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Abstract

We show that the incorporation of distance-based se-
mantics in the context of multiple-valued consequence
relations yields a general, simple, and intuitively ap-
pealing framework for reasoning with incomplete and
inconsistent information.

Introduction
Reasoning with distance functions is a common way of
giving semantics to formalisms that are non-monotonic in
nature. The basic intuition behind this approach is that,
given a set of possible worlds (alternatively, interpretations)
that represent the reasoner’s epistemic states or the infor-
mation content of different data sources, the similarity be-
tween those worlds can be expressed quantitatively (that is,
in terms of distance measurements), and thus can be evalu-
ated by corresponding distance operators. In this respect,
there is no wonder that distance semantics has played a
prominent role in different paradigms for (non-monotonic)
information processing. Two remarkable examples for this
are the following:

• Formalisms for modeling belief revision, in which dis-
tance minimization corresponds to the idea that the dif-
ference between the reasoner’s new states of belief and
the old one should be kept as minimal as possible, that is,
restricted only to what is really implied by the new infor-
mation (see, e.g., (Lehmann, Magidor, & Schlechta 2001;
Peppas, Chopra, & Foo 2004; Delgrande 2004)).

• Database integration systems (Arenas, Bertossi, &
Chomicki 1999; 2003; Lin & Mendelzon 1999) and merg-
ing operators for independent data-sources (Konieczny,
Lang, & Marquis 2002; Konieczny & Pino Pérez 2002),
where the basic idea is that the amalgamated information
should be kept coherent and at the same time as close as
possible to the collective information as it is depicted by
the distributed sources.

The goal of this paper is to introduce similar distance con-
siderations in the context ofparaconsistent logics, that is:
formalisms that tolerate inconsistency and do not become
trivial in the presence of contradictions (see (da Costa 1974)
and (Priest 2002); some collections of papers on this topic
appear, e.g., in (Batenset al. 2000; Carnielli, Coniglio, &

Dóttaviano 2002)). One could identify at least four par-
ties with different philosophical attitudes to such logics: the
traditionalistsdefend classical logics and deny any need of
paraconsistent logics. On the other extreme, thedialethe-
istscontend that the world is fundamentally inconsistent and
hence the true logic should be paraconsistent. Thepluralists
view inconsistent structures as fundamental but provisional,
and favour their replacement, at least in empirical domains,
by consistent counterparts. Finally, thereformistsdefend
consistency in ontological matters, but argue that human
knowledge and thinking necessarily requires inconsistency,
and hence that classical logic should be replaced by a para-
consistent counterpart. The underlying theme here, follow-
ing the reformists, is that conflicting data is unavoidable in
practice, but it corresponds to inadequate information about
the real world, and therefore it should be minimized. As we
show below, this intuition is nicely and easily expressed in
terms of distance semantics. Indeed, the incorporation of
distance-based semantics in the context of multiple-valued
consequence relations yields a framework in which a vari-
ety of paraconsistent multiple-valued logics are definable.
These logics are naturally applied in many situations where
uncertainty is involved.

The principle of uncertainty minimization by distance
semantics is in fact a preference criterion among differ-
ent interpretations of the premises. In this respect, the
formalisms that are defined here may be considered as a
certain kind of preferential logics(Shoham 1987; 1988;
Makinson 1994). In particular, the intuition and the mo-
tivation behind this work is closely related to other exten-
sions to multiple-valued semantics of the theory of pref-
erential reasoning (see for instance (Arieli & Avron 1998;
2000; Konieczny & Marquis 2002; Arieli & Denecker 2003;
Ben Naim 2005; Arieli 2004; 2006)).

The rest of this paper is organized as follows: in the
next section we set up the framework; we consider basic
multiple-valued entailments and define their distance-based
variants. Then we consider different distance metrics and
investigate some of the properties of the induced conse-
quence relations. Finally, we discuss a generalization of the
distance-based entailments to prioritized theories and show
its usefulness for modeling belief revision and for consistent
query answering in database systems. In the last section we
conclude.



The Framework
Basic Multiple-Valued Entailments
Definition 1 Let L be an arbitrary propositional language.
A multiple-valued structurefor L is a triple 〈V ,O,D〉,
whereV is set of elements (“truth values”),O is a set of
operations onV that correspond to the connectives inL, and
D is a nonempty proper subset ofV .

The setD consists of thedesignatedvalues ofV , i.e.,
those that represent true assertions. In what follows we
shall assume thatV contains at least the classical values
true, false, and thattrue ∈ D, false 6∈ D.

Definition 2 LetS = 〈V ,O,D〉 be a multiple-valued struc-
ture for a propositional languageL.

a) A (multiple-valued)valuationν is a function that assigns
an element ofV to each atomic formula inL. Extensions
to complex formulae are done as usual. In what follows
we shall sometimes writeν = {p1 : x1, . . . , pn : xn} to
denote thatν(pi) = xi for i = 1, . . . , n. The set of valu-
ations onV is denoted byΛV .

b) A valuationν satisfiesa formulaψ if ν(ψ) ∈ D.
c) A valuationν is amodelof a setΓ of formulae inL, if ν

satisfies every formula inΓ. The set of the models ofΓ is
denoted bymodS(Γ).

Definition 3 LetS = 〈V ,O,D〉 be a multiple-valued struc-
ture for a languageL. A basicS-entailmentis a relation|=S

between sets of formulae inL and formulae inL, defined as
follows: Γ |=S ψ if every model ofΓ satisfiesψ.

Example 4 In many cases the underlying semantical struc-
ture of a multiple-valued logic is a lattice, and so it is usual
to include inO (at least) the basic lattice operations. In
such cases a conjunction inL is associated with the join,
the disjunction corresponds to the meet, and if the lattice
has a negation operator, it is associated with the negation of
the language. In what follows we use these definitions for
the operators inO. Now, the two-valued structureTWO is
defined by the two-valued lattice, and is obtained by taking
V = {true, false} andD = {true}. The corresponding en-
tailment is denoted|=2. For three-valued structures we take
V = {true, false,middle}, the lattice operators inO are de-
fined with respect to the total orderfalse < middle < true,
and D is either {true} or {true,middle}. The structure
with D = {true} is denoted here byTHREE⊥. The associ-
ated entailment,|=3⊥ , corresponds to Kleene’s three-valued
logic (Kleene 1950). The other three-valued structure,
THREE⊤, corresponds to Priest’s logic LP (Priest 1989;
1991).1 Note that by different choices of the operators in
O other three-valued logics are obtained, line weak Kleene
logic, strong Kleene logic, and Łukasiewicz’s logic (see,
e.g., (Fitting 1990; Avron 1991)). In the four-valued case
there are usually two middle elements, denoted here byboth

and neither.2 In this context it is usual to taketrue and
1Also known as J3, RM3, and PAC (see (D’ottaviano 1985;

Rozoner 1989; Avron 1991) and chapter IX of (Epstein 1990)).
2The names of the middle elements correspond to their intu-

itive meaning as representing conflicts (‘both true and false’) and
incomplete information (‘neither true nor false’).

both as the designated values. The corresponding struc-
ture is known as Belnap’s bilattice (see (Belnap 1977a;
1977b) as well as (Arieli & Avron 1998)), and it is denoted
here byFOUR. Its entailment is denoted by|=4. Entailments
in whichV is the unit interval andD = {1} are common in
the context of fuzzy logic (see, e.g., (Hájek 1998)). In this
context it is usual to consider different kinds of operations
on the unit interval (T-norms, T-conorms, residual implica-
tions, etc.), and this is naturally supported in our framework
as well. The simplest case is obtained by associating∧ and
∨ with the meet and the join operators on the unit interval,
which in this case are the same as the minimum and the
maximum functions (respectively), and relating negation to
the involutive operator¬, defined for every0 ≤ x ≤ 1 by
¬x = 1 − x. In what follows we denote the corresponding
structure (S) by [0, 1].

Distance-Based Entailments

By their definition, basicS-entailments are monotonic. In
addition, some of them are trivial in the presence of contra-
dictions (e.g.,p,¬p |=2 q andp,¬p |=3⊥ q), or exclude clas-
sically valid rules (e.g.,p,¬p∨q 6|=3⊤ q andp,¬p∨q 6|=4 q).
Common-sense reasoning, on the other hand, is frequently
non-monotonic and tolerant to inconsistency. For assuring
such properties we consider in what follows distance-based
derivatives of the basic entailments. In the sequel, unless
otherwise stated, we shall considerfinitesets of premises in
the classical propositional languageL = {¬,∧,∨,→}, the
operators of which correspond, respectively, to a negation,
meet, join, and the material implication on the underlying
lattice.

Definition 5 A total functiond : U ×U → R
+ is called

pseudo distanceon U if it is symmetric (that is,∀u, v ∈
U d(u, v) = d(v, u)) and preserves identity(∀u, v ∈ U
d(u, v) = 0 iff u = v). A distance functionon U is a
pseudo distance onU that satisfies the triangular inequality
(∀u, v, w∈U d(u, v) ≤ d(u,w) + d(w, v)).

Definition 6 An aggregation functionf is a total function
that accepts arbitrarily many real numbers3 and returns a
real number. In addition, the following conditions should
be satisfied: (a)f is non-decreasing in each of its argu-
ments, (b)f(x1, . . . , xn) = 0 if x1 = . . . = xn = 0, and
(c) ∀x ∈ R, f(x) = x.

Definition 7 An S-distance metricis a quadrupleD =
〈S, d, f, g〉, whereS = 〈V ,O,D〉 is a multiple-valued struc-
ture, d is a pseudo distance on the space of theV-valued
interpretationsΛV , andf andg are aggregation functions.

Definition 8 Given a theoryΓ = {ψ1, . . . , ψn}, aV-valued
interpretationν, and anS-distance metricD = 〈S, d, f, g〉,
define:

• df (ν, ψi) = fµ∈modS(ψi) d(µ, ν)

• dg(ν,Γ) = g(df (ν, ψ1), . . . , df (ν, ψn))

3This can be formally handled by associatingf with the set
{fn : R

n → R | n ∈ N} of n-ary functions.



It is common to definef as the minimum function, so that
a distance between an interpretationν to a formulaψ is the
minimal distance betweenν and some model ofψ. Frequent
choices ofg are the summation function (over the distances
to the formulae inΓ) and the maximal value (among those
distances).

Note 9 Let D = 〈S, d, f, g〉 be anS-distance metric. As
distances are non-negative numbers, by conditions (a) and
(b) in Definition 6,df is a non-negative function for every
choice of an aggregation functionf . This implies thatdg
is obtained by applying an aggregation functiong on non-
negative numbers, and sodg is non-negative as well.

Definition 10 An S-distance metricD = 〈S, d, f, g〉 is
callednormal, if: (a) df (ν, ψ) = 0 for everyν ∈modS(ψ),
and (b)g(x1, . . . , xn) = 0 only if x1 = . . . = xn = 0.

As easily verified, the standard choices off andg men-
tioned above preserve the conditions in Definition 10. Thus,
for instance, for every multi-valued structureS and a pseudo
distanced, D = 〈S, d,min, g〉 is a normal metric for each
g ∈ {Σ,max, avg,median}.4

Definition 11 Given a finite theoryΓ and anS-distance
metricD = 〈S, d, f, g〉, define:

∆D(Γ) =
{

ν ∈ ΛV | ∀µ ∈ ΛV dg(ν,Γ) ≤ dg(µ,Γ)
}

.

Proposition 12 LetD = 〈S, d, f, g〉 be a normal metric. If
modS(Γ) 6= ∅ then∆D(Γ) = modS(Γ).

Proof. If ν is a model of{ψ1, . . . , ψn}, then asD is normal,
df (ν, ψi) = 0 for every1≤ i≤n. Thus, asg is an aggrega-
tion function, by condition (b) in Definition 6,dg(ν,Γ) = 0.
Sincedg(µ,Γ) ≥ 0 for everyµ∈ΛV (Note 9), it follows that
ν ∈ ∆D(Γ).

For the converse, consider the following lemma:

Lemma 13 In every normal metric〈S, d, f, g〉 the function
g is strictly positive whenever it has at least one strictly posi-
tive argument and the rest of its arguments are non-negative.

Lemma 13 follows from the fact thatg(x1, . . . , xn) = 0
iff x1 = . . . = xn = 0 (by conditions (b) in Defini-
tions 6 and 10) together with the requirements thatg is non-
decreasing in each of its arguments (condition (a) in Defini-
tions 6).

To complete the proof of Proposition 12, suppose then thatν
is not a model of{ψ1, . . . , ψn}. As such, it does not satisfy
ψk for some1≤k≤n, and sodf (ν, ψk)>0. By Lemma 13,
dg(ν,Γ)>0 as well. On the other hand, we have shown that
dg(µ,Γ)=0 for everyµ∈modS(Γ), thusν 6∈∆D(Γ). 2

Now we are ready to define distance-based entailments:

Definition 14 For a metricD, defineΓ |=Dψ if every valu-
ation in∆D(Γ) is a model ofψ.

4Note that the arguments ofg are non-negative numbers, and
so lettingg be the summation, average, or median of such numbers
preserves condition (b) in Definition 10.

Example 15 ConsiderΓ = {p, ¬q, r, p → q}, and let
D2 = 〈TWO, dH ,min,Σ〉 be a (normal) distance metric,
wheredH is the Hamming distance between two-valued val-
uations5. The distances between the relevant two-valued val-
uations andΓ are given in the following table:

model p q r dΣ

ν1 true true true 1
ν2 true true false 2
ν3 true false true 1
ν4 true false false 2
ν5 false true true 2
ν6 false true false 3
ν7 false false true 1
ν8 false false false 2

Thus,∆D2(Γ) = {ν1, ν3, ν7}, and so, for instance,Γ |=D2

r, while Γ 6|=D2 p andΓ 6|=D2 q. This can be intuitively
explained by the fact that, unlikep andq, the atomic formula
r is not related to the contradictory fragment ofΓ, thus it is
a reliable information that can be safely deduced fromΓ.

Proposition 16 Let D be a normalS-distance metric, and
letΓ be a set of formulas inL such thatmodS(Γ) 6= ∅. Then
for every formulaψ in L, Γ |=S ψ iff Γ |=D ψ.

Proof. Immediately follows from Proposition 12. 2

Some important particular cases of Proposition 16 are the
following:

Corollary 17 Let D be a normal distance metric inTWO.
For every classically consistent set of formulasΓ and for
every formulaψ, Γ |=2 ψ iff Γ |=D ψ.

Proof. By Proposition 16, since every classically consistent
theory has a model. 2

Corollary 18 LetD be a normalS-distance metric.
a) If S = THREE⊤ thenΓ |=3⊤ ψ iff Γ |=D ψ.
b) If S = FOUR thenΓ |=4 ψ iff Γ |=D ψ.

Proof. By Proposition 16, since inTHREE⊤ and inFOUR,
a valuation that assigns the designated middle element to
every atom is a model of every theory in the classical propo-
sitional language. 2

Example 19 Consider again the distance metricD2 of Ex-
ample 15. By Corollary 17,|=D2 is the same as|=2 with
respect to classically consistent sets of premises, but unlike
the basic two-valued entailment, it does not become trivial
in the presence of contradictions. On the contrary, as Ex-
ample 15 shows,|=D2 allows to draw conclusion from in-
consistent theories in a non-trivial way, and so|=D2 (as well
as many other distance-based relations that are induced by
Definition 14; see Proposition 22 below) is aparaconsistent
consequence relation.

Consider nowD
3⊥ = 〈THREE⊥, dH ,min,Σ〉. The in-

duced entailment,|=D
3⊥ , is again paraconsistent, and with

respect to consistent set of premises it coincides with Kle-
nee’s logic,|=3⊥ (note that the latter relation isnot paracon-
sistent, so in general|=3⊥ and|=D

3⊥ arenot the same). By

5I.e., dH(ν, µ) is the number of atomic formulasp such that
ν(p) 6= µ(p); see also the next section.



Corollary 18, the three-valued entailment,|=D
3⊤ , induced

by D
3⊤ = 〈THREE⊤, dH ,min,Σ〉, and the four-valued en-

tailment|=D4 , induced byD4 = 〈FOUR, dH ,min,Σ〉, are
paraconsistent consequence relations that coincide with the
consequence relation of Priest’s logic LP and with the conse-
quence relation of Belnap’s four-valued logic, respectively.

Note that the above observations still hold when the sum-
mation function in the metrics is replaced, e.g., by maxi-
mum, average, or the median function.

Reasoning with Distance-based Semantics
Distance Functions
A major consideration in the definition of the entailment re-
lations considered in the previous section is the choice of the
distance functions. In this section we consider some useful
definitions of distances in the context of multiple-valued se-
mantics. For this, we need the following notation.

Notation 20 Denote byAtoms the set of atomic formulas
of the languageL and byAtoms(Γ) the set of the atomic
formulae that appear in some formula ofΓ.

Many distance definitions have been considered in the lit-
erature as quantitative measurements of the level of similar-
ity between given interpretations. For instance, thedrastic
distance, considered in (Konieczny, Lang, & Marquis 2002),
is defined by

dD(ν, µ) =

{

0 if ν = µ,
1 otherwise.

Another common measurement of the distance between
two-valued interpretations is given by theHamming distance
that counts the number of atomic formulae that are assigned
different truth values by these interpretations (see also (Dalal
1988)):

dH(ν, µ) = |{p ∈ Atoms | ν(p) 6= µ(p)} |.

For three-valued logics (such as Kleene’s and Priest’s log-
ics considered above) it is possible to apply the same dis-
tance measurements, or to use a natural extension of the
Hamming distance that considers the distance between the
extreme elementstrue and false as strictly bigger than the
distances between each one of them and the middle element.
In this case,true is associated with the value 1,false is asso-
ciated with 0, and the middle element corresponds to1

2 . The
generalized Hamming distance is then defined as follows:

d3
H(ν, µ) =

∑

p∈Atoms

|ν(p) − µ(p)|.

This function is used, e.g., in (de Amo, Carnielli, & Mar-
cos 2002) as part of the semantics behind (three-valued)
database integration systems.

For four-valued interpretations there is also a natural gen-
eralization of the Hamming distance. The idea here is
that each one of the four truth values is associated with a
pair of two-valued components as follows:true = (1, 0),
false = (0, 1), neither = (0, 0), both = (1, 1). This
pairwise representation preserves Belnap’s original four-
valued structure (see (Arieli & Denecker 2003; Arieli 2004;

2006)), and so it is a valid rewriting of the truth values. Now,
the distance between two valuesx = (x1, x2), y = (y1, y2)
in this pairwise representation is given by

d4(x, y) =
|x1 − y1| + |x2 − y2|

2
,

so the graphic representation ofd4 on the four-valued struc-
ture is the following:
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Now, the generalized Hamming distance between two four-
valued interpretationsν, µ is defined by:

d4
H(ν, µ) =

∑

p∈Atoms

d4
(

ν(p), µ(p)
)

.

Clearly, this definition may be applied on any lattice whose
elements have a pairwise representation (see (Arieli 2004;
2006)).

It is not difficult to verify that all the functions defined
above satisfy the conditions in Definition 5. Below are some
further observations on these distance functions:

1. Given two interpretationsν, µ into {true, false}, it holds
thatd4

H(ν, µ) = d3
H(ν, µ) = dH(ν, µ), thusd4

H andd3
H

indeed generalize the standard Hamming distance.

2. As the following example shows, the choice of the dis-
tance function (as well as the choice of the other com-
ponents of a distance metric) has a great impact on the
induced entailment.

Example 21 Consider the following two metrics:

D
′ = 〈THREE⊥, dH ,min,Σ〉,

D
′′ = 〈THREE⊥, d

3
H ,min,Σ〉.

ForΓ = {p,¬p}, we have

∆D
′

(Γ) =
{

{p :true}, {p : false}
}

,

∆D
′′

(Γ) =
{

{p :true}, {p : false}, {p :middle}
}

.

Thus, for instance,Γ |=D
′

p ∨ ¬p, while Γ 6|=D
′′

p ∨ ¬p.6

3. In (Konieczny, Lang, & Marquis 2002) it is shown that
the choice of the distance function has also a major affect
on the computational complexity of the underlying for-
malism. See Section 4 of that paper for some complexity
results of distance-based operators whenS = TWO.

6This is so, sinceν(p ∨ ¬p) = middle whenν(p) = middle,
and inTHREE⊥ the middle element is not designated.



Basic Properties of|=D

Paraconsistency. In what follows we consider some char-
acteristic properties of the distance-based entailments.We
begin with the ability to reason with inconsistent theoriesin
a non-trivial way. The following proposition shows that this
property is common to many distance-based logics that are
definable within our framework.

Proposition 22 The consequence relations|=D, induced by
the following metrics, are all paraconsistent:

a) D = 〈TWO, d,min, g〉, whered is the drastic distance
(dD) or the Hamming distance (dH) andg is either a sum-
mation or a maximum function.

b) D = 〈THREE⊥, d,min, g〉, whered ∈ {dD, dH , d3
H}

andg is either a summation or a maximum function.
c) D = 〈THREE⊤, d,min, g〉, whered ∈ {dD, dH , d3

H}
andg is either a summation or a maximum function.

d) D = 〈FOUR, d,min, g〉, whered is any distance function
of those considered in the previous section andg is either
a summation or a maximum function.

e) D = 〈[0, 1], d,min, g〉, whered is the drastic distance or
the Hamming distance andg is either a summation or a
maximum function.

Proof. For any of the items above we shall show that
p,¬p 6|=D q, and so it isnot the case that any formula fol-
lows from an inconsistent theory. Indeed, in item (a) we
have that{p : true, q : false} (as well as{p : false, q : false})
is in ∆D({p,¬p}), thusq does not follow from{p,¬p}. For
item (b) note that although different distance functions in-
duce different sets of preferred models of{p,¬p} (see Ex-
ample 21), it is easy to verify that wheneverg is the sum-
mation function then{p : true, q : false} is, e.g., an element
of ∆D({p,¬p}), and wheneverg is the maximum function
{p : middle, q : false} is an element of∆D({p,¬p}). Thus,
in both cases,q does not follow from{p,¬p}. Part (c)
holds since by Proposition 12 we have that∆D({p,¬p}) =
mod3⊤({p,¬p}), and so{p :middle, q : false} is an element
in ∆D({p,¬p}) (recall that inTHREE⊤ the middle element
is designated, and so{p :middle} is a model of{p,¬p}). We
therefore again have thatp,¬p 6|=D q. The proof of part (d)
is similar to that of part (c) with the obvious adjustments to
the four-valued case. Part (e) is similar to part (a) replacing,
respectively,true andfalse by 1 and0. 2

Monotonicity. Next we consider monotonicity, that is:
whether the set of|=D-conclusions is non-decreasing in
terms of the size of the premises. As the next two proposi-
tions show, this property is determined by the multi-valued
structure and the distance metric at hand:

Proposition 23 Let D be a normal distance metric for
FOUR. Then the corresponding distance-based entailment,
|=D, is monotonic.

Proof. By Corollary 18(b),|=D is the same as the basic four-
valued entailment|=4 of Belnap’s logic. The proposition
now follows from the monotonicity of the latter (see (Arieli
& Avron 1996, Theorem 3.10) and (Arieli & Avron 1998,
Proposition 19)). 2

Proposition 24 LetD=〈TWO, d,min, g〉 be a normal dis-
tance metric such thatg(x1, . . . , xn) ≤ g(y1, . . . , ym) if
{x1, . . . , xn} ⊆ {y1, . . . , ym}.7 Then the corresponding
distance-based entailment,|=D, is non-monotonic.

Proof. Consider, e.g.,Γ = {p,¬p ∨ q}. By Corollary 17,
Γ |=D q. On the other hand, considerΓ′ = Γ∪{¬p}, and let
νt andνf be two-valued valuations that respectively assign
true andfalse to p. By the assumption ong we have that

dg
(

νt,Γ
′
)

= g
(

dmin(νt,¬p), dmin(νt,¬p ∨ q)
)

≥ g
(

dmin(νt,¬p)
)

= dmin(νt,¬p)
= dmin(νf , p)

= g
(

dmin(νf , p)
)

= dg
(

νf ,Γ
′
)

.

It follows, then, that every two-valued valuationνf that as-
signsfalse to p is in ∆D(Γ′), no matter what value it assigns
to q (asdg(νf ,Γ′) is not affected byνf (q)). In particular,
∆D(Γ′) contains valuations that assignfalse to q, and so
Γ′ 6|=D q. 2

Rationality. In (Lehmann & Magidor 1992), Lehmann
and Magidor consider some properties that a “rational” non-
monotonic consequence relation should satisfy. One prop-
erty that is considered as particularly important assures that
a reasoner will not have to retract any previous conclusion
when learning about a new fact that has no influence on the
existing set of premises. Consequence relations that satisfy
this property are calledrational. Next we show that many
distant-based entailments are indeed “rational”.

Notation 25 An aggregation functionf is calledhereditary,
if f(x1, . . . , xn, z1, . . . , zm) < f(y1, . . . , yn, z1, . . . , zm)
wheneverf(x1, . . . , xn) < f(y1, . . . , yn).8

Proposition 26 Let D = 〈S, d, f, g〉 be anS-distance met-
ric with a hereditary functiong. If Γ |=D ψ thenΓ, φ |=D ψ
for everyφ such thatAtoms(Γ ∪ {ψ}) ∩ Atoms(φ) = ∅.

Intuitively, the condition onφ in Proposition 26 guaran-
tees thatφ is ‘irrelevant’ forΓ andψ. The intuitive meaning
of Proposition 26 is, therefore, that the reasoner does not
have to retractψ when learning thatφ holds.
Proof of Proposition 26. Let µ ∈ ΛV be a valuation that
does not satisfyψ. AsΓ |=Dψ whileµ(ψ) 6∈ D, necessarily
µ is not in∆D(Γ), and so there is a valuationν in ∆D(Γ), for
which dg(ν,Γ) < dg(µ,Γ). Again, sinceΓ |=D ψ, ν(ψ) ∈
D. Assuming thatΓ = {ψ1, . . . , ψn}, we have that

g(df (ν, ψ1), . . . , df (ν, ψn)) < g(df (µ, ψ1), . . . , df (µ, ψn)).

Now, consider a valuationσ, defined for every atomp as
follows:

σ(p) =

{

ν(p) if p ∈ Atoms(Γ ∪ ψ)

µ(p) otherwise

7As the arguments ofg are non-negative, summation, maxi-
mum, and many other aggregation functions satisfy this property.

8Note that heredity, unlike monotonicity, is defined by strict
inequalities. Thus, for instance, the summation is hereditary, while
the maximum function is not.



Note thatσ(p) = ν(p) for everyp ∈ Atoms(ψ), and so
σ(ψ) ∈ D as well. AsAtoms(Γ ∪ {ψ}) ∩ Atoms(φ) = ∅
and sinceg is hereditary, we have that

dg(σ,Γ ∪ {φ}) = g(df (σ, ψ1), . . . , df (σ, ψn), df (σ, φ))
= g(df (ν, ψ1), . . . , df (ν, ψn), df (µ, φ))
< g(df (µ, ψ1), . . . , df (µ, ψn), df (µ, φ))
= dg(µ,Γ ∪ {φ}).

Thus, for every valuationµ such thatµ(ψ) 6∈ D there is
a valuationσ such thatσ(ψ) ∈ D anddg(σ,Γ ∪ {φ}) <
dg(µ,Γ∪{φ}). It follows that the elements of∆D(Γ∪{φ})
must satisfyψ, and soΓ, φ |=D ψ. 2

Adaptivity. The ability to handle theories with contra-
dictions in a nontrivial way and at the same time to pre-
suppose a consistency of all sentences ‘unless and un-
til proven otherwise’, is calledadaptivity (Batens 1989;
1998). Consequence relations with this propertyadapt to
the specificinconsistencies that occur in the theories. For
instance, a plausible inference mechanism shouldnot ap-
ply the Disjunctive Syllogism for concluding thatq follows
from {p,¬p,¬p ∨ q}. On the other hand, in the case of
{p,¬p, r,¬r ∨ q}, applying the Disjunctive Syllogism tor
and¬r∨ q may be justified by the fact that the subset of for-
mulae to which the Disjunctive Syllogism is applied should
not be affected by the inconsistency of the whole theory,
therefore inference rules that are classically valid can beap-
plied to it.

The following proposition shows that in many cases
distance-based entailments are adaptive. If a given theory
can be split up to a consistent and an inconsistent parts, then
every assertion that is not related to the inconsistent part, and
which classically follows from the consistent part, must be
entailed by the whole theory.

Proposition 27 Let D = 〈S, d, f, g〉 be a normalS-
distance metric with a hereditary functiong. Suppose that
Γ is a theory that can be represented asΓ′ ∪ Γ′′, where
modS(Γ′) 6= ∅ andAtoms(Γ′) ∩ Atoms(Γ′′) = ∅. Then
for every formulaψ such thatAtoms(ψ) ∩ Atoms(Γ′′) = ∅,
it holds that ifΓ′ |=S ψ thenΓ |=D ψ.

Proof. If Γ′ |=S ψ, then by Proposition 16,Γ′ |=D ψ. Now,
asAtoms(Γ′ ∪ {ψ}) ∩ Atoms(Γ′′) = ∅, we have, by Propo-
sition 26, thatΓ |=D ψ. 2

Distance-based Entailments for
Prioritized Theories

|=D, Generalized
We now extend the distance-based semantics of the previous
section toprioritized theories. An n-prioritized theory is a
theoryΓ = Γ1 ∪ . . . ∪ Γn, where the setsΓi (1 ≤ i ≤ n)
are pairwise disjoint. Intuitively, wheni < j the formulas
in Γi are preferred than those inΓj . A common situation
in which theories are prioritized is, e.g., when data-sources
are augmented with integrity constraints. In such cases the
corresponding theory has two priority levels, as the integrity
constraints must always be satisfied, while the data facts may
be revised in case of conflicts.

To formalize the existence of different levels of priority
in prioritized theories, we consider the following sequence
of sets: for a metricD = 〈S, d, f, g〉 and ann-prioritized
theoryΓ = Γ1 ∪ . . . ∪ Γn, define:

• ∆D
1 (Γ) =

{

ν ∈ ΛV | ∀µ ∈ ΛV dg(ν,Γ1) ≤ dg(µ,Γ1)
}

• for every1 < i ≤ n, let
∆D

i (Γ) =
{

ν ∈ ∆D

i−1(Γ) |

∀µ ∈ ∆D

i−1(Γ) dg(ν,Γi) ≤ dg(µ,Γi)
}

Definition 28 Given anS-distance metricD, define for ev-
eryn-prioritized theoryΓ and formulaψ, Γ |=D ψ if every
valuation in∆D

n(Γ) satisfiesψ.

Note that the last definition is a conservative extension of
Definition 14, since for non-prioritized theories (i.e., when
n = 1) the two definitions coincide.

Example 29 Consider the following puzzle, known as the
Tweety dilemma:

Γ =























bird(x) → fly(x),
penguin(x) → bird(x),
penguin(x) → ¬fly(x),
bird(Tweety),

penguin(Tweety)























As this theory is not consistent, everything classically fol-
lows from it, including, e.g.,fly(Tweety), which seems a
counter-intuitive conclusion in this case, as penguins should
not fly, although they are birds. The reason for this anomaly
is that all the formulas above have the same importance, in
contrast to the intuitive understanding of this case. Indeed,

1. The confidence level of strict facts (bird(Tweety) and
penguin(Tweety) in our case) is usually at least as high
as the confidence level of general rules (implications).

2. As penguinsnever fly, and this is a characteristic fea-
ture of penguins (without exceptions), one would proba-
bly like to attach to the assertionpenguin(x) → ¬fly(x)
a higher priority than that ofbird(x) → fly(x), which
states only a default property of birds.9

Consider now the metricD = 〈TWO, dH ,min,Σ〉 and
regardΓ as a prioritized theory in which the two consid-
erations above are satisfied. It is easy to verify that the
unique valuation in∆D

n(Γ) (wheren > 1 is the number of
priority levels inΓ) assignstrue to bird(Tweety), true to
penguin(Tweety), andfalse to fly(Tweety). Thus, e.g.,
Γ |=D ¬fly(Tweety), as intuitively expected.

Applications
In this section we show how the generalized distance-based
semantics for prioritized theories, introduced in the previous
section, can be naturally applied in related areas. Below we
consider two representative examples: database query sys-
tems and belief revision theory.

9The third assertion,penguin(x) → bird(x), could have an
intermediate priority, as again there are no exceptions to the fact
that every penguin is a bird, but still penguins are nottypical birds,
thus they shouldn’t inherit all the properties we expect birds to
have.



A. Consistent Query Answering in Database Systems
A particularly important context in which reasoning with
prioritized theories naturally emerges is consistency han-
dling in database systems. In such systems, it is of prac-
tical importance to enforce the validity of the data facts
by a set of integrity constraints. In case of any violation
of some integrity constraint, the set of data-facts is sup-
posed to be modified in order to restore the database consis-
tency. It follows, then, that integrity constraints are superior
than the facts themselves, and so the underlying theory is
a prioritized one. This also implies that consistent query
answering from possibly inconsistent databases (Arenas,
Bertossi, & Chomicki 1999; 2003; Greco & Zumpano 2000;
Bravo & Bertossi 2003; Eiter 2005) or constraint data-
sources (Konieczny, Lang, & Marquis 2002; Konieczny &
Pino Pérez 2002) may be defined in terms of distance-based
entailments on prioritized theories. Moreover, as our frame-
work is tolerant to different semantics, such methods of
query answering, which are traditionally two-valued ones,
may be related to other formalisms that are based on many-
valued semantics like those considered in (Subrahmanian
1994) and (de Amo, Carnielli, & Marcos 2002).

Let L be a propositional language withAtoms its under-
lying set of atomic propositions. A (propositional)database
instanceI is a finite subset ofAtoms. The semantics
of a database instance is given by the conjunction of the
atoms inI, augmented with theclosed world assumption
(CWA(I)) (Reiter 1978) that assures that each atom which
is not explicitly mentioned inI is false.

Definition 30 A databaseis a pair (I, C), whereI is a
database instance, andC — the set ofintegrity constraints
— is a finite and consistent set of formulae inL. A database
DB = (I, C) isconsistentif every formula inC follows from
I, that is, there is no integrity constraint that is violated in
I.

Given a databaseDB = (I, C), the theoryΓDB that is
associated with it contains the components ofDB and im-
poses the closed word assumption onI. In addition, this
theory should reflect the fact that the integrity constraints in
C are of higher priority than the rest of the data. That is,
ΓDB should be a two-leveled theory, in whichΓ1 = C and
Γ2 = I ∪ CWA(I). Now, query answering with respect to
DB may be defined in terms of a distance-based entailment
onΓDB.

Suppose, then, thatD is a normalS-distance metric for
some multiple-valued structureS, and letDB = (I, C) be a
(possibly inconsistent) database. Its prioritized theoryis

ΓDB = Γ1 ∪ Γ2 = C ∪ (I ∪ CWA(I)),

andQ is a consistent query answer ifΓDB |=D Q. Now, as
C is classically consistent, by Proposition 12,∆D

1 (ΓDB) =
mod(C). It follows, therefore, thatQ is a consistent query
answer ofDB if it is satisfied by every model ofC with
minimal distance (in terms ofdg) from I ∪ CWA(I).

Example 31 LetDB = ({p, r}, {p→ q}). Here,

I ∪ CWA(I) = I ∪ {¬x | x 6∈ I} = {p,¬q, r},

so the associated theory is

ΓDB = {p→ q} ∪ {p,¬q, r}.

This theory is the same as the one considered in Example 15,
but with one major difference: nowp → q is preferred over
the other formulas, thus only its models are taken into ac-
count. Consider the same metric as that of Example 15. As
valuationsν3, ν4 in the table of that example do not satisfy
C, they are excluded. Among the remaining valuations,ν1
andν7 are the closest toI ∪ CWA(I), and so the consistent
query answers of(I, C) are the formulas that are satisfied by
bothν1 andν7.

Note 32 Example 31 shows, in particular, that|=D is not re-
flexive, since for instanceΓDB 6|=Dp althoughp∈ΓDB. This
can be justified by the fact that one way of restoring the con-
sistency ofDB is by removingp from I (ν7 corresponds to
this situation), and sop does not hold in all the consistency
‘repairs’ of ΓDB.10 Similarly, the fact thatΓDB 6|=D ¬q al-
though¬q ∈ ΓDB may be justified by the alternative way
of restoring the consistency ofDB, in which q is added to
I (ν1 corresponds to this situation). Note also that there is
no reason to remover from I, as this will not contribute
to the consistency restoration ofDB. This intuitively justi-
fies the fact that forr (unlike the other atomic formulae in
ΓDB), we do have thatΓDB |=D r (cf. Example 15). This is
also to the intuition behind the query answering formalisms
for inconsistent databases, considered e.g. in (Arenas,
Bertossi, & Chomicki 1999; 2003; Greco & Zumpano 2000;
Bravo & Bertossi 2003; Eiteret al. 2003; Arieliet al. 2004;
2006).

B. Modeling of Belief Revision
A belief revision theory describes how a belief state is ob-
tained by the revision of a belief stateB by some new in-
formation,ψ. A belief revision operator◦ describes the
kind of information change that should be made in face of
the new (possibly contradicting) information depicted byψ.
The new belief state, denotedB ◦ψ, is usually characterized
by the closest worlds toB in which ψ holds. This crite-
rion, often calledthe principle of minimal change, is one of
the most widely advocated postulates of belief revision the-
ory. Clearly, it is derived by distance considerations, so it
is not surprising that this consideration can be expressed in
our framework. Indeed, the intended meaning of the revi-
sion operator is to describe ‘how to reviseB in order to be
consistent withψ’. In our context the revised belief state
corresponds to the (coherent) set of conclusions that can be
derived from the prioritized theory{ψ} ∪ B, in which ψ
is superior thanB. Indeed, suppose again thatD is a nor-
malS-distance metric for some multiple-valued structureS,
and considerΓ = Γ1 ∪ Γ2 = {ψ} ∪ B. Again, by Propo-
sition 12,∆D

1 (Γ) = mod(ψ), and so the new belief state
consists of the formulas that are satisfied by every model of
ψ and that are minimally distant (in terms ofdg) fromB. In
other words,

B ◦ ψ = ∆D

2 (Γ), (1)

10Or, equivalently,p is involved in contradictions inΓDB; see
also the discussion in Example 15 above.



whereΓ = Γ1 ∪ Γ2, Γ1 = {ψ}, andΓ2 = B.

Example 33 For D2 = 〈TWO, dH ,min,Σ〉 define a be-
lief revision operator◦ by Equation (1) above. The revision
operator that is obtained is the same as the one considered
in (Dalal 1988). It is well-known that this operator satisfies
the AGM postulates (Alchourrón, Gärdenfors, & Makinson
1985).

Conclusion
In this paper we have introduced a family of multiple-valued
entailments, the underlying semantics of which is based on
distance considerations. It is shown that such entailments
can be incorporated in a variety of deductive systems, me-
diators of distributed databases, consistent query answering
engines, and formalisms for belief revision.

A characteristic property of the entailments considered
here is that, although being paraconsistent in nature, to a
large extent they retain consistency. For instance, the en-
tailments that are defined by normal distance metrics in a
two-valued (respectively,S-valued) semantics, are identical
to classical two-valued entailment (respectively, are identi-
cal to the corresponding basicS-entailment), as long as the
set of premises is kept consistent. Moreover, even when the
set of premises becomes inconsistent, the conclusions that
are obtained from the fragment of the theory that is not re-
lated to the ‘core’ of the inconsistency, are the same as those
obtained by the classical two-valued (respectively, the ba-
sicS-valued) entailment, when only the consistent fragment
is taken into account. In contrast to the classical entailment,
however, our formalisms are not degenerated in the presence
of contradictions, so the set of conclusions is not ‘exploded’
is such cases.
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