models of the set of integrity 
onstraintsand the set of literals, obtained by applying the 
losed world assumptionon the database fa
ts. Then we fo
us on the most preferred repairs, andshow that a 
ertain subset of the three-valued models 
onsidered above
an be used for 
hara
terizing �-preferred repairs.De�nition 10. Given a valuation � and a truth value x. Denote:�x = fp j p is an atomi
 formula, and �(p) = xg. 10The following two propositions 
hara
terize repairs in terms of two-valued stru
tures.Proposition 1. Let (D; IC) be a database and let M be a two-valuedmodel of IC. Let Insert =M tnD and Retra
t = DnM t. Then (Insert;Retra
t)is a repair of (D; IC).Proof: The de�nitions of Insert and Retra
t immediately imply that Insert\D = ; and Retra
t�D. For the the last 
ondition in De�nition 4, notethat in our 
ase D [ Insert n Retra
t = D [ (M t n D) n (D nM t) =M t. Itfollows that M is the least Herbrand model of D [ Insert n Retra
t and itis also a model of IC, therefore D [ Insert n Retra
t j= IC. 2Proposition 2. Let (Insert;Retra
t) be a repair of a database (D; IC).Then there is a 
lassi
al model M of IC,11 su
h that Insert =M t nD andRetra
t = D nM t.Proof: Consider a valuation M , de�ned for every atom p as follows:M(p) = ( t if p2D [ Insert n Retra
t,f otherwise.10 Note, in parti
ular, that (HD)t = D.11 Re
all that we assume that IC is 
lassi
ally 
onsistent, thus it has 
lassi
al models.



By its de�nition, M is a minimal Herbrand model of D [ Insert n Retra
t.Now, sin
e (Insert;Retra
t) is a repair of (D; IC), we have that D [Insert n Retra
t j= IC, thus M is a (two-valued) model of IC. Moreover,Insert \D=; and Retra
t�D, hen
e we have the following:� M t n D = (D [ Insert n Retra
t) n D = Insert,� D nM t = D n (D [ Insert n Retra
t) = Retra
t. 2The above formalization in terms of two-valued models has the draw-ba
k that a uni�ed database UDB in need of a repair is in
onsistent.In order to avoid reasoning on in
onsistent theories, and sin
e 
lassi
allogi
 
an infer everything from an in
onsistent theory, we develop anotherformalization, based on a three-valued semanti
s. The bene�t of this isthat, as we show below, any database has models w.r.t. appropriate three-valued semanti
s, from whi
h it is possible to pinpoint the in
onsistentinformation, and thus it is also possible to extra
t repairs for UDB.The underlying 3-valued semanti
s 
onsidered here is indu
ed by thealgebrai
 stru
ture T HREE , shown in the double-Hasse diagram of Figure1. Intuitively, the elements t and f in T HREE 
orrespond to the usual
lassi
al elements true and false, while the third element, >, representsin
onsistent information (or belief).6�k
-�tuf

u> ut������������Fig. 1. The stru
ture T HREEViewed horizontally, T HREE is a 
omplete latti
e. We denote themeet, join, and the order reversing operation on the 
orresponding or-der relation (i.e., �t) by ^, _, and : (respe
tively). Viewed verti
ally,T HREE is a semi-upper latti
e. We denote by � the meet operationw.r.t. the 
orresponding order (�k). We note that T HREE is the algebrai
stru
ture that de�nes the semanti
s of several three-valued formalisms,su
h as LFI [13℄ and LP [36, 37℄.



The various semanti
 notions are de�ned on T HREE as natural gener-alizations of similar 
lassi
al ones: a valuation � is a fun
tion that assignsa truth value in T HREE to ea
h atomi
 formula. Any valuation is ex-tended to 
omplex formulae in the obvious way. The set of the designatedtruth values in T HREE (i.e., those elements in T HREE that representtrue assertions) 
onsists of t and >. A valuation � satis�es a formula  i��( ) is designated. A valuation that assigns a designated value to everyformula in a theory T is a (three-valued) model of T .Next we 
hara
terize the repairs of a database DB by its three-valuedmodels:Proposition 3. Let (D; IC) be a database and let M be a two-valuedmodel of IC. Consider the three-valued valuation N , de�ned for everyatom p by N(p) = HD(p) �M(p), and let Insert = N> n D, Retra
t =N> \D. Then N is a three-valued model of D [ IC, and (Insert;Retra
t)is a repair of (D; IC).Proof: For the �rst 
laim, note that for three-valued valuations � and �,if for every atom p, �(p)�k �(p), then for every formula  , �( )�k �( )(the proof is by an easy indu
tion on the stru
ture of  ). We denote thisfa
t by ��k�. Note also, that if ��k� and � is a model of some theory T ,then � is also a model of T . Now, sin
e by the de�nition of N , N�kHD,and sin
e HD is a model of D, N is a model D. Similarly, N �kM , andM is a model of IC, thus N is also a model of IC.For the se
ond part one has to show that the three 
onditions of De�-nition 4 are satis�ed. Indeed, the �rst two 
onditions obviously hold. Forthe last 
ondition, note that D[InsertnRetra
t = D[(N>nD)n(N>\D) =D[ (M t nD) n (Mf \D) = D[ (M t nD) n (D nM t) =M t. It follows thatM is the minimal Herbrand model of D [ Insert n Retra
t and it is also amodel of IC, therefore D [ Insert n Retra
t j= IC. 2Again, it is possible to show that the 
onverse is also true:Proposition 4. Let (Insert;Retra
t) be a repair of a database (D; IC).Then there is a three-valued model N of D[IC, su
h that Insert = N>nDand Retra
t = N> \ D.Outline of proof: Consider a valuation N , de�ned as follows:N(p) = 8><>:> if p2 Insert [ Retra
t,t if p 62 Insert [ Retra
t but p2D,f otherwise.



Clearly, N is a (three-valued) model of D and IC, and N> nD = (Insert[Retra
t) n D = Insert, N> \ D = (Insert [ Retra
t) \ D = Retra
t. 2The last two propositions 
hara
terize the repairs of UDB in terms ofpairs that are asso
iated with three-valued models of D [ IC. We shalldenote the elements of these pairs as follows:De�nition 11. Let N be a three-valued model and let DB = (D; IC)be a knowledge-base. Denote: InsertN = N> nD and Retra
tN = N>\D.We 
on
lude this model-theoreti
 analysis by 
hara
terizing the set ofthe �-preferred repairs, where � is one of the preferen
e 
riteria, 
onsid-ered in De�nition 6 (i.e., set in
lusion or di�eren
es in 
ardinality).De�nition 12. Given a knowledge-base DB = (D; IC), denote:MDB = fN j N �k HD �M; M is a 
lassi
al model of ICg: 12Example 3. In what follows we shall write M = fpi :xig for M(pi) = xi(xi 2 ft; f;>g, i= 1; : : : ; n). Let DB = (fp; rg; fp ! qg). We have thatHD = fp : t; q :f; r : tg, and soMDB = fN j N(p)�k t; N(q)=>; N(r)�ktg [ fN j N(p)=>; N(q)�k f; N(r)�k tg:De�nition 13. Let S be a set of three-valued valuations, and N1; N22S.{ N1 is �i-more 
onsistent than N2, if N>1 � N>2 .{ N1 is �
-more 
onsistent than N2, if #(N>1 ) < #(N>2 ). 13{ N 2S is�i-maximally 
onsistent in S (respe
tively,N is�
-maximally
onsistent in S), if there is no N 02S that is �i-more 
onsistent thanN (respe
tively, no N 02S is �
-more 
onsistent than N).Proposition 5. If N is a �i-maximally 
onsistent element in MDB,then (InsertN ; Retra
tN ) is a �i-preferred repair of DB.Proposition 6. Suppose that (Insert; Retra
t) is a �i-preferred repairof DB. Then there is a �i-maximally 
onsistent element N in MDB s.t.Insert = InsertN and Retra
t = Retra
tN .Note 1. Propositions 5 and 6 hold also when �i is repla
ed by �
.12 Note that N is a three-valued valuation and M is a two-valued model of IC.13 Re
all that #(S) denotes the size of S.



Example 4. Consider again Example 2. We have that:UDB = (D; IC) = ( fp(a); p(b); q(a); q(
)g; f8X(p(X)!q(X))g ):Thus HD = fp(a) : t; p(b) : t; p(
) : f; q(a) : t; q(b) : f; q(
) : tg, and the
lassi
al models of IC are those in whi
h either p(y) is false or q(y) is truefor every y 2 fa; b; 
g. Now, sin
e in HD neither p(b) is false nor q(b) istrue, it follows that every element inMUDB must assign > either to p(b)or to q(b). Hen
e, the �i-maximally 
onsistent elements inMUDB (whi
hin this 
ase are also the �
-maximally 
onsistent elements inMUDB) arethe following:M1 = f p(a) : t; p(b) :>; p(
) :f; q(a) : t; q(b) :f; q(
) : t gM2 = f p(a) : t; p(b) : t; p(
) :f; q(a) : t; q(b) :>; q(
) : t gBy Propositions 5 and 6, then, the �i-preferred repairs of UDB (whi
hare also its �
-preferred repairs) are (InsertM1 ; Retra
tM1) = (;; fp(b)g)and (InsertM2 ; Retra
tM2) = (fq(b)g; ;) (
f. Example 2).Similarly, the �i-maximally 
onsistent (and the �
-maximally 
on-sistent) elements in MDB, where DB is the database of Example 3, areN1 = f p : t; q :>; r : t g and N2 = f p :>; q : f; r : t g. It follows that thepreferred repairs in this 
ase are (fqg; ;) and (;; fpg).4 Database repair { An abdu
tive approa
hIn [7℄ we have presented an abdu
tive approa
h to the problem of 
om-bining in
onsistent databases. In this se
tion we give an outline of thismethod. For more detailed des
ription the reader is referred to [7℄; the ap-pli
ation itself is available at http://www.
s.kuleuven.a
.be/�dtai/kt.A high level des
ription of the integration problem under 
onsidera-tion is given in ID-logi
 [15℄, whi
h is a framework for de
larative knowl-edge representation that extends 
lassi
al logi
 with indu
tive de�nitions.This logi
 in
orporates two types of knowledge: de�nitional and asser-tional. Assertional knowledge is a set of �rst-order statements, represent-ing a general truth about the domain of dis
ourse. De�nitional knowledgeis a set of rules of the form p B, in whi
h the head p is a predi
ate andthe body B is a �rst order formula. A predi
ate that appears in a headof a rule is 
alled de�ned ; a predi
ate that does not o

ur in any head is
alled open, or abdu
ible.A theory T in ID-logi
 is therefore a pair (Def, Fol), where Def (thede�nitional knowledge) is a set of rules as des
ribed above, and Fol (theassertional knowledge) is a set of �rst order statements. The meaning ofT is de�ned by the extended well-founded semanti
s [35℄ as follows: letM



be an arbitrary two-valued interpretation for the open predi
ates in Def.On
e M is determined, Def be
omes a standard logi
 program, with aunique well-founded model [42℄. This model is then a model of the wholetheory T if it is also a model of Fol.ID-logi
 is a generalization of the notion of abdu
tive logi
 programs(ALP) [18℄. For instan
e, the open predi
ates of a theory in ID-logi
 
or-respond to the abdu
ibles in an abdu
tive logi
 program. Consequently,solutions of abdu
tive logi
 programs that are 
omputed by an abdu
-tive solver are also models of the 
orresponding ID-logi
 theory. Herewe use su
h a solver, 
alled the A-system [7, 27℄ for 
omputing solutions.The main idea of this solver is to redu
e a high level spe
i�
ation into alower level 
onstraint store, whi
h is managed by a 
onstraint solver. Thesolver 
ombines the refutation pro
edures SLDNFA [17℄ and ACLP [29℄,and uses an improved 
ontrol strategy. In our 
ase, solutions are repairs ofa database, and in order to 
ompute preferred solutions (i.e., preferred re-pairs for the integrated database), the A-system has been extended witha simple bran
h and bound 
omponent, 
alled optimizer (see [7℄). Thisis a
tually a \�lter" on the solutions spa
e that speeds-up exe
ution andmakes sure that only the desired solutions will be obtained.The elements of the distributed databases are uniformly representedby the unary predi
ate db, and the elements of a repaired database arerepresented by the unary predi
ate fa
t. In order to 
ompute these ele-ments, two open predi
ates are used: retra
t and insert. These predi-
ates represent, respe
tively, the fa
ts that may be removed and those thatmay be introdu
ed for restoring the 
onsisten
y of the uni�ed database.The rules for 
omputing the elements of a repaired database are thende�ned as follows:fa
t(X) :- db(X), not retra
t(X).fa
t(X) :- insert(X).In addition, the following integrity 
onstraints are spe
i�ed: 14{ It is in
onsistent to have a retra
ted element that does not belong tosome database:i
 :- retra
t(X), not db(X).{ It is in
onsistent to have an inserted element that belongs to a database:i
 :- insert(X), db(X).To make sure that all the integrity 
onstraints will hold w.r.t. the
ombined data, every o

urren
e of a database fa
t R(x) in some integrity
onstraint is repla
ed by fa
t(R(x)).14 In what follows we use the notation \i
 :- B" to denote the denial \false  B".



Below is a 
ode for implementing Example 1: 15defined(fa
t(_)). defined(db(_)). open(insert(_)). open(retra
t(_)).fa
t(X) :- db(X), not(retra
t(X)).fa
t(X) :- insert(X).i
 :- insert(X), db(X).i
 :- retra
t(X), not db(X).db(tea
hes(1,1)). db(tea
hes(2,2)). % D1db(tea
hes(2,3)). % D2i
 :- fa
t(tea
hes(X,Y)), fa
t(tea
hes(X,Z)), Y\=Z. % ICWe have exe
uted this 
ode as well as other examples from the liter-ature in our system. The soundness and 
ompleteness theorems given inthe next se
tion guarantee that the output in ea
h 
ase is indeed the setof the most preferred solutions of the 
orresponding problem.5 Soundness and CompletenessIn this se
tion we relate the two approa
hes of the previous se
tionsthrough soundness and 
ompleteness theorems. For that we �rst re
allsome related results from [7℄ (Propositions 7 { 10 below). In what followswe denote by T an abdu
tive theory, 
onstru
ted as des
ribed in Se
tion4 for de�ning a 
omposition problem of n databases DB1; : : : ;DBn.Proposition 7. Every abdu
tive solution that is obtained by the A-systemfor T is a repair of UDB.Proposition 8. Suppose that the query ` true' has a �nite SLDNFA-tree w.r.t. T . Then every repair of UDB is obtained by running T in theA-system .Proposition 9. Every output that is obtained by running T in the A-systemtogether with an �i-optimizer [respe
tively, together with a �
-optimizer℄is an �i-preferred repair [respe
tively, a �
-preferred repair℄ of UDB.Proposition 10. Suppose that the query ` true' has a �nite SLDNFA-tree w.r.t. T . Then every �i-preferred repair [respe
tively, every �
-preferredrepair℄ of UDB is obtained by running T in the A-system together withan �i-optimizer [respe
tively, together with a �
-optimizer℄.By the propositions above and those of Se
tion 3, we have:15 The 
ode for Example 2 is similar.



Corollary 1. Suppose that the query ` true' has a �nite SLDNFArefutation tree w.r.t. T . Then:1. for every output (Insert; Retra
t) of the A-system for T , there is a
lassi
al model M of IC s.t. Insert =M t n D and Retra
t = D nM t.2. for every two-valued modelM of IC there is an output (Insert; Retra
t)of the A-system for T , s.t. Insert =M t n D and Retra
t = D nM t.Corollary 2. Under the same assumption as that of Corollary 1,1. for every output (Insert; Retra
t) of the A-system for T there is a 3-valued model N of D[IC, s.t. InsertN= Insert and Retra
tN=Retra
t.2. for every 3-valued model N of D[IC there is an output (Insert; Retra
t)of the A-system for T , s.t. Insert= InsertN and Retra
t=Retra
tN .Corollary 3. In the notations of Corollary 1 and under its assumption,1. for every output (Insert; Retra
t) that is obtained by running T asan input to the A-system together with an �i-optimizer [respe
tively,together with a �
-optimizer℄, there is an �i-maximally 
onsistentelement [respe
tively, a �
-maximally 
onsistent element℄ N inMUDBs.t. InsertN = Insert and Retra
tN = Retra
t.2. for every �i-maximally 
onsistent element [respe
tively, �
-maximally
onsistent element℄ N in MUDB there is a solution (Insert; Retra
t)that is obtained by running T in the A-system together with an �i-optimizer [respe
tively, together with a �
-optimizer℄ s.t. Insert = InsertNand Retra
t = Retra
tN .6 Related worksCoherent integration and proper representation of amalgamated data isextensively studied in the literature (see, e.g., [8, 12, 22, 24, 25, 31{34, 38,41℄). Common approa
hes for dealing with this task are based on te
h-niques of belief revision [31℄, methods of resolving 
ontradi
tions by quan-titative 
onsiderations (su
h as \majority vote" [32℄) or qualitative ones(e.g., de�ning priorities on di�erent sour
es of information or preferring
ertain data over another [4, 9℄), and approa
hes that are based on rewrit-ing rules for representing the information in a spe
i�
 form [25℄. As inour 
ase, abdu
tion is used for database updating in [28℄ and an extendedform of abdu
tion is used in [26, 39℄ to explain modi�
ations in a theory.The use of three-valued logi
s is also a well-known te
hnique for main-taining in
omplete or in
onsistent information; su
h logi
s are often used



for de�ning �xpoint semanti
s of in
omplete logi
 programs [19, 42℄, andso in prin
iple they 
an be applied on integrity 
onstraints in an (ex-tended) 
lause form [15℄. Three-valued formalisms su
h as LFI [13℄ arealso the basis of para
onsistent methods to 
onstru
t database repairs[14℄ and are useful in general for pinpointing in
onsisten
ies [37℄. As notedabove, this is also the role of the three-valued semanti
s in our 
ase.Other approa
hes are based on semanti
s with arbitrarily many truthvalues, whi
h allow to de
ode within the language itself some \meta-information" su
h as 
on�den
e fa
tors, amount of belief for or againsta spe
i�
 assertion, et
. These approa
hes 
ombine 
orresponding for-malisms of knowledge representation (su
h as annotated logi
 programs[40, 41℄ or bilatti
e-based logi
s [5, 21, 33℄) together with non-
lassi
alrefutation pro
edures [20, 30, 40℄ that allow to dete
t in
onsistent partsof a database and maintain them.A 
losely related topi
 is the problem of giving 
onsistent query an-swers in in
onsistent database [3, 10, 25℄. The idea is to answer databasequeries in a 
onsistent way without 
omputing the repairs of the database.There are some other appli
ations for integrating possibly 
on
i
tinginformation and updating databases (e.g., LUPS [2℄, BReLS [31℄, RI [30℄,Subrahmanian's mediator of annotated databases [41℄, and the systemof Fran
oni et al. [22℄). In 
omparison with su
h systems, we note thatthe main advantages of the present appli
ation are its expressive power(to the best of our knowledge, our approa
h is more expressive than anyother available appli
ation for 
oherent data integration), the fa
t that nosynta
ti
al embedding of �rst-order formulae into other languages nor anyextensions of two-valued semanti
s are ne
essary (our approa
h is a puregeneralization of 
lassi
al refutation pro
edures), and the en
apsulationof the way that the underlying data is kept 
oherent (no input fromthe reasoner nor any other external poli
y for making preferen
es among
on
i
ting sour
es is 
ompulsory in order to resolve 
ontradi
tions).7 Future workWe 
on
lude by sket
hing some issues for future work. First, as we havealready noted, two more phases, whi
h have not been 
onsidered here,might be needed for a 
omplete data integration: (a) translation of dif-feren
e 
on
epts to a uni�ed ontology, and (b) resolving 
ontradi
tionsamong di�erent integrity 
onstraints. Another issue for future work is toallow de�nitions of 
on
epts (and not only integrity 
onstraints) in thedatabases (see [15℄ for a sket
h on how this may be done). This data may



be further 
ombined with (possibly in
onsistent) temporal information,(partial) transa
tions, and (
ontradi
tory) update information. Finally,sin
e di�erent databases may have di�erent information about the samepredi
ate, it is reasonable to use some weakened version of the 
losed wordassumption as part of the integration pro
ess (for instan
e, an assump-tion that something is false unless it is in the database, or some otherdatabase has some information about it). An alternative approa
h maybe to repla
e the 
losed word assumption with partial valuations (in 
asethat databases may 
ontain negative fa
ts and not only positive ones).Referen
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