
Simple Contrapositive Assumption-Based Frameworks

Jesse Heyninck1[0000−0002−3825−4052]? and Ofer Arieli2[0000−0002−6588−886X ]

1 Institute of Philosophy II, Ruhr University Bochum
2 School of Computer Science, The Academic College of Tel-Aviv

Abstract. Assumption-based argumentation is one of the most prominent for-
malisms for logical (or structured) argumentation. It has been shown useful for
representing defeasible reasoning and has tight links to logic programming. In
this paper we study the Dung semantics for extended forms of assumption-based
argumentation frameworks (ABFs), based on any contrapositive propositional
logic, and whose defeasible rules are expressed by arbitrary formulas in that
logic. In particular, new results on the well-founded semantics for such ABFs are
reported, the redundancy of the closure condition is shown, and the use of dis-
junctive attacks is investigated. Finally, some useful properties of the generalized
frameworks are considered.

1 Introduction

Assumption-based argumentation frameworks (ABFs), thoroughly described in [4], were
introduced in the 1990s as a computational structure to capture and generalize several
formalisms for defeasible reasoning, including logic programming [4, 6]. Their def-
inition was inspired by Dung’s semantics for abstract argumentation and logic pro-
gramming with its dialectical interpretation of the acceptability of negation-as-failure
assumptions based on the notion of “no-evidence-to-the-contrary”.

In this paper, which is a companion of [13], we study the Dung-style semantics [11]
and the entailment relations induced from a large family of ABFs, called simple contra-
positive, that are based on any contrapositive propositional logic, and whose defeasible
rules are expressed by arbitrary formulas in that logic.3 Among others, the following
contributions and new findings concerning these frameworks are shown in this paper:
(1) The well-founded semantics for ABFs is considered, and its strong relations to rea-
soning with maximally consistent subsets of the premises is shown. Moreover, we show
that under a simple condition this semantics coincides with the grounded semantics for
the same ABFs.
(2) We show that for simple contrapositive ABFs the closure requirement on the frame-
works’ extensions is in fact redundant. As a consequence, most of the concepts that are
related to such ABFs are simplified, and their computation becomes easier. To the best
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of our knowledge, this is the first time that such a question has been asked and answered
for assumption-based argumentation.

(3) We consider a generalization of the attack relation in ABFs, called disjunctive at-
tacks. The use of these attacks avoids some problems of the grounded semantics under
standard attacks. Concerning the other types semantics, we show that (as in the case of
ordinary attacks), preferred and stable semantics are reducible to naive semantics, and
that the correspondence to reasoning with maximally consistent subsets is preserved.
This means that we define a formalism that preserves consistency and correspondence
to maximal consistency-based reasoning even under disjunctive attacks, thus avoiding
some of the long-standing problems that were reported by [7] for other logic-based
argumentation formalisms using disjunctive attacks (called undercut in [7]).

(4) We show that the entailment relations induced from the ABFs with disjunctive
attacks are preferential for skeptical reasoning and cumulative for credulous reason-
ing [14]. For these kinds of entailments the property of non-interference [5] is satisfied.

The remaining of this paper is organized as follows: in the next section we review
some notions and relevant results from [13]. In Section 3 we provide some new results
concerning the Dung-style semantics of simple contrapositive ABFs, and in Section 4
we consider some properties of the induced entailment relations. In Section 5 we discuss
our results in light of related work and conclude.4

2 Preliminaries

In this section we define the notion of simple contrapositive ABFs, and recall the main
results concerning their semantics (see [13]).

We denote by L an arbitrary propositional language. Atomic formulas in L are
denoted by p,q,r, compound formulas are denoted by ψ,φ ,σ , and sets of formulas in
L are denoted by Γ , ∆ . The powerset of L is denoted by ℘(L ).

Definition 1. A (propositional) logic for a language L is a pair L = 〈L ,`〉, where
` is a (Tarskian) consequence relation for L , that is, a binary relation between sets
of formulas and formulas in L , which is reflexive (if ψ ∈ Γ then Γ ` ψ), monotonic
(if Γ ` ψ and Γ ⊆ Γ ′, then Γ ′ ` ψ), and transitive (if Γ ` ψ and Γ ′,ψ ` φ , then
Γ ,Γ ′ ` φ ). We also assume that ` is non-trivial (there are Γ ,ψ for which Γ 0 ψ),
structural (i.e., closed under substitutions: for every substitution θ and every Γ ,ψ , if
Γ ` ψ then {θ(γ) | γ ∈ Γ } ` θ(ψ)), and finitary (if Γ ` ψ then there is a finite Γ ′ ⊆ Γ

such that Γ ′ ` ψ).

The `-transitive closure of a set Γ of L -formulas is Cn`(Γ ) = {ψ | Γ ` ψ}. When
the consequence relation is clear from the context we will sometimes just write Cn(Γ ).

We shall assume that the language L contains at least the following (primitive or
defined) connectives: `-negation ¬, satisfying: p 6` ¬p and ¬p 6` p (for every atomic p);
`-conjunction ∧, satisfying: Γ `ψ∧φ iff Γ `ψ and Γ ` φ ; `-disjunction ∨, satisfying:

4 An extended abstract of this paper appears in the proceedings of AAMAS’2019.



Γ ,φ ∨ψ ` σ iff Γ ,φ ` σ and Γ ,ψ ` σ ; `-implication ⊃, satisfying: Γ ,φ ` ψ iff Γ `
φ ⊃ ψ; and `-falsity constant F, satisfying: F ` ψ for every formula ψ .

For a finite set of formulas Γ we denote by
∧

Γ (respectively, by
∨

Γ ), the conjunc-
tion (respectively, the disjunction) of the formulas in Γ . Also, we denote ¬Γ = {¬γ |
γ ∈ Γ }. We say that Γ is `-consistent, if Γ 6` F.

Definition 2. A logic L = 〈L ,`〉 is explosive, if for L -formula ψ , the set {ψ,¬ψ}
is `-inconsistent.5 We say that L is contrapositive, if for every Γ and ψ it holds that
Γ ` ¬ψ iff either ψ = F, or for every φ ∈ Γ we have that Γ \{φ},ψ ` ¬φ .

Example 1. Classical logic, intuitionistic logic, and modal logics with standard modal
semantics, are all specific cases of explosive and contrapositive logics.

Next , we generalize the definition in [4] of assumption-based frameworks.

Definition 3. An assumption-based framework is a tuple ABF = 〈L,Γ ,Ab,∼〉, where:

– L= 〈L ,`〉 is a propositional Tarskian logic
– Γ (the strict assumptions) and Ab (the candidate or defeasible assumptions) are dis-

tinct countable sets of L -formulas, where the former is assumed to be `-consistent
and the latter is assumed to be nonempty.

– ∼ : Ab→℘(L ) is a contrariness operator, assigning a finite set of L -formulas to
every defeasible assumption in Ab, such that for every ψ ∈ Ab where ψ 6` F it holds
that ψ 6`

∧
∼ψ and

∧
∼ψ 6` ψ .

A simple contrapositive ABF is an assumption-based framework ABF = 〈L,Γ ,Ab,∼〉,
where L is an explosive and contrapositive logic, and ∼ψ = {¬ψ}.

Note 1. Unlike the setting of [4], an ABF may be based on any Tarskian logic L. Also,
the strict as well as the candidate assumptions are formulas that may not be just atomic.
Concerning the contrariness operator, note that it is not a connective of L , as it is
restricted only to the candidate assumptions.

Note 2. Traditionally, ABFs make use of some set of domain dependent rules as known
from e.g. logic programming (i.e., rules of the form φ1, . . . ,φn → φ , as in logic pro-
gramming). It is not difficult to see that our setting also applies to this subclass of ABFs
by assuming that the implication ⊃ is deductive (i.e., it is an `-implication, see above)
and treating such rules as strict premises

∧n
i=1 φi ⊃ φ . Such a framework is a simple

contrapositive ABF if the rules are closed under contraposition.

Defeasible assertions in an ABF may be attacked by counterarguments.

Definition 4. Let ABF= 〈L,Γ ,Ab,∼〉 be an assumption-based framework, ∆ ,Θ ⊆Ab,
and ψ ∈ Ab. We say that ∆ attacks ψ iff Γ ,∆ ` φ for some φ ∈∼ψ . Accordingly, ∆

attacks Θ if ∆ attacks some ψ ∈Θ .

The last definition gives rise to the following adaptation to ABFs of the usual se-
mantics for abstract argumentation frameworks [11].

5 That is, ψ,¬ψ ` F. In explosive logics every formula follows from inconsistent assertions.



Definition 5. ([4]) Let ABF = 〈L,Γ ,Ab,∼〉 be an assumption-based framework, and
let ∆ ⊆ Ab. Below, maximum and minimum are taken with respect to set inclusion.
Then:

– ∆ is closed if ∆ = Ab∩Cn`(Γ ∪∆).
– ∆ is conflict-free iff there is no ∆ ′ ⊆ ∆ that attacks some ψ ∈ ∆ .
– ∆ is naive iff it is closed and maximally conflict-free.
– ∆ defends a set ∆ ′ ⊆ Ab iff for every closed set Θ that attacks ∆ ′ there is ∆ ′′ ⊆ ∆

that attacks Θ .
– ∆ is admissible iff it is closed, conflict-free, and defends every ∆ ′ ⊆ ∆ .
– ∆ is complete iff it is admissible and contains every ∆ ′ ⊆ Ab that it defends.
– ∆ is grounded iff it is minimally complete.
– ∆ is preferred iff it is maximally admissible.
– ∆ is stable iff it is closed, conflict-free, and attacks every ψ ∈ Ab\∆ .
– ∆ is well-founded iff ∆ =

⋂
{Θ ⊆ Ab |Θ is complete}.

The set of naive (respectively, complete, preferred, stable, grounded, well-founded)
extensions of ABF is denoted by Naive(ABF) (respectively, Com(ABF), Prf(ABF),
Stb(ABF), Grd(ABF), WF(ABF)). Clearly, the well-founded extension of an ABF is
unique.

In [13] the Dung-style extensions considered above are characterized in terms of
the maximal consistent subsets of the defeasible assumptions:

Definition 6. Let ABF = 〈L,Γ ,Ab,∼〉. A set ∆ ⊆ Ab is maximally consistent in ABF,
if (a) Γ ,∆ 6` F and (b) Γ ,∆ ′ ` F for every ∆ ( ∆ ′ ⊆ Ab. The set of the maximally
consistent sets in ABF is denoted MCS(ABF).

Proposition 1. [13] Let ABF = 〈L,Γ ,Ab,∼〉 be a simple contrapositive ABF. Then:
Naive(ABF)=Prf(ABF)=Stb(ABF)=MCS(ABF). If F∈Ab then also Grd(ABF)=⋂
MCS(ABF).

Apart of the correspondence to reasoning with maximal consistency, Proposition 1
also shows that in simple contrapositive ABFs preferred and stable semantics collapse
to naive semantics. This is not surprising, as similar results for specific argumentation
frameworks are reported in [1] and [3]. Yet, as shown in [3], when more expressive
languages, and/or attack relations, and/or entailment relations are involved, this phe-
nomenon ceases to hold. This is also the case with ABFs, even when the definition of
the contrariness operator is kept. Here is a simple example:

Example 2. Let ABF = 〈L,{p⊃ ¬q},{p,q},∼〉 be an ABF where L is a logic with a
negation ¬, and implication⊃, and where∼ A = {¬A} for any A ∈L . Suppose further
that Modus Ponens holds in L, but contraposition does not. Then {q} is naive but not
preferred, since q doesn’t defend itself from the attack from {p}.

3 Some Generalizations

In this section we give a series of new results concerning Dung’s semantics for simple
contrapositive ABFs and some of is useful enhancements.



3.1 The Well-Founded Extension

First, we consider the well-founded semantics for ABFs (recall Definition 5). This se-
mantics has not been considered in [13], and it is useful when there is no unique minimal
complete extension.

The existence of a well-founded extension for any simple contrapositive ABF fol-
lows from the following claim:6

Proposition 2. Any simple contrapositive ABF has a complete extension.

Proof. Follows from Proposition 1 and the fact that every stable extension is complete.
To see the latter, suppose for a contradiction that ∆ is stable, yet some A ∈ Ab \∆ is
defended by ∆ . Since ∆ is stable Γ ,∆ ` ¬A. Since ∆ defends A, ∆ attacks itself, a
contradiction to ∆ being conflict-free. ut

The next example shows that, as in the case of the grounded semantics, the well-
founded extension of an assumption-based framework ABF does not always coincide
with

⋂
MCS(ABF).

Example 3. Let L be classical logic (CL), Γ = /0, and Ab = {p,¬p,s}. A corresponding
attack diagram is shown in Figure 1.

{s}{p,¬p,s}

{p}

{¬p}

{p,s}

{¬p,s}

Fig. 1. An attack diagram for Example 3

In this case, we have that Com(ABF) = { /0,{p,s},{¬p,s}}, thus WF(ABF) = /0. How-
ever,

⋂
MCS(ABF) = {s}.

Again (see Proposition 1), the situation in Example 3 can be avoided by requiring
that F ∈ Ab (Intuitively, this means that any inconsistent set of arguments is attacked by
the emptyset, thus any admissible set is defended from it).

Proposition 3. Let ABF = 〈L ,Γ ,Ab,∼〉 be a simple contrapositive ABF. If F ∈ Ab
then WF(ABF)=

⋂
MCS(ABF).

Proof. In [13] it is shown that in case that F∈ Ab, there exists a unique grounded exten-
sion for any ABF. From this it follows that

⋃
Grd(ABF)⊆ ∆ for any ∆ ∈ Com(ABF).

This implies that
⋂
Com(ABF) =

⋃
Grd(ABF), that is: WF(ABF) = Grd(ABF). ut

By Propositions 1 and 3 we thus have:

Corollary 1. Let ABF = 〈L ,Γ ,Ab,∼〉 be a simple contrapositive ABF. If F ∈ Ab then
WF(ABF) = Grd(ABF).

6 In the sequel, some proofs will be sketched or omitted altogether due to space restrictions.



3.2 Lifting the Closure Requirement

According to Definition 5, extensions of an ABF are required to be closed. This is a
standard requirement for ABFs (see, e.g., [4, 9, 18]), In this section we show that the
closure condition is not necessary for simple contrapositive ABFs.

Definition 7. Let ABF = 〈L,Γ ,Ab,∼〉 be an assumption-based framework, a subset
∆ ⊆ Ab is weakly admissible (in ABF) iff it is conflict-free, and defends every ∆ ′ ⊆ ∆ .
We say that ∆ is weakly complete (in ABF) iff it is weakly admissible and contains
every ∆ ′ ⊆ Ab that it defends.

Weakly admissibility (weak completeness) is thus admissibility (completeness) with-
out the closure requirement.

Below, we fix a simple contrapositive argumentation framework ABF= 〈L,Γ ,Ab,∼〉.
We show that closure is redundant in the definition of stable, naive and preferred seman-
tics:

Proposition 4. A set ∆ ⊆ Ab is:

– stable iff it is conflict-free and attacks every ψ ∈ Ab\∆ .
– naive iff it is maximally conflict-free.
– preferred iff it is maximally weakly admissible.

Concerning the grounded semantics, we note that when F 6∈Ab the closure condition
is not superfluous. For instance, when Γ = {s,s⊃ q} and Ab = {p,¬p,q}, and classical
logic is the base logic, the emptyset is minimally complete in Ab.7 Yet, the emptyset is
not closed, since Γ ` q.

When F∈Ab, the following proposition shows that the grounded extension is closed.

Proposition 5. If F ∈ Ab, a set ∆ ⊆ Ab is grounded iff it is minimally weakly complete.

3.3 Using Disjunctive Attacks

The next generalization that we consider is concerned with the attack relation. Below,
we allow disjunctive attacks rather than pointed attacks (Definition 4).

Definition 8. Let ABF = 〈L,Γ ,Ab,∼〉 be a simple contrapositive ABF. We say that a
set ∆ ⊆Ab attacks a set Θ ⊆Ab if there is a finite subset Θ ′⊆Θ such that Γ ,∆ `

∨
¬Θ ′.

Note 3. When the ABF is not simple (that is, when the contrariness operator is defined
by sets of formulas), disjunctive attacks may be defined as follows: We let∼θ ′ = {∼ν |
ν ∈ θ ′} and say that a set ∆ ⊆ Ab attacks a set Θ ⊆ Ab if there is a finite subset Θ ′ ⊆Θ

such that Γ ,∆ `
∨

θ ′∈Θ ′
∨

σ ′∈Σ ′⊆∼θ ′ σ
′.

Example 4. Let L = CL, Γ = /0, and Ab = {p,¬p,s}. A corresponding attack diagram
is shown in Figure 2, where the strict lines represent standard attacks (Definition 4), and
the dashed lines represent attacks that are applicable only according to the disjunctive
version of attacks (Definition 8).

7 In particular, the emptyset does not defend q from the attack p,¬p ` ¬q.



/0

{s}{p,¬p,s}

{p}

{¬p}

{p,s}

{¬p,s}

Fig. 2. An attack diagram for Example 4.

Note that the ‘contaminating’ set {p,¬p,s} attacks the set {s}. However, when
disjunctive attacks are allowed the attacking set {p,¬p,s} is counter-attacked by the
emptyset (since /0 ` ¬p∨¬¬p), thus {s} is defended by /0 (which is not the case when
only ‘standard’ attacks are allowed, cf. Example 3).

In what follows we again fix some simple contrapositive ABF, this time with dis-
junctive attacks as in Definition 8. We further assume that the base logic L respects the
following de Morgan rules:

de Morgan I:
∨
¬∆ ` ¬

∧
∆ , de Morgan II:¬

∧
∆ `

∨
¬∆ . (1)

One clear benefit of using disjunctive attacks in this setting is that the inconsis-
tency problems of argumentation-based extensions, first discussed in [7], are avoided.
In that paper it was shown that in the framework of deductive argumentation, the use of
preferred semantics in combination with disjunctive attacks might give rise to admissi-
ble (and thus preferred) extensions that contain arguments with mutually inconsistent
conclusions. As shown next, the formalism of simple contrapositive ABFs provides a
solution to this long-standing problem of finding a way to do consistent deductive ar-
gumentation using disjunctive attacks.

Proposition 6. Let L be a logic in which de Morgan’s rules in (1) are satisfied, and let
ABF= 〈L,Γ ,Ab,∼〉 be a simple contrapositive ABF with disjunctive attacks. If ∆ ⊆Ab
is conflict-free then there are no φ1, . . . ,φn ∈ ∆ such that Γ ,∆ ` ¬

∧n
i=1 φi.

Proof. Suppose for a contradiction that ∆ ⊆ Ab is conflict-free yet there are some
φ1, . . . ,φn ∈ ∆ s.t. Γ ,∆ ` ¬

∧n
i=1 φi. By de Morgan II, Γ ,∆ `

∨
¬{φ1, . . . ,φn}. But then

∆ attacks itself, a contradiction to the assumption that it is conflict-free. ut

Another benefit of using disjunctive attacks is that the notion of defense in Defini-
tion 5 can be independent of closed sets (see also Section 3.1). Indeed, the following
definition is the same as Definition 5, but without any reference to closed sets.

Definition 9. We say that ∆ purely defends ∆ ′ ⊆ Ab iff for every Θ that attacks ∆ ′ there
is some ∆ ′′ ⊆ ∆ that attacks Θ .

Proposition 7. When disjunctive attacks are used, the notions of defense and pure de-
fense coincide.



Note 4. To see that the condition of having disjunctive attacks is indeed necessary for
Proposition 7, consider again Example 4. As indicated in that example, when only stan-
dard attacks are used, {s} cannot be purely defended from the attacking set {p,¬p}. On
the other hand, {s} is defended according to Definition 5, simply because any attacker
of {s} not containing F is not closed (e.g., {p,¬p} is not closed since {p,¬p} ` F).8

The main results of this section is that, again, in this case: (a) preferred and sta-
ble semantics are reducible to naive semantics, (b) the correspondence to reasoning
with maximally consistent subsets is preserved, and (c) the grounded extension is well-
behaved for disjunctive attacks, even without requiring that F ∈ Ab.

To show these results we first indicate that when switching to the more generalized
(disjunctive) attacks, the closure requirement in the definitions of naive, preferred, and
stable extensions (Definition 5) remains redundant. Namely:

Proposition 8. For a set ∆ ⊆ Ab, we have:

1. ∆ is stable iff it is conflict-free in ABF and attacks every ψ ∈ Ab\∆ .
2. ∆ is naive iff it is maximally conflict-free in ABF.
3. ∆ is preferred iff it is maximally weakly admissible in ABF.

Now we can show that also when disjunctive attacks are incorporated in simple
contrapositive ABFs, preferred and stable semantics collapse to naive semantics and
are related to maximally consistent subsets.

Theorem 1. Let L be a logic in which de Morgan’s rules in (1) hold, and let ABF =
〈L,Γ ,Ab,∼〉 be a simple contrapositive ABF with disjunctive attacks. Then:

Naive(ABF) = Prf(ABF) = Stb(ABF) =MCS(ABF).

Proof (ouline). We show the following fragment of the theorem:

Proposition 9. ∆ is naive in ABF iff it is in MCS(ABF).

Proof. [⇒]: Let ∆ be a naive set in Ab. Suppose for a contradiction that Γ ,∆ ` F. By
explosion, this means that Γ ,∆ `

∨
¬∆ ′ for any ∆ ′ ⊆ ∆ , contradicting the conflict-

freeness of ∆ . Thus ∆ is consistent. To see that ∆ is maximally consistent in ABF, note
that since ∆ is maximally conflict-free, for every proper superset ∆ ′ of ∆ there is some
Θ ⊆ ∆ ′ such that Γ ,∆ ′ `

∨
¬Θ . By de Morgan I and transitivity, then, Γ ,∆ ′ ` ¬

∧
Θ .

On the other hand, Θ ⊆ ∆ ′, and so Γ ,∆ ′ `
∧

Θ . This implies that Γ ,∆ ′ ` F. Thus, ∆ is
maximally consistent in ABF.
[⇐]: Let ∆ ∈MCS(ABF) and suppose for a contradiction that Γ ,∆ `

∨
¬∆ ′ for some

∆ ′ ⊆ ∆ . Again, by de Morgan I and transitivity we get on one hand that Γ ,∆ ` ¬
∧

∆ ′,
and since ∆ ′ ⊆ ∆ , by reflexivity we get on the other hand that Γ ,∆ `

∧
∆ ′, which to-

gether contradict the assumption that Γ ,∆ 6` F. Thus ∆ is conflict-free. To see that
∆ is maximally conflict-free, suppose for a contradiction that ∆ ∪{φ} is conflict-free
for some φ ∈ Ab \ ∆ . Since ∆ is maximally consistent, Γ ,∆ ,φ ` F, thus by explo-
sion Γ ,∆ ,φ ` ¬δ for every δ ∈ ∆ ∪{φ}, contradicting the assumption that ∆ ∪{φ} is
conflict-free. ut

8 This is exactly the reason why the restriction to closed sets is imposed when standard attacks
are used, while for disjunctive attacks this is not necessary.



We now turn to the use of disjunctive attacks with the grounded semantics. The next
example helps to appreciate the role of the former in such cases.

Example 5. Recall Examples 3 and 4 (together with, respectively, Figures 1 and 2),
in which L = CL, Γ = /0, and Ab = {p,¬p,s}. As indicated in these examples, when
only standard attacks are allowed, the grounded semantics is the emptyset, while when
disjunctive attacks are allowed the grounded semantics is the set {s} (which is defended
by the emptyset). As s should not be contaminated by the inconsistency about p and ¬p,
having {s} as the grounded extension makes much more sense in this case, and – what
is more – it holds that Grd(ABF) = {{s}}= {

⋂
MCS(ABF)} (cf. Theorem 2 below).

In what follows we shall show that the grounded extension is well-behaved for dis-
junctive attacks, even without requiring that F∈ Ab (cf. Proposition 1). For this, we first
consider an algorithm for constructing grounded extensions. As the following example
shows, the standard iterative process that starts with non-attacked arguments and prop-
agates through defended arguments (used for simple contrapositive ABF with standard
attacks in [13]) needs to be slightly revised when disjunctive attacks are incorporated.

Example 6. Suppose that L is a logic which does not satisfy the rule of resolution, and
let Ab = {p,s, t} and Γ = {p ⊃ (¬s∨¬t)}. Since resolution is not available, formulas
like p ⊃ ¬s and p ⊃ ¬t are not derivable from Γ ∪{t} and Γ ∪{s} respectively, and
therefore neither t nor s is attacked. A process that gathers all the non-attacked defeasi-
ble assumptions will then include all the elements in {p, t,s} in the result, although the
set {s, t} is attacked by p.

We therefore slightly generalize the construction of the grounded extension in [13]:

Definition 10. Let ABF= 〈L,Γ ,Ab,∼〉 be an assumption-based framework. A set ∆ ⊆
Ab is a maximally unattacked set of ABF iff it is not attacked by any Θ ⊆ Ab and any
proper superset of ∆ is attacked by some Θ ⊆ Ab. We say that ∆ ⊆ Ab is a maximally
defended set of ∆ ′ if ∆ ′ defends ∆ but ∆ ′ does not defend any proper superset of ∆ .

Definition 11. Let ABF = 〈L,Γ ,Ab,∼〉 be an ABF. We denote:
G0(ABF) =

⋂
{∆ ⊆ Ab | ∆ is a maximally unattacked set of ABF},

Gi+1(ABF) = Gi(ABF)∪
⋂
{∆ ⊆ Ab | ∆ is a maximally defended set of Gi(ABF)},

G (ABF) =
⋃

i>0 Gi(ABF).
When ABF is clear from the context we will often drop the reference to it and just write
G0, Gi and G .

Example 7 (Example 6 continued). In Example 6 we have that G0 = {p,s}∩{p, t} =
{p}. Since {p} defends no other set of assumptions, G = {p}.

We now state the adequacy of this definition and the relation of the grounded exten-
sion to maximally consistent subsets:

Theorem 2. Let L be a logic in which de Morgan’s rules in (1) are satisfied, and let
ABF = 〈L,Γ ,Ab,∼〉 be a simple contrapositive assumption-based framework with dis-
junctive attacks. Then Grd(ABF) = {G }=

⋂
MCS(ABF).



4 Properties of the Induced Entailments

The results in the previous sections imply some properties of the entailment relations
that are induced from ABFs by Dung’s semantics. In this section we show a few of
them.

Definition 12. For ABF= 〈L,Γ ,Ab,∼〉, Sem∈{Naive,Grd,Prf,Stb} and λ ∈{∪,∩},
we denote: ABF |∼λ

Semψ iff ψ ∈ λ∆∈Sem(ABF)(Cn`(Γ ∪∆)).

Note 5. Unlike standard entailment relations, which are relations between sets of for-
mulas and formulas, the entailments in Definition 12 are relations between ABFs and
formulas. This will not cause any confusion in what follows.

In the following, when it holds that ABF |∼ψ for some ABF = 〈L,Γ ,Ab,∼〉, we
shall sometimes just write Γ ,Ab |∼ψ .9 Also, in this section we continue to assume that
de Morgan’s rules in (1) are satisfied in the base logic L.

4.1 Cumulativity, Preferentiality and Rationality

Theorems 1 and 2 are useful for showing cumulativity and preferentiality in the sense
of Kraus, Lehmann and Magidor [14]:

Definition 13. A relation |∼ between ABFs and formulas (like those in Definition 12)
is called cumulative, if the following conditions are satisfied:

– Cautious Reflexivity (CR): For every `-consistent ψ it holds that ψ |∼ψ

– Cautious Monotonicity (CM): If Γ ,Ab |∼φ and Γ ,Ab |∼ψ then Γ ,Ab,φ |∼ψ

– Cautious Cut (CC): If Γ ,Ab |∼φ and Γ ,Ab,φ |∼ψ then Γ ,Ab |∼ψ

– Right Weakening (RW): If φ ` ψ and Γ ,Ab |∼φ then Γ ,Ab |∼ψ

– Left Logical Equivalence (LLE): If φ ` ψ and ψ ` φ then Γ ,Ab,φ |∼ρ iff
Γ ,Ab,ψ |∼ρ

A cumulative relation is called preferential, if it satisfies the following condition:

– Distribution (OR): If Γ ,Ab,φ |∼ρ and Γ ,Ab,ψ |∼ρ then Γ ,Ab,φ ∨ψ |∼ρ .

Theorem 3. Let L be a logic in which de Morgan’s rules in (1) hold, and let ABF =
〈L ,Γ ,Ab,∼〉 be a simple contrapositive ABF with disjunctive attacks. Then |∼∩Sem
is preferential for Sem ∈ {Naive,Grd,Prf,Stb}, and |∼∪Sem is cumulative for Sem ∈
{Naive,Prf,Stb}.10 11

9 Note that this writing is somewhat ambiguous, since, e.g. when Γ ,Ab,ψ are the premises, ψ

may be either a strict or a defeasible assumption. This will not cause problems in what follows.
10 We refer to [13] for an example that shows that |∼∪Sem is not preferential even for ABFs with

standard (non-disjunctive) attacks.
11 Note that by Theorem 2, |∼∪Grd = |∼∩Grd, and so |∼∪Grd is not only cumulative, but also prefer-

ential.



Proof (outline). The proof is based on Theorem 1 and 2. Here we show, as an example,
the property LLE for Sem ∈ {Naive,Prf,Stb}: Suppose that Γ ,Ab |∼∩Sem ψ . By Theo-
rem 1 we have that Γ ,∆ ` ψ for every ∆ ∈MCS(ABF). Thus, by cut with ψ ` φ , it
holds that Γ ,∆ ` φ for every ∆ ∈MCS(ABF). By Theorem 1 again, Γ ,Ab |∼∩sem φ . The
converse is dual. ut

We now consider the following more controversial rule from [14], called Rational
Monotonicity (RM):

If Γ ,Ab |∼φ and Γ ,Ab 6|∼¬ψ , then Γ ,Ab,ψ |∼φ .

The next example shows that RM does not hold for skeptical entailments.

Example 8. [17] Let ABF= 〈CL, /0,Ab,∼〉 be an assumption-based framework in which
Ab = {r, p∧ q∧¬r, (p∧ r) ⊃ ¬q, ¬p∧ q}. By the first item of Proposition 1 we may
consider MCS(ABF) = {{r,(p∧ r) ⊃ ¬q,¬p∧ q},{p∧ q∧¬r,(p∧ r) ⊃ ¬q}}. Note
that none of the two members of MCS(ABF) implies ¬p, while both of them imply q.

Now, let ABF′= 〈CL, /0,Ab∪{p},∼〉. We get: MCS(ABF′)= {{r,(p∧r)⊃¬q,¬p∧
q},{p∧q∧¬r,(p∧ r)⊃¬q, p},{r, p,(p∧ r)⊃¬q}}. Since {r, p,(p∧ r)⊃¬q} 6`CL q,
we have /0,Ab, p 6|∼∩Semq (for every Sem∈ {Naive,Prf,Stb}). Thus, rational monotonic-
ity does not hold for |∼∩Sem.

For the credulous entailments, however, RM does hold:

Proposition 10. Let L be a logic in which de Morgan’s rules in (1) hold, and let
ABF = 〈L ,Γ ,Ab,∼〉 be a simple contrapositive ABF with disjunctive attacks. Then
|∼∪Sem satisfies RM for Sem ∈ {Naive,Prf,Stb}.

4.2 Non-Interference

Another property that is carried on to contrapositive ABFs with disjunctive attacks is
non-interference [5]. Below, for ABFi = 〈L,Γi,Abi,∼i〉 (i = 1,2), we let:

ABF1∪ABF2 = 〈L,Γ1∪Γ2,Ab1∪Ab2,∼1 ∪ ∼2〉.

Definition 14. An entailment |∼ satisfies non-interference, if for every two frame-
works ABF1 = 〈L,Γ1,Ab1,∼1〉 and ABF2 = 〈L,Γ2,Ab2,∼2〉 such that no atomic for-
mula appears both in Γ1 ∪ Ab1 and in Γ2 ∪ Ab2, and where Γ1 ∪Γ2 is consistent, it
holds that ABF1 |∼ψ iff ABF1∪ABF2 |∼ψ for every L -formula ψ that mentions only
atomic formulas in Γ1∪Ab1.

Proposition 11. For Sem ∈ {Naive,Grd,Prf,Stb}, both |∼∪Sem and |∼∩Sem satisfy non-
interference with respect to simple contrapositive ABFs with disjunctive attacks.

Proof. By Theorem 1 and 2, and since ABF1, ABF2 do not have common atomic for-
mulas, MCS(ABF1∪ABF2) = {∆1∪∆2 | ∆1 ∈MCS(ABF1),∆2 ∈MCS(ABF2)}. ut



5 Summary and Conclusion

Assumption-based argumentation is an outstanding method in the context of logical ar-
gumentation, which has obvious links to logic programming (see.,e.g, [4, 6]). In this pa-
per we have considered the main Dung semantics for an extended family of assumption-
based argumentation frameworks, based on any contrapositive propositional logic, where
the defeasible assumptions are expressed by arbitrary formulas in the language, and
attacks may be disjunctive. To the best of our knowledge, apart of the companion pa-
per [13], the semantics of such ABFs has not been studies before.12 Among the new
insights provided in this paper are the following issues:

1. We delineated a class of problems in the application of the well-founded seman-
tics and specified conditions under which these problems can be avoided. Similar
problems have been discussed in [8], to which we suggest simple solutions.

2. The relation between well-founded semantics and grounded semantics in simple
contapositive ABFs is clarified.

3. For simple contrapositive ABFs the argumentation semantics may be simplified (in
comparison to those of [4]) by lifting the closure requirement.13

4. Attacks between arguments are extended to disjunctive variations. This assures
some desirable properties of the grounded semantics that cannot be guaranteed for
standard attacks (see [13]). This extension also provides a solution to the consis-
tency problem of deductive argumentation with disjunctive attacks [7].

5. Relations to other general patterns of non-monotonic reasoning are investigated. In
particular:

– connections to the KLM theory [14] (including rational systems [15]) are stud-
ied, and

– relations to reasoning with maximal consistency [16] that were investigated
so far for other forms of logical argumentation (see, e.g.,[2, 3, 7, 19]), are now
shown also for assumption-based frameworks. Note, also, that while all of the
other approaches give rise to an infinite number of arguments even for a finite
set Ab of defeasible assumptions, our approach avoids this problem by consid-
ering sets of assumptions as nodes in the argumentation graph, whose size is
bounded by the size of the power-set of Ab.

Future work includes, among others, the incorporation of more expressive lan-
guages, involving preferences among arguments, and the introduction of other kinds
of contrariness operators.

12 We note that works such as [12] use similar terminology when referring to attacks among
arguments, but the nature of the attacks (disjunctive formulas vs. conjunctive formulas), as
well as the context of those works (other structured frameworks), are different.

13 The fact that a redundant closure condition reduces the computational complexity has been
exploited in [10], for the analysis of flat ABFs (i.e., for ABFs in which no assumptions are
derivable from other assumptions), in which case the closure assumption is indeed redundant.
Our results now establish that for a wide class of non-flat ABFs, the closure condition can be
safely dropped.
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9. Čyras, K., Toni, F.: Non-monotonic inference properties for assumption-based argumenta-
tion. In: Proc. TAFA’15. pp. 92–111. Springer (2015)

10. Dimopoulos, Y., Nebel, B., Toni, F.: On the computational complexity of assumption-based
argumentation for default reasoning. Artificial Intelligence 141(1/2), 57–78 (2002)

11. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic rea-
soning, logic programming and n-person games. Artificial Intelligence 77, 321–358 (1995)

12. Gabbay, D.M., Gabbay, M.: Theory of disjunctive attacks, part I. Logic Journal of the IGPL
24(2), 186–218 (2016)

13. Heyninck, J., Arieli, O.: On the semantics of simple contrapositive assumption-based argu-
mentation frameworks. In: Proc. COMMA’18. Frontiers in Artificial Intelligence and Appli-
cations, vol. 305. IOS Press (2018)

14. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and
cumulative logics. Artificial Intelligence 44(1), 167–207 (1990)

15. Lehmann, D.J., Magidor, M.: What does a conditional knowledge base entail? Artificial In-
telligence 55(1), 1–60 (1992)

16. Rescher, N., Manor, R.: On inference from inconsistent premisses. Theory and Decision 1(2),
179–217 (1970)

17. Straßer, C.: Tutorial on nonmonotonic logics. In: Nat@Logic workshop (2015)
18. Toni, F.: Assumption-based argumentation for epistemic and practical reasoning. Com-

putable Models of the Law, Languages, Dialogues, Games, Ontologies 4884, 185–202 (2008)
19. Vesic, S.: Identifying the class of maxi-consistent operators in argumentation. Journal of

Artificial Intelligence Research 47, 71–93 (2013)


