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Abstract

Approximation fixpoint theory (AFT) constitutes an abstract
and general algebraic framework for studying the semantics
of nonmonotonic logics. It provides a unifying study of the
semantics of different formalisms for nonmonotonic reason-
ing, such as logic programming, default logic and autoepis-
temic logic. In this paper we extend AFT to non-deterministic
constructs such as disjunctive information. This is done by
generalizing the main constructions and corresponding re-
sults to non-deterministic operators, whose ranges are sets of
elements rather than single elements. The applicability and
usefulness of this generalization is illustrated in the context
of disjunctive logic programming.

1 Introduction
Disjunctive information has a central role in knowledge rep-
resentation and reasoning, and disjunctive reasoning capa-
bilities provide an additional way of expressing uncertainty
and indeterminism to many formalisms for non-monotonic
reasoning. It is not surprising that the introduction of dis-
junctive reasoning often increases the computational com-
plexity of formalisms and extends their modeling capabili-
ties (Eiter and Gottlob 1993).

The integration of non-deterministic reasoning with non-
monotonic reasoning (NMR) has often proven non-trivial,
as witnessed e.g. by the large body of literature on disjunc-
tive logic programming (Lobo, Minker, and Rajasekar 1992;
Minker and Seipel 2002). The implementation of non-
deterministic reasoning in NMR yielded the formulation of
some (open) problems that are related to the combination of
non-monotonic and disjunctive reasoning (Beirlaen, Heyn-
inck, and Straßer 2017; Beirlaen, Heyninck, and Straßer
2018; Bonevac 2018), or was restricted to limited cases
(Gelfond et al. 1991).

The goal of this work is to provide an adequate framework
for modeling disjunctive reasoning in NMR. Our frame-
work is based on approximation fixpoint theory (AFT), a
general technique for constructively characterizing a va-
riety of non-monotonic operators. This approach under-
lies many non-monotonic formalisms, including all the
major semantics for autoepistemic and default logic (De-
necker, Marek, and Truszczyński 2000; Denecker, Marek,
and Truszczyński 2003), a variety of logic programs in-
cluding first order logic programs, and formal argumenta-

tion (Strass 2013). AFT also allows to define attractive se-
mantics for non-monotonic formalisms, such as extensions
of logic programs (Pelov, Denecker, and Bruynooghe 2007;
Antić, Eiter, and Fink 2013; Charalambidis, Rondogiannis,
and Symeonidou 2018) and weighted abstract dialectical
frameworks (ADFs, (Bogaerts 2019)).

The extension of AFT to disjunctive reasoning is made
here by the incorporation of non-deterministic operators.
The idea of looking at non-deterministic operators was in-
troduced in (Pelov and Truszczynski 2004), together with
some results on two-valued semantics for DLP. In this paper,
we develop an AFT for non-deterministic operators, which,
among others, allows a generalization of the results of (Pelov
and Truszczynski 2004) to the three-valued case. In more
detail, we define several interesting classes of approximating
fixpoints and show the existence and consistency of some of
them. An application of this theory is demonstrated in the
context of disjunctive logic programming.

Our theory is a conservative extension of AFT for deter-
ministic operators in the sense that all the concepts intro-
duced in this paper coincide with the deterministic counter-
parts when the theory is restricted to deterministic operators.
Paper Outline: In Section 2 we review some preliminaries,
in particular those of disjunctive logic programming (Sec-
tion 2.1) and approximation fixpoint theory (Section 2.2). In
Section 3 we introduce the primary concepts of the paper:
non-deterministic operators and their approximations. Sec-
tion 4 is a study of the theory of non-deterministic AFT, in-
cluding the consistency of non-deterministic operators (Sec-
tion 4.1), properties of Kripke-Kleene fixpoints (Section 4.2)
and constructions of stable fixpoints (Section 4.3). In Sec-
tion 5 we illustrate the application of this framework to dis-
junctive logic programming, and in Section 6 we conclude.

2 Background and Preliminaries
In this section, we recall the basics of approximation fixpoint
theory (AFT) for deterministic operators. We start with a
brief survey on disjunctive logic programming (DLP), which
will serve to illustrate concepts and results of the general
theory of non-deterministic AFT.

2.1 Disjunctive Logic Programming
A (propositional) disjunctive logic program P (a dlp, for
short) is a finite set of rules of the form

∨n
i=1 pi ← ψ,



where
∨n
i=1 pi (the rule’s head) is a disjunction of atoms,

and ψ (the rule’s body) is a (propositional1) formula that
may include the propositional constants T (representing
truth), F (falsity), U (unknown), and C (contradictory infor-
mation). A rule is called normal if its body is a conjunction
of literals (i.e., atomic formulas or a negated atoms), and
its head is atomic. A logic program is called normal, if it
consists only of normal rules; It is positive, if there are no
negations in the rules’ bodies. The set of atoms occurring in
P is denoted AP .

Given a four-valued lattice F ≤t U,C ≤t T 2 and a ≤t-
involution − on it (i.e, −F = T, −T = F, −U = U and
−C = C), a four-valued interpretation of a program P is a
pair (x, y), where x ⊆ AP is the set of the atoms that are
assigned a value in {T,C} and y ⊆ AP is the set of atoms
assigned a value in {T,U}.3 Interpretations are compared by
information order ≤i, where (x, y) ≤i (w, z) iff x ⊆ w and
z ⊆ y (different ‘precision’), and by truth order ≤t, where
(x, y) ≤t (w, z) iff x ⊆ w and y ⊆ z (increased ‘posi-
tive’ evaluations). Truth assignments to complex formulas
are then recursively defined as follows:

• (x, y)(φ) =


T if φ ∈ x and φ ∈ y,
U if φ 6∈ x and φ ∈ y,
F if φ 6∈ x and φ 6∈ y,
C if φ ∈ x and φ 6∈ y.

• (x, y)(¬φ) = −(x, y)(φ),
• (x, y)(ψ ∧ φ) = min≤t

{(x, y)(φ), (x, y)(ψ)},
• (x, y)(ψ ∨ φ) = max≤t

{(x, y)(φ), (x, y)(ψ)}.
A four-valued interpretation of the form (x, x) may be

associated with a two-valued (or total) interpretation x, in
which for an atom p, x(p) = T if p ∈ x and x(p) = F
otherwise. We say that (x, y) is a three-value (or consistent)
interpretation, if x ⊆ y. Note that in consistent interpreta-
tions there are no C-assignments.

We now consider semantics for dlps. First, given a two-
valued interpretation, an extension to dlps of the immediate
consequence operator for normal programs (van Emden and
Kowalski 1976) is defined as follows:
Definition 1. Given a dlp P and a two-valued interpretation
x, we define:
• HRP(x) = {∆ |

∨
∆← ψ ∈ P and (x, x)(ψ) = T}.

• ICP(x) = min⊆{y | ∀∆ ∈ HRP(x), y ∩∆ 6= ∅}.
Thus, denoting by ℘(L) the powerset of L, ICP is an

operator on the lattice 〈℘(AP),⊆〉. ICP(x) are the mini-
mal two-valued interpretations that validate all disjunctions
which are derivable from P given x.

Other semantics for dlps, this time based on three-valued
interpretations, are defined next:

1For simplicity and due to lack of space, we restrict ourselves
to the propositional case.

2In the sequel, we use the same notation for a truth value and
the corresponding propositional constant.

3Somewhat skipping ahead, the intuition here is that x (y) is a
lower (upper) approximation of the true atoms.

Definition 2. Given a dlp P and a consistent interpretation
(x, y). We say that (x, y) is:

• (three–valued) model of P , iff for every φ ← ψ ∈ P ,
(x, y)(φ) ≥t (x, y)(ψ). We denote by mod(P) the set of
the three-valued models of P .

• weakly supported model of P , iff for every p ∈ AP such
that (x, y)(p) = T [(x, y)(p) = U], there is

∨
∆ ← φ ∈

P such that p ∈ ∆ and (x, y)(φ) = T [(x, y)(p) = U].
• supported model of P , iff for every p ∈ AP such that

(x, y)(p) = T [(x, y)(p) = U], there is
∨

∆ ← φ ∈ P
such that p ∈ ∆ and (x, y)(φ) = T [(x, y)(p) = U] and
∆ ∩ x = {p} [∆ ∩ y = {p}].4

Another common way of providing semantics to dlps is
by the following reduct (Gelfond and Lifschitz 1991):

Definition 3. The GL-transformation P
(x,y) of a normal dlp

P w.r.t. a consistent interpretation (x, y), is the positive pro-
gram obtained by replacing, in every rule p1 ∨ . . . ∨ pn ←
q1, . . . , qm,¬r1, . . . ,¬rk ∈ P , any negated literal ¬ri (1 ≤
i ≤ k) by: (1) F if (x, y)(ri) = T, (2) T if (x, y)(ri) = F,
and (3) U if (x, y)(ri) = U.

An interpretation (x, y) is a three-valued stable model of
P iff it is in min≤t

(mod( P
(x,y) )).5

2.2 Approximation Fixpoint Theory
We now recall basic notions from approximation fixpoint
theory (AFT), as described in (Denecker, Marek, and
Truszczyński 2000). AFT introduces constructive tech-
niques for approximating the fixpoints of an operator OL
over a lattice L = 〈L,≤〉. The motivation for this is the ob-
servation that while fixpoints of a (possibly non-monotonic)
operator might not always exist, the existence of approx-
imations of such fixpoints on a bilattice (Ginsberg 1988;
Fitting 2006), constructed on the basis of L, is always guar-
anteed.

Definition 4. Given a lattice L = 〈L,≤〉, we let L2 =
〈L2,≤i,≤t〉 be a structure (called bilattice), in which L2 =
L × L, and for every x1, y1, x2, y2 ∈ L,
• (x1, y1) ≤i (x2, y2) iff x1 ≤ x2 and y1 ≥ y2,
• (x1, y1) ≤t (x2, y2) iff x1 ≤ x2 and y1 ≤ y2.

An approximating operator O : L2 → L2 of an opera-
tor OL : L → L is defined by specifying two operators Ol
and Ou which calculate, respectively, a lower and an up-
per bound for the value of OL. It is observed in (Denecker,
Marek, and Truszczyński 2000) that many formalisms can
be characterized by a symmetric operator where the upper
bound can be calculated by “inversing” the lower bound (and
vice versa),

Definition 5. Let OL : L → L and O : L2 → L2.

• O is called an approximation of OL, if ∀x, y,∈ L,
O(x, y) = (Ol(x, y),Ou(x, y)), where Ol : L2 → L and

4Two-valued supported and weakly supported models are de-
fined in (Brass and Dix 1995a). Their generalization to the 3-
valued case is, to the best of our knowledge, novel.

5If x = y, (x, y) is called a two-valued stable model of P .



Ou : L2 → L are a lower and upper bound, respectively,
of OL, i.e.: Ol(x, y) ≤ OL(x) and Ou(x, y) ≥ OL(y).

• O is symmetric, if O(x, y) = (Ol(x, y),Ol(y, x)) for
some Ol : L2 → L; O is ≤i-monotonic, if when
(x1, y1) ≤i (x2, y2), also O(x1, y1) ≤i O(x2, y2); O
is approximating, if it is symmetric and ≤i-monotonic.

Remark 1. One can define an approximating operator O
without having to specify which operator OL it approxi-
mates, and indeed it will often be convenient to study ap-
proximating operators without having to refer to the approx-
imated operator. However, one can easily obtain all the op-
erators OL that O approximates by simply taking operators
for which Ol(x, y) ≤ OL(x) and Ou(x, y) ≥ OL(x).

The stable operator, defined next, is used for expressing
the semantics of many non-monotonic formalisms.

Definition 6. Given a lattice L = 〈L,≤〉, let O : L2 → L2

be an approximating operator.

• Ol(·, y) = λx.Ol(x, y), i.e.: Ol(·, y)(x) = Ol(x, y).6

• The complete stable operator for O is:
C(O)(z)= lfp(Ol(·, z))=min≤{x ∈ L | x=Ol(x, z)}.

• The stable operator for O is:
S(O)(x, y) = (C(O)(y), C(O)(x)).

Stable operators capture the idea of minimizing truth,
since for any ≤i-monotonic operator O on L2, fixpoints of
the stable operator S(O) are≤t-minimal fixpoints ofO (De-
necker, Marek, and Truszczyński 2000, Theorem 4). This
motivates the following notions:
• Kripke-Kleene fixpoint of O:
{(x, y) ∈ L2 | (x, y) = lfp≤i

(O(x, y))}.
• three-valued stable models of O:
{(x, y) ∈ L2 | S(O)(x, y) = (x, y)}.
• two-valued stable models of O:
{(x, x) ∈ L2 | S(O)(x, x) = (x, x)}.
• the well-founded model of O:

the ≤i-minimal (three-valued) stable model of O.
In (Denecker, Marek, and Truszczyński 2000) it is shown

that a unique well-founded model exists for any approximat-
ing operator. In (Pelov, Denecker, and Bruynooghe 2007) it
is shown that for normal logic programs, the fixpoints based
on the immediate consequence operator for a logic pro-
gram give rise to the following correspondences: the three-
valued stable models coincides with the three-valued seman-
tics as defined by (Przymusinski 1990), the well-founded
model coincides with the homonymous semantics as de-
fined by (Przymusinski 1990; Van Gelder, Ross, and Schlipf
1991), and the two-valued stable models coincide with the
two-valued (or total) stable models of a logic program.

3 Non-Deterministic Operators and
Approximations

In order to characterize (two-valued) semantics for DLP,
Pelov and Truszczynski (2004) introduced the notion of non-

6The choice of the lower bound is arbitrary here since, in view
of the symmetry of O, Ou(z, .) = Ol(., z).

deterministic operators and accordingly extended AFT to
non-deterministic AFT.
Definition 7. A non-deterministic operator on L is a func-
tion OL : L → ℘(L) \ {∅}.
Example 1. The operator ICP from Definition 1 is a non-
deterministic operator on the lattice 〈℘(AP),⊆〉.

Like deterministic AFT, non-deterministic AFT aims at
approximating operators, this time non-deterministic ones,
by non-deterministic approximating operators (ndao’s, in
short) O : L2 → ℘(L2), producing a set of pairs of lower-
and upper-bound approximations. These approximation are
expressed by means of two operators Ol : L2 → ℘(L) and
Ou : L2 → ℘(L). Unlike the deterministic case, however,
the transition between the operator and its lower/upper ap-
proximations Ol and Ou is not entirely straightforward. In
particular, one cannot always expect to represent an ndao O
by O(x, y) = {(l, u) | l ∈ Ol(x, y), u ∈ Ou(x, y)}.7 This
can be overcome by using a selection function f : ℘(L2)→
℘(L2) for O, such that f({(l, u) | l ∈ Ol(x, y), u ∈
Ou(x, y)}) = O(x, y) for any x, y ∈ L.
Remark 2. For any operator O : L2 → ℘(L2) one can de-
fine the functions Ol and Ou by letting Ol(w, z) = {x |
(x, y) ∈ O(w, z)} and Ou(w, z) = {y | (x, y) ∈ O(w, z)}.
Clearly, there exists a selection function f s.t. O(w, z) =
f({(l, u) | l ∈ Ol(x, y), u ∈ Ou(x, y)}). We will some-
times refer to f , Ol, Ou without explicitly defining them.

As in the deterministic case, a bilattice structure is defined
for the approximating operators. This is done by the follow-
ing relation, known as Smyth order (Smyth 1976), which is
used in the context of DLP in several works (e.g., (Fernández
and Minker 1995; Alcântara, Damásio, and Pereira 2005)).
Definition 8. Let L = 〈L,≤〉 be a lattice.
• We denote: ℘≤(L) = {X ⊆ L | min≤(X) = X}.
• Let X,Y ∈ ℘(L). Then X �SL Y iff for every y ∈ Y

there is an x ∈ X such that x ≤ y.
Remark 3. It is easy to verify that �SL is reflexive and tran-
sitive on ℘(L), and a partial order on ℘≤(L).

The Smyth order is extended to ℘≤(L2), yielding on it a
bilattice structure (cf. Definition 4).
Definition 9. Given a lattice L = 〈L,≤〉,
• ℘(L2) consists of all sets of pairs of elements of L.
• ℘≤(L2) = {X ∈ ℘(L2) | {x | (x, y) ∈ X}, {y | (x, y) ∈
X} ∈ ℘≤(L)}

• ℘≤i(L2) = {X ∈ ℘(L2) | min≤i(X) = X}.
Let X,Y ∈ ℘(L2):
• X �Si Y iff for every (y1, y2) ∈ Y there is (x1, x2) ∈ X

such that (x1, x2) ≤i (y1, y2).

7To see that not every ndao can be naively reconstructed by
combining its lower and upper bounds, let L = {1, 2, 3} and sup-
pose that O(1, 2) = {(1, 3), (1, 4), (2, 3)}. If there were Ol,Ou :
L2 → ℘(L) such that O(1, 2) = {(l, u) | l ∈ Ol(1, 2), u ∈
Ou(1, 2)}, then since 1, 2 ∈ Ol(1, 2) and 3, 4 ∈ Ou(1, 2), we
would get that (2, 4) ∈ O(1, 2), contradicting the assumption on
O.



• X �St Y iff for every (y1, y2) ∈ Y there is (x1, x2) ∈ X
such that (x1, x2) ≤t (y1, y2).
The orders �Si and �St are reflexive and transitive on

℘(L2), while �Si is also anti-symmetric on ℘≤i
(L2). Both

�Si and �St are anti-symmetric on ℘(L2).
We can now define what non-deterministic approximating

operators are.
Definition 10. Given a lattice L = 〈L,≤〉 and an operator
O : L2 → ℘≤i

(L2). Then:
• O is symmetric, if there is an Ol : L2 → ℘≤(L) and

a selection function f , such that for every x, y ∈ L,
O(x, y) = f({(l, u) | l ∈ Ol(x, y), u ∈ Ol(y, x)}).

• O is a non-deterministic approximating operator (ndao)
iff it is symmetric and�Si -monotonic in the sense of Def-
inition 5.

A ndao O is an approximation of OL : L → ℘(L) iff
O(x, x) = f(OL(x), OL(x)) for every x ∈ L. In that case
we say that O approximates8 OL. A pair (x, y) ∈ L2 is
consistent if x ≤ y. A ndao O is consistent, if for every
consistent (x, y) ∈ L2, all the elements in O(x, y) are con-
sistent.
Example 2. For a dlp P and an interpretation (x, y), we de-
fine the following operators:

HRlP(x, y) = {∆ |
∨

∆← φ ∈ P, (x, y)(φ) ∈ {T,C}},
IClP(x, y) = min⊆({v | ∀∆ ∈ HRlP(x, y), v ∩∆ 6= ∅}),
ICP(x, y) = (IClP(x, y), IClP(y, x)).
ICconsP (x, y) = {(x, y) ∈ ICP(x, y) | x ⊆ y}.
It can be verified that the operator ICP defined above is an
approximation of the non-deterministic operator ICP in Ex-
ample 1 (and Definition 1), and that ICconsP is consistent.

The following lemma shows that an ndao is composed
of a �SL-monotonic lower-bound operator and a �SL-anti-
monotonic upper-bound operator:
Lemma 1. A symmetric operator O : L2 → ℘(L2) is �Si -
monotonic iff for every z ∈ L,Ol(·, z) is�SL-monotonic and
Ol(z, ·) is anti-�SL monotonic.

4 Theory of Non-Deterministic AFT
We now develop a general theory of approximation of non-
deterministic operators. Given a non-deterministic opera-
tor on the lattice L = 〈L,≤〉, we are interested in approx-
imating fixpoints of this operator by looking at fixpoints
of a corresponding approximating operator on the bilattice
L2 = 〈L2,�Si ,�St 〉. By introducing the information or-
der �Si , formulating an �Si -monotonic approximating op-
erator guarantees the existence of such fixpoints. The �Si -
least such fixpoint is the Kripke-Kleene-fixpoint, considered
in Section 4.2. More precise approximations can often be
obtained based on complete operators, including the well-
founded fixpoint. We study such fixpoints in Section 4.3.

8Sometimes “extend” is used instead of “approximate”. No-
tice that in the deterministic case, approximation of an operator ac-
cording to our definition is weaker than approximation according
to Definition 5.

First, in the next section, we consider the consistency prop-
erty of the above-mentioned fixpoints.

4.1 Consistency of Approximations
For deterministic operators, consistency of any approximat-
ing operator is guaranteed by Proposition 9 in (Denecker,
Marek, and Truszczyński 2000). However, this is no longer
the case when non-determinism is introduced.9 To avoid the
inclusion of inconsistent pairs, we define a consistent ver-
sion Ocons of a non-deterministic operator O : L2 → ℘(L2)
as follows: for X ⊆ L2, we let f cons(X) = {(x, y) ∈ X |
x ≤ y}, and:

Ocons(x, y) = f cons(O(x, y)).

Clearly, Ocons is nonempty and consistent for any ndao O.
We observe that Ocons is itself an approximating operator,
and it approximates an operator OL if so does O. It fol-
lows, then, that (even though ndaos are not guaranteed to
be consistent) one can always construct, for any ndao O, an
ndao Ocons that is consistent. See, for instance, the operator
ICconsP in Example 2.

Proposition 1. Given a lattice L = 〈L,≤〉 and an ndao O,
then:

1. Ocons is an ndao.
2. Ocons approximates an operator OL : L → ℘(L) if O

approximates OL.

Proof. Item 1: For �Si -monotonicity, let (x, y) ≤i (w, z)
and (w′, z′) ∈ Ocons(w, z). Then, since (w′, z′) ∈ O(w, z)
and O is �Si -monotonic, there is some (x′, y′) ∈ O(x, y)
s.t. (x′, y′) ≤i (w′, z′), i.e., x′ ≤ w′ and z′ ≤ y′. Since
(w′, z′) is consistent, w′ ≤ z′, thus by transitivity x′ ≤ y′,
and so (x′, y′) ∈ Ocons(x, y). For symmetry, suppose that
(w, z) ∈ Ocons(x, y), i.e., w ≤ z, w ∈ Ol(x, y) and z ∈
Ou(x, y). By the symmetry of O, z ∈ Ol(y, x).
Item 2: If O approximates OL : L → ℘(L), i.e., for every
x ∈ L, O(x, x) = f(OL(x), OL(x)), then Ocons(x, x) =
{(w, z) | (w, z) ∈ f(OL(x), OL(x)) and w ≤ z}.

4.2 Kripke-Kleene Semantics
Recall that the Kripke-Kleene fixpoint of a deterministic ap-
proximating operator is the ≤i-least fixpoint of O, which,
as shown in (Denecker, Marek, and Truszczyński 2000), is
unique, consistent and always exists. Now, while consis-
tency is assured also when moving to non-deterministic op-
erators, the next example shows that the other properties are
no longer guaranteed.

Example 3. Consider the dlp P = {p ∨ q ←}. There are
two ≤i-minimal consistent fixpoints of ICconsP (Example 2):
({p}, {p}) and ({q}, {q}).

To see that≤i-minimal consistent fixpoints of ICconsP may
not exist, consider the following dlp (taken from (Przy-
musinski 1991)):

P = {p ∨ q ∨ r; p← ¬q; r ← ¬p; q ← ¬r}.
9For instance, if O = Ol × Ou and Ol(1, 2) = Ou(1, 2) =

{1, 2}, then (2, 1) ∈ O(1, 2), but this is not a consistent pair.



We show that there is no (x, y) with x ⊆ y ⊆ {p, q, r} s.t.
(x, y) ∈ ICconsP (x, y). We consider three cases (the other
cases are analogous or follow by symmetry):

• (∅, {p, q, r}). Recall that this pair encodes the in-
terpretation where p, q, r are assigned the value U.
Note that {p, q, r} ∈ HRlP(∅, {p, q, r}), and so ∅ 6∈
IClP(∅, {p, q, r}).

• ({p}, {p, q, r}). HRuP({p}, {p, q, r}) = {p ∨ q ∨ r, p, q}
and {p, q, r} ⊃ {p, q} ∈ ICuP({p}, {p, q, r}), thus
by the minimality of the models in ICuP , {p, q, r} 6∈
ICuP({p}, {p, q, r}).

• ({p, q}, {p, q}). HRlP({p, q}, {p, q}) = {p∨q∨r, q} and
thus {q} ∈ IClP({p, q}, {p, q}), which prohibits {p, q} ∈
IClP({p, q}, {p, q}).

To obtain an analogue to the Kripke-Kleene fixpoint for
ndaos, which is guaranteed to be the unique �Si -least one,
we observe that (℘≤i

(L2),�Si ) is a partial order, and so we
can generalize the idea behind the usual proof that shows
there is a unique fixpoint, if we have a �Si -monotonic oper-
ator O′ : ℘(L2) → ℘≤i

(L2). Such an operator aims at cor-
relating the arguments and the values of an ndao O : L2 →
℘≤i(L2). More specifically, we define an operatorO′ on the
basis of O as follows:

Definition 11. Given an operator O : L2 → ℘(L2), the
operator O′ : ℘(L2) → ℘≤i(L2) is defined, for every X ∈
℘(L2), by:10

O′(X) = min
≤i

⋃
(x1,x2)∈X

O(x1, x2).

Remark 4. Sets of three-valued interpretations as in the
construction of the operatorO′ are a direct generalization of
the idea of Herbrand states (Lobo, Minker, and Rajasekar
1992), which are sets of disjunctions. Sets of three-valued
interpretations are thus a semantical, three-valued counter-
part of Herbrand states. States are a central concept in for-
mulating many generalizations of the well-founded seman-
tics for disjunctive logic programming, e.g., as in (Baral,
Lobo, and Minker 1992) or (Brass and Dix 1995b).

As we show in Proposition 2 below, the operator O′ ad-
mits a unique�Si -minimal fixpoint for any ndaoO. For this,
we first need some preliminaries:

Definition 12. A set X ∈ ℘(L2) is a pre-fixpoint of an op-
erator O′ : ℘(L2)→ ℘(L2) iff O′(X) �Si X.

Lemma 2. LetO : L2 → ℘(L2) be�Si -monotonic operator
and let O′ : ℘(L2) → ℘≤i

(L2) be the operator from from
Definition 11. Then (1) O′ is �Si -monotonic, and (2) if X ∈
℘(L2) is a �Si -minimal pre-fixpoint of O′ then X is a �Si -
minimal fixpoint of O′.
Lemma 3. IfO : L2 → ℘(L2) is a�Si -monotonic operator,
then O′ has a �Si -minimal pre-fixpoint.

10 This is equivalent to defining O′(X) = min≤(f({(x, y) |
x ∈ Ol(w, z), y ∈ Ou(w, z), (w, z) ∈ X})) for some selection
function f .

Proof outline: Denote by ⊥ and > the ≤-minimal and
the ≤-maximal elements (respectively) of L. Then, by
Lemma 2, and since {(⊥,>)} �Si O′({(⊥,>)}), we can
construct a �Si -chain, starting at {(⊥,>)}, by iteratively
applying O′. By (Smyth 1976, Theorem 4) this chain has
a supremum (O′)β({(⊥,>)}), (for some ordinal β) which
is pre-fixpoint of O′.

To show �Si -minimality of (O′)β({(⊥,>)}), suppose
that there is Y ∈ ℘(L2) such that Y ≺Si (O′)β({(⊥,>)})
and O′(Y) ≺Si Y. Since {(⊥,>)} �Si Y, by the
�Si -monotonicity of O′ (Lemma 2), O′({(⊥,>)}) �Si
O′(Y) we get: (O′)β({(⊥,>)}) �Si (O′)β(Y). Since
Y is a prefixpoint of the operator O′, this implies that
(O′)β({(⊥,>)}) �Si Y, contradicting the assumption that
Y ≺Si (O′)β({(⊥,>)}).

Definition 13. The �Si -least fixpoint of the operator O′ :
℘(L2) → ℘≤i

(L2) is called the Kripke-Kleene-state of O,
and is denoted K(O). We say that K(O) (or, in general, a
state) is consistent, if for every (x, y) ∈ K(O), x ≤ y.
Example 4. Consider the following dlp:

P = {a ∨ b← ¬c; c← d; d← c}.
Construction of the Kripke-Kleene state for ICconsP :

(ICconsP )
′1(∅,AP) = {(∅, {a, c, d}), (∅, {b, c, d})}.

(ICconsP )
′2(∅,AP) = (ICconsP )

′1(∅,AP).

Proposition 2. Let O : L2 → ℘(L2) be a consistent ndao
for an operator OL : L → ℘(L). Then the Kripke-Kleene-
state K(O) ofO exists, is consistent, and approximates every
fixpoint of OL (i.e., for every x ∈ L such that x ∈ OL(x)
there is a (z, y) ∈ K(O) such that z ≤ x ≤ y, or equiva-
lently, K(O) �Si {(x, x)}).

Proof. Let O : L2 → ℘(L2) be an ndao for a non-
deterministic operator OL : L → ℘(L). By Lemmas 3
and 2, K(O) is the �Si -least fixpoint of O′. We now show
K(O) approximates every fixpoint ofOL. Indeed, take some
x ∈ L s.t. x ∈ OL(x). Clearly, (⊥,>) ≤i (x, x). By
the �Si -monotonicity of O, we get O(⊥,>) �Si O(x, x).
Since x ∈ OL(x) and O approximates OL, O(⊥,>) �Si
{(x, x)}. Keeping this iteration, we have that for any ordi-
nal β, K(O) �Si {(x, x)}. Consistency follows from the fact
that O is consistent.

Remark 5. Consider the following dlp:

P∗ = {p ∨ s←; p← s; s← p}.
Here, K(ICconsP ) = {({p}, {p, s}), ({s}, {p, s})}, but the
unique stable model of P is ({p, s}, {p, s}). Intuitively,
this is so since ICconsP ({s}, {p, s}) = {({p}, {p, s})} and
ICconsP ({p}, {p, s}) = {({s}, {p, s})}, and thus a fixed
point ofO′ is reached even though ICconsP oscillates between
the different members of this fixed point. This can be solved
by defining the following cumulative operator for an approx-
imating operator O (where t is the join operator of L and
X ∈ ℘(L2)):

Oc(x, y) =
⋃

(w,z)∈O(x,y)

(x t w, z), O′c(X) = min
≤i

⋃
(x,y)∈X

Oc(x, y).



Intuitively, we now make cumulative approximations in
the sense that the previous approximation (x) is incorporated
in the new approximation (w, z) ∈ O(x, y).11 One can ver-
ify that:
1. O′c is a�Si -monotonic operator if so isO (e.g., sinceO is

an ndao). Consequently, by Lemmas 2 and 3, O′c admits
a �Si -minimal fixpoint, denoted Kc(O).

2. Kc(O) is more informative than K(O) but less informa-
tive than any fixpoint of O: For any �Si -monotonic ndao
O : L2 → ℘(L2), K(O) �Si Kc(O) �Si {(x, y)} for any
(x, y) ∈ O(x, y).

3. If O is an approximation of OL, then any fixpoint of OL
will be approximated by Oc. That is, if x ∈ OL(x) then
(x, x) ∈ Oc(x, x).
Consider now again the dlp P∗ defined above. Then

(ICconsP∗ )
′1
c (∅,AP∗) = {({p}, {p, s}), ({s}, {p, s})}, and

after the next iteration the model of P∗ is reached:
(ICconsP∗ )

′2
c (∅,AP∗) = {({p, s}, {p, s})}.

Another possible generalization of Kripke-Kleene fix-
points to the non-deterministic setting is to simply say that
(x, y) is a Kripke-Kleene interpretation of O iff (x, y) is a
≤i-minimal fixpoint of O. As noted above, existence and
uniqueness of Kripke-Kleene interpretations is not guaran-
teed. Yet, as we will see in Section 5, such operators do play
a role in applications to logic programming. The follow-
ing proposition expresses the relation between the Kripke-
Kleene state, Kripke-Kleene interpretations and other fix-
points of O.
Proposition 3. Given an ndao O : L2 → ℘(L2), if there is
a Kripke-Kleene (KK) interpretation for O, then we have:
1. K(O) �Si {(x, y)} for any KK-interpretation (x, y).
2. for every fixpoint (x, y) ofO there is a KK-interpretation

(w, z) of O s.t. (w, z) ≤i (x, y).
3. any fixpoint of O (and so also any KK-interpretation) is

consistent, if O is consistent.

Proof. For Item 1, let β be the minimal ordinal s.t.
(O′)β({(⊥,>)}) = K(O). Since (⊥,>) ≤i (x, y), by
the �Si -monotonicity of O (and thus of O′, by Lemma 2),
(O′)β({(⊥,>)}) �Si (O′)β({(x, y)}). Since (x, y) is a
fixpoint of O, (x, y) ∈ (O′)β({(x, y)}) (by (a transfinite)
induction on β). Thus, (O′)β({(⊥,>)}) = K(O) �Si
{(x, y)}.

Item 2 is immediate since a Kripke-Kleene interpretation
is ≤i-minimal, and Item 3 follows from the fact that O is
assumed to be consistent.

Remark 6. When O is a deterministic operator, K(O)
coincides with the unique Kripke-Kleene interpretation,
which is guaranteed to exist, and which also coincides with
the Kripke-Kleene fixpoint of O according to (Denecker,
Marek, and Truszczyński 2000).

11In general, O′c may give rise to self-supporting conclusions
(e.g., (ICcons∅ )c({p}, {p}) = ({p}, ∅)) and thus it should not be
seen as useful for obtaining any fixpoint of O. However, when
iteratively applying it to (∅,AP), such self-supporting behaviour
will not occur.

4.3 Stable Non-Deterministic Operators
We now turn to stable operators in non-deterministic AFT
(cf. Definition 6). The motivation for the definition of this
operator resembles the one in the deterministic case (re-
call Definition 6). Given an ndao O, instead of refining
an approximation (x, y) by O(x, y) = f({(l, u) | l ∈
Ol(x, y), u ∈ Ol(y, x)}), we consider more precise bounds:
Since Ol(., z) is a �SL-monotonic operator for any z ∈ L,
one may improve the lower bound estimation by computing
the least-fixed point of Ol(., y), if it exists, and similarly x
can be used to obtain an improved estimation of the upper
bound by taking the �SL-minimal fixpoint of Ou(., x). By
symmetry, we can equivalently consider Ol(x, .). The com-
plete stable operator C(O) and the stable operator S(O) are
then constructed as in the next definition:

Definition 14. Let O : L2 → ℘(L2) be an ndao on L2 such
that O(x, y) = f(Ol(x, y),Ol(y, x)).

• The complete stable operator for O is:
C(O)(y)= lfp(Ol(·, y))=min≤{x ∈ L | x ∈ Ol(x, y)}.

• The stable operator for O:
S(O)(x, y) = f(C(O)(y), C(O)(x)).

• A stable fixpoint of O:
a fixpoint of S(O), i.e., (x, y) s.t. (x, y) ∈ S(O)(x, y).

Example 5. Let P = {p ∨ q ←; r ← ¬p; r ← ¬q}. Then:
C(ICconsP )({p, r}) = lfp(IClP(., {p, r}) = {{p, r}, {q, r}},
S(ICconsP )({p, r}, {p, r}) = {(x, y) | x, y ∈ {{p, r},
{q, r}}, x⊆ y} = {({p, r}, {p, r}), ({q, r}, {q, r})}. Thus,
({p, r}, {p, r}) is a stable fixpoint of ICconsP . We note that
it is also a stable model of P . As we shall see in Section 5,
this is not a coincidence.

Stable fixpoints of O give rise to fixpoints of O that are
minimal with respect to the truth-ordering:

Proposition 4. Let L = 〈L,≤〉 be a complete lattice and
let O : L2 → ℘(L2) be a �Si -monotonic operator. Every
fixpoint of S(O) is a �St -minimal fixpoint of O.12

Proof. Suppose that (x, y) ∈ S(O), i.e., x ∈ C(O)(y) and
y ∈ C(O)(x). Thus x ∈ lfp(Ol(·, y)), so x ∈ Ol(x, y).
Likewise, y ∈ Ou(x, y), and so (x, y) ∈ O(x, y).

To see that (x, y) is a �St -minimal fixpoint of O, suppose
that there is some (x′, y′) ∈ O(x′, y′) s.t. (x′, y′) ≤t (x, y),
i.e., x′ ≤ x and y′ ≤ y. By Lemma 1, Ou(·, y′) (or equiv-
alently, Ol(y′, .) by symmetry) is �SL-monotonic, and so
Ou(x, y′) �SL Ou(x′, y′). Thus (since y′ ∈ Ou(x′, y′) in
view of (x′, y′) ∈ O(x′, y′)) there is a w ∈ Ou(x, y′) s.t.
w ≤ y′. Since y′ ≤ y, by transitivity, w ≤ y. Since
y ∈ lfp(Ou(x, .)) = lfp(Ol(., x)), y ≤ w and thus y = y′.
Similarly, we can show that x = x′.

Unfortunately, the complete stable operator might not be
available, since there might be operatorsO for which no�SL-
least fixpoint of Ol(., x) exists for some x ∈ L. A case in
point is Example 3. Nevertheless, we will see below that the

12This is a generalization to ndao’s of a similar result from (De-
necker, Marek, and Truszczyński 2000).



stable operator is useful in applications to knowledge repre-
sentation. In Definition 16 we overcome the possible non-
existence of the �SL-least fixpoint of Ol(., x). For this, we
first need to trade the Smyth order �SL (recall Definition 8)
by (the stronger) Plotkin order �PL (Plotkin 1976):
Definition 15. Given a lattice L = 〈L,≤〉, X,Y ∈
℘≤(L2),13 and X,Y ∈ ℘≤(L). We define:

• X �HL Y iff for every x ∈ X , there is y ∈ Y s.t. x ≤ y.
• X �PL Y iff X �SL Y and X �HL Y .
• X �Hi Y iff for every (x, y) ∈ X, there is (w, z) ∈ Y

s.t. (x, y) ≤i (w, z).
• X �Pi Y iff X �Si Y and X �Hi Y.

It is easy to verify that Plotkin order�PL is reflexive, tran-
sitive and anti-symmetric over ℘≤(L2).
Definition 16. A non-deterministic state approximating op-
erator (ndsao, in short) is a �Pi -monotonic operator Os :
℘≤(L2) → ℘≤(L2) that can be decomposed by Os(X) =
f(Osl (X),Osu(X)) for some Osl ,Osu : ℘≤(L2) → ℘≤(L)
and a selection function f , such that Osu(X) = Osl ({y |
(x, y) ∈ X}, {x | (x, y) ∈ X}) for every X ∈ ℘≤(L2).

We say that an ndsao Os approximates an ndao O iff
Os({(x, y)}) = O(x, y) for every x, y ∈ L, and that Os
approximates an operator OL : L → L iff Os({(x, x)}) =
{(OL(x), OL(x))} for every x ∈ L.

It is clear that if an ndsaoOs approximates an ndaoO that
on its turn approximates OL, then Os approximates OL.

Example 6. ICsP(X,Y ) = (ICs,lP (X,Y ), ICs,lP (Y,X)),
where ICs,lP (X,Y ) = min⊆(IClP(

⋂
X,

⋃
Y )) (for every

X,Y ⊆ L) is a �Pi -monotonic operator, and approximates
ICP .14 We observe, however, that IC′P (Definition 11) is
not an ndsao, since it is not �Pi -monotonic over ℘≤(L2),
and neither is min≤ IC′P for that matter.

Notions like�Pi -monotonicity of an ndsao are completely
analogous to the �S-based notions.

We now study stable operators based on ndsao’s. First, we
characterize ndsao’s in terms of their component operators
Ol and Ou (cf. Lemma 1).
Lemma 4. A symmetric operator Os : L2 → ℘(L2) is �Pi -
monotonic iff for every Z ⊆ L, Osl (·, Z) is �PL -monotonic
and Osl (Z, ·) is anti-�PL -monotonic.

By Lemma 4, if Os is �Pi -monotonic then Osl (., Y ) is
a �PL -monotonic operator for any Y ⊆ L. From this and
the fact that (℘≤(L),�PL ) forms a lattice, it then follows
with the Tarski-Knaster theorem that Osl does admit a �PL -
least fixpoint. We can then define the complete stable state
operator C(Os) (for any X ∈ ℘≤(L)) as follows:

C(Os)(X) = lfp�P
L

(Osl (., X))
= min�P

L
{Y ∈ ℘≤(L) | Y = Osl (Y,X)}.

13Notice that (℘≤(L2)) 6= ℘≤i(L
2) (recall Definition 9). In

fact, it holds that (℘≤(L2)) ⊆ ℘≤i(L
2)).

14This operator is somewhat similar to the ultimate approxima-
tion (Denecker, Marek, and Truszczynski 2002).

Thus, just like the stable complete operator, the stable com-
plete state operator calculates a new lower bound based on
the upper bound X , only that now this is done on the basis
of a set of upper bounds X instead of a single upper bound
x. Likewise, the stable state operator S(Os) is defined in
analogy to the stable operator (cf. Definition 14) as follows:
for any X ∈ ℘≤(L2),15

S(Os)(X) = f(C(Os)({z | (w, z) ∈ X}),
C(Os)({w | (w, z) ∈ X}))

The following are important results on the complete stable
and stable state operators of ndsao’s:

Lemma 5. Given a complete lattice L = 〈L,≤〉 and an
ndsao Os : ℘≤(L2)→ ℘≤(L2). Then:

• the complete stable state operator C(Os) is �PL -anti-
monotonic.

• the stable state operator S(Os) is �Pi -monotonic.
• a fixpoint of S(Os) is a fixpoint of Os.

The next approximation is now defined as follows.

Definition 17. Given a lattice L = 〈L,≤〉 and an ndsao
Os. The well-founded state W(Os) of Os is the �Pi -least
fixpoint of S(Os).

We show that the well-founded state always exists:

Proposition 5. For a lattice L = 〈L,≤〉 and an ndsao Os
that approximates OL, the well-founded state W(Os) of Os
exists, is consistent, and approximates every fixpoint of OL.

Proof. Existence and minimality are shown as in the proof
of Proposition 2, since by Lemma 5, S(Os) is �Pi -
monotonic over the partial order 〈�Pi , ℘≤(L2)〉. Approx-
imation of the fixpoints of OL follows from Lemma 5.

Example 7. Consider again the disjunctive logic program
P = {a ∨ b ← ¬c; c ← d; d ← c} from Example 4. The
well-founded state W(ICsP) of ICsP is obtained as follows:
(S(ICsP)(∅,AP))1 =

(lfp(ICs,lP (.,AP) , lfp(ICs,lP (∅, .)) = {(∅, {a}), (∅, {b})}16

(S(ICsP)(∅,AP))2 =

(lfp(ICs,lP (., {{a}, {b}}) , lfp(ICs,lP (∅, .)) =
{({a}, {a}), ({b}, {b})}
(S(ICsP)(∅,AP))3 =

((S(ICsP))′(∅,AP))2 = {({a}, {a}), ({b}, {b})}
• At Stage 3, we have reached a fixpoint.
• The well-founded state of ICP is in this case

more precise than the Kripke-Kleene state of ICP
(Example 4), since {(∅, {a, c, d}), (∅, {b, c, d})} �Si
{({a}, {a}), ({b}, {b})}.
The next proposition lists some desirable properties of the

fixpoints that are related to O. To show a relation between
the Kripke-Kleene state and the well-founded state, we in-
troduce an additional notion:

15Notice that we slightly abuse notation and write (X,Y ) for
{(x, y) | x ∈ X, y ∈ Y }.

16lfp(ICs,lP (.,AP)) = {∅} and lfp(ICs,lP (., ∅)) = {{a}, {b}}.



Definition 18. We say an ndsao Os is refining, if it holds
that

⋃
(x,y)∈XOs(x, y) �Si Os(X).

Proposition 6. Let L be a lattice, O : L2 → ℘(L2) a �Pi -
monotonic ndao, and Os be an ndsao that approximates O.
We denote by W(Os) the well-founded state of Os and by
S(O) the stable fixpoints of O. Then:
1. W(Os) �Si S(O).
2. If for every (x, y) ∈ W(Os) it holds that x = y, then for

every consistent (w, z) ∈ S(O), w = z.
3. If Os is refining and approximates O, then K(O) �Si
W(Os).

Proof. Item 1: Observe that (∅,L) �Pi (x, y) for every
(x, y) ∈ S(O). Furthermore, by the �Pi -monotonicity of
Os, Os(∅,L) �Pi Os({x}, {y}). Since Os approximates
O, Os({x}, {y}) = O(x, y), and so Os(∅,L) �Pi O(x, y).
Since (x, y) ∈ O(x, y), Os(∅,L) �Pi (x, y). This process
can be iterated until W(Os) is obtained on the left hand side
of the last �Pi -comparison.

For Item 2, consider some (w, z) ∈ S(O). By Item 1
we know that there is some (x, y) ∈ W(Os) s.t. (x, y) ≤i
(w, z), i.e., x ≤ w and z ≤ y. Since x = y, and since by
consistency w ≤ z, we obtain w = z.

For Item 3, let X ∈ K(O) (hence, in particular,
X ∈ ℘≤i(L2)). Since Os approximates O, we have that
O(⊥,>) = Os(⊥,>), and so O(⊥,>) �Si Os(⊥,>).
Then, by the definition of O′, for any Y ∈ ℘≤i(L2),
O′(Y) �Si

⋃
(x,y)∈Y O(x, y), and this holds in particu-

lar for X. Since Os approximates O,
⋃

(x,y)∈XO(x, y) =⋃
(x,y)∈XOs(x, y). Moreover, since Os is refining, this im-

plies that
⋃

(x,y)∈XO(x, y) �Si Os(X). Thus, O′(X) �Si
Os(X). The claim then follows by an induction on the ap-
plications of O′ respectively S(Os).

A summary of the relations between the central fixpoint
operators studied in this paper is presented in Figure 1. An
arrow from node N1 to N2 means that the set described in N1
is in �Si -relation to the set described in N2. A dotted arrow
means that the relation only holds under certain conditions
(see Proposition 6).

KK-state
lfp�S

i
(O′)

Well-founded state
lfp�P

i
(S(Os))

KK-interp.
lfp≤i

(O)

Total KK-interp.
lfp≤i

(O)

Stable interp.
(x, y) ∈ S(O)(x, y)

Total Stable interp.
(x, x) ∈ S(O)(x, x)

Fxpt of operator
x ∈ O(x)

Figure 1: Figure summarizing the main fixpoints defined in this
paper and their �S

i -relations.

Table 1 summarizes the main properties of the approxi-
mating operators discussed in this section.

Name Definition Exists? Unique? Prop.
KK state lfp�S

i
(O′) X X 2,3

KK interp. lfp�i
(O) × × 3

WF state lfp�P
i

(S(Os)) X(�Pi ) X(�Pi ) 5,6
Stable interp. fp(S(O)) × × 6

Table 1: Approximating operators and their properties. X(�P
i )

means that the property is guaranteed only for �P
i -monotonic nd-

saos.

Remark 7. Clearly, for a deterministic operator, the well-
founded state coincides with the well-founded model of Os
according to (Denecker, Marek, and Truszczyński 2000)
(since the �Si =�Pi =≤i). In this sense, then, our theory of
non-deterministic approximating operators can be said to be
a generalization of the AFT from (Denecker, Marek, and
Truszczyński 2000).

5 Applications to DLP
We now show how the approximating operators considered
in the previous section may be used for computing the se-
mantics of dlps. First, we show that the supported mod-
els of a dlp P (Definition 2) coincide with the fixpoints of
ICP . This is a generalization of Theorem 2 in (Pelov and
Truszczynski 2004), where it is shown that total fixpoints
(x, x) ∈ ICP(x, y) coincide with the two-valued supported
interpretations of P .

Theorem 1. Given a dlp P and a consistent interpretation
(x, y) ∈ ℘(A2

P), it holds that (x, y) is a supported model of
P iff (x, y) ∈ ICconsP (x, y).

Proof. [⇐] Suppose that (x, y) ∈ ICconsP (x, y). We first
show that (x, y) is a model of P . Indeed, suppose that for∨

∆ ← φ ∈ P , (x, y)(φ) = T. Then ∆ ∈ HRlP(x, y)
and thus (since (x, y) ∈ ICconsP (x, y)), ∆ ∩ x 6= ∅, i.e.,
(x, y)(

∨
∆) = T. The case for (x, y)(φ) = U is similar

and the case for (x, y)(φ) = F is trivial. We now show that
(x, y) is supported. Indeed, let p ∈ ∆ ∩ x. Suppose first
that there is no

∨
∆ ← φ ∈ P s.t. (x, y)(φ) = T. Then

x 6∈ min⊆({v | v ∩ ∆ 6= ∅ for every ∆ ∈ HRlP(x, y)},
since there is some x′ ⊆ x \ {p} such that x′ ∈ min⊆({v |
v ∩ ∆ 6= ∅ for every ∆ ∈ HRlP(x, y)}. The proofs for
(x, y)(φ) = U and of the second condition in the definition
of supported models are similar.
[⇒] We leave this to the full paper.

Next, we show that stable fixpoints (Definition 14) of
ICconsP coincide with the (three-valued) stable models of P
(Definition 3). This is a generalization of Theorem 6 in
(Pelov and Truszczynski 2004), where it is shown that total
fixpoints of S(ICP)(x, y) coincide with two-valued (total)
stable models of P .

Lemma 6. The non-deterministic operatorHRlP(., y) (Ex-
ample 2) is ≤i-anti-monotonic for any y ⊆ AP .



Theorem 2. Given a dlp P and a consistent interpretation
(x, y) ∈ ℘(A2

P). Then (x, y) is a stable model of P iff
(x, y) ∈ S(ICconsP )(x, y).

Proof. [⇒] Let (x, y) be a stable model of P . We show
that x ∈ lfp(IClP(., y)) (the proof that y ∈ lfp(IClP(x, .))

is analogous). We first show that x ∈ IClP(x, y). In-
deed, this immediately follows from the fact that any sta-
ble interpretation is supported and that any supported model
is a fixpoint of ICconsP (Theorem 1). It remains to show
⊆-minimality. Suppose towards a contradiction that there
is some x′ ⊂ x such that x′ ∈ IClP(x′, y). It is easy
to check that (x′, y) ∈ mod( P

(x,y) ), which contradicts
(x, y) ∈ min≤t(mod( P

(x,y) )) (the latter follows from the
assumption that (x, y) is stable). Thus x is a ⊆-minimal
fixpoint of Ol(., y), i.e., x ∈ lfp(Ol(., y)). Analogously
y ∈ lfp(Ol(x, .)), hence (x, y) ∈ S(ICP)cons(x, y).
[⇐] We leave this to the full paper.

Remark 8. Since for stratified dlps, the perfect models
(Przymusinski 1988) coincide with the stable models (Przy-
musinski 1991, Theorem 4.3), the results above also show
that for stratified dlps the stable fixpoints of ICconsP coincide
with the perfect models of the program.

We summarize our results for DLP as follows:

• We have shown that the fixpoints of ICP coincide with
the (three-valued) supported models of P .

• The stable fixpoints of ICP coincide with the (three-
valued) stable models of P .

Concerning the well-founded semantics W(ICsP), we note
that:

1. it uniquely exists for any disjunctive logic program (see
Proposition 5),

2. it coincides with the well-founded semantics for non-
disjunctive normal logic programs (Van Gelder, Ross, and
Schlipf 1991) (see Remark 6), and

3. it is �Si -related to the stable models of P (see Proposi-
tion 6).

Altogether, this shows that the general construction for a
well-founded state satisfies some minimal desiderata for any
well-founded semantics for disjunctive logic programming.
In future work, we plan to compare W(ICsP) with other
well-founded semantics for DLP (see e.g. (Knorr and Hit-
zler 2007; Wang and Zhou 2005)), as well as look at well-
founded states induced by other operators, such as ICmod

P
(Pelov and Truszczynski 2004) which is obtained by drop-
ping the minimality constraint of ICP and the operators
from (Antić, Eiter, and Fink 2013), which have close sim-
ilarities to the operator (IC′P)c. We conjecture that different
well-founded semantics from the literature coincide with the
well-founded state of variations of these operators.

6 Conclusion, in View of Related Work
Approximations of fixpoints of non-deterministic operators
generalize standard AFT, as all the operators and fixpoints

defined in this paper coincide with the respective counter-
parts for deterministic operators (see Remarks 6 and 7).
This work also generalizes or allows to generalize the re-
sults in (Pelov and Truszczynski 2004; Antić, Eiter, and Fink
2013) to further semantics of disjunctive logic programs,
thus answering an open question in these works. Further-
more, our framework allows to obtain additional semantics
for formalisms such as disjunctive default logic (Gelfond et
al. 1991; Bonevac 2018). The advantage of studying non-
deterministic operators is thus at least twofold:
1. allowing to define a family of semantics for non-

monotonic reasoning with disjunctive information,
2. clarifying similarities and differences between semantics

stemming from the use of different operators.
To the best of our knowledge, the only setting with similar
unifying potential that has been applied to non-deterministic
or disjunctive reasoning is equilibrium logic (Pearce 2006).
The similarities between equilibrium logic and AFT have
been noted in (Denecker, Bruynooghe, and Vennekens
2012), where it was indicated that equilibrium semantics
are defined for a larger class of logic programs than those
that are represented by AFT, a limitation of AFT which
we have overcome in this paper. Furthermore, defining
three-valued stable and well-founded semantics is not pos-
sible in standard equilibrium logic, but requires an exten-
sion known as partial equilibrium logic (Cabalar et al. 2006;
Cabalar et al. 2007), which can be seen as a six-valued se-
mantics. In contrast, the well-founded semantics is defined
in AFT using the same operator used to define the stable se-
mantics. That being said, in future work we plan to compare
in more detail the well-founded semantics for DLP by partial
equilibrium logic and the well-founded semantics obtained
in this work.

The introduction of disjunctive information in AFT points
to a wealth of further research, such as defining three-valued
and well-founded semantics for various disjunctive non-
monotonic formalisms and studying on the basis of which
operators various well-founded semantics for DLP can be
represented in our framework. Moreover, this framework
lays the ground for the generalization of various interest-
ing concepts introduced (or adapted) to AFT, such as ulti-
mate approximations (Denecker, Marek, and Truszczynski
2002), grounded fixpoints (Bogaerts, Vennekens, and De-
necker 2015), strong equivalence (Truszczyński 2006), strat-
ification (Vennekens, Gilis, and Denecker 2006) and argu-
mentative representations (Heyninck and Arieli 2020) to a
non-deterministic setting. Extensions to DLP with nega-
tions in the rules’ heads and corresponding 4-valued seman-
tics (Sakama and Inoue 1995) will also be considered in fu-
ture work.

Another issue for future work is whether and how to con-
struct an ndsao Os from an ndao O, just as (Denecker,
Marek, and Truszczynski 2002) show how to construct an
approximating operator O from OL.
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