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Abstract

We study the logical foundations of Dung-style argumentation frameworks. Logic-
based methods in the context of argumentation theory are described from two perspec-
tives: (a) a survey of logic-based instantiations of argumentation frameworks, their
properties and relations, and (b) a review of logical methods for the study of argu-
mentation dynamics. In this chapter we restrict ourselves to Tarskian logics, based
on (propositional) languages and corresponding (constructive) semantics or syntactic
rule-based systems.
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1 Motivation, Introduction and Scope
The purpose of this chapter is to study the logical foundations of formal argumentation
and highlight its role in the modeling of defeasible reasoning. For this, we assume the
availability of an underlying logic (that is, a pair of a formal propositional language and
a corresponding (reflexive, monotonic, and transitive) consequence relation), upon which
argumentation-based formalisms are defined. We then study logic-based approaches to for-
mal argumentation from two perspectives. One perspective is concerned with instantiations
of argumentation frameworks by logic-based formalisms. The need to instantiate Dung’s
abstract argumentation frameworks [85] by deductive (or, more generally, structured) ap-
proaches is well acknowledged in the literature (see, e.g., [66; 151; 153] for some papers
on the subject), and is primarily motivated by giving logical justifications to the notions of
arguments and counter-arguments. Moreover, several fundamental mathematical and philo-
sophical notions that cannot be studied in an abstract context (or at least not natural to this
context), can be investigated in a logic-based setting. This includes, for example, proper-
ties such as consistency, maximal consistency [155], deductive closure [60], logical omni-
science, and so forth, as well as inference principles that can be related to general patterns
of non-monotonic and paraconsistent reasoning, and which are better suited to a deductive
(logic-based) setting.

The second perspective taken in this chapter is related to the use of logic-based machin-
ery to describe (that is, represent and reason with) argumentation-based dynamics. Indeed,
the availability of an underlying ‘core’ logic triggers a wide variety of methods for formally
expressing argumentation-related processes. For instance, since modal logics allow to qual-
ify statements, alethic arguments (about necessity and possibility), epistemic ones (about
knowledge and belief) [128; 84], and deontic phrases (about obligations and permissios)
[179; 104; 168] can be expressed, giving rise to different applications in linguistics, security
and game theory (see e.g., [40] and [84]). Also, the presence of an underlying logic allows for
incorporation of proof-theoretical methods [16] and related structural methodologies [114]
to reason with argumentation frameworks and characterize their properties (see also [102;
103]).

This chapter is divided into two parts according to the two perspectives described above.
The first part of the chapter, given in Section 2, is focused on the first perspective, namely: a
study of logic-based approaches to formal argumentation. The formalisms that are investi-
gated in this part are those that are based on some underlying (core) logic (in the traditional
sense of this notion, described in Definition 1 and Remark 1). This means, in particular,
that not only the arguments in these formalisms have a particular structure (as opposed to
abstract argumentation frameworks [85; 23], where an abstraction is made of the structure
of arguments), but also that their validity can be logically justified. It follows that not all
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LOGIC-BASED APPROACHES TO FORMAL ARGUMENTATION

the formalisms under the umbrella of structured argumentation will be considered in this
chapter, but only those that are based on specific core logics.

To study the logical instantiations of formal Dung-style argumentation, we first recall,
in Section 2.2, three central approaches that correspond to this line of research: logic-
based deductive methods [35; 14; 38], assumption-based argumentation systems [46; 171;
73] and ASPIC systems [150; 146; 147]. Then, in Section 2.3, we consider the main proper-
ties of each approach, in particular: its relation to reasoning with maximal consistency, the
rationality postulates that it satisfies, and the inference principles validated by the induced
entailment relations. Finally, in Section 2.4, we study relations among these approaches, as
well as their relations to other defeasible reasoning methods.

The second part of this chapter describes logic-based methods for representing and rea-
soning with argumentation dynamics. In this chapter, by ‘dynamics’ we mean processes in
the context of a fixed argumentative framework.1 Basic notions and concepts such as con-
flicting arguments, defending arguments, and Dung-style extensions are expressed by logical
formulas, and corresponding reasoning processes, based on proof-theoretical methods, are
described. The representations are divided between those that are based on propositional lan-
guages or their extensions by quantifications (Section 3.1), and those that incorporate modal
operators (Section 3.2). The reasoning machinery described in this chapter (Section 3.3) is
again one that takes into account the logical relationships among the arguments (although it
can be easily adjusted to abstract entities). It can be seen as an extension of Gentzen-type
proof calculi [110], in which the dynamics of arguments are taken into consideration, and
so the proofs are dynamic, in the sense that a derived argument can be retracted in light of
more-recently derived counter-arguments [15; 16].

We conclude the chapter with some final remarks (Section 4) and proofs of unpublished
results (in the appendix). The general structure of this chapter is sketched in Figure 1.

We note, finally, that due to the broad scope of this chapter, some parts of it may be
viewed as “second-order” surveys, pointing to other reviews on specific sub-topics of this
chapter. In some other parts we give more detailed descriptions on specific formalisms. We
do so mainly for illustrating our points, but this should not be taken as a preference of one
method over the others.

2 Logical Instantiations
The first part of this chapter is devoted to logic-based instantiations of formal argumentation.
We describe different approaches to logical argumentation (Section 2.2), consider some of

1A similar terminology is sometimes used in the context of revising argumentation frameworks, see also
Chapters 8 [28] and 11 [1] in this handbook.
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1. Introduction

2. Instantiations 3. Dynamics

Approaches
(2.2)

Properties
(2.3)

Comparisons
(2.4)

Propositional
Representation

(3.1)
Modal-basedRepresentation

(3.2)
Dynamic
Proofs(3.3)

4. Conclusion
Figure 1: Schematic structure of the chapter

their properties (Section 2.3), and review the (known) relations among them (Section 2.4).
First, we recall some common notions and notations.

2.1 Preliminaries
In what follows we shall assume that the underlying language  is propositional. Sets of
formulas are denoted by  ,  , finite sets of formulas are denoted by Γ,Δ,Π,Θ, formulas are
denoted by �,  , �,  , and atomic formulas are denoted by p, q, r, all of which can be primed
or indexed. The set of all the atomic formulas of  is denoted Atoms(), and the set of the
(well-formed) formulas of  is denotedWFF().

All the approaches to formal argumentation considered in this chapter assume an under-
lying logic that forms the basis for specifying arguments and counter-arguments. The next
definition is thus at the heart of our study.
Definition 1 (logic). A (propositional) logic is a pair L = ⟨, ⊢⟩, where  is a propositional
language, and⊢ is a (Tarskian, [170]) consequence relation for a language, that is: a binary
relation between sets of formulas and formulas in , satisfying the following conditions:

• Reflexivity: if  ∈  then  ⊢  .
• Monotonicity: if  ⊢  and  ⊆  ′ then  ′ ⊢  .
• Transitivity: if  ⊢  and  ′,  ⊢ � then  , ′ ⊢ �.2
2As usual, we use the notation  , ′ on the left-hand side of the entailment symbol to denote  ∪  ′. In

case of singletons we shall usually omit the parenthesis and abbreviate  ∪ { } by  ,  .
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In what follows we also assume that a consequence relation satisfies some further stan-
dard conditions:

• Structurality: for every -substitution �,3 if  ⊢  then �() ⊢ �( ).
• Non-Triviality: p ⊬ q for every two distinct atomic formulas p and q.
• Finitariness: if  ⊢  , there is a finite set Γ ⊆  such that Γ ⊢  .

Structurality means closure under substitutions of formulas. Non-triviality is convenient
for excluding trivial logics, and finitariness is often essential for practical reasoning, such
as being able to form arguments (based on a finite number of assumptions) for entailments
with possibly infinite number of premises.

To some extent, Definition 1 determines the instantiations covered in Section 2.2 (and
the scope of the whole chapter in general): not only that the arguments should have a specific
structure (unlike, e.g., arguments in abstract argumentation frameworks that are of a purely
abstract nature), but they should be based on (i.e., justified by) some underlying logic as well
(see also Definitions 4 and 5).4 As indicated in Definition 1, in the sequel we shall consider
(arbitrary) propositional logics, although most of the formalisms can be easily extended to
more generic logics (including first-ordered ones), since the relevant ideas and approaches
can be represented at this level.

In what follows we shall assume that the language  contains at least the following
connectives and constant:
a ⊢-negation ¬, satisfying: p ⊬ ¬p and ¬p ⊬ p (for every atomic p),
a ⊢-conjunction ∧, satisfying:  ⊢  ∧ � iff  ⊢  and  ⊢ �,
a ⊢-disjunction ∨, satisfying:  , � ∨  ⊢ � iff  , � ⊢ � and  ,  ⊢ �,
a ⊢-implication ⊃, satisfying:  , � ⊢  iff  ⊢ � ⊃  ,
a ⊢-falsity F, satisfying: F ⊢  for every formula  .5

3That is, � is a finite set of pairs {(p1,  1),…(pn,  n)}, where for every 1 ≤ i ≤ n, pi is an atom and  i isan -formula, such that for every -formula �, the -formula �(�) is obtained from � by replacing in it each
occurrence of pi by  i (i = 1… , n). We denote �() = {�(�) ∣ � ∈ }.

4Note that this means that some approaches to structured argumentation whose underlying formalisms do
not meet the conditions of Definition 1 are not covered in Section 2.2, such as defeasible logic programming
[106] and instances of ASPIC+ where neither strict nor defeasible rules are based on a logic in the sense of
Definition 1.

5In particular, F is not a standard atomic formula, since F ⊢ ¬F.
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In what follows, we shall abbreviate (� ⊃  ) ∧ ( ⊃ �) by � ↔  . For a set of formulas we denote ¬ = {¬ ∣  ∈ }, and for a finite set of formulas Γ we denote by ⋀
Γ

(respectively, by ⋁
Γ) the conjunction (respectively, the disjunction) of all the formulas in

Γ. The powerset of  is denoted by ℘(). Now,
• We say that an -formula  is a ⊢-theorem, if ∅ ⊢  .
• The ⊢-transitive closure of a set  of -formulas is defined by Cn⊢() = { ∣  ⊢
 }.

• We shall say that a set is⊢-consistent if ⊬ F. In particular, if is not⊢-consistent
(i.e, if it is ⊢-inconsistent), it is trivialized with respect to ⊢ in the sense that Cn⊢()
consists of every formula in . Note, in particular, that if  is ⊢-inconsistent, then ⊢ ¬

⋀
Γ for Γ ⊆  .

When ⊢ is clear from the context we will sometimes omit it from the notations above
(and say that a formula is a theorem, a set of formulas is consistent, and write Cn() for the
⊢-transitive closure ).
Remark 2. To all of the instantiations considered here there are extensions in which the
language contains also non-logical components such as priorities among the arguments. As
we concentrate on purely logical approaches, these extensions will not be covered in this
chapter.

Definition 3 (explosive/contrapositive logic). A logic L = ⟨, ⊢⟩ is explosive, if for every-formula  the set { ,¬ } is ⊢-inconsistent.6 We say that L is contrapositive, if (a) ⊢ ¬F
and (b) for every nonempty Γ and  it holds that Γ ⊢ ¬ iff for every � ∈ Γ we have:
Γ ⧵ {�},  ⊢ ¬�.

2.2 Central Approaches to Logical Argumentation
In this section we review some central approaches to logical argumentation. Further details
about these approaches, related approaches, and relevant references can be found in [152;
34; 38; 151].

6That is,  ,¬ ⊢ F. Thus, in explosive logics every formula follows from complementary assumptions.

1798



LOGIC-BASED APPROACHES TO FORMAL ARGUMENTATION

2.2.1 Logic-Based Methods

A. Arguments. Some of the first works on logic-based formal argumentation used classi-
cal logic (CL) as the underlying base logic to generate arguments. This indeed is the most
common approach in the study and implementation of such argumentation frameworks. To
avoid trivial reasoning in such cases, the set of assumptions of an argument (the so-called
argument’s support) is assumed to be consistent and frequently also minimal, in the sense
that no proper subset of the argument’s support entails the argument’s conclusion (see [35;
36; 111; 37; 38]). This leads to the following definition:
Definition 4 (classical argument). A classical argument is a pair A = ⟨Γ,  ⟩, where Γ is
a finite set of formulas in the language of {¬,∨,∧, ⊃, F} (with their usual bivalent interpre-
tations), such that: (1) Γ ⊢CL  (namely:  follows, according to classical logic, from Γ),
(2) Γ is ⊢CL-consistent, and (3) for no Γ′ ⊊ Γ it holds that Γ′ ⊢CL  .

A more general view of arguments (which will be taken here) allows to base arguments
on arbitrary logics, and relaxes the two assumptions (consistency and minimality) on their
supports (see, e.g, [14; 38]):7
Definition 5 (argument). Given a logic L = ⟨, ⊢⟩, an L-argument (an argument, for short)
is a pair A = ⟨Γ,  ⟩, where Γ is a finite set of -formulas and  is an -formula, such that
Γ ⊢  . We denote the set of all L-arguments by ArgL.

In what follows, we shall usually denote arguments by A,B, C , etc., possibly primed or
indexed. Now:

• Given an argument A = ⟨Γ,  ⟩, we shall call Γ the support set (or the premise set) of
A, and  the conclusion (or the claim) of A, denoting them by Sup(A) and Conc(A),
respectively. For a set S of arguments, we denote: Sup(S) =

⋃
A∈S Sup(A) and

Conc(S) = {Conc(A) ∣ A ∈ S}.
• The set of the L-arguments whose supports are subsets of  is denoted by ArgL().

That is: ArgL() = {A ∈ ArgL ∣ Sup(A) ⊆ }.
• Given an argument A ∈ ArgL, its set of sub-arguments is denoted by Sub(A). That

is: Sub(A) = {B ∈ ArgL ∣ Sup(B) ⊆ Sup(A)}.
Remark 6. An alternative notation for an argument ⟨Γ,  ⟩ is Γ ⇒  (where ⇒ is a new
symbol, not appearing in the language of Γ and  ). The latter resembles the way sequents

7See, e.g., [17] for a comparison of Definitions 4 and 5.
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are denoted in the context of proof theory [110]. This notation is frequently used in sequent-
based argumentation (see, e.g., [14; 16]) to emphasize the fact that the only requirement on
Γ and  to form an argument is that the latter follows, according to the base logic, from the
former.

B. Attacks. Disagreements between arguments are often described in terms of counter-
arguments. It is often said that a counter-argument attacks the argument that it challenges.8
Attacks between arguments are usually described in terms of attack rules (with respect to
the underlying logic). Table 1 lists some of them. Other attack rules between classical
arguments are described e.g. in [111] and [38, Section 5.2]. For a variety of attacks in terms
of sequents we refer to [14]. Attack rules incorporating modalities are introduced in [168].

Rule Name Acronym Attacking Attacked Attack
Argument Argument Conditions

Defeat Def ⟨Γ1,  1⟩ ⟨Γ2,  2⟩ ⊢  1 ⊃ ¬
⋀
Γ2

Direct Defeat DirDef ⟨Γ1,  1⟩ ⟨{2} ∪ Γ′2,  2⟩ ⊢  1 ⊃ ¬2
Undercut Ucut ⟨Γ1,  1⟩ ⟨Γ′2 ∪ Γ′′2 ,  2⟩ ⊢  1 ↔ ¬

⋀
Γ′2

Canonical Undercut CanUcut ⟨Γ1,  1⟩ ⟨Γ2,  2⟩ ⊢  1 ↔ ¬
⋀
Γ2

Direct Undercut DirUcut ⟨Γ1,  1⟩ ⟨{2} ∪ Γ′2,  2⟩ ⊢  1 ↔ ¬2
Consistency Undercut ConUcut ⟨∅,¬⋀Γ′2⟩ ⟨Γ′2 ∪ Γ′′2 ,  2⟩
Rebuttal Reb ⟨Γ1,  1⟩ ⟨Γ2,  2⟩ ⊢  1 ↔ ¬ 2
Defeating Rebuttal DefReb ⟨Γ1,  1⟩ ⟨Γ2,  2⟩ ⊢  1 ⊃ ¬ 2
Big Argument Attack BigArgAt ⟨Γ1,  1⟩ ⟨{2} ∪ Γ′2,  2⟩ ⊢

⋀
Γ1 ⊃ ¬2

Table 1: Some attack rules. The support sets of the attacked arguments are assumed to be
nonempty (to avoid attacks on theorems).

Rules like those specified in Table 1 form attack schemes that are applied to particu-
lar arguments according to the underlying logic. For instance, when classical logic is the
underlying formalism, the attacks of ⟨p, p⟩ on ⟨¬p,¬p⟩ and of ⟨¬p,¬p⟩ on ⟨p ∧ q, p⟩9 are

8Sometimes, mainly when priorities among arguments are introduced, or in the context of specific types of
attacks, the term “defeat” is used for “successful attacks”.

9Here and in what follows we omit the set signs when the support of the arguments are singletons.
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obtained by applications of the Defeat rule (or other rules in the table). When an attack
rule is applied we shall sometimes say that its attacking argument-attacks the attacked
argument.
Remark 7. Clearly, the rules in Table 1 are related. The relations among some of the rules
for classical arguments are considered in [111] and [38, Section 5.2]. Figure 2 shows that
for any base logic as defined in Definition 1 these relations (together with other relations for
ConUcut and BigArgAt) hold also for the more general definition of argument (Definition 5).
In this figure, an arrow from1 to2 means that1 ⊆ 2.

Def

DirDefDirUcut

Ucut

Reb DefReb

ConUcut

BigArgAt

Figure 2: Relations between attack relations from Table 1 (for any base logic). The dashed
arrow concerns contrapositive base logics.

C. Argumentation Frameworks. A logical argumentation formalism may be represented
as an argumentation framework in the style of Dung [85]. This is defined next.
Definition 8 (logical argumentation framework). Let L = ⟨, ⊢⟩ be a logic and  a set of
attack rules with respect toL. Let also be a set of-formulas. The (logical) argumentation
framework for  , induced by L and , is the pair L,() = ⟨ArgL(), Attack()⟩,
whereArgL() is the set of theL-arguments whose supports are subsets of , andAttack()
is a relation on ArgL() × ArgL(), defined by (A1, A2) ∈ Attack() iff there is some ∈  such that A1 -attacks A2.

Argumentation frameworks that are induced by classical logic (and some attack rules),
and whose arguments are classical (Definition 4), are called classical (logical) argumenta-
tion frameworks.

In what follows, somewhat abusing the notations, we shall sometimes identify the rela-
tion Attack() with . To simplify the notations, we shall also frequently omit the sub-
scripts L and in L,(), and just write ().
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Example 9. LetCL() = ⟨ArgCL(), Attack()⟩ be a logical argumentation framework
for the set = {p, q,¬p∨¬q, r}, based on classical logic (CL), and inwhichAttack() is ob-
tained from the attack rules in , where {ConUcut} ⊆  ⊆ {DirDef ,DirUcut,ConUcut}.
The following arguments are in ArgCL():

A1 = ⟨r, r⟩ A7 = ⟨{p, q}, p ∧ q⟩
A2 = ⟨p, p⟩ A8 = ⟨{¬p ∨ ¬q, q}, ¬p⟩
A3 = ⟨q, q⟩ A9 = ⟨{¬p ∨ ¬q, p}, ¬q⟩
A4 = ⟨¬p ∨ ¬q, ¬p ∨ ¬q⟩ A⊤ = ⟨∅, ¬(p ∧ q ∧ (¬p ∨ ¬q))⟩
A5 = ⟨p, ¬((¬p ∨ ¬q) ∧ q)⟩ A⊥ = ⟨{p, q,¬p ∨ ¬q}, ¬r⟩
A6 = ⟨q, ¬((¬p ∨ ¬q) ∧ p)⟩

Figure 3 is a graphical representation of part of the logical argumentation framework with
direct defeat and consistency undercut as the attack rules. Here, nodes represent arguments,
and directed edges represent attacks (the direction of an edge represents the direction of the
attack that it represents).

A1

A⊥

A⊤

A5A2

A6A3

A7 A4

A8

A9

Figure 3: Part of the framework from Example 9.

D. Dung’s Semantics. Given an argumentation framework, a key issue in its understand-
ing is the question what combinations of arguments (called extensions) can collectively be
accepted from this framework. According to Dung [85], this is determined as follows:
Definition 10 (extension-based semantics). Let  () = ⟨ArgL(), Attack()⟩ be a log-
ical argumentation framework, and let  ∪ {A} ⊆ ArgL(). Below, maximality and mini-
mality are taken with respect to the subset relation.
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• We say that  attacks an argument A, if there is an argument B ∈  that attacks A
(that is, (B,A) ∈ Attack()). The set of arguments in ArgL() that are attacked by (called the range of ) is denoted +.

• We say that  defends A, if  attacks every argument in ArgL() that attacks A.
• The set  is called conflict-free with respect to  (), if it does not attack any of

its elements (i.e., + ∩  = ∅). A set that is maximally conflict-free with respect to () is called a naive extension of ().
• An admissible extension of  () is a subset of ArgL() that is conflict-free with

respect to  () and defends all of its elements. A complete extension of  () is
an admissible extension of () that contains all the arguments that it defends.

• The minimal complete extension of () is called the grounded extension of ()
and amaximal complete extension of () is called a preferred extension of ().
A complete extension  of  () is called a stable extension of  () if  ∪ + =
ArgL().

• We will denote with Naive( ()) [respectively: Adm( ()), Cmp( ()),
Prf ( ()), Stb( ())] the set of all the naive [respectively: admissible, complete,
preferred, stable] extensions of  () and Grd( ()) for the unique grounded
extension of ().

Remark 11. In [85], preferred extensions are defined as the maximally admissible sets and
stable extensions are the conflict-free extensions whose range consists of all the arguments
not in the extension. It is well known that these definitions are equivalent to the ones in Defi-
nition 10. Furthermore, stable extensions are preferred (but not necessarily vice-versa), and
as is shown in [85, Theorem 25], the grounded extension of an argumentation framework is
unique. For more properties of the extensions defined above, further references, and other
types of extensions, see, e.g., [24; 22; 23].

Skeptical and credulous approaches for making inferences from the above-mentioned
extensions are defined as follows:
Definition 12 (extension-based entailments). Let  () = ⟨ArgL(), Attack()⟩ be a
logical argumentation framework, and let Sem ∈ {Naive,Cmp,Grd, Prf , Stb}. We denote:

•  ∣∼L,
Grd

 if there is an argument ⟨Γ,  ⟩ ∈ Grd(L,()),10 11

10We make a distinction between the grounded semantics and the other types of semantics, since unlike the
other types, the grounded extension is unique (recall Remark 11).

11Recall that by the definition of Grd(L,()) it holds that Γ ⊆  . The same note holds for the other
items in this definition.
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•  ∣∼L,
∪Sem  if there is an argument ⟨Γ,  ⟩ ∈ ⋃

Sem(L,()),
•  ∣∼L,

∩Sem  if there is an argument ⟨Γ,  ⟩ ∈ ⋂
Sem(L,()),

•  ∣∼L,
⋒Sem  if for every  ∈ Sem(L,()) there is an argument ⟨Γ,  ⟩ ∈  .

Example 13. Consider again the argumentation framework CL() from Example 9,
where  = {r, p, q,¬p ∨ ¬q}. In the notations of that example (see also Figure 3), the
grounded extension of CL() is ArgCL({A⊤, A1}), and the naive/preferred/stable exten-
sions onCL() are ArgCL(i) (i ∈ {1, 2, 3}), where:

• 1 = {A⊤, A1, A2, A3, A5, A6, A7},
• 2 = {A⊤, A1, A3, A4, A6, A8},
• 3 = {A⊤, A1, A2, A4, A5, A9}.

It follows that for every entailment ∣∼ considered in Definition 12 we have that  ∣∼ r.
The other formulas in  can only be credulously inferred: for every  ∈  − {r} and
Sem ∈ {Naive, Prf , Stb} we have that  ∣∼∪Sem  , but  ̸ ∣∼∩Sem  ,  ̸ ∣∼⋒Sem  , and ∤∼Grd  . Note, moreover, that for instance  ∣∼⋒Sem p ∨ q (but  ̸∣∼∩Sem p ∨ q), since at
least one of p or q (but not both) follows from each preferred/stable extension, from which
p ∨ q is inferred.

The next example, taken from [168], demonstrates the usefulness of incorporating
modalities for having logic-based argumentative approaches to normative reasoning.
Example 14. Consider the following example by Horty [129]:

When a meal is served (m), one should not eat with fingers (f ). However, if the
meal is asparagus (a), one should eat with fingers.

This scenario may be represented by the deontic logic SDL (standard deontic logic, i.e., the
normal modal logic KD), where the modal operator O intuitively represents obligations. In
this setting, the statements above may be expressed, respectively, by the formulas m ⊃ O¬f
and (m ∧ a) ⊃ Of . Now, in case that asparagus is indeed served (m ∧ a) one expects to
derive the (unconditional) obligation to eat with fingers (Of ) rather than not to eat with
fingers (O¬f ).

This is a paradigmatic case of specificity: a more specific obligation cancels (or over-
rides) a less specific obligation. An attack rule that reflects this intuition may be expressed
as follows:
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Specificity Undercut (SpecUcut):
⟨Γ ∪ {� ⊃ O },¬(�′ ⊃ O ′)⟩ attacks ⟨Γ′ ∪ {�′ ⊃ O ′}, �⟩ if the following conditions are
met: (i) Γ ⊢ �, (ii) � ⊢ �′, and (iii)  ⊢ ¬ ′.

Condition (i) expresses that the conditional� ⊃ O is ‘triggered’ in view of Γ, Condition (ii)
expresses that � is logically at least as strong as �′ (i.e., the former is more specific than
the latter), and Condition (iii) indicates that the conditionals have conflicting conclusions
(after filtering the modalities).

We thus consider an argumentation framework that is based on the following set:

 = {m, a, m⊃O¬f, (m ∧ a)⊃Of}.

Some arguments in ArgSDL() are listed in Figure 4 (right). Figure 4 (left) shows an attack
diagram where the sole attack rule is SpecUcut.

A1 A2 A3 A4

A5 A6 A7

A8 A9

A1 = ⟨m ⊃ O¬f, m ⊃ O¬f⟩
A2 = ⟨m,m⟩
A3 = ⟨a, a⟩
A4 = ⟨(m ∧ a) ⊃ Of, (m ∧ a) ⊃ Of⟩
A5 = ⟨{m,m ⊃ O¬f},O¬f⟩
A6 = ⟨{m, a}, m ∧ a⟩
A7 = ⟨{m, a, (m ∧ a) ⊃ Of},Of ⟩
A8 = ⟨{m, a, (m ∧ a) ⊃ Of},¬(m ⊃ O¬f )⟩
A9 = ⟨{m, a, m ⊃ O¬f, (m ∧ a) ⊃ Of},OF⟩

Figure 4: (Part of) the normative argumentation framework of Example 14.

It follows that we have the following expected deductions for every entailment ∣∼ in Def-
inition 12:

•  ∤∼ O¬f . Indeed, one cannot derive O¬f , since the application of Modus Ponens to
m⊃O¬f (depicted by argument A5) gets attacked by A8.

•  ∣∼ Of . Indeed, A7 is not attacked by an argument in ArgSDL(), thus it is part
of every grounded, preferred, and stable extension of the underlying normative argu-
mentation framework, and so its descendant follows from  . (Note that A7 is attacked
by SDL-derivable arguments, but none of them is in ArgSDL()).

We refer to [168] for further examples of well-known puzzles, treated by SDL-based argu-
mentation frameworks.
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Remark 15. Clearly, whenever a frameworkL,() has Sem-extensions, it holds that if
 ∣∼L,

∩Sem  then ∣∼L,
⋒Sem  . Also, if ∣∼L,

⋒Sem  then ∣∼L,
∪Sem  (thus both types of skeptical

reasoning entail credulous reasoning). The converses, however, do not hold. Example 13
shows that for every Sem ∈ {Prf , Stb}, ∣∼L,

∪Sem ⊈ ∣∼
L,
∩Sem, and ∣∼

L,
∪Sem ⊈ ∣∼

L,
⋒Sem, and ∣∼

L,
⋒Sem ⊈

∣∼L,
∩Sem. To see another example for the latter, consider the logical argumentation frameworkL,( ′), where  ′ = {p ∧ q, p ∧ ¬q}, L = CL, and  = {Ucut}. Then  ′ ∣∼L,

⋒Sem p
but  ′ ∤∼L,

∩Sem p (because
⋂

Sem(L,( ′)) consists only of tautological arguments, i.e.,
those with empty support sets).

Proposition 16. Let () be a logical argumentation framework for a finite  , based on
a contrapositive logic L and the set = {DirUcut, ConUcut}. Then:

1.  ∣∼L,
Grd

 iff  ∣∼L,
∩Prf  iff  ∣∼L,

∩Stb  .

2.  ∣∼L,
∪Prf  iff  ∣∼L,

∪Stb  .

3.  ∣∼L,
⋒Prf  iff  ∣∼L,

⋒Stb  .

The above proposition is shown in [10], and some variations of it are proved in [11].
As mentioned there, the assumptions on the logic and the attack rules are essential for the
proposition to hold.

2.2.2 The ASPIC System
ASPIC+ [150; 145] is another well-known approach to structured argumentation, based on
some underlying logic. It contains (at least) two types of premises: axioms (which cannot be
questioned) and ordinary premises (which can be questioned/attacked). Also, there are two
types of rules: strict and defeasible. The latter, unlike strict rules, allow for exceptions. A
wide variety of research has been done on ASPIC+, both from a theoretical perspective (e.g.,
rationality postulates were introduced in [60] for ASPIC, an earlier version of ASPIC+, and
the use of preferences has been investigated in [145]) and from an application perspective
(See [147, Section 6] for an overview). We refer to [146; 147] for extensive surveys on
ASPIC+ and related approaches. Unless otherwise stated, the definitions in this section are
taken from [147] (the chapter on ASPIC+ in the first volume of the handbook).
Remark 17. As noted in Remark 2, we only discuss purely logical instances of logical ar-
gumentation frameworks. For ASPIC+ this means that we do not take into account any
ordering over the defeasible elements.

Definition 18 (ASPIC-based argumentation system). An argumentation system is a tuple
AS = ⟨, ,, n⟩, where:
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•  is a propositional language,

• is a contrariness function from  to 2 ⧵ ∅, 12

•  = ⟨s,d⟩ consists of strict (s) and defeasible (d) inference rules of the form
�1,… , �n → � and �1,… , �n ⇒ � respectively, such thats ∩d = ∅,

• n ∶ d → WFF() is a (possibly partial) function assigning names to defeasible
rules.

The contrariness function allows to specify conflicts between elements of the language.
Strict rules are deductive in the sense that the truth of their premises �1,… , �n necessarily
implies the truth of their antecedent �. Unlike strict rules, a defeasible rule warrants the
truth of its conclusion only provisionally: its application can be retracted in case counter-
arguments are encountered. A naming function associates a name n(r) with some of the
defeasible rules in d . This will facilitate the formulation of the attack form undercut (see
below).
Definition 19 (ASPIC theory). A knowledge-base in an argumentation system AS = ⟨, ,, n⟩ is a pair = ⟨n,p⟩ of-formulas that consists of two disjoint sets: n (the axioms)
and p (the ordinary premises). An ASPIC argumentation theory is a pair AT = ⟨AS,⟩,
where AS is an argumentation system and  is a knowledge-base in AS.

Arguments in ASPIC+ differ from arguments in logic-based argumentation frameworks.
These are inference trees that are constructed from the rules of the argumentation system and
the formulas in the knowledge base:
Definition 20 (ASPIC argument). An ASPIC-argument A on the basis of an ASPIC-theory
AT is of one of the following forms:

1. �, if � ∈ n ∪p. In this case we denote:
Prem(A) = {�};
Conc(A) = �;
Sub(A) = {�};
Rules(A) = DefRules(A) = TopRules(A) = ∅.

2. A1,… , An →  , if A1,… , An are ASPIC-arguments such that there exists a strict
rule of the form Conc(A1),… ,Conc(An)→  in s. In this case we denote:
Prem(A) = Prem(A1) ∪ … ∪ Prem(An);
Conc(A) =  ;

12In many publications, a distinction is made between contraries and contradictories. This distinctionmainly
plays a role when preferences over defeasible rules are taken into account and therefore is left out of this survey.
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Sub(A) = Sub(A1) ∪ … ∪ Sub(An) ∪ {A};
Rules(A) = Rules(A1) ∪ … ∪ Rules(An) ∪ {Conc(A1),… ,Conc(An)→  };
TopRules(A) = ⋃

B∈Sub(A) TopRules(B);
DefRules(A) = {r ∈ d ∣ r ∈ Rules(A)}.

3. A1,… , An ⇒  , if A1,… , An are ASPIC-arguments such that there exists a defeasi-
ble rule of the form Conc(A1),… ,Conc(An)⇒  in d . In this case we denote:
Prem(A) = Prem(A1) ∪ … ∪ Prem(An);
Conc(A) =  ;
Sub(A) = Sub(A1) ∪ … ∪ Sub(An) ∪ {A};
Rules(A) = Rules(A1) ∪ … ∪ Rules(An) ∪ {Conc(A1),… ,Conc(An)⇒  };
TopRules(A) = {Conc(A1),… ,Conc(An)⇒  };
DefRules(A) = {r ∈ d ∣ r ∈ Rules(A)}.

We denote the set of arguments that can be constructed from an argumentation theory AT =
⟨AS,⟩ by Arg(AT).
Example 21. Let AS = ⟨, ,, n⟩ be an argumentation system, where  is a standard
propositional language with Atoms() = {p, q, r, n(r1)}, � = { ∣  ≡ ¬�} for any -
formula �, the rules in s coincide with those of classical logic in the sense that �1,… ,
�n → � ∈ s iff {�1,… , �n} ⊢CL � for -formulas �1,… , �n, �, and

d =
{
r1 ∶ p⇒ ¬q; r2 ∶ q ⇒ ¬n(r1)

}
, p = {p, q, r}, n = ∅

Among others, the following ASPIC-arguments can be constructed:

A1 ∶ r A4 ∶ A2 ⇒ ¬q A7 ∶ A2, A4 → p ∧ ¬q
A2 ∶ p A5 ∶ A3 ⇒ ¬n(r1) A8 ∶ A3, A4 → ¬r
A3 ∶ q A6 ∶ A2, A3 → p ∧ q A9 ∶ A3, A4 → ¬p

In ASPIC+ arguments can be attacked on their defeasible rules (undercut), on conclu-
sions of sub-arguments whose top-rule is defeasible (rebuttal) and on their ordinary premises
(undermine attack):
Definition 22 (ASPIC-attack). An ASPIC-argument A attacks an ASPIC-argument B iff A
undercuts, rebuts or undermines B, where:

• A undercuts B (on B′) iff Conc(A) ∈ n(Conc(B1),… ,Conc(Bn)⇒ �) for some B′ ∈
Sub(B) of the form B1,… , Bn ⇒ �;

• A rebuts B (on B′) iff Conc(A) ∈ � for some B′ ∈ Sub(B) of the form B′′1 ,… , B′′n ⇒
�.
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• A undermines B (on B′) iff Conc(A) ∈ � for some B′ = �, for some � ∈ Prem(B) ∩p.

Remark 23. Note that attacks in ASPIC+ always target defeasible elements of the attacked
argument: undercuts attack a defeasible rule (for this the naming function was instrumen-
tal), rebuts always attack in the head of a defeasible rule, and undermining always targets
defeasible premises. Also note the difference in terminology to logic-based argumentation:
the undercut attack in the context of ASPIC+ is quite different from the undercut attack for
logic-based argumentation (see Table 1). The latter resembles more undermining-attacks in
the context of ASPIC+.

Now, Dung-style argumentation frameworks are defined in ASPIC+ as follows:
Definition 24 (ASPIC argumentation framework). Let AT = ⟨AS,⟩ be an ASPIC argumen-
tation theory. An (ASPIC) argumentation framework, defined by AT, is a pair  (AT) =
⟨Arg(AT), Attack⟩, where:

• Arg(AT) is the set of ASPIC-arguments constructed from AT, as in Definition 20; and

• (X, Y ) ∈ Attack iff X attacks Y , as in Definition 22.13

Example 25 (Example 21 continued). In the argumentation theory from Example 21, we
have that:

• A5 undercuts A4, A7, A8 and A9 (all of them on A4),

• A4 undermines A3, A5, A6, A8 and A9 (all on A3),

• A3 rebuts A4, A7, A8 and A9 (all on A4).

There are more attacks between A1,… , A9 besides the ones listed here: the full attack rela-
tion between these arguments is shown in Figure 5.

Dung-style semantics, as defined in Definition 10, can now be applied to the frame-
works defined above as well. For example, given  (AT) = ⟨Arg(AT), Attack⟩,  ⊆
Arg(AT) is an admissible extension of (AT) if it is conflict-free with respect to (AT)
and defends all of its elements. Similarly,  is a complete extension of  (AT) if it is
an admissible extension of  (AT) that contains all the arguments it defends. Like be-
fore, we will denote by Sem( (AT)) all the Sem-extensions of  (AT), for Sem ∈
{Naive,Adm,Cmp,Grd, Prf , Stb}.

The next definition is a counterpart, for the ASPIC+ system, of Definition 12:
13Note that, unlike logic-based argumentation, where frameworks may differ in their attack rules, in ASPIC

systems always all the possible attack rules are applied.
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A1 A2

A3 A4

A5

A6A7

A8 A9

Figure 5: Part of the framework from Example 25.

Definition 26 (ASPIC extension-based entailments). Let  (AT) = ⟨Arg(AT), Attack⟩ be
an argumentation framework for some argumentation theory AT and let Sem ∈ {Grd,Cmp,
Prf , Stb,Naive}. Then:

• AT ∣∼∪Sem  if there is an argument A ∈
⋃

Sem( (AT)) with Conc(A) =  . In
this case it is said that  is credulously justified;

• AT ∣∼∩Sem  if there is an argument A ∈
⋂

Sem( (AT)) with Conc(A) =  . In
this case it is said that  is skeptically justified;

• AT ∣∼⋒Sem  if for every  ∈ Sem( (AT)) there is an argument A ∈  with
Conc(A) =  . In this case it is said that  is weakly skeptically justified.

As any Dung-style argumentation framework has a single grounded extension, the en-
tailments ∣∼∩Grd, ∣∼∪Grd and ∣∼⋒Grd coincide, we will therefore sometimes omit the initial
symbol from the subscript.
Remark 27. Unlike standard consequence relations (Definition 1) and the extension-based
entailments for the logic-based approach (Definition 12), which are relations between sets of
formulas and formulas, the entailments above are relations between argumentation theories
and formulas. This will not cause any confusion in what follows.

Example 28 (Example 25 continued). In the argumentation framework from Example 25
shown in Figure 5, for the ASPIC argumentation theory AT from Example 21, we have that
Grd( (AT)) = ∅.14 It is easy to see that there are two preferred extensions for this frame-
work: one contains (among others) the arguments A1, A2, A4 and A7 and the other contains

14Recall that we identify Grd( (AT)) with its single set.
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(among others) A1, A2, A3, A5 and A6. Therefore, the following conclusions can be derived
for Sem = Prf:

• AT ∣∼∩Prf � iff � ∈ Cn(r ∧ p), since A1 and A2 occur in each preferred extension;

• AT ∣∼⋒Prf ¬q ∨ (¬n(r1) ∧ q) since A4 occurs in one preferred extension and A5 and
A3 in the other preferred extension;

• AT ∣∼∪Prf � for � ∈ {p,¬q, q} (among others), since each of the arguments besides
A8 and A9 from Example 21 is part of at least one preferred extension.

Remark 29. A similar result as that of Proposition 16 in the previous section is not available
for ASPIC systems, since in the presence of odd attack cycles some preferred extensions may
not attack all arguments in their complement (and therefore might not be stable). This can
also lead to settings in which no stable extension exist. This is demonstrated in the next
example.

Example 30. As in our previous example, lets be instantiated by classical logic. Let also
� = {¬�} for every formula �,  = ⟨∅, ∅⟩, and let d consist of the following three rules:
r1 ∶⇒ ¬n(r2), r2 ∶⇒ ¬n(r3), r3 ∶⇒ ¬n(r1). Note that, for instance, the arguments

A1 ∶⇒ ¬n(r2), A2 ∶⇒ ¬n(r3), A3 ∶⇒ ¬n(r1)

are involved in an odd attack cycle (of length 3). As a consequence, neither of the three
arguments can be part of an admissible extension. Thus, the only preferred extension will
consist of all strict arguments (which conclude classical theorems). Clearly, this extension
will not be able to attack the three arguments above, and thus it is not stable.

We note, nevertheless, that there are instances of ASPIC+ for which a similar result to
that of Proposition 16 is available. This is especially the case when ASPIC+ is instantiated
by a contrapositive strict rule base, when the contrariness operator is defined by the negation
of the language and no undercutting arguments can be generated from the knowledge base.
See further discussions in Sections 2.3.1 and 2.4.

2.2.3 Assumption-Based Argumentation
Assumption-based argumentation (ABA, [46]) is another prominent formalism for logical
argumentation. It was introduced in the 1990s as a computational framework to capture and
generalize default and defeasible reasoning, inspired by Dung’s semantics for abstract argu-
mentation and by logic programming with its dialectical interpretation of the acceptability
of negation-as-failure assumptions based on “no-evidence-to-the-contrary”. In this section

1811



ARIELI, BORG, HEYNINCK, STRASSER

we recall the basic definitions that are related to this approach. For extensive surveys on
ABA and related approaches, we refer to [87; 171; 72; 73]. ABA-based implementations
are surveyed in [69, Section 3.2].
Definition 31 (assumption-based framework). An assumption-based framework (in short:
ABF) is a tuple = ⟨,,,∼⟩ where:

•  is a (propositional) language,

•  is a set of strict rules, whose elements are of the form  1,… ,  n →  , where  , i
(1 ≤ i ≤ n) are -formulas,

•  is a nonempty set of -formulas, called the defeasible (or candidate) assumptions,
and

• ∼∶ → ℘() is a contrariness operator, assigning a finite set of -formulas to every
defeasible assumption in .15

Somewhat like the rules in ASPIC, rules in ABFs can be chained to form deductions.
Given a set  ⊆  of defeasible assumptions, an -based deduction may be viewed as a
proof, i.e., a sequence of-formulas, where each element of the sequence is either a formula
in  or is obtained from previous elements in the sequence by an application of a rule ,
just like an application of Modus Ponens.
Definition 32 (⊢). Let  be a set of inference rules over . We write  ⊢  if there
is an -deduction, based on the rules in , that culminates in  , i.e., there is a sequence
�1,… , �n of -formulas such that �n =  and for each 1 ≤ i ≤ n, �i ∈  or there are
�i1 ,… , �im for which i1,… , im < i and �i1 ,… , �im → �i ∈ .

For instance, if p→ q ∈ , then p ⊢ q.
As in logic-based argumentation and ASPIC, (defeasible) assertions in an ABF may be

attacked in the presence of counter (defeasible) information. This is described in the next
definition.
Definition 33 (attacks in ABFs). Let = ⟨Atoms(),,,∼⟩ be an assumption-based
framework, and let  ,  ⊆ ,  ∈ . We say that  attacks  if there are  ′ ⊆  and
� ∈ ∼ such that  ′ ⊢ �. Accordingly,  attacks  if  attacks some  ∈  .

15Note that the contrariness operator is not a connective of , as it is restricted only to the candidate assump-
tions.
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Remark 34. In contrast to most of the logical argumentation frameworks defined in the
preceding sections (as well as other approaches to structured argumentation, such as DeLP
[106]), in which attacks are defined between individual arguments, in ABA systems attacks
are defined between sets of assumptions. This may be viewed as a higher level of abstrac-
tion, operating on equivalence classes that consist of arguments generated from the same
assumptions.

Using the above notion of attack, Dung-style semantics is defined on ABFs just as in
Definition 10. The only difference is that an extension  in an ABF is required to be closed
with respect to the rules in , namely:  = Cn⊢() ∩. Thus, for instance, for  ⊆ 
we say that

•  is conflict-free (with respect to ) iff  does not attack itself.
•  defends (with respect to ) a set  ′ ⊆  iff for every closed set ⋆ that attacks ′,  attacks ⋆.
•  is admissible (with respect to ) iff it is closed, conflict-free, and defends itself.

An admissible set is called complete, if it does not defend any of its proper supersets.
•  is stable (with respect to  ) iff it is closed, conflict-free and attacks every � ∈ ⧵  .

In ABA it is usual to refer also to the intersection of all the complete extensions of an ABF,
which is called the well-founded extension of that ABF.

Like before, we denote by Naive( ) [respectively: Adm( ), Cmp( ),
Grd( ), Prf ( ), Stb( ), WF( )] the set of all the naive [respectively: ad-
missible, complete, grounded, preferred, stable, well-founded] extensions of .16

If every set of assumptions ⊆  is⊢-closed, theABF is called flat. In [46] it is shown
that most of the relations between the Dung extensions considered in Remark 11 carry on
to flat ABFs (see also [73, Theorems 2.12 and 2.14], and [126] for prioritized settings). For
non-flat ABFs, however, some of these relations cease to hold. For instance, there may be
non-flat ABFs without complete extensions (cf. Item 2 of Proposition 38).

The following form of ABFs is considered in [117; 119; 121]:
Definition 35 (simple contrapositive ABFs). A contrapositive assumption-based framework
is a tuple = ⟨L,Γ,Δ,∼⟩ where:

16Note that, as observed in [121], the grounded extension of an ABF may not be unique, thus (unlike the
previous cases) this time Grd( ) is not an extension but a set of extensions.
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• L = ⟨, ⊢⟩ is an explosive and contrapositive logic,17
• Γ (the strict assumptions) and Δ (the candidate/defeasible assumptions) are distinct

(countable) sets of -formulas, where the former is assumed to be ⊢-consistent and
the latter is assumed to be nonempty,

• ∼ ∶ Δ → ℘() is a contrariness operator, assigning a finite set of -formulas to
every defeasible assumption in Δ, such that for every ⊢-consistent  ∈ Δ it holds
that  ⊬

⋀
∼ and

⋀
∼ ⊬  .

A contrapositive ABF is called simple, if its language contains a negation ¬, and for every
 ∈ , ∼ = {¬ }.

Given a simple contrapositive assumption-based framework  = ⟨L,Γ,Δ,∼⟩, the
notion of attack and Dung-style semantics are defined as before, with the obvious adjust-
ments using the consequence relation ⊢ of the base logic instead of the entailment ⊢. For
instance,

•  ⊆ Δ attacks  ∈ Δ iff Γ, ⊢ � for some � ∈ ∼ . Accordingly,  attacks  if 
attacks some  ∈  ,

•  ⊆ Δ is closed in  if  = Δ ∩ Cn⊢(Γ ∪ ).
The other semantic notions remain exactly as before.

Given a (simple, contrapositive) assumption-based framework and Sem ∈ {Naive,
WF,Grd, Prf , Stb}, we denote:
Definition 36 (ABA extension-based entailments).

•  ∣∼∪Sem  iff Γ,  ⊢  for some  ∈ Sem(ABF).

•  ∣∼∩Sem  iff Γ,
⋂

Sem(ABF) ⊢  .

•  ∣∼⋒Sem  iff Γ,  ⊢  for every  ∈ Sem(ABF).

The entailment relations in Definition 36 are again different from those in Definitions 1
and 12, as they are defined on ABFs and formulas (cf. Remark 27). Like before, this will
not cause any confusion in the sequel.
Example 37. Let L = CL, Γ = ∅, Δ = {p,¬p, q}, and ∼ = {¬ } for every formula  . A
corresponding attack diagram is shown in Figure 6.18

17Classical logic CL, intuitionistic logic, the central logic in the family of constructive logics, and standard
modal logics are all explosive and contrapositive logics.

18For reasons that will become apparent in the sequel (see Remark 41), we include in the diagram only closed
sets. Thus, the set {p,¬p} is omitted from the diagram.
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∅ {q}{p,¬p, q}

{p}

{¬p}

{p, q}

{¬p, q}

Figure 6: An attack diagram for Example 37

Here, Naive( ) = Prf ( ) = Stb( ) = {{p, q}, {¬p, q}}, and therefore ∣∼◦Sem q for every ◦ ∈ {∪,∩,⋒} and Sem ∈ {Naive, Prf , Stb}.

Some interesting properties of simple contrapositive ABFs are given next (see [117; 119;
121]).
Proposition 38. Let = ⟨L,Γ,Δ,¬⟩ be a simple contrapositive ABF. Then:

1. Naive( ) = Prf ( ) = Stb( ).
2. If F ∈ Δ then Grd( ) = WF( ).
The next example shows that the condition in Item 2 of the last proposition is indeed

necessary:
Example 39. Let L be an explosive logic, Δ = {p,¬p, q} and Γ = {s, s ⊃ q}. Note that the
emptyset is not admissible, since it is not closed (indeed, Γ ⊢ q). Also, {q} is not admissible
since p,¬p, q ⊢ ¬q.19 The two minimal complete extensions here are {p, q} and {¬p, q},
thus there is no unique grounded extension in this case.
Corollary 40. Let  be a simple contrapositive ABF, and let ◦ ∈ {⋒,∪,∩}. Then for
every  we have that:  ∣∼◦Naive  iff  ∣∼◦Prf  iff  ∣∼◦Stb  . Moreover, if
F ∈ Δ then ∣∼◦Grd  iff ∣∼◦WF  .

Remark 41. Interestingly, as shown in [117], the closure requirement is redundant in the
definition of extensions of simple contrapositive ABFs. Thus, for instance, if  ⊆ Δ is
conflict-free and attacks every  ∈ Δ ⧵  then it is closed (so closure is assured in the
definition of stable extensions), a maximally conflict-free subset of Δ is closed (thus closure
is guaranteed in the definition of naive extensions), and so forth. For grounded and well-
founded semantics, the closure requirement is redundant only if F ∈ Δ.

19Note that q is also attacked by {p,¬p} and does not counterattack it. However, {p,¬p} is not closed, and
for admissibility checking it is enough to consider only closed sets (see also Remark 41).
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Remark 42. In [126] other classes of ABFs are studied. It is shown there that also for so-
called well-behaved ABFs, the preferred and stable extension coincide. Well-behaved ABFs
are flat ABFs that satisfy a slightly weaker notion of contraposition than the one above, and a
property called sanity that says that if ∼� follows from a set of assumptionsΔ then it follows
from Δ⧵{�} (which is also satisfied by contrapositive ABFs). Otherwise, no restrictions on
the underlying language are imposed.20

2.3 Properties of the Frameworks and Their Entailments
In order to evaluate and compare the various approaches to logical argumentation, different
properties and postulates have been introduced in the literature. In this section we consider
the three logical argumentation methods of Section 2.2 in light of these criteria. We do so
from three perspectives:

• relations to reasoning with maximal consistency, following [155] (Section 2.3.1),
• rationality postulates for argumentative reasoning, following [60] (Section 2.3.2), and
• inference principles for non-monotonic reasoning, following [133] (Section 2.3.3).
In what follows we review the main results in the literature concerning the above-men-

tioned issues. We recall that it is not the purpose of this survey to resolve open questions or
particular cases that were not addressed so far,21 thus we do not pretend to have an exhaustive
coverage of the subject.

2.3.1 Relations to Reasoning with Maximal Consistency
Reasoning with maximally consistent subsets (MCS), introduced in [155], is a well-known
approach to handle inconsistencies within non-monotonic reasoning. The idea is to derive
conclusions from inconsistent knowledge-bases, by considering the maximally consistent
subsets of these knowledge bases. This idea has been applied in a variety of research direc-
tions within artificial intelligence, e.g.: knowledge-based integration systems [21], consis-
tency operators for belief revision [131] and computational linguistics [140].

The relation between reasoning with maximally consistent subsets and formal argumen-
tation has been studied extensively since this possibility was raised in [67]. In what follows

20For technical details we refer to the paper whose main focus is to study and compare systems of prioritized
ABFs.

21The only exception are the (yet unpublished) results in the appendix of the chapter, which appear in a paper
that is currently under review.
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we survey some of the main results relatingMCS-based reasoning and the logic-based meth-
ods of the previous section. For a more extensive overview of the subject we refer to [11;
10].

Reasoning with maximally consistent subsets of the premises is based on the following
definition:
Definition 43 (MCSL(),MCS ′L ()). Let L = ⟨, ⊢⟩ be a logic and let  ′, be sets of-formulas (intuitively,  ′ are the strict assumptions and  are the defeasible ones).

• MCSL() is the set of the maximally ⊢-consistent subsets of  . I.e.,
MCSL() = { ⊆  ∣  is ⊢-consistent and for every  ′ such that  ⊊  ′ ⊆ ,  ′ is ⊢-inconsistent}.

• MCS ′L () is the set of the maximally ⊢-consistent subsets of  , given  ′. I.e.,
MCS ′L () = { ⊆  ∣  ∪  ′ is ⊢-consistent and for every  ′ such that  ⊊  ′ ⊆ ,  ′ ∪  ′ is ⊢-inconsistent}.

The second item in the definition above, which defines maximally consistent subsets
w.r.t. a set of strict assumptions, is known from [138] as default assumptions. Some of the
corresponding entailment relations are defined in [138] as well, which is similar to those in
Definitions 12, 26 and 36:
Definition 44 (MCS-based entailments). Let L = ⟨, ⊢⟩ be a logic and let  ′, be sets of-formulas. We denote:

•  ′, ∣∼L
∩mcs  iff  ∈ CnL( ′ ∪ ⋂

MCS ′L ());
•  ′, ∣∼L

⋒mcs  iff  ∈
⋂

 ∈MCS′L () CnL( ′ ∪  );
•  ′, ∣∼L

∪mcs  iff  ∈
⋃

 ∈MCS′L () CnL( ′ ∪  ).
In the definition above, ′ is the set of the strict assumptions, and is the set of defeasible

assumptions. When  ′ = ∅ we shall just omit it. In this case we have that:
•  ∣∼L

∩mcs  iff  ∈ CnL(⋂MCSL());
•  ∣∼L

⋒mcs  iff  ∈ ⋂
 ∈MCSL() CnL( );

•  ∣∼L
∪mcs  iff  ∈ ⋃

 ∈MCSL() CnL( ).
Example 45. Suppose that the base logic is classical logic (i.e., L = CL).
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• Let  = {p,¬p, q}. Then
⋂

MCSCL() = {q}, thus  ∣∼CL
∩mcs q but  ∤∼CL

∩mcs p and ∤∼CL
∩mcs ¬p.

• Let  = {p ∧ q,¬p ∧ q}. Then
⋂

MCSCL() = ∅, thus  ∣∼CL
∩mcs  only if  

is a classical theorem. On the other hand,  ∣∼CL
⋒mcs q (and still  ∤∼CL

⋒mcs p and
 ∤∼CL

⋒mcs ¬p).

• It is easy to verify that for any  , if  ∣∼L
∩mcs  then  ∣∼L

⋒mcs  . As the previous
item shows, the converse does not hold.

The next result relates MCS-based entailments and entailments that are induced by ar-
gumentation frameworks that are based on classical logic:
Proposition 46. ([11, Propositions 4.3]),[50, Theorem 5]22 LetL,() be a logic-based
argumentation framework, where L is classical logic and ∅ ⊂  ⊆ {Ucut,Def}. Then:

•  ∣∼L,
Grd

 iff  ∣∼L,
∩Prf  iff  ∣∼L,

∩Stb  iff  ∣∼L
∩mcs  .

•  ∣∼L,
∪Prf  iff  ∣∼L,

∪Stb  iff  ∣∼L
∪mcs  .

If  = {DirUcut}, we have that:

•  ∣∼L,
⋒Prf  iff  ∣∼L,

⋒Stb  iff  ∣∼L
⋒mcs  .

Example 47. By the last proposition, the correspondence between the examples in Re-
mark 15 and those of Example 45 is not coincidental.

We refer to [11] for many other results concerning the relations between reasoning with
maximal consistency and logic-based argumentation (or, more precisely, sequent-based ar-
gumentation, a specific form of logic-based argumentation – see Remark 6).

The relation between ABA and maximally consistent subsets has been studied, e.g., in
[48; 117; 121; 126]. In particular, a similar result as the one above is shown for simple
contrapositive assumption-based frameworks (recall Definition 35).
Proposition 48. ([117, Theorems 1 and 3] and [48, Theorem 3]) Let  = ⟨L,Γ,Δ,∼⟩
be a simple contrapositive assumption-based framework. Then:

•  ∣∼L,
⋒Prf  iff  ∣∼L,

⋒Stb  iff Γ,Δ ∣∼L
⋒mcs  .

22The results in [50] are phrased in the more general context of hypersequent-based argumentation. Since
standard sequent calculi are special instances of hypersequent calculi, the results are applicable also to sequent-
based argumentation.
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•  ∣∼L,
∪Prf  iff  ∣∼L,

∪Stb  iff Γ,Δ ∣∼L
∪mcs  .

• If F ∈ Δ then ∣∼L,
Grd

 iff Γ,Δ ∣∼L
∩mcs  .

If L is contrapositive then:

•  ∣∼L,
∩Prf  iff  ∣∼L,

∩Stb  iff Γ,Δ ∣∼L
∩mcs  .

Remark 49. A result similar to the one of Proposition 48 is obtained in [126] for what is
called therewell-behaved assumption-based frameworks, which among other things requires
closure of the underlying inference rules under contraposition. It is shown that for well-
behaved assumption-based frameworks, it holds MCSL( ) = Prf ( ) = Stb( ).
By including priorities, the results are further generalized to cover preferred subtheories
[52].

Example 50. Recall Example 37 with the assumption-based framework for L = CL, Γ = ∅,
Δ = {p,¬p, q} and ∼ = {¬ } for every formula  . Since Naive( ) = Prf( ) =
Stb( ) = {{p, q}, {¬p, q}}, we have  ∣∼◦sem q for ◦ ∈ {⋒,∪,∩} and Sem ∈
{Naive,Prf,Stb}. In view of Prop. 48 and Remark 49 it is not surprising that MCSCL() =
{{p, q}, {¬p, q}}.

We turn now to MCS-based reasoning and ASPIC systems. In [145, §5.3.2] it is shown
that Brewka’s preferred subtheories [52] are an instance of ASPIC+. Since no preference
ordering is considered in this chapter, preferred subtheories correspond to maximally con-
sistent subsets. The following proposition states this result in terms of sets of formulas.
Proposition 51. ([145, Theorem 34]) Let  (AT) = ⟨Arg(AT), Attack⟩ be an ASPIC-
argumentation framework for some ASPIC-argumentation theory AT, based on a proposi-
tional language , a set  of -formulas, and where the rules are all strict. Suppose further
that Γ →  ∈  iff  follows according to classical logic from Γ. Let Arg(Δ) ⊆ Arg(AT) be
the arguments constructed from premises in Δ. Then:

• IfΔ is amaximally consistent subset of , thenArg(Δ) is a stable extension of (AT).
• If  is a stable extension of  (AT), then ⋃

A∈ Prem(A) is a maximally consistent
subset of  .

Example 52. To illustrate the last result consider the ASPIC argumentation system AS =
⟨, ,, n⟩, where  is a propositional language with Atoms() = {p, q}, the rules in s
coincide with those of classical logic as in Example 21, p = {p,¬p, q}, n = ∅, and
� = {¬�} for any -formula �. Among others, the following ASPIC-arguments can be
constructed:

A1 ∶ p A2 ∶ ¬p A3 ∶ q A4 ∶ A1, A2 → ¬q
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A3 A4

A1

A2

Figure 7: Part of the framework from Example 52.

The corresponding attack diagram is given in Figure 7. (AT ) has two stable extensions, one containing among others A1 and A3 and the
second containing among others A2 and A3. As expected in view of Proposition 51, we see
that these correspond to the two maximally consistent subsets of {p,¬p, q}, namely: {p, q}
and {¬p, q}.

Remark 53. It is interesting to note that unlike some other frameworks (cf., e.g., Proposi-
tions 46 and 48), the grounded extension in the ASPIC framework of Example 52 does not
contain the free formula q. This is since the inconsistent argument A4 causes interferent
behavior for the grounded semantics (see Section 2.3.2.B for more details).

While the result in Proposition 51 above is about ASPIC-frameworks with only strict
rules, one may also consider maximal consistent sets of formulas in the context of defeasible
rules. In [127], maximal consistent sets of defeasible rules are defined as follows:
Definition 54 (MCS(AT)). Let AT = ⟨AS,⟩ be an ASPIC argumentation theory, where = ⟨n,p⟩, AS = ⟨, ,, n⟩, and = d ∪s. We define:

• 
d = d ∪ {⇒ � ∣ � ∈ p}.

• A set of defeasible rules  ⊆ 
d is AT-inconsistent iff there are -formulas � and

 ∈ �, for which n ⊢s∪  and n ⊢s∪ �. Otherwise,  is AT-consistent.23

• A rule r =  1,… ,  n ⇒ � ∈ 
d is triggered by some  ⊆ 

d if n ⊢s∪  i for
each 1 ≤ i ≤ n.

• ℘̂(
d ) is the set of all  ⊆ 

d such that every r ∈  is triggered by .

• MCS(AT) is the set of all ⊆-maximal consistent  ∈ ℘̂(
d ).

23Maximally consistent sets of defeasible rules also play a role in constrained input/output logics, see [139]
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Example 55. Let AT = ⟨AS,⟩ be an ASPIC argumentation theory, where AS = ⟨, ,, n⟩, d = {r1 ∶ ⊤ ⇒ p, r2 ∶ p ⇒ q, r3 ∶ ⊤ ⇒ ¬q}, s is induced by classical logic,
and  = ∅. Then,

• ℘̂(
d ) =

{
{r1}, {r1, r2}, {r1, r2, r3}, {r1, r3}, {r3}

}
, and

• MCS(AT) =
{
{r1, r2}, {r1, r3}

}
.

Note that {r2, r3} ∉ ℘̂(
d ) since r2 is not triggered by this set. Also, {r1, r2, r3} ∈ ℘̂(

d )⧵
MCS(AT) since the set is inconsistent.

For the next result we need also the following definition:
Definition 56 (contrapositive ASPIC theory, Arg()). Let AT = ⟨AS,⟩ be an ASPIC
argumentation theory as in the previous definition. Then:

• AT is contrapositive if it satisfies

S1 If Δ,  ⊢s
�′ for some �′ ∈ � then Δ, � ⊢s

 ′ for some  ′ ∈  ; and

S2 If Δ ⊢s
�′ for some �′ ∈ � then Δ ⧵ {�} ⊢s

�′.

• For  ∈ ℘̂(
d ), we define: Arg() = {A ∈ Arg(AT) ∣ DefRules(A) ⊆  ∩d}.

We get the following representation theorem for ASPIC+ frameworks without undercut
attacks:
Proposition 57. ([127, Theorem 6]) For any contrapositive ASPIC argumentation theory
AT without undercut attacks, it holds that:

Prf ( (AT)) = Stb( (AT)) = {Arg() ∣  ∈ MCS(AT)}.

Example 58 (Example 55 continued). In Example 55 we have the two stable resp. preferred
extensions Arg({r1, r2}) and Arg({r1, r3}).

Maximal consistency is also related to properties of extensions and of argumentation
semantics, as will be shown in the next section. Here we only comment on one such property,
which is directly related to the maximally consistent subsets of the premises.
Remark 59. Consider the following property, investigated in [3; 177]:

MCSCL() = {Sup() ∣  ∈ Sem( ())}.
It is shown that in classical argumentation frameworks (i.e., those that consist of classical
arguments in the sense of Definition 4), the equation above is met for both the stable (i.e,
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when Sem = Stb) and preferred (Sem = Prf ) semantics, and when the attack relation is
either DirDef, DirUcut, or BigArgAt, while for the other attacks (Def, Ucut, Reb, DefReb)
the above property ceases to hold.

Other properties of the attack relations, as well as properties of the extensions and of
the induced entailments will be considered in the next sections.

2.3.2 Rationality Postulates for Argumentative Reasoning
Since the introduction of the rationality postulates for ASPIC in [60], they have become
a standard to assess approaches to structured argumentation. The postulates state that the
conclusions of a framework should be closed under its strict rules (in approaches without a
distinction between strict and defeasible rules, this simply means closure under the rules of
the system), that the set of conclusions should be consistent, and that the set of formulas that
is the result of the closure of the conclusions should be consistent as well. Another property
states that an extension should also contain all the sub-arguments of its arguments. These
postulates may formally be defined as follows:
Definition 60 (rationality postulates for extensions). Let  = ⟨Arg, Attack⟩ be an argu-
mentation framework, L = ⟨, ⊢⟩ a logic, Sem a semantics for it and  ∈ Sem( ). Then satisfies:

• sub-argument closure, iff for all A ∈  , Sub(A) ⊆ ;
• closure, iff CnL(Conc()) = Conc();
• direct consistency, iff Conc() is ⊢-consistent; and
• indirect consistency, iff CnL(Conc()) is ⊢-consistent.
In [60] it was shown that, if an argumentation framework  satisfies indirect consis-

tency, it satisfies direct consistency as well and if satisfies closure and direct consistency,
it also satisfies indirect consistency.

Following [60], many related rationality postulates were introduced in the literature,
some of them will be discussed in what follows. While the postulates in [60] are mainly
concerned with the properties of the extensions of a framework (under certain semantics),
there are other postulates that are related to the inferences relations induced by the frame-
works. For instance, the non-interference and crash-resistance postulates, introduced in
[61], guarantee that the entailment relation of argumentation frameworks do not collapse in
view of inconsistent information. Next, we formalize these postulates.

For the next definitions, we say that two sets 1,2 of -formulas are syntactically dis-
joint iff Atoms(1) ∩ Atoms(2) = ∅.24 This will be denoted by 1 ∣ 2.

24Recall that Atoms() denotes the set of atoms occurring in the formulas of  .
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Definition 61 (rationality postulates for inferences). Let ∣∼ ⊆ ℘() × .
• We say that ∣∼ satisfies non-interference, iff for every two sets 1,2 of -formulas,

and every -formula � such that 1 ∪ {�} ∣ 2, it holds that 1 ∣∼ � iff 1,2 ∣∼ �.

• We say that ∣∼ satisfies crash-resistance iff there is no ∣∼-contaminating set  of -
formulas, where a set  such that Atoms() ⊊ Atoms(), is called contaminating
(w.r.t. ∣∼), if for every  ′ such that  ∣  ′ and for every -formula �, it holds that ∣∼ � iff  , ′ ∣∼ �.

Remark 62. In [61] it is shown that crash-resistance follows from non-Interference under
some very weak criteria on the monotonic base logic.

Note, for instance, that the consequence relation ⊢CL of classical logic does not satisfy
either of the properties of Definition 61. Indeed, where2 is inconsistent, non-interference is
violated, and any inconsistent set is⊢CL-contaminating. We refer to [61] for more discussion
on non-interference and crash-resistance.

Since rationality postulates are an important indicator of the usefulness of an argumenta-
tion system, extensive research has been conducted on the properties a system should satisfy
in order for the rationality postulates to be satisfied. In the remainder of this section we will
discuss the results of this research for the three approaches to logical argumentation frame-
works discussed earlier.

A. Rationality postulates for logic-based methods
There are many studies on the properties of logic-based frameworks, including those in
[111; 4; 2; 49; 12; 50]. Below, we survey the main results, starting with the postulates that
are concerned with the properties of the attack rules and then those that are related to the
properties of extensions and extension-based inferences.

Studies on requirements on the attack relation of a classical argumentation framework
to fulfill rationality postulates are presented in [3; 177]. The conditions considered in those
work are presented next.
Definition 63 (attack relation properties). Let  () = ⟨Arg(), Attack⟩ be a classical
argumentation framework. Then Attack is called:

• conflict-dependent, iff for each (A,B) ∈ Attack, Sup(A) ∪ Sup(B) ⊢ F;

• conflict-sensitive, iff for each A,B ∈ Arg(), if Sup(A) ∪ Sup(B) ⊢ F then (A,B) ∈
Attack;
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• valid, iff for each  ⊆ Arg(), if  is conflict-free, then Sup() is consistent;
• conflict-complete, iff for every minimally inconsistent set  ⊆  , for every 1, 2 ⊆ 

such that 1 ≠ ∅, 2 ≠ ∅ and 1∪2 =  and for every A ∈ Arg() with Sup(A) = 1
there is an argument B ∈ Arg() with Sup(B) = 2 such that (B,A) ∈ Attack;

• symmetric, iff when (A,B) ∈ Attack also (B,A) ∈ Attack.

We refer to [3; 177] for a discussion on these properties and the relations among them.
Table 2 summarizes which of the properties above are satisfied by the attack rules from
Table 1.25

Attack rule conflict- conflict- valid conflict- symmetric
dependent sensitive complete

Def ✓ × × ✓ ×

DirDef ✓ × × × ×

Ucut ✓ × × ✓ ×

DirUcut ✓ × × × ×

ConUcut ✓ × × × ×

Reb ✓ × × × ✓

DefReb ✓ × × × ✓

Reb ∪ DirUcut ✓ × × × ×

BigArgAt ✓ × × × ×

Table 2: The satisfiability of the properties from Definition 63 for attack rules in Table 1.

Another study on the properties of attack relations in logic-based argumentation frame-
works is given in [111]. Again, the study refers to classical argumentation framework, that
is: the arguments meet the restrictions in Definition 4. An overview over various necessary
and sufficient conditions on the attack relations considered in [111] is given in Table 3.
Proposition 64. ([111, Propositions 6 and 10]) Where  () = ⟨Arg(), Attack⟩ is a
classical argumentation framework:

25Note that, in this context, Reb ∪ DirUcut is the only union of attack rules considered in the literature.
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Necessary conditions on attacks

If (A,B) ∈ Attack, then

{Conc(A)} ∪ Sup(B) ⊢ F. (D1)
there is a � ∈ Sup(B) s.t. Conc(A) ⊢ ¬�. (D1′)
Conc(A) ⊢ ¬Conc(B). (D1′′)
¬Conc(A) ⊢

⋀
Sup(B), (D5)

there is a � ∈ Sup(B) s.t. ¬Conc(A) ⊢ �. (D5′)
¬Conc(A) ⊢ Conc(B), (D5′′)
there is a Γ ⊆ Sup(B) s.t. ⊢ ¬Conc(A) ≡ ⋀

Γ. (D5′′′)
Sufficient conditions on attacks

(C,B) ∈ Attack if
(A,B) ∈ Attack and

⊢ Conc(A) ≡ Conc(C) (D2)
Conc(C) ⊢ Conc(A) (D2′)

(A,C) ∈ Attack, if
(A,B) ∈ Attacks
and

⊢ Sup(B) = Sup(C) (D3)
Sup(B) ⊆ Sup(C) (D3′)

There is a C such that
Conc(A) ⊢ Conc(C)
and (C,B) ∈ Attack,
if

{Conc(A)} ∪ Sup(B) ⊢ F (D6)
there is a � ∈ Sup(B) s.t. Conc(A) ⊢ ¬� (D6′)
Conc(A) ⊢ ¬Conc(B) (D6′′)

(A,B) ∈ Attack if there is a Γ ⊆ Sup(B) s.t. ⊢ Conc(A) ≡ ¬⋀Γ (D6′′′)
Sufficient and necessary conditions on attacks
(A,B) ∈ Attack
iff (A′, B′) ∈
Attack, if

⊢ A ≡ A′ and ⊢ B ≡ B′ (D0)

Table 3: Conditions on the attack relations in [111].

• Table 4, summarizes which of the postulates from Table 3 hold for the attack rules
from Table 1.

• Table 5 summarizes by which of the postulates from Table 3 the different attack rela-
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tions are characterized.

Def DirDef Ucut DirUcut CanUcut Reb DefReb
D0 ✓ ✓ ✓ ✓ ✓ ✓ ✓

D1 ✓ ✓ ✓ ✓ ✓ ✓ ✓

D2 ✓ ✓ ✓ ✓ ✓ ✓ ✓

D2′ ✓ ✓ × × × × ✓

D3 ✓ ✓ ✓ ✓ ✓ × ×

D3′ ✓ ✓ ✓ ✓ × × ×

Table 4: Overview of the constraints on the attack relation (Table 3) that are satisfied by the
rules from Table 1 (Based on [111, Table 1 and Proposition 6])

D1, D6 D1′, D6′ D1′′, D6′′ D6′′′

D2′ Def DirDef DefReb -
D2 CanUcut (D5) DirUcut (D5′) Reb (D5′′) -
- - - - Ucut (D5′′′)

Table 5: Overview of the attack relation postulates from Table 3 that characterize the attack
rules from Table 1. An attack rule is characterized by the conjunction of the attack relation
postulates from the appropriate row, column and (where applicable) the cell. For example,
the attack rule is direct undercut iff the attack relation postulates D1′, D2, D5′ and D6′ are
satisfied (Based on [111, Table 2 and Proposition 10]).

Remark 65. The interplay between logical principles about argumentation, on the one
hand, and inference principles as studied in proof theory, on the other hand, is also stud-
ied in [70]. In that paper a series of logical principles of attack relations in argumentation
frameworks is stated, and their collection leads to a characterization of classical logical con-
sequence relations that only involves argumentation frameworks. We refer to [70] and [71]
for further details.

We turn now to postulates concerning the extensions of logic-based argumentation frame-
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works. Definition 66 lists rationality postulates studied in, e.g., [60; 111; 4; 2; 3; 12].26
Definition 66 (extension-based postulates). Let () = ⟨Arg(), Attack⟩ be an argumen-
tation framework for  , based on a logic L = ⟨, ⊢⟩, and let FreeL() = ⋂

MCSL().27
The following postulates are defined with respect to the Sem-extensions of  ().
Postulates on Individual Extensions, where  ∈ Sem( ()):

• Support consistency: ⋃A∈ Sup(A) ⊬ F;

• Consistency: ⋃A∈ Conc(A) ⊬ F;

• Closure under support: if Sup(A) ⊆ Sup() then A ∈ ;
• Exhaustiveness: if Sup(A) ∪ {Conc(A)} ⊆ Conc(), then A ∈ ;
• Strong exhaustiveness: if Sup(A) ⊆ Conc(), then A ∈ ;
• Support inclusion: Sup() ⊆ Conc();
• Limited [strong] exhaustiveness: [strong] exhaustiveness restricted to extensions 

with
⋃

Sup() ≠ ∅.
Semantic-Wide Postulates:

• Core support consistency: ⋃A∈
⋂

Sem( ()) Sup(A) ⊬ F;

• Core conclusion consistency: ⋂∈Sem( ()) Conc() ⊬ F;

• Core consistency: ⋃A∈
⋂

Sem( ()) Conc(A) ⊬ F;

• Core closure: ⋂∈Sem( ()) Conc() = CnL(⋂∈Sem( ()) Conc());
• Non-triviality: there is an  for which Arg() ⧵ Arg(Free()) ≠ ∅ and Arg() ≠⋃Sem( ());
• Free precedence: Arg(Free()) ⊆ ⋂ Sem( ());
• Maximal consistency: Sem( ()) = {Arg( ) ∣  ∈ MCSL()};
• Stability: Stb( ()) ≠ ∅;
• Strong stability: Stb( ()) = Prf( ()).

26We use naming conventions from [2; 12].
27When the underlying logic is clear from the context, we shall just write Free().
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We start with the results in [111]:
Proposition 67. Let  () = ⟨Arg(), Attack⟩ be a classical argumentation framework.
Table 6 summarizes which of the (semantic-wide) postulates from Definition 66 are satisfied
in () with respect to a semantic Sem and the conditions in Table 3.

Postulate Semantics 1,2,6 1′,2,6′ 1′,2,6′′ 1,2,6′′′

Free precedence Sem1 ✓ ✓ ✓ ✓

Non-triviality Sem2 × × × ×

Non-triviality Grd ✓ ✓ ✓ ✓

Core support consistency Sem1 ✓ ✓ × ✓

Grd( ()) = Free(Arg()) Grd ✓ ✓ × ✓

Consistency Grd ✓ ✓ × ✓

Consistency Sem1 × +D3′ ✓ × ×

Table 6: Overview results of the (semantic-wide) postulates fromDefinition 66 that are satis-
fied by argumentation frameworkswith semantics Sem (where Sem1 ∈ {Grd,Cmp,Prf, Stb}
and Sem2 ∈ {Cmp,Prf,Stb}) and attacks satisfying the conditions in Table 3 (In the table,
+D3′ denotes that the attack postulate D3′ is also required, in addition the postulates D1′,
D2 and D6′).

Another investigation of the rationality postulates in Definition 66 for logic-based argu-
mentation appears in [2] and [4]. Again, it is assumed that the supports of the arguments
are consistent and minimal with respect to the subset relation. The core logic may be any
explosive propositional logic, and the attack relations are divided according to the properties
they have, which are specified in Definition 63 and in the following definition (see also [2,
Definition 12]):
Definition 68 (postulates R1 and R2 for attack rules). Let  be an attack relation. The
following conditions are verified with respect to every set  of -formulas:28
R1 for every A,B, C ∈ Arg() such that Sup(A) ⊆ Sup(B), it holds that if (A,C) ∈ 

then (B,C) ∈ ;

28As usual, we freely exchange between the rule name and the corresponding relation.
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R2 for every A,B, C ∈ Arg() such that Sup(A) ⊆ Sup(B), it holds that if (C,A) ∈ 
then (C,B) ∈ .29

Proposition 69. Let () = ⟨Arg(), Attack⟩ be an argumentation framework, for some
explosive propositional logic L = ⟨, ⊢⟩ and where the arguments are ⊢-consistent and ⊆-
minimal. Table 7 summarizes the results from [4; 2]. In particular, it shows which postulates
are satisfied under the conditions in the left-most column.30

In [12] and its extension in [47, Chapter 4] many of the postulates from Definitions 61
and 66 are investigated for sequent-based argumentation [14]. In particular, the arguments
may be of the general form of Definition 5 (no constraints are posed on their supports).
Also, the base logic is any logic satisfying the standard rules in Table 8. Therefore, the
characterizations in [12] hold not only for classical logic, but also for many other logics,
including intuitionistic logic and several modal logics.

Three classes of argumentation frameworks are studied:
•  sub

L,(): frameworks based on Defeat and/or Undercut, therefore it holds that∩
{Def,Ucut} ≠ ∅;

• dir
L,(): frameworks based on some and only direct attack rules, that is: ∅ ≠  ⊆

{DirDef,DirUcut};
•  con

L,(): frameworks that, in addition to only direct attack rules, are based on Con-
sistency Undercut, i.e., {ConUcut} ⊊  ⊆ {ConUcut,DirDef,DirUcut}.

Proposition 70. ([12, Theorem 1]) LetL = ⟨, ⊢⟩ be a logic in which the rules of Table 8 are
satisfied. Table 9 lists which rationality postulates are satisfied by the three classes of frame-
works defined above, and with respect to which semantics Sem ∈ {Grd,Cmp,Prf, Stb}.

Remark 71. The columns of dir
L,() and  con

L,() in Table 9 show that all the postu-
lates are compatible (that is, they can be satisfied together).

In [49], relevance in structured argumentation is studied. In particular it is investigated,
under which conditions the entailment relation induced by a framework of structured argu-
mentation is robust under the addition of irrelevant information, i.e., information that can al-
ready be derived from it (semantic irrelevance) or information that is syntactically unrelated
to the already available information (syntactic irrelevance). Rather than taking one of the

29Note that R2 corresponds to D3′ in Table 3.
30Note that the results in Table 7 refer also to the ideal (Idl) and the semi-stable (SStb) semantics. We refer

to [4; 2], as well as to [24; 22; 23] for their definitions.
31A logicL = ⟨, ⊢⟩ is called uniform [136; 172], if for every two sets1,2 of-formulas and an-formula

 it holds that 1 ⊢  iff 1,2 ⊢  and 2 is a ⊢-consistent set such that Atoms(2) ∩Atoms(1 ∪ { }) = ∅.
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P1 P2 P3 P4 P5 P6 P7
Sem( ()) = ∅ ✓ ✓
Sem( ()) = ∅ + CnL(∅) ≠ ∅ × × ✓ ✓
Sem( ()) = ∅ + Free() ≠ ∅ ✓ ✓ ×
Sem( ()) ≠ ∅ +

✓ = Arg(Supp())
CnL ≠ ∅ + Sem = Adm ×

Closure ✓ ✓
Consistency ✓ ✓
Support consistency ✓ ✓ ✓
Support consistency Naive ✓ ✓ ✓Conflict-dependent
Support cons. + Confl.-dep. + Stb ✓ ✓ ✓Stb( ()) ≠ ∅
Consistency + Sub arg. closure ✓ ✓ ✓ ✓
Consistency +  = Arg(Supp()) ✓ ✓ ✓

Conflict dependent Sem2

Conflict dependent + Sensitive Sem1 Sem2

Conflict dependent +
× Sem2Symmetric + |C| > 2

Exhaustive +
✓ ✓ ✓ ✓ ✓ = Arg(Supp())

R1 + R2 Sem1

R2 Stb

Table 7: Overview of the results from [4; 2], under the assumptions stated in Proposition 69.
Legend of the postulates: P1 = closure, P2 = core closure, P3 = sub-argument closure, P4 =
consistency, P5 = support consistency, P6 = core conclusion consistency, P7 = free prece-
dence. Also, Sem1 ∈ {Grd,Cmp,Prf, Idl, Stb,SStb} and Sem2 ∈ {Grd,Prf, Idl, SStb}. The
condition |C| > 2 denotes that there is a minimal conflict of three or more formulas. Only
the results from [4; 2] are shown: ✓ indicates that the postulate is satisfied for all considered
semantics, Sem indicates that the postulate is satisfied for the particular semantics, × indi-
cates that the postulate is not satisfied and an empty box indicates that the result is unknown,
under the given conditions.
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Rule Name Rule’s Conditions Rule’s Conclusion
Reflexivity ⟨ , ⟩
Monotonicity ⟨Γ,Δ⟩ ⟨Γ ∪ Γ′,Δ ∪ Δ′⟩
Transitivity ⟨Γ1,Δ1 ∪ { }⟩ , ⟨Γ2 ∪ { },Δ2⟩ ⟨Γ1 ∪ Γ2,Δ1 ∪ Δ2⟩
Left-∧ ⟨Γ ∪ { } ∪ {�},Δ⟩ ⟨Γ ∪ { ∧ �},Δ⟩
Right-∧ ⟨Γ,Δ ∪ { }⟩ , ⟨Γ,Δ ∪ {�}⟩ ⟨Γ,Δ ∪ { ∧ �}⟩
Left-¬ ⟨Γ,Δ ∪ { }⟩ ⟨Γ ∪ {¬ },Δ⟩
Right-¬ ⟨Γ ∪ { },Δ⟩ ⟨Γ,Δ ∪ {¬ }⟩

Table 8: Rules for the base logics in Proposition 70.

main approaches to structured argumentation, a simple argumentation setting is introduced,
into which the other approaches can be translated. The main results on syntactic relevance
are based on the notion of pre-relevance, which is related to basic relevance known from rel-
evance logics [18]. Intuitively, a consequence relation satisfies pre-relevance, if the derived
conclusion can be derived from a relevant (w.r.t. shared atoms) subset of the antecedents.
Definition 72 (pre-relevance). A consequence relation⊢⊆ ℘()× satisfies pre-relevance,
if for each disjoint sets 1 ∪ {�} ∣ 2, if 1,2 ⊢ � then there is some  ′1 ⊆ 1 such that ′1 ⊢ �.
Example 73. We list some entailment relations that satisfy pre-relevance:

• the consequence relation of the (semi-)relevance logic RM ([19, Proposition 6.5]),

• the entailment ⊢⊤
CL

that is the restriction of ⊢CL to pairs (Γ, �), for which it holds that
⊬CL ¬

⋀
Γ, and

• the entailment ∣∼CL
∪mcs (Definition 44).

32

The following proposition follows from [49, Theorem 1].
Proposition 74. Let ⊢ be a pre-relevant consequence relation over the language ,  be a
set of -sentences, Arg⊢() = {⟨Γ, �⟩ ∣ Γ ⊢ �}, Attack is induced by direct attack rules

32In [183] ⊢⊤
CL

is used to obtain a crash-resistant version of ASPIC, and, similarly, in [112] the authors make
use of ⊢CL

∪mcs also for ASPIC.
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Postulate dir
L,()  con

L,()  sub
L,()

Closure ✓ ✓ ×

Closure under support ✓ ✓ ×

Sub-argument closure ✓ ✓ ✓

Support inclusion ✓ ✓ ✓

Consistency ✓ ✓ ×

Support consistency ✓ ✓ ×

Maximal consistency Prf,Stb Prf,Stb ×

Exhaustiveness Prf,Stb ✓ ×

Limited exhaustiveness ✓ ✓ ×

Strong exhaustiveness Prf,Stb ✓ ×

Limited strong exhaustiveness ✓ ✓ ×

Free precedence Prf,Stb ✓ ✓

Limited free precedence ✓ ✓ ✓

Stability ✓ ✓ ✓

Strong stability ✓ ✓ ✓

Non-interference Prf,Stb ✓ ✓

Crash-resistance Prf,Stb ✓ ✓

Table 9: Postulates satisfaction (Proposition 70, originally presented in [12]) for Sem ∈
{Grd,Cmp,Prf,Stb}. Cells with ✓ indicate no conditions for the postulate, otherwise spe-
cific semantics with respect to which the postulate holds are indicated. Cells with × mean
that the postulate does not hold. In case of non-interference and crash-resistance the base
logic is assumed to be uniform.31

(such as DirDef and/or DirUcut) and let () = ⟨Arg⊢(), Attack⟩ be the corresponding
argumentation framework. Then ∣∼⋆Sem satisfies non-interference for ⋆ ∈ {∩,⋒,∪} and
Sem ∈ {Grd,Cmp,Prf}.
Remark 75. Like the examples in items 2 and 3 of Example 73, consequence relations ⊢
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considered in Proposition 74 need not be induced by a logic in the technical sense of Defi-
nition 1. In fact, as is demonstrated in [49], structured argumentation frameworks such as
ASPIC and ABA can be translated into the ⊢-based argumentation frameworks of Proposi-
tion 74.

B. Rationality postulates for ASPIC+

Discussions on rationality postulates for ASPIC+ can be found, among others, in [145; 147;
59]. For the completeness of the presentation we recall here some of the main results. For
this, we need two notions, introduced in [147] and [90], respectively.
Definition 76 (well-formed argumentation framework). An ASPIC argumentation frame-
work defined by an ASPIC argumentation theory AT = ⟨AS,⟩, where AS = ⟨, ,, n⟩
and = n∪p, is called well-formed, if whenever � is a contrary of  (i.e., � ∈  while
 ∉ �), then  ∉ n and  is not the consequent of a strict rule.

Definition 77 (self-contradiction axiom; closure under transposition). An ASPIC argumen-
tation framework  (AT) = ⟨Arg(AT), Attack⟩, defined by an ASPIC argumentation the-
ory AT = ⟨AS,⟩, where AS = ⟨, ,, n⟩ and  = n ∪p satisfies:

• the self-contradiction axiom, if for each minimally inconsistent set  of -formulas it
holds that {¬� ∣ � ∈ } ⊆ Cns

();33
• closure under transposition, if for each �1,… , �n → � ∈ s, for each i ∈ {1,… , n},
�1,… , �i−1,¬�, �i+1,… , �n → ¬�i ∈ s as well.

Proposition 78. ([90],[147]) Let (AT) = ⟨Arg(AT), Attack⟩ be an argumentation frame-
work and let  ∈ Cmp( (AT)). Table 10 lists the rationality postulates that are satisfied
under the different conditions of Definitions 76 and 77.

Remark 79. The results in [147] are given for prioritized frameworks (i.e., with a preference
relation defined on the arguments of  (AT)). However, since the non-prioritized setting
is a special case of the prioritized setting, the results still apply here.

The satisfaction of the non-interference and crash-resistance postulates for ASPIC+ are
not so straightforward. For example, when the strict rules are based on classical logic, ex-
plosion might still occur. See [59] for an extensive discussion on non-interference and crash-
resistance for ASPIC+. One of the challenges when trying to resolve these issues is that the
postulates from [60] should still be satisfied by the resulting framework.

33A set  of -formulas is minimally inconsistent if there is some formula � such that � ∈ Cn () and
� ∈ Cn (), and for each  ′ ⊊  no such � exists.
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Postulate − Well-formed Self-contradic- Closure under
framework tion axiom transposition

Sub-argument closure ✓ ✓ ✓ ✓

Closure × ✓ ✓ ✓

Direct consistency × ✓ ✓ ✓

Indirect consistency × ✓ ✓ ✓

Table 10: Overview of the postulates that are satisfied by ASPIC+ argumentation frame-
works given some condition on the set of strict rules and a contrary relation. The column
titled − denotes that there are no requirements placed on the framework.

Several variants of ASPIC+ have been proposed in the literature, some of them satisfy
non-interference and crash-resistance. An overview of some of these systems, the settings in
which they have been studied and the postulates that they satisfy, can be found in Table 11.34
Remark 80. Below are some further explanations and notes that are related to the results
in Table 11.

• The variant ASPIC Lite, introduced in [183], is obtained by filtering all inconsistent
arguments out of the argumentation framework. An argument A is inconsistent if
{Conc(B) ∣ B ∈ Sub(A)} is inconsistent. It is then shown that non-interference and
crash-resistance are satisfied for complete semantics, while the postulates from [60]
are still satisfied as well. For the proof it is necessary that at least one extension exists.
Among others, that is why other semantics are not discussed in that particular paper.
Moreover, it is shown that the results do not hold when preferences are introduced.

• A weaker version of crash-resistance, called non-triviality is discussed in [112]. This
variant, called ASPIC⋆, restricts the application of strict rules. In particular, chain-
ing of strict rules and applying strict rules to inconsistent sets of antecedents is not
allowed.

• ASPIC− [63] is a variant of ASPIC+ that uses the attack form of unrestricted rebut. Its
violation of non-interference is shown in [124]. Closure is also violated if inconsistent
arguments are filtered out, in the presence of priorities.

34As for ASPIC+ with filtering out inconsistent arguments: no results are known, even though ASPIC Lite
is its subsystem.
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System Priorities Incons. arg. Direct Closure Crash
filtered consistency resistance

ASPIC+ Yes No ✓ ✓ ×

ASPIC Lite No Yes Cmp Cmp Cmp

ASPIC Lite Yes Yes Cmp × Cmp

ASPIC⋆ Yes No ✓ ✓† ✓†

ASPIC− Yes No ✓ ✓ ×

ASPIC− No Yes ✓ ✓ ✓

ASPIC− Yes Yes ✓ × ✓

ASPIC⊖ Yes No Grd Grd Grd

Table 11: Overview of the different variants to ASPIC+ and the conditions under which
some of the postulates are satisfied. “Yes” means that the results also hold when taking into
account priorities over the defeasible rules, whereas “no” means that when priorities are
taken into account, counter-examples to the results exist. In columns 4–6, ✓ denotes that
the postulate is satisfied, × denotes that the postulate is not satisfied, and Cmp [resp. Grd]
denotes that the postulate is studied and satisfied for complete [resp. grounded] semantics
Finally, ✓† denotes that a weaker variant of the postulate is satisfied.

• Another variant of ASPIC+ with unrestricted rebut, called ASPIC⊖, is studied in [124]
and [125]. In ASPIC⊖, the notion of unrestricted rebut is generalized such that an ar-
gument can attack another argument if its conclusion claims that a subset of the com-
mitments of the attacked argument are not tenable together. It is shown that the result-
ing framework ASPIC⊖, where the priority relation is a preorder using the so-called
weakest link principle, satisfies the rationality postulates from both [60] and [61]
under grounded semantics.

C. Rationality postulates for ABA
Recall from Section 2.2.3 that an extension is a set of assumptions (i.e.,  ⊆  for every
extension  of an assumption-based framework  = ⟨,,,∼⟩) that is also closed
with respect to the rules in  (i.e.,  = Cn⊢()). From this it follows immediately that
the closure postulate from Definition 60 is satisfied. Thus, from the rationality postulates in
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[60], it remains to show consistency. In the context of flat assumption-based argumentation
frameworks, this postulate can be defined as follows [75; 126]:

Consistency: for all extensions  , it holds that there are no �,  ∈  such that
� ∈ ∼ .35

In the non-prioritized setting, as discussed in this chapter, it follows immediately that
extensions for any of the considered semantics are consistent, since otherwise these would
not be conflict-free (recall the definition of attack in assumption-based frameworks, Defi-
nition 33). However, as shown in e.g., [75; 126], whether an assumption-based framework
satisfies consistency in a prioritized setting depends on the definition of the preference or-
dering and the notion of conflict-freeness. A discussion of this is beyond the scope of this
chapter.36

The rationality postulates for inferences (recall Definition 61) have been studied for sim-
ple contrapositive assumption-based frameworks (recall Definition 35) in [121]. Note that,
since the entailment relation for assumption-based frameworks is defined for frameworks and
not for sets of formulas (as in the case of the discussed logic-based approaches), the notion
of syntactically disjoint sets of formulas has to be lifted to assumption-based frameworks.
Two assumption-based frameworks 1 = ⟨L,Γ1,Δ1, ∼1⟩ and 2 = ⟨L,Γ2,Δ2,∼2⟩
are syntactically disjoint if (Γ1 ∪ Δ1) ∣ (Γ2 ∪ Δ2). Besides this new notion of syntactically
disjointness, the definitions of non-interference and crash-resistance remain the same as for
logic-based argumentation and the ASPIC-family.
Proposition 81. ([121, Theorems 7 and 8]) Let = ⟨L,Γ,Δ,∼⟩ be a simple contrapos-
itive assumption-based framework. Table 12 lists under what conditions the corresponding
entailment relations satisfy non-interference for Sem ∈ {Naive,Prf, Stb,Grd,WF}.

In [49] it is shown that
• ABA frameworks with domain-specific rules and whose contrariness relation do not

introduce syntactic discontinuities, i.e., for all formulas � we have that Atoms(∼�) ⊆
Atoms(�), satisfy non-interference, and

• ABA frameworks whose inference rules are induced by logicsL = ⟨, ⊢⟩ for which
⊢ is pre-relevant (see Definition 72), i.e., �1,… , �n →  ∈  iff �1,… , �n ⊢  ,
satisfy non-interference.

35 Since [75; 126] restrict their attention to flat assumption-based argumentation frameworks, this notion of
consistency is equivalent to the following formulation, which bears closer similarities to indirect consistency:
for all extensions  , it holds that there are no �,  ∈  s.t.  ⊢ � and  ⊢  and � ∈ ∼ .

36In contexts where besides the contrariness relation there are other negations (e.g., when translating ex-
tended logic programs into ABA), various notions of consistency may have to be considered (see e.g., [180]).
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Entailment − F ∈ Ab

∣∼⋒Sem Sem ∈ {Naive,Prf,Stb} Sem ∈ {Naive,Prf,Stb}

∣∼∪Sem Sem ∈ {Naive,Prf,Stb} Sem ∈ {Naive,Prf,Stb}

∣∼∩Sem × Sem ∈ {Grd,WF}

Table 12: Results from [121] concerning the conditions and semantics under which simple-
contrapositive assumption-based frameworks satisfy non-interference. × denotes that non-
interference is not satisfied for any Sem ∈ {Naive,Prf, Stb,Grd,WF}.

2.3.3 Inference Principles for Non-Monotonic Reasoning
Next, we examine the argumentation-based entailment relations in Definitions 12, 26 and
36, relative to general patterns for non-monotonic reasoning, originally studied in [162],
[98], [133; 134], and [137]. These works study how to adjust the set of conclusions (which
may be reduced, not necessarily increased) upon a growth in the set of assumptions. In our
case, since the assumptions are divided to strict premises and defeasible premises, it will be
useful to distinguish between the two ways of increasing the set of premises: we shall use the
operator ⊎ for the addition of strict premises and ⋓ for the addition of defeasible premises.
Accordingly, we define:
Definition 82 (premise addition). Let  = ⟨s,d⟩ be a pair of sets of formulas in a lan-
guage .37 We denote:

•  ⋓ � = ⟨s,d⟩ ⋓ � = ⟨s, d ∪ {�}⟩,
•  ⊎ � = ⟨s,d⟩ ⊎ � = ⟨s ∪ {�}, d⟩.
Note that logic-based argumentation is considered here only with respect to defeasible

assumptions, therefore ⊎ will not be used in that context, and the meaning of ⋓ in case the
logic-based argumentation is simply the union, ∪. For the other formalisms, addition of
premises is defined as follows:
Definition 83 (premise addition in ASPIC). Let AT = ⟨⟨, ,, n⟩, ⟨n,p⟩⟩ be an ASPIC
argumentation theory, and let � be an -formula. We define:

• AT ⋓ � = ⟨⟨, ,, n⟩, ⋓ �⟩ (where � ∉ n),

• AT ⊎ � = ⟨⟨, ,, n⟩, ⊎ �⟩ (where � ∉ p).
37The subscripts ‘s’ and ‘d’ indicate that, intuitively, the first component consists of the strict premises and

the second component is the set of defeasible premises.
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Definition 84 (premise addition in ABA). Let  = ⟨,,,∼⟩ be an assumption-
based argumentation framework, and let � be an -formula. We define:

•  ⋓ � = ⟨, ⧵ {Θ→ � ∣ Θ ⊂ WFF(L)}, ∪ {�},∼⟩,38

•  ⊎ � = ⟨, ∪ {→ �}, ⧵ {�},∼⟩.39

Let  = ⟨L,Γ,Δ,∼⟩ be a (simple) contrapositive assumption-based argumentation
framework, and let � be an -formula. We define:

•  ⋓ � = ⟨L,Γ,Δ ∪ {�},∼⟩,
•  ⊎ � = ⟨L,Γ ∪ {�},Δ,∼⟩.40

Using the operators ⊎ and ⋓ we can now consider known postulates for non-monotonic
reasoning, adjusted to the two types of information updates. To make the presentation more
compact we will define the properties for ASPIC, ABA, MCS-based reasoning and logic-
based argumentation in one definition. For this we call a knowledge base one of the follow-
ing:

⋄ an ASPIC argumentation theory AT = ⟨⟨, ,, n⟩, ⟨n,p⟩⟩,
⋄ an assumption-based framework ,
⋄ a set of -formulas for logic-based argumentation with a logic L = ⟨, ⊢⟩, or
⋄ a pair of -formulas ⟨ ′,⟩ in MCS-based reasoning and a logic L = ⟨, ⊢⟩.

In the context of a fixed language  resp. a fixed logic L = ⟨, ⊢⟩ resp. a fixed set of strict
rules s, it will also be useful to consider empty knowledge bases, written KB∅ and denot-
ing, the argumentation theory AT = ⟨⟨, , ∅, n⟩, ⟨∅, ∅⟩⟩ in the context of ASPIC, resp. the
assumption-based framework ⟨,s, ∅, ∅⟩ in the context of assumption-based argumenta-
tion, resp. the pair of empty sets of-formulas ⟨∅, ∅⟩ in the context ofMCS-based reasoning,
resp. the empty set of -formulas in the context of logic-based argumentation.
Definition 85 (properties for non-monotonic reasoning). Let L = ⟨, ⊢⟩ be a propositional
logic, KB a knowledge base, �,  , � -formulas, and ⊔ ∈ {⋓, ⊎}. For an entailment relation
∣∼ ⊆ ℘() ×  we define:

⊔-Cautious Reflexivity (⊔-CREF): KB∅ ⊔ � ∣∼ � where � is ⊢-consistent.

⊔-Reflexivity (⊔-REF): KB∅ ⊔ � ∣∼ �.
38RemovingΘ → � from Γ ensures that ⋓� is flat if so is , and is proposed in [76]. Furthermore,

we let ∼� = ∅ and ∼ is defined as in the original for any  ∈ .
39∼ is defined as in the original for any  ∈  ⧵ {�}.
40Since in the context of simple contrapositive assumption-based frameworks is is not necessary to restrict

attention to flat assumption-based frameworks, � is not removed from Δ.
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Right Weakening (RW): If KB ∣∼ � and � ⊢  then KB ∣∼  .

⊔-Cautious Monotonicity (⊔-CM): If KB ∣∼ � and KB ∣∼  then KB ⊔ {�} ∣∼  .

⊔-Cautious Cut (⊔-CC): If KB ∣∼  and KB ⊔ { } ∣∼ � then KB ∣∼ �.

⊔-Left Logical Equivalence (⊔-LLE): If ⊢ � ≡  and KB ⊔ � ∣∼ � then KB ⊔  ∣∼ �.

⊔-OR (⊔-OR): If KB ⊔ � ∣∼ � and KB ⊔  ∣∼ � then KB ⊔ {� ∨  } ∣∼ �.

⊔-Rational Monotonicity (⊔-RM): If KB ∣∼  and KB ∤∼ ¬� then KB ⊔ � ∣∼  .41

Remark 86. We refer to [133; 134] for a detailed discussion on CM, RW, LLE, OR, and
RM and to [98] for a discussion on CC. All of these properties are well-known and have
been extensively examined in different contexts and for different purposes involving inference
in a non-monotonic way.

Some interesting variations of these properties have been considered in the literature
but have, to the best ouf our knowledge, not been studied for argumentative consequence
relations. For example, an interesting weaker variant of cautious monotony is known as very
cautious monotony (VCM) [116] or conjunctive cautious monotony [43] and is defined as
follows: if Γ ∣∼ � ∧  then Γ ⊔ � ∣∼  . This variant has not been studied yet in structured
argumentation.

Another variation is semi-monotonicity (SM) [7], stating that when adding defeasible
information, every extension (according to a given semantics) of the original framework is a
subset of some extension of the supplemented framework. For more variants of the properties
discussed here, we refer the reader to [43; 95] in which many more variants are discussed
and studied.

The properties inDefinition 85 are often gathered for defining systems for non-monotonic
inference.
Definition 87 (systems for non-monotonic inference). Let ⊔ ∈ {⋓, ⊎}. We say that an
entailment ∣∼ is:

• ⊔-cumulative, if it satisfies ⊔-REF, RW, ⊔-LLE, ⊔-CM and ⊔-CC.

• ⊔-cautiously cumulative, if it satisfies ⊔-CREF, RW, ⊔-LLE, ⊔-CM and ⊔-CC.

• ⊔-(cautiously) preferential, if it is ⊔-(cautiously) cumulative and satisfies ⊔-OR.

• ⊔-(cautiously) rational, if it is ⊔-(cautiously) preferential and satisfies ⊔-RM.
41In ASPIC this has to be rephrased in terms of the contrariness relation instead of negation: If KB ∣∼  and

KB ∤∼ �′ for all �′ ∈ �, then KB ⊔ � ∣∼  .
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Table 13 classifies the argumentation-based entailment relations according to Defini-
tion 87.42

MCS reasoning logic-based arg. simple contrap. ABA ASPIC
System. ∣∼L

∩mcs ∣∼L
⋒mcs ∣∼L,UD

∩gps ∣∼CL,DirUcut
⋒ps ∣∼⋒ps ∣∼∩gps ∣∼Grd (†) ∣∼⋒Stb (‡)

⋓-ccum. Yes Yes Yes Yes Yes Yes Yes Yes
⊎-cum. Yes Yes − − Yes Yes Yes Yes
⋓-cpref. No Yes No Yes Yes No No Yes
⊎-pref. No Yes − − Yes No No Yes
⋓-crat. No No No No No No No No
⊎-rat. No No − − No No No No

Table 13: Overview over the properties of non-monotonic inference. In the table, “(c)cum.”
means “(cautiously) cumulative”, “(c)pref.” means “(cautiously) preferential”, and “(c)rat.”
means “(cautiously) rational”. We let: ∅ ⊂ UD ⊆ {Ucut,Def}, gps ∈ {Grd, Prf , Stb}, and
ps ∈ {Prf , Stb}, Also, (†) means that F ∈ Δ, (‡) means “without defeasible rules”, and “−”
means that the property is not applicable in the context of the given entailment.

The positive results presented in Table 13 follow from the representational results in
Propositions 46, 48 and 51, using the next two propositions:
Proposition 88. Let L = ⟨, ⊢⟩ be a propositional logic. The entailments ∣∼L

∩mcs and ∣∼
L
⋒mcs

are ⋓-cautiously cumulative and ⊎-cumulative.

Proposition 89. LetL = ⟨, ⊢⟩ be a propositional logic and let ⊔ ∈ {⋓, ⊎}. The entailment
∣∼L
⋒mcs is ⊔-preferential.

Proofs of the last two propositions are given in Appendix A.
Remark 90. Some of the results in Table 13 have been shown before. For instance, in [30] it
is shown that ∣∼CL

⋒mcs∅L
is ⋓-preferential, the results for simple contrapositive ABFs are shown

in [117], and the results concerning the ⋓-cautious cumulativity and the non ⋓-cautious
preferentiality of ∣∼L,UD

∩gps follow from [16, Proposition 16 and Note 10].

42Since the credulous entailment is often monotonic (see [31] for MCS-based reasoning and [50, Proposi-
tion 8] for argumentation-based reasoning), the results in Table 13 refer to skeptical entailments.
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Counter-examples for ⊔-OR which justify the negative results in Table 13 are easy to
find. We give some examples for MCS-based reasoning, which in view of the cited repre-
sentational results immediately generalize for the listed argumentation systems in Table 13.
Example 91 (Counter-Example, ⊎-OR, ∣∼∩mcs). Suppose that the underlying logic L is clas-
sical logic, and let  = {¬p ∧ r,¬q ∧ r}. In this case we have:

• ⟨{p},⟩ ∣∼L
∩mcs r, sinceMCS{p}() = {{¬q ∧ r}},

• ⟨{q},⟩ ∣∼L
∩mcs r, sinceMCS{q}() = {{¬p ∧ r}}, while

• ⟨{p ∨ q},⟩ ̸∣∼L
∩mcs r, sinceMCS{p∨q}() = {{¬p ∧ r}, {¬q ∧ r}}.

Example 92 (Counter-example, ⋓-OR, ∣∼∩mcs). Suppose again that the underlying logic L
is classical logic, and let  = {¬p,¬q,¬p ⊃ r,¬q ⊃ r}. Then we have:

• ⟨∅, ∪ {p}⟩ ∣∼L
∩mcs r,

sinceMCS∅( ∪{p}) = {{p,¬q,¬p ⊃ r,¬q ⊃ r}, {¬p,¬q,¬p ⊃ r,¬q ⊃ r}} and thus⋂
MCS∅( ∪ {p}) = {¬q,¬p ⊃ r,¬q ⊃ r},

• ⟨∅, ∪ {q}⟩ ∣∼L
∩mcs r,

sinceMCS∅( ∪{q}) = {{¬p, q,¬p ⊃ r,¬q ⊃ r}, {¬p,¬q,¬p ⊃ r,¬q ⊃ r}} and thus⋂
MCS∅( ∪ {q}) = {¬p,¬p ⊃ r,¬q ⊃ r}, while

• ⟨∅, ∪ {p ∨ q}⟩ ̸∣∼L
∩mcs r,

since MCS∅( ∪ {p ∨ q}) = {{p ∨ q,¬p,¬p ⊃ r,¬q ⊃ r}, {p ∨ q,¬q,¬p ⊃ r,¬q ⊃
r}, {¬p,¬q,¬p ⊃ r,¬q ⊃ r}} and thus

⋂
MCS∅( ∪ {p ∨ q}) = {¬p ⊃ r,¬q ⊃ r}.

Example 93 (Counter-example, ⊔-RM, ∣∼⋒mcs). Let L be classical logic and  = {r, p∧q∧
¬r, (p∧r) ⊃ ¬q, ¬p∧q}. We haveMCS∅() = {{r, (p∧r) ⊃ ¬q,¬p∧q}, {p∧q∧¬r, (p∧r) ⊃
¬q}}. One of the two elements of MCS∅() does not imply ¬p, while both of them imply q.
Thus, ⟨∅,⟩ ∣∼⋒mcs q and ⟨∅,⟩ ̸∣∼⋒mcs ¬p.

Now, consider ⟨∅, ∪ {p}⟩ and ⟨{p},⟩. We have:

• MCS∅(∪{p}) = {{r, (p∧r) ⊃ ¬q,¬p∧q}, {p∧q∧¬r, (p∧r) ⊃ ¬q, p}, {r, p, (p∧r) ⊃
¬q}} and

• MCS{p}() = {{p ∧ q ∧ ¬r, (p ∧ r) ⊃ ¬q}, {r, (p ∧ r) ⊃ ¬q}}.
As a consequence, ⟨∅, ∪ {p}⟩ ̸∣∼⋒mcs q and ⟨{p},⟩ ̸∣∼⋒mcs q. Thus, neither ⊎-RM nor
⋓-RM holds in this case.
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Not so many results on inferential properties are known for fragments of ASPIC+ and
ABA that are beyond those that coincide with reasoning with maximally consistent subsets.
To the best of our knowledge, for ABA frameworks, inferential behavior for these fragments
has only been studied in [126], where the following results are shown:
Remark 94. For flat ABFs that are not necessarily simple contrapositive but whose strict
rule set is contrapositive (see Remark 49), [126] show the following additional results:

• ∣∼⋒Grd satisfies ⊎-CM and ⊎-CC

• ∣∼⋒Prf satisfies ⊎-CC

• if  is well-behaved (recall Remark 49), then ∣∼⋒sem satisfies ⊎-CM for sem ∈
{Prf , Stb}.43

Another study of inferential behavior of assumption-based argumentation is given in [74]
(in [76] it is extended to ABA+), where yet another set of postulates is studied. For example,
cautious cut and cautious monotony are defined in [74] as follows:
Definition 95. Given  = ⟨,,,∼⟩, for an arbitrary extension  ∈ Sem( )-formula � ∉ , and ⊔ ∈ {⋓, ⊎}, we define:
⊔-SCC: If � ∈ Cn⊢(), then for every  ′ ∈ Sem( ⊔ �), Cn⊢() ⊆ Cn⊢( ′).
⊔-WCC: If � ∈ Cn⊢(), then for some  ′ ∈ Sem( ⊔ �)), Cn⊢() ⊆ Cn⊢( ′).
⊔-SCM: If � ∈ Cn⊢(), then for every  ′ ∈ Sem( ⊔ �)), Cn⊢() ⊇ Cn⊢( ′).
⊔-WCM: If � ∈ Cn⊢(), then for some  ′ ∈ Sem( ⊔ �)), Cn⊢() ⊇ Cn⊢( ′).

It can be shown that, for each ⊔ ∈ {⋓, ⊎}, ∪-CC and ⊔-CM, defined for ∣∼∪Sem, imply,
respectively, ⊔-WCC and ∪-WCM (and, obviously, ⊔-SCC and ⊔-SCM also respectively
imply the two latter rules).

The following proposition and examples are shown in [74]:
Proposition 96. For each ⊔ ∈ {⋓, ⊎},

• grounded semantics satisfies ⊔-SCC and ⊔-SCM,

• preferred and stable semantics satisfy ⊔-WCC and ⊔-WCM.

Here are counter-examples to ⊎-SCC and ⊎-SCM for preferred and stable semantics:
43The satisfaction of the postulates for ∣∼∩sem and ∣∼∪sem-entailments are not studied in [126], and neither is

satisfaction of properties such as ⊎-REF, ⊎-LLE, RW or ⊎-OR. The same holds for any of the ⋓-properties.

1842



LOGIC-BASED APPROACHES TO FORMAL ARGUMENTATION

Example 97. Let = ⟨{p, q, r, p′, q′, r′, s},,,∼⟩ with
 = {p, q, r},

 = {p→ q′; r→ p′; q → p′; q → s; s→ r′}, and

∼x = {x′} for any x ∈ .

A fragment of the attack diagram of this ABF is given in Figure 8a. Here {q} is the unique
preferred and stable extension and {q} ⊢ s. Consider now ⊎ {s} (see Figure 8b for
a fragment of the attack diagram). Now there are two preferred (and stable) extensions: {q}
and {p}. Since Cn({p}) ⊈ Cn({q}), it follows that ⊎-SCM is violated. Likewise, since
Cn({p}) ⊉ Cn({q}), it follows that ⊎-SCC is violated.

Notice that this example is also a counter-example to ⊎-CM for ∣∼⋒Sem with Sem ∈
{Prf , Stb}, as  ∣∼⋒Sem s and  ∣∼⋒Sem q, yet  ⊎ {s} ∤∼⋒Sem q.

Here are counter-examples to ⋓-SCC and ⋓-SCM for the preferred semantics:
Example 98. Let be as in Example 97. Observe that:

 ⋓ {s} = ⟨{p, q, r, s, p′, q′, r′, s′},,,∼⟩, with
′ = {p, q, r, s},

′ = {p→ q′; r→ p′; q → p′; s→ r′}, and

∼x = {x′} for any x ∈ .

A fragment of the attack diagram of this ABF is given in Figure 8c.
The framework ⋓{s} has two preferred (and stable) extensions: {q, s} and {p, s}.

In this case ⋓-SCM is violated, since Cn({q}) ⊈ Cn({p, s}). Likewise, ⋓-SCC is vio-
lated, since Cn({q}) ⊉ Cn({p, s}).

As in Example 97, this example can also be seen to be a counter-example to ⋓-CM.

In [135], inference properties are studied for ASPIC+. However, right weakening, left
logical equivalence and reflexivity are defined there in a different way. In more detail, [135]
study the following alternative versions of these rules:
Definition 99 (alternative inference properties). Given an ASPIC argumentation theory
AT = ⟨⟨, ,, n⟩, (n,p)⟩, -formuals �,  , an operator ⊔ ∈ {⊎,⋓} and an entailment
relation ∣∼ as in Definition 26, we say that ∣∼ satisfies:

REFd if � ∈ p then AT ∣∼ �

REFs if � ∈ n then AT ∣∼ �
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{q}

{r}

{p}

(a) Diagram for 

{q}

{r}

{p}

∅

(b) Diagram for  ⊎ {s}

{q}

{r}

{p}

{s}

(c) Diagram for  ⋓ {s}
Figure 8: Attack diagrams for Examples 97 and 98. To avoid clutter only attacks from
minimal sets are included.

RWd if AT ∣∼ � and � ⇒  ∈ d then AT ∣∼  

RWs if AT ∣∼ � and � →  ∈ s then AT ∣∼  

⊔-LLEd if �⇒  ∈ d ,  ⇒ � ∈ d and AT ⊔ � ∣∼ � then AT ⊔  ∣∼ �

⊔-LLEs if � →  ∈ s,  → � ∈ s and AT ⊔ � ∣∼ � then AT ⊔  ∣∼ �

Notice that RW implies RWs and ⊔-LLE implies ⊔-LLEs (for any ⊔ ∈ {⊎,⋓}), REFs
implies ⊎-REF (but not vice versa) and REFd implies ⋓-REF (but not vice versa).

The main positive results of [135] are the following:
Proposition 100.

• ∣∼⋒Grd satisfies REFs, RWs, LLEs, ⋓-CM and ⋓-CC.

• ∣∼⋒Prf satisfies REFs, RWs, LLEs and ⋓-CC.

• ∣∼∩Prf and ∣∼∪Prf satisfy REFs, RWs and LLEs.

We conclude this section by making some observations on both the significance of sat-
isfaction or violations of the properties discussed in this section and the current state of the
art. On one hand, there is a long tradition in non-monotonic logic which claims or assumes
the properties for cumulative inference relations to “constitute a basic set of principles that
any reasonable account of defaults must obey” [108]. As such, the satisfaction of such prop-
erties can be seen as a minimal condition on any formalization of non-monotonic reasoning.
However, the generality of this claim has been put into doubt by, e.g. Bochman [41; 42;
43], who posits a distinction between explanatory and preferential reasoning, where only
for the latter cumulativity is feasible. Furthermore, some of the properties considered in this
section are not outside of controversy, such as rational monotony (cf., for instance, [163]).
In sum, we submit that the feasibility of the postulates for non-monotonic reasoning depends
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on the precise context of application. Once this is decided, the results in this section offer
some indications of which formalisms are appropriate for specific needs.

Finally, it is evident from this survey that the formalizations of the properties differ
greatly in different works, making it difficult to compare results and transfer them between
systems. Therefore, we think that it is an important direction for future work to study the
relations between the different formulations of the properties studied in this section, and
– more generally – to express some other criteria for relating and comparing the different
approaches to logic-based argumentations, as well as their relations to other forms of non-
monotonic reasoning. Some steps in this direction are reviewed in the next section.

2.4 Comparative Study
In this section we review some results concerning the inter-relations among the three logic-
based approaches to formal argumentation considered in Section 2.2, as well as some of their
connections to related methods to defeasible reasoning.

2.4.1 Relations among the Logic-Based Approaches
From the descriptions of logic-based argumentation, assumption-based argumentation and
ASPIC+ given above, the similarities of the frameworks are clear: they all use the same
pipeline-methodologywhere an argumentation framework is constructed from the following
components:

• a core (base) logic that determines the underlying language and the consequence re-
lation for the arguments,

• attack rules relating arguments with counterarguments,
• a knowledge-base, encoding the set of the ‘global’ assumptions of the framework,
• an argumentation semantics, according to which sets of jointly acceptable arguments

and their respective accepted conclusions are determined.
However, the formalisms outlined in Section 2.2 clearly differ in the specific ways formal
substance is given to this general methodology. Table 14 gives an overview of the spe-
cific instantiations of the main argumentative concepts by logic-based argumentation (LBA),
assumption-based argumentation (ABA) and ASPIC+.

An important question that arises in such a comparison is concerned with the impact
of the different choices on the resulting inference relation. Such a question can be partly
answered by considering the exact relationship between the formalisms under consideration.
This can be done in several ways, for instance by
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Concept LBA ABA ASPIC+

Knowledge-base  and L ⟨,s,p,∼⟩
⟨, ,, n⟩,
⟨n,p⟩

Arguments support-conclusion sets of assumptions proof treespairs
Attacks various direct defeat undermining,

rebut, undercut
Table 14: Argumentative concepts and their instantiations in logic-based frameworks

1. comparing the inference relations associated with the respective formalisms,
2. investigating translations between the different formalisms, and
3. comparing the relative expressivity of the different formalisms.
Several works, including [150; 11; 117; 48; 121; 126], have concluded that logic-based

argumentation, assumption-based argumentation and ASPIC+ agree on what we could call
a core fragment, namely when the underlying (strict) base logic is classical logic (or even
any contrapositive Tarskian logic), and the defeasible assumptions are some propositional
formulas. Indeed, it follows from Propositions 16, 46 and 48 that all three frameworks
give rise to the same inference relation for the above-mentioned fragment and that this core
fragment coincides with MCS-based reasoning.

Whenmoving away from this core fragment, the formalisms start to behave in fundamen-
tally different ways. First, it should be noted that logic-based argumentation as represented
here, is restricted to (usually contrapositive) Tarskian logics, where the knowledge-base con-
sists of defeasible propositional formulas.44 In contrast, ABA and ASPIC+, do allow to use
not only defeasible, but also strict assumptions. Moreover, ASPIC+ allows to reason with
defeasible rules in addition to defeasible premises, i.e., with ASPIC+ one can make infer-
ences from knowledge bases that ABA cannot handle.

As we will describe below, there are ways to express defeasible rules with the help of
defeasible premises and strict rules, but it seems equally interesting to compare the inferential
behavior of ABA and ASPIC+ for knowledge bases whose only defeasible elements are
premises. In [150, Corollary 8.10] it is shown that given a flat assumption-based framework

44We note that this restriction can be lifted by adding strict assumptions and applying the attack rules only on
the defeasible arguments. See [48] for the details. Here we follow the main line of research so far that combines
logic-based framework with defeasible information only.
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 = ⟨Atoms(),,,∼⟩ (i.e, when for no Θ ∪ {�} ⊆ , Θ ⊢ �.), the ASPIC-
based argumentation framework AT = ⟨⟨Atoms(), , ⟨, ∅⟩, n⟩, ⟨∅,⟩⟩ gives rise to
the same inferences.
Proposition 101. Let = ⟨Atoms(),,,∼⟩ be a flat assumption-based framework.
Consider the ASPIC-based argumentation framework AT = ⟨⟨Atoms(), , ⟨, ∅⟩, n⟩,
⟨∅,⟩⟩ for arbitrary n45 and where is defined by � = ∼� for any � ∈  and � = ∅
otherwise. Then for any † ∈ {∪,∩,⋒} and Sem ∈ {Grd, Prf ,Cmp, Stb}, ∣∼†Sem  iff
AT ∣∼†Sem  .

It follows that for knowledge-bases with a flat rule-base and any semantics subsumed by
complete semantics ABA and ASPIC+ provide the same inferences. However, for non-flat
knowledge-bases, this correspondence breaks down, as demonstrated by the next example.
Example 102. Let Atoms() = {p, q},  = {p → q}, and  = ⟨{p, q},, {p, q},∼⟩
where ∼p = ∅ and ∼q = {q}. For this ABF, the unique preferred extension is ∅. Indeed,
{p} is not admissible since it is not closed (since {p} ⊢ q) and any set containing q is not
admissible (since q attacks itself).

If we move to ASPIC+ we have the argumentation theory AT = ⟨⟨{p, q}, , ⟨, ∅⟩,
n⟩, ⟨∅, {p, q}⟩⟩, and the arguments A = ⟨p⟩, B = ⟨q⟩, C = A→ q.

There is an attack from B to itself and from C to B. Notice furthermore that C is
unattacked (Recall here that no rebuttals are possible in the heads of strict rules, which
is why C does not rebut itself). This means that {A,C} is the unique stable and preferred
extensions.

It is perhaps interesting to note that {A,C} presents a violation of the rationality pos-
tulate of consistency from [58] (see Section 2.3.2, and in particular definition 60). It is
an open question if there are any differences in inferential behavior between ASPIC+ and
non-flat ABA for knowledge-bases whose extensions satisfy all the rationality postulates.

Translation methods. Given both the conceptual differences (as displayed in Table 14)
and the diverging inferential behavior of LBA, ABA and ASPIC+, the correspondences de-
scribed above have been supplemented by translations among the formalisms. Particular
attention has been paid to translations from ASPIC+ into ABA. Conceptually, this corre-
sponds to asking if one can model defeasible rules as defeasible premises. Such a question
has been answered positively in [90] and [123], sharing the same underlying idea: given
an ASPIC-based argumentation framework ⟨, ,s ∪d , n⟩, the underlying language 
is extended to ′ as to contain a name N(r) for every r ∈ d . This name is then added as

45Note that n can be safely ignored since the set of defeasible rules d is empty.
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a defeasible assumption in the ABF.46 The strict rule-base is then supplemented with rules
that ensure that the names of the defeasible rules are handled adequately in the argumenta-
tive inference process. In particular, for every rule r = �1,… , �n ⇒  ∈ d , the following
rules are added (resulting in R(d)):47

• N(r), �1,… , �n →  , which ensures that  is (defeasibly) derivable from {�1,… ,
�n};

•  → N(r) which enables an attack on N(r) if the contrary of the consequent of r is
derivable (thus mirroring rebuttal);

• n(r) → N(r), which enables an attack on N(r) if n(r) is derivable (thus mirroring
undercut).

In [123] it is shown that this translation is adequate for flat argumentation theories for ad-
missible, preferred and stable semantics. In [90], it is shown that their translation is adequate
for any semantics subsumed by complete semantics. In the following, given a flat48 argu-
mentation theory AT = ⟨⟨, ,s ∪d , n⟩, ⟨n,n⟩⟩, let

 (AT ) = ⟨,s ∪ R(d) ∪ {→ � ∣ � ∈ n},p ∪ {N(r) ∣ r ∈ d},∼⟩
We now recall the adequacy result from [123]
Proposition 103. Given a flat argumentation theory AT , † ∈ {∩,∪,⋓}, and Sem ∈ {Prf ,
Stb}: AT ∣∼†Sem � iff (AT ) ∣∼†Sem �.

No adequate translation is known for non-flat argumentation theories.

Expressivity, Complexity and Representation of Arguments. A third way to compare
the logic-based approaches to formal argumentation considered in this chapter is by studying
their expressiveness. In other words, one may compare the answers to the question: “what
kind of problems can be solved by this formalism” [165]. In terms of feasibility, this often
boils down to questions of computational complexity. In that respect, we note that while
the complexity of ABA has been studied in [83], for LBA and ASPIC+ similar complexity
results are missing. As noted in [147], the complexity of these formalisms is indeed an
important open question.

46In [90] the language is also extendedwith an atom not for every�1,… , �n ⇒  such that in the translated
ABF, not  is a defeasible assumption similar to negation as failure.

47For simplicity, we denote by � any �′ ∈ �.
48An argumentation theoryAT = ⟨⟨, ,s ∪d , n⟩, ⟨n,p⟩⟩ is flat if there is no A ∈ Arg(AT ) such that

Conc(A) ∈ p ⧵ Prem(A).
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Another point of difference between the formalisms is related to how exactly argu-
ments are represented. In ASPIC+ and logic-based argumentation, arguments are formed
for specific conclusions. In ABA, on the other hand, nodes of an argumentation graph are
made up of sets of assumptions, without a specific conclusion. In this sense, ABA can
be said to operate on the level of equivalence classes of arguments with the same sup-
port. For this reason, given a finite set of defeasible assumptions, ABA will give rise to
an argumentation graph bounded by the size of the power set of the set of defeasible as-
sumptions. Logic-based argumentation and ASPIC+, on the other hand, might still gener-
ate an infinite argumentation graph since the underlying base logic might generate an in-
finite set of conclusions for every set of defeasible assumptions. On the other hand, this
also means that in ASPIC+ and logic-based argumentation, all the possible conclusions
are present in the argumentation graph, whereas in ABA these conclusions have to still
be derived. Altogether, we can summarize this difference as follows: ABA represents
arguments in a more compact way, which has both positive aspects (e.g. boundedness of
the argumentation graph) and negative aspects (e.g. some information might not be read-
ily present in the argumentation graph). In [5], a procedure is developed to compute a fi-
nite core of a logic-based argumentation system, which returns all the results of the orig-
inal system. Similarly, in [16] congruence relations (and their corresponding structures)
are discussed for argumentation frameworks in the context of sequent-based argumenta-
tion, e.g., based on equivalent support sets of arguments. For ASPIC+, the problem of
having infinite number of arguments out of a finite set of assumptions is avoided in [77;
78] in the context of dialectical argumentation frameworks and depth-bounded logics. This
approach involves preferences among arguments and is concentrated on classical logic as
the base logic of the framework.

2.4.2 Connections to Other Approaches
Next, we discuss relations between the logic-based argumentation formalisms presented in
this chapter and other formalisms for defeasible reasoning. Clearly, it is not possible to
formally and fully define here all the related formalisms, thus in what follows we just give
some general description of each related formalism, together with some references for fur-
ther reading. This means also that we will not be able to express the relations between the
formalisms in detail, but instead we shall provide the general underlying ideas and references
to papers where the relations are fully described.

It was arguably one of the goals of Dung in [85] to show that the way conflicts are
handled in abstract argumentation theory correspond to the way conflicts are handled in
many different kinds of formalisms for defeasible reasoning. In [85], Dung showed that this
is the case by proving representation results for several formalisms for defeasible reasoning.
He showed how to construct argumentation graphs for several such formalisms in a way
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that is both intuitive and gives rise to an adequate representation when applying the abstract
argumentation semantics to the resulting argumentation graph.

Since then, various additional argumentative characterizations of formalisms for defea-
sible reasoning have been proposed. We have already mentioned in Section 2.3.1 argu-
mentative characterizations of reasoning with maximal consistent subsets [155] by logic-
based argumentation, assumption-based argumentation and ASPIC+. In the rest of this sec-
tion we use these formalisms for argumentative characterizations of adaptive logics [26;
167], default assumptions [138], logic programming [8], default logic [154] and autoepis-
temic logic [148]. An illustration of these relations in given in Figure 9 at the end of this
section.

A. Adaptive Logics Adaptive logics offer a general framework for defeasible reasoning.
A plethora of forms of defeasible reasoning has been explicated in the adaptive logic frame-
work. Some examples are: the modeling of abduction (e.g., [142; 107]), inductive general-
ization (e.g., [27; 25]), default reasoning (e.g., [166]), reasoning from incompatible obliga-
tions (e.g., [29; 174]), causal discovery (e.g., [175]), reasoning with vague predicates (e.g.,
[176]), diagnostic reasoning (e.g., [182]), etc.

Adaptive logics comewith a dynamic proof theory extending a Tarskian core logic with a
set of retractable inferences which are associated with defeasible assumptions. More specif-
ically, these assumptions are sets of formulas of a predefined ‘abnormal’ form that are as-
sumed to be false in the given inference. When an assumption turns out to be dubious in
view of a premise set, the inference associated with it gets retracted.

Semantically, adaptive logics are based on preferential semantics that are adequate rela-
tive to the dynamic proof theory. Given a Tarskian core logic L, not all the L-models of the
premises are considered when determining the consequences, but only a sub-class is “se-
lected”, namely those models which are “sufficiently normal”. Different types of adaptive
logics follow different strategies that offer specifications of what it means to be sufficiently
normal. For instance, in adaptive logics that follows the minimal abnormality strategy, those
models are selected for which there are no models that verify less abnormal formulas.

As shown in [123], there is a straightforward translation of the framework of adaptive
logics into ABA: given an adaptive logic AL = ⟨L,Ω⟩, where L = ⟨, ⊢⟩ is a Tarskian
logic and Ω ⊆  is a set of abnormalities, and a set of premises Γ, the corresponding ABF
is defined as AL = ⟨L,Γ, {¬� ∣ � ∈ Ω},∼⟩, where ∼¬� = �. It is shown that for
preferred, naive and stable semantics, this translation is adequate to represent different types
of adaptive strategies.

B. Logic Programming Logic programming (LP) is one of the most popular approaches
to knowledge representation and has been widely studied, implemented and applied [8].
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(Propositional) logic programs are set of rules of the form:
�1 ∨… ∨ �n ←  1,… ,  m,∼ m+1,… ∼ m+l

where �i,  j are formulas for any 1 ≤ i ≤ n and 1 ≤ j ≤ m + l. The left-hand side of
the implication is call the rule’s head and the right-hand side of the implication is the rule’s
body. Now,

• If in all the rules of the program, every �i (1 ≤ i ≤ n) and  j (1 ≤ j ≤ m + 1) is
atomic, the program is called a disjunctive logic program, and

• If, in addition, n ≤ 1 for every rule in the program, the program is called normal.
There are many ways of giving semantics to logics programs. One of the better-known one
is based on the notion of a reduct, which is a set of rules that is calculated on the basis of a
set of atoms. For example,

the Gelfond-Lifschitz reduct [109] 
Δ , of a normal logic program  with respect to a

set of atoms Δ, is constructed as follows: � ←  1,… ,  m ∈

Δ iff � ←  1,… ,  m,∼

 m+1,… ∼ m+l ∈  and  i ∉ Δ for any m < i ≤ m + l.
Based on such a reduct, the semantics of logic programming then describe ways to select
sets of atoms which count as models. For example,

the stable model semantics says that a set of atoms is a stable model if it is the minimal
model of its own Gelfond-Lifschitz reduct.49

The translation of logic programming into assumption-based argumentation has been the
subject of several publications (e.g., [157; 89; 65; 118]). The basic idea underlying all of
these publications is the same: the set of assumptions is made up of negated atoms, and
the contrary of a negated atom is the positive atom. The (strict) rules consist of the rules
of the logic programs. Thus, a set of negated atoms will attack a negated atom if the logic
program and the attacking set allows to derive the positive version of the attacked negated
atom. Therefore, the underlying idea is to assume the ‘absence’ of any atom A appearing
in the logic program (the defeasible assumptions), unless, on the basis of attacks derived by
the programs rules, some set of assumptions indicates that A holds.

The correspondence results in Table 15 where proven in [65] for normal logic programs.
Remark 104. It is interesting to note that L-stable models (i.e. 3-valued stable models that
are maximal w.r.t. atoms assigned a definite truth value) do not correspond to semi-stable
sets of assumptions (see [65, Example 13]), although both of these semantics are based on
the same idea of maximizing the assignment of determinate truth values.

49That is, Δ is a stable model of  if for every p ← q1,… qn ∈

Δ
, either p ∈ Δ or qi ∉ Δ for some 1 ≤ i ≤ n,

and there is no Δ′ ⊊ Δ with the same property.
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ABA Extension LP Model
complete stable (3-valued)
grounded well-founded
preferred regular
stable stable (2-valued)
ideal ideal

Table 15: Correspondence between model of normal logic programs and extensions of ABA
frameworks

The results above were extended in [118] to disjunctive logic programming under sta-
ble model semantics. Furthermore, argumentative characterizations of the so-called well-
justified [159] and well-founded [181] semantics of general or first-order logic programs
(i.e., logic programs where any first-order formula can occur in the head or the body of a
rule) are provided in [89]. These generalizations are based on the same idea as [65]: the
assumptions consist of negated atoms and attacks occur when the attacking set allows to
derive the positive version of the attacked (negated) atom. What changes, however, is the
derivability relation used to determine if attacks occur. For example, in [118] in addition
to allowing for modus ponens on the rules of the program as in [65], one has also to allow
for reasoning by cases and resolution in the derivations. Likewise, in [89] both modus po-
nens on the rules of the program and any deduction valid in first-order logic are allowed.
In [180] extended logic programs [109] under three- and two-valued stable semantics are
translated into assumption-based argumentation. These translations have been used to ob-
tain explanations of (non-)derivability of literals in [158] and explaining and characterizing
inconsistencies of logic programs [156].

C. Default Logics Reiter’s default logic [154] has also been translated in assumption-
based argumentation. Again, here we just we recall the basics of default logic in an informal
way. Defaults are objects of the form

� ∶ M 1, … ,M n
 

.

Here, �,  1,… ,  n,  are formulas in the language, and the intuitive meaning of this ex-
pression is the following:

if � holds, and none of ¬ 1,… ,¬ n is provable, then normally one may sup-
pose that  also holds.
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An extension of a set of defaults Δ is a set of formulas Θ, such that Θ is a fixed point under
the operator ∇Δ, i.e., ∇Δ(Θ) = Θ, where the operator ∇Δ is defined as follows: given a set
Θ, ∇Δ(Θ) is the smallest set such that:

1. for every �∶M 1,…,M n
 

∈ Δ, if � ∈ Θ and ¬ i ∉ Θ for every 1 ⩽ i ⩽ n, then
 ∈ ∇Δ(Θ), and

2. ∇Δ(Θ) = Cn(∇Δ(Θ)),
The translation into ABA proposed in [46] works as follows: the language is that of

classical logic extended with M� for any � ∈ . The assumptions are M� for any � ∈, i.e., we assume (defeasibly) that for any formula � ∈ , its negation is not provable.
The rules are generated by taking the default rules together with a set of rules that captures
(classical) first-order logic. Finally, the contrary ofM� is defined as ¬� (recall thatM� is
interpreted as ¬� not being provable): a positive proof of ¬� gives us a counter-argument
to the assumptionM�.

In [46] it is shown that under this translation, stable extensions in ABA correspond to
Reiter’s default extensions. An interesting open question is whether similar results hold for
other semantics for default logic, such as those from [55; 6; 81].

D. Autoepistemic Logics Moore’s autoepistemic logic [148] is another well-established
formalisms for defeasible reasoning. It involves theories consisting of formulas in a doxastic
language, which is typically the closure L of a propositional language  under a belief
operator L. The intuitive meaning of L� is that ‘� is believed’. Thus, autoepistemic logic
is a formal logic for the representation and reasoning of knowledge about knowledge, and
theories containing formulas of the form L� are viewed are representing “knowledge of
a perfect, rational, introspective agent” [148; 132; 45]. An autoepistemic theory Δ ⊆ L

represents both positive and negative introspection of a logically perfect agent, i.e., � ∈ Δ iff
L� ∈ Δ and � ∉ Δ iff ¬L� ∈ Δ. Autoepistemic logic has been shown to have connections
to many other formalisms for defeasible reasoning, such as several variants of default and
priority logic [130], and several classes of logic programming [141].

A translation of autoepistemic logics to ABA frameworks is provided in [46]. According
to this translation, the set of assumptions is made up of the assumption of both negative
and positive knowledge: Ab = {L�,¬L� ∣ � ∈ }. Thus, both negative and positive
knowledge are assumed equally plausible. However, there are asymmetric treatments when
it comes to the definition of contraries: the contrary of positive knowledgeL� is the negative
knowledge (or absence of knowledge) of ¬L� (i.e., L� = ¬L�). The contrary of absence
of knowledge of a formula, on the other hand, is the formula itself, that is: ¬L� = �. The
rule-base is a set of rules capturing first-order logic, but formulated over the modal language
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L. It is interesting to note, however, that within the rule-base, no rules for the modal
operator are defined. Under this translation, the strict premises consist of the autoepistemic
theory Δ. [46] shows that stable extensions of the translation in ABA correspond to the so-
called consistent stable expansions [148] of the translated autoepistemic theory. For other
semantics, no correspondences are known.

Figure 9 provides a schematic description of the relations among the formalisms de-
scribed in this section.
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Figure 9: Argumentative representations of formalisms for modeling defeasible reasoning,
presented in Sectrion 2.4

Besides the translations discussed above, we mention the following additional transla-
tions which are beyond the scope of this paper:

• In [48] a generalization of sequent-based argumentation, called assumptive sequent-
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based argumentation, is shown to capture assumption-based argumentation, adaptive
logics and default assumptions.

• We note that in [65] it is also shown that assumption-based argumentation can be
translated in logic-programming.

• In [64] translations from normal logic programming to abstract argumentation and
vice-versa have been presented which are adequate for most (but not all) argumenta-
tion semantics.

• In [120] it is shown that approximation fixpoint theory [80], a general approach to
the study of non-monotonic reasoning, can be translated into assumption-based argu-
mentation. This allows for the straightforward translation of many semantic variations
on logic programming, default logic and auto-epistemic logic into assumption-based
argumentation.

• Relationships (and further references) of ASPIC+ to defeasible logic programming
[106], classical logical argumentation frameworks (see the paragraph below Defini-
tion 8) and prioritized formalisms, such as Brewka’s preferred subtheories [52] and
prioritized default logic [53], are described in [146; 147].

• Translations of abstract dialectical frameworks [54] into logic programming respec-
tively system Z [108] are shown in [164] respectively [122].

3 Logical Methods for Studying Argumentation Dynamics
There are a variety of methods for studying the dynamics of argumentation systems.50 This
includes, among others, dialectic games (see [144]), discussions [58], and, to some extent,
even machine learning algorithms [56]. Other approaches involve formal (logic) program-
ming methods, such as reductions to answer set programs (ASP), defeasible logic programs
(DeLP) and constraint satisfaction problems (CSP) (see, e.g., [68] for a description of these
methods and further references).

The common ground of the methods that are described in this section (following the
scope of this chapter) is that all of them assume the availability of an underlying Tarskian
logic and apply related formal methods (e.g., satisfiability of formulas in the underlying
language or proof procedures that allow to make inferences by derivation sequences). In the
first two subsections (3.1 and 3.2) we survey several logic-basic representation methods that

50Recall that ‘dynamics’ means here processes of a (fixed) argumentative framework and not its revision.
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are adequate for expressing the selection of arguments in view of argumentation semantics
and epistemic notions such as beliefs and their justifications in an argumentative setting. In
the last subsection (3.3) we consider proof-theoretic methods that are adequate for structured
argumentation.

3.1 Representation Methods Based on [Quantified] Propositional Languages
As indicated in, e.g., [33] and [94], given a finite argumentation framework, computing its
admissible sets or its complete extensions can be done by a straightforward encoding, in
propositional classical logic, of the requirements in the fourth item of Definition 10. In-
deed, given an abstract argumentation framework  , one may associate a propositional
atom with every argument in  (in what follows, to ease the notations, we shall use the
same symbol for an argument and its propositional variable), and accordingly construct the
following formula:

ADM( ) = ⋀
p∈Arg

((
p ⊃

⋀
(q,p)∈Attack

¬q
)
∧

(
p ⊃

⋀
(q,p)∈Attack

(
⋁

(r,q)∈Attack
r)
))
.51

Clearly, the arguments of an admissible set of correspond to the atoms that are verified
(i.e., those that are assigned the truth value ‘true’) by a model of ADM( ) and, conversely,
everymodel ofADM( ) is associated with an admissible set of , the elements of which
correspond to the verified atoms of the model. Similar considerations hold for the following
formula, representing the complete extensions of :

CMP( ) = ⋀
p∈Arg

((
p ⊃

⋀
(q,p)∈Attack

¬q
)
∧

(
p ↔

⋀
(q,p)∈Attack

(
⋁

(r,q)∈Attack
r)
))
.

Another, more informative way, of representing admissible and/or complete extensions, is
to turn to signed formulas (and so to an underlying three-valued semantics). By this, it is
possible not only to identify the arguments in the extensions (those that are verified by the
models of the formulas), but also identify the arguments that are attacked by the extensions
(those that are falsified by the models of the formulas). Briefly, the idea is to associate every
argument in the framework with a pair ⟨p+, p−⟩ of (“signed”) atoms, the truth values of
which describe the status of the associated argument: accepted (p+ is verified, p− is falsified),

51Recall that⋀∅ = T (truth) and⋁∅ = F (falsity).
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rejected (p+ is falsified, p− is verified), and undecided (both p+ and p− are falsified).52 53 54

Now, consider the following formula :

CMP±( ) = ⋀
⟨p+,p−⟩∈Arg

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
(p+ ∧ ¬p−) ⊃

⋀
(⟨q+,q−⟩,⟨p+,p−⟩)∈Attack(¬q+ ∧ q−)

)
, (1)

(
(¬p+ ∧ p−) ⊃

⋁
(⟨q+,q−⟩,⟨p+,p−⟩)∈Attack(q+ ∧ ¬q−)

)
, (2)

(
(¬p+ ∧ ¬p−) ⊃

(
¬
(⋀

(⟨q+,q−⟩,⟨p+,p−⟩)∈Attack(¬q+ ∧ q−)
)
∧

¬
(⋁

(⟨q+,q−⟩,⟨p+,p−⟩)∈Attack(q+ ∧ ¬q−)
) ))

, (3)

¬
(
p+ ∧ p−

)
(4)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

.

• the subformula denoted by (1) states that any argument that attacks an accepted argu-
ment must be rejected,

• the subformula denoted by (2) states that any rejected argument must be attacked by
at least one accepted argument,

• the subformula denoted by (3) states that for undecided arguments the previous con-
ditions do not hold,55 and

• the subformula denoted by (4) states that an argumentmay be either accepted, rejected,
or undecided (i.e., a fourth state depicted by p+ ∧ p− is excluded).

The next proposition (proved in [13]) shows the one-to-one correspondence between the
models of CMP±( ) and the complete extensions of .
Proposition 105. Let = ⟨Arg, Attack⟩ be an argumentation framework. Then:

• For every complete extension  ∈ Cmp( ) there is a model of CMP±( ) such
that

52The superscripts + and − have several meaning in different contexts, as A+ (respectively, A−) denotes the
set of arguments that are attacked by (respectively, that attack) A. This notational overloading will not cause
any confusion in what follows. Signed formulas were used in the context of inconsistency-tolerant reasoning in
[39].

53Again, we freely switch between an argument and the pair of atomic formulas that is associated with it, so
a pair ⟨p+, p−⟩ of (signed) atoms also stands for an argument in the framework.

54For a representation in terms of four-valued semantics, where both p+ and p− may be verified, we refer to
[9].

55These three subformulas state conditions that correspond to Caminada’s complete labeling (see [23]). See
also Remark 106.
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– In() = {⟨p+, p−⟩ ∣(p+) = t, (p−) = f} =  ,
– Out() = {⟨p+, p−⟩ ∣(p+) = f, (p−) = t} = +,
– Undec() = {⟨p+, p−⟩ ∣(p+) = f, (p−) = f} = Arg ⧵ ( ∪ +).

• For every model of CMP±( ) there is a complete extension  ∈ Cmp( ) such
that

–  = In() = {⟨p+, p−⟩ ∣(p+) = t, (p−) = f}
– + = Out() = {⟨p+, p−⟩ ∣(p+) = f, (p−) = t},
– Arg ⧵ ( ∪ +) = Undec() = {⟨p+, p−⟩ ∣(p+) = f, (p−) = f}.

Remark 106. The notations in the first bullet of Proposition 105 are not accidental, as they
correspond to the three types of assignments (in, out, undec) of the complete labeling of .56 Moreover, as shown in [13], all the results in this section carry on to labeling seman-
tics.

As an immediate consequence of the last proposition we get a representation of the stable
extension of . Indeed, as a stable extension is a set  ⊆ Arg such that Arg =  ∪ +, by
the last proposition we just have to add a requirement that Undec() = ∅ for every model of a theory. This can be easily done by adding the following ‘excluded middle’ condition:

EM±( ) = ⋀
⟨p+,p−⟩∈Arg

(
p+ ∨ p−

)

Corollary 107. Let  = ⟨Arg, Attack⟩ be an argumentation framework. Then:
• For every  ∈ Stb( ) there is a model of CMP±( ) ∪ {EM±( )} such that

In() =  and Out() = +.
• For every model  of CMP±( ) ∪ {EM±( )} there is a stable extension  ∈

Stb( ) such that  = In() and + = Out().

When it comes to other types of extensions like grounded or preferred extensions, propo-
sitional formulas in classical logic are not sufficient for the representation, since the defi-
nitions of such extensions involve qualitative or comparative considerations. One way of
dealing with this is to incorporate quantifiers in the language. As is shown in [94; 13; 82;
9], for this purpose first-order languages are not necessary, and it is sufficient to remain in
the propositional level, by using quantified Boolean formulas. For this, we extend the under-
lying language with universal and existential quantifiers ∀,∃ over propositional variables.

56Labeling semantics for argumentation frameworks is described, e.g., in [23].
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Intuitively, the meaning of a quantified Boolean formula (QBF) of the form ∃p ∀q  is
that there exists a truth assignment of p such that for every truth assignment of q,  is true.
Clearly, every QBF is associated with a logically equivalent propositional formula, thus
ultimately we are still at the propositional level. This may be formally defined as follows:
Definition 108 (QBF-related notions). Consider a QBF Ψ.

• An occurrence of an atom p in Ψ is called free if it is not in the scope of a quantifier
Qp, for Q ∈ {∀,∃}.

• We denote by Ψ[�1∕p1,… , �n∕pn] the uniform substitution of each free occurrence
of a variable (atom) pi in Ψ by a formula �i, for i = 1,… , n, and denote by T and F
the propositional constants for truth and falsity (respectively).57

• Valuations over QBFs are, as usual, functions that assign truth values to the propo-
sitional variables (the atomic formulas) in the QBFs, and are extended to complex
formulas as follows:
�(¬ ) = ¬�( ),
�( ◦�) = �( )◦�(�) for ◦ ∈ {∧,∨, ⊃},
�(∀p  ) = �( [T∕p]) ∧ �( [F∕p]),
�(∃p  ) = �( [T∕p]) ∨ �( [F∕p]).

Preferred extensions of an argumentation framework  with n arguments that corre-
spond to the n pairs {⟨p+1 , p−1 ⟩,… , ⟨p+n , p−n ⟩}may now be represented by the following QBF:

PRF±( ) = CMP±( )(p+1 , p−1 ,… , p+n , p
−
n ) ∧

∀q+1 , q
−
1 ,… , q+n , q

−
n

(
CMP±( )(q+1 , q−1 ,… , q+n , q

−
n ) ⊃

INC±⊆(p
+
1 , p

−
1 ,… , p+n , p

−
n , q

+
1 , q

−
1 ,… , q+n , q

−
n )
)
.

Here, CMP±( )(p+1 , p−1 ,… , p+n , p
−
n ) is the formula CMP±( ) considered previously, but

with the free variables p+1 , p−1 ,… p+n , p
−
n , and

INC±⊆(p
+
1 , p

−
1 ,… p+n , p

−
n , q

+
1 , q

−
1 ,… q+n , q

−
n ) =⋀

i

(
(p+i ∧ ¬p

−
i ) ⊃ (q

+
i ∧ ¬q

−
i )
)
⊃
⋀
i

(
(q+i ∧ ¬q

−
i ) ⊃ (p

+
i ∧ ¬p

−
i )
)
.

Intuitively, a model of PRF±( ) should satisfy two requirements: the condition in
the first line of the formula (i.e., CMP±( )) assures that the pairs ⟨p+, p−⟩ that are verified
by correspond to a complete extension of . The condition on the second and the third
line (CMP±( ) ⊃ INC±⊆( )) assures that this set of pairs is not strictly ⊂-included in
another set that forms a complete extension of . We thus have:

57That is, for every valuation � it holds that �(T) = t and �(F) = f .
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Proposition 109. ([13]) Let = ⟨Arg, Attack⟩ be an argumentation framework. Then:

• For every preferred extension  ∈ Prf ( ) there is a model  of PRF±( ) such
that In() =  , Out() = +, and Undec() = Arg ⧵ ( ∪ +).

• For every model  of PRF±( ) there is a preferred extension  ∈ Prf ( ) such
that  = In(), + = Out(), and Arg ⧵ ( ∪ +) = Undec().

In a similar way it is possible to represent the grounded semantics as well as other types
of comparative Dung-type extensions, such as semi-stable semantics, eager semantic, ideal
semantics, and so forth (see [13]). In [82] similar QBF-based representations are used for
representing extensions of abstract dialectical frameworks [54], and in [9] they are used
for representing conflict-tolerant semantics. It follows that off-the-shelf SAT-solvers and/or
QBF-solvers may be used for computing argumentation-based entailments by Dung seman-
tics.

Another approach based on propositional logic is taken in [169]. Again, arguments are
represented by propositional letters in a finite setAtoms. The language of propositional logic
is enriched with a connective ↠ characterized by the axiom scheme (� ∧ (� ↠  )) ⊃ ¬ 
to express argumentative attack. The fact that an argument  (in Atoms) is defeated is then
expressed by:

def =df

⋁
�∈Atoms

(� ∧ (� ↠  )).

In order to express admissible semantics, i.e., the idea that the selected arguments have to
defend themselves from all attacks, the following axiom is used:

(� ∧ ( ↠ �)) ⊃ def .

The logic LA = ⟨L↠
Atoms

, ⊢A⟩ is axiomatized by classical propositional logic enriched with
the three discussed axiom schemes. In order to characterize complete extensions, LA is
enriched with ⋀

�∈Atoms

((� ↠  ) ⊃ def�) ⊃  

resulting in LC = ⟨↠
Atoms

, ⊢C⟩, expressing that if an argument is defended then it is se-
lected.58

Similar to the approach in QBL, in order to characterize grounded and preferred se-
mantics, more formal machinery needs to be employed. Instead of quantifiers, in [169] the

58The presentation of the logics in [169] is slightly simplified in that the original systems also capture argu-
mentative changes, that is, a dynamic proof theory is presented that allows for the addition of new arguments
and new argumentative attacks “on-the-fly”. For a similar approach see our discussion in Section 3.3.
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preferential semantics of adaptive logics is used (recall Section 2.4.2-A). That means, for
the grounded [preferred] semantics those LC-interpretations are selected in which the least
[most] atoms are true. As shown in [173], the selection semantics underlying adaptive logics
can also be expressed in terms of maximal consistent subsets.

Given our previous discussion of MCS-based reasoning, we therefore state the follow-
ing corollary from [169, Theorem 1]: Given a logic L = ⟨, ⊢⟩ and sets  and  ′ of -
sentences, let in the following propositionMC

L ( ′) be the set of all maximally⊢-consistent
sets  of -sentences for which: (a)  ⊆  , and (b) there is no ⊢-consistent set  ′ of -
sentences for which both ( ∩  ′) ⊊ ( ′ ∩  ′) and  ⊆  ′.
Proposition 110. Let = ⟨Args,Attack⟩ be an abstract argumentation framework based
on a finite set of arguments. Consider the language ↠

Args
and let Γ = {� ↠  ∣ (�,  ) ∈

Attacks} ∪ {¬(� ↠  ) ∣ (�,  ) ∉ Attacks}. We have:

• Adm( ) = {Atoms() ∣  ∈ MCSΓLA
(↠

Args
)}

(In other words,  ∈ Adm( ) iff there is a maximallyL-consistent set of sentences for which Γ ⊆  and  = Atoms()),
• Cmp( ) = {Atoms() ∣  ∈ MCSΓLC

(↠
Args

)},

• Grd( ) = Atoms() where {} = MCΓL ({¬� ∣ � ∈ Atoms}),

• Prf ( ) = {Atoms() ∣  ∈ MCΓL(Atoms)} = {Atoms() ∣  ∈ MCΓL (Atoms)},

• SStb( ) = {Atoms() ∣  ∈ MCΓL ({� ∨ def� ∣ � ∈ Atoms})}.59

We note, finally, that the presentation in this section is by no means exhaustive, but
rather meant to illustrate the way logical propositional formulas may be used for encoding
the dynamics of argumentation-based reasoning. Among other approaches that are based on
a Tarskian logic we recall the ones in [103] and [97] based on intuitionistic logic, in [92]
based on Łukasiewicz logic, in [91] based on monadic second order logic, in [101] and [102]
based on classical logic, and in [79] based on first-order logic with finite domains. We refer to
[32] for a recent comprehensive survey on the subject (see in particular Sections 4–8 therein,
which are relevant to the material in this chapter), where also a variety of implementations
are described (summarized in [32, Table 4]).

59SStb( ) is the set of the semi-stable extensions of  , that is: the complete extensions  such that ∪ + is maximal among all the complete extensions of .
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3.2 Representation Methods Based on Modal Languages
In this section we consider several systems for reasoning about argumentation in a modal
logical context. We distinguish two major purposes these systems serve:

1. The first goal, which is shared among all the presented systems and discussed in Sec-
tion 3.2.1, is to express underlying notions of abstract argumentation, such as attacks
and semantic selections, in the object language via modal operators.

2. The second goal, discussed in Section 3.2.2, is to integrate central notions underlying
argumentative reasoning with those expressing argumentation dynamics in Item 1, for
instance, propositional attitudes such as belief and endorsement, and justification. In
this way, the presented logics offer a comprehensive logical model of (meta)argumen-
tation and its dynamics.

We start with the basic settings of [44; 62; 113; 178; 114], which are concerned with
meta-argumentative reasoning, and thenmove on to some frameworks that include epistemic
considerations [115; 161].

3.2.1 Argumentation Logics
Grossi in [113; 114] defines argumentation models to reason about argumentative situations.
An argumentation model  based on an argumentation framework  = ⟨Args,→⟩60 is
a tuple ⟨Args,←, v⟩, where ← is the inverted version of → (that is, A ← B iff B → A).
The pair ⟨Args,←⟩ constitutes a Kripkean possible world frame where arguments provide
the points connected by the accessibility relation ←. As usual, the assignment v associates
each propositional atom with a set of points (arguments) in which they hold.

In the following, we enrich the propositional language by two unary modalities. Thus,
formulas in the language are defined by the following BNF:61

� ∶= Atoms ∣ ¬� ∣ � ∧ � ∣ ⊟ a� ∣ ⊟ u� ∣ F

where Atoms is a set of propositional atoms of the language. The diamond-versions of the
given modal operators are defined as usual: � a =df ¬ ⊟ a¬ and �

u =df ¬ ⊟ u¬. Other
propositional connectives, such as implication ⊃, disjunction ∨, and the propositional con-
stant T for truth are defined as usual in classical propositional logic.

60To keep the original notations, we use in this section the arrow sign for designating the attack relation.
61We use the ⊟ -notation in our language since we will later on generalize this logic to a product logic where

the argumentation-related modalities will provide the vertical axis.
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Validity for atoms and propositional connectives is defined in the usual way. Similarly,
themodal operators ⊟ a and ⊟ u function like a usual necessitation and universal necessitation
operator. For a model = ⟨Args,←, v⟩ and an argument A ∈ Args, we define:

• , A ⊧ ⊟ a� iff for all B ∈ Args for which A ← B we have , B ⊧ �. Since worlds
are identified with arguments, this definition is understood as follows: all attackers B
of the argument A have the property �.

• , A ⊧ ⊟ u� iff for all B ∈ Args, , B ⊧ �. In words: all the arguments B ∈ Args
have the property �.62

•  ⊧ � iff for all A ∈ Args it holds that , A ⊧ �. The set of all formulas �
for which  ⊧ � is denoted by J�K (the subscript is removed when the context
disambiguates).

In sum, since there are no frame conditions, we are dealing with models of the modal logic
K enriched with universal modality.
Example 111. Consider the argumentation framework and the assignment v presented in
Figure 10.

atom v(⋅)

p {A,A′}

q {A,C}

A

A′

B C

Figure 10: Left: the assignment of Example 111; Right: the argumentation framework of
Example 111

In this case, we have:

• , A ⊧ ⊟ aF and , A′ ⊧ ⊟ aF, expressing that A and A′ have no attackers.

• , B ⊧ �
a ⊟ a F, expressing that there is an attacker against which B cannot be

defended (since this attacker has no attackers).

• , C ⊧ ⊟ a � aT and, C ⊧ ⊟ a � a p, expressing that for all attackers of C there is
a defender (either A or A′)

More generally, we have for any x ∈ Args:
62Thus, if, A0 ⊧ ⊟ u� for some A0 then, A ⊧ ⊟ u� for every A ∈ Args.
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• , x ⊧ ⊟ u
(
(p ∨ q) ⊃ ⊟ a � a (p ∨ q)

)
, expressing that the set {A,A′, C} (consisting

of the worlds in which p ∨ q holds) attacks all its attackers.

As the following proposition shows, the induced logic is expressive enough to charac-
terize several standard semantics.
Proposition 112. ([113, p. 411]) Let = ⟨Args,→⟩ and = ⟨Args,←, v⟩. For J�K = ⊆ Args, it holds that:  ⊧ sem(�) iff  ∈ Sem( ),
where the correspondence between the formula sem and the semantics Sem is the following:

Sem sem(�)

Adm ⊟ u(� ⊃ ( ⊟ a¬� ∧ ⊟ a � a �))

Cmp ⊟ u((� ⊃ ⊟ a¬�) ∧ (� ↔ ⊟ a � a �))

Stb ⊟ u(� ↔ ⊟ a¬�)

Example 113. In Example 111 we have, for instance, that:

•  ⊧ adm(p), since {A,A′} is admissible, while

•  ⊧ ¬cmp(p) and  ⊧ ¬stb(p), since {A,A′} is neither complete nor stable, and

•  ⊧ cmp(p ∨ q) and  ⊧ stb(p ∨ q), since {A,A′, C} is complete and stable.

The logic, however, lacks the resources to express argumentation semantics that are
based on minimality or maximality assumptions, such as grounded and preferred seman-
tics. We recall (see [85]) that the grounded extension is characterized by the least fixed
point of the function

defended ∶ ℘(Args)→ ℘(Args),

which maps a set  of arguments to the set of all arguments in Args that are defended by . Now, recall from our example that ⊟ a� a expresses argumentative defense in the logic,
i.e., , A ⊧ ⊟ a � a � iff J�K defends A. We thus need to characterize the formula  for
which J K is minimal such that J K = J ⊟ a � a  K. For this purpose one can enrich
the argumentation logic by a fixpoint �-operator (see [51] for an introduction to modal �-
calculi), defined as follows: 63

, A ⊧ �p.�(p) iff A ∈⋂{ ∈ ℘(Args) ∣ J�K[p∶=] ⊆ },
63All systems introduced in this section have an adequate axiomatization (see e.g. [113]), which we omit for

space reasons.
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where[p∶=] = ⟨Args,←, v′⟩, v′
Atoms⧵{p} = vAtoms⧵{p}, and v′(p) =  .64

In [114] Grossi tackles preferred and semi-stable semantics65 bymeans of a second-order
formalization:

, A ⊧ ∃p.�(p) iff there is an  ⊆ Args such that[p∶=], A ⊧ �(p).

The following proposition is shown in [113] for the grounded semantics and in [114] for
the preferred and semi-stable semantics:66
Proposition 114. Denote by � ⊑u  the formula ⊟ u(� ⊃  ) and denote by � ⊏u  the
formula (� ⊑u  ) ∧ ¬( ⊑u �). Let � be a formula such that J�K =  ⊆ Args. It holds
that:  ⊧ sem(�) iff  ∈ Sem( ),
where the correspondence between the formula sem and the semantics Sem is the following:

Sem sem(�)

Grd cmpl(�) ∧ ∀q.(cmpl(q) ⊃ � ⊑u q)

Prf cmpl(�) ∧ ¬∃q.(cmpl(q) ∧ � ⊏u q))

SStb cmpl(�) ∧ ¬∃q.((� ∨ � a�) ⊏u (q ∨ � aq)))

In [62], Caminada and Gabbay also use argumentation models, but proceed differently
when characterizing argumentation semantics. Let pi, po and pu be three atoms which are
intended to represent the three argument labels in, out, and undec. We can now elegantly
express the characteristic requirements of complete labelings:67

1. , A ⊧ ( ⊟ aF ∨ ⊟ apo) ⊃ pi expresses that if A is not attacked ( ⊟ aF) or all attackers
of A are out ( ⊟ apo), then A is in;

2. , A ⊧ � api ⊃ po expresses that if A is attacked by an argument that is in, then A
is out;

3. , A ⊧ ⊟ a(po ∨ pu) ∧ � apu ⊃ pu expresses that if A has only attackers that are out
or undec and at least one attacker is undec, then A is undec as well;

64 If  is a set of atoms and v is a valuation, v denotes the restriction of v to the atoms in.
65Recall Footnote 59.
66See below for the treatment of preferred extensions in [161] in terms of a fixpoint �-operator.
67 Recall Remark 106. See [57] and [23] for a characterization of argumentation semantics in terms of

labelings.
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4. , A ⊧ (pi ∨po ∨pu)∧¬(pi ∧po)∧¬(pi ∧pu)∧¬(po ∧pu) expresses that A has exactly
one label.

By restricting argumentation models to those that satisfy Items 1–4 (at every argument
A), we can, for instance, characterize the grounded extension as follows, where again =
⟨Args,→⟩: If for every model  in the restricted class based on the frame ⟨Args,←⟩ we
have, B ⊧ pi then B ∈ Grd( ), and vice versa. Other semantics are represented in [62]
by techniques from circumscription logic.

A different approach is taken in [44] and [178]. The starting point is again an argumen-
tation framework  = ⟨Args,→⟩, but instead of treating arguments as possible worlds in
a Kripkean frame as in the previous approaches, the set of worlds is now given by℘(Args).
Again, the accessibility relation encodes argumentative attacks.

Denote by→℘ the following lifting of→ to℘(Args) ×℘(Args): we write  →℘  ′ iff
there is anA ∈  and a B ∈  ′ such thatA→ B. Let also→℘

C
= (℘(Args)×℘(Args))⧵→℘

be the complement of→℘. Figure 11 shows a simple example.

A B

∅ {A}

{A,B} {B}

∅ {A}

{A,B} {B}

Figure 11: Left: The attack diagram for  = ⟨{A,B},→⟩, where → = {(a, b)}; Middle:
Graph for→℘; Right: Graph for →℘

C
.

The formal language is similar to the ones given above, except that now the propositional
atoms corresponds directly to the abstract arguments:

� ∶= Args ∣ ¬� ∣ � ∧ � ∣ □u� ∣ □a�

The truth conditions of propositional connectives are as usual. We define:
• , ⊧ A iff A ∈  . This expresses that a is a member of the currently considered

set of arguments;
• , ⊧ □a� iff for all ′ for which →℘

C
 ′, it holds that, ′ ⊧ �. This expresses

that � holds for all sets of arguments  ′ not attacked by  .
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• , ⊧ □u� iff for all  ∈ ℘(Args) it holds that , ⊧ �. This expresses that all
sets of arguments have the property �.

Just like the previous formalisms, at its core also this logic is K enriched with a universal
modality. The logic allows us to express core concepts of abstract argumentation such as
attack and defense:

•  ⊧ □u(A ⊃ □a¬B) expresses that A attacks B,
•  ⊧ □u(

⋀ ⊃ □a¬
⋀ ′) expresses that some argument A ∈  attacks some

argument A′ ∈  ′,
•  ⊧ □u

⋀
 ′∈℘(Args)

(
□u(

⋀ ′ ⊃ □a¬A) ⊃ □u(
⋀ ⊃ □a¬

⋀ ′)) expresses that
the set of arguments  defends the argument A.68

In a series of articles Gabbay and various co-authors investigate logical characterizations
of argumentation frameworks. In [102] and [103] the basic idea is similar to the systems
presented above: arguments are represented by propositional atoms, and the fact that an
argument A attacks argument B is represented by the formula A ⊃ ∼B, in which ⊃ is an
implication and ∼ is a negation of the underlying logic. Different core logics are considered:

• In [103] the underlying logic is the intuitionistic logic G3, whose Kripkean models
consist of two linearly ordered worlds (also known as Here-and-There logic [149]).

• In [102] the underlying logic is classical and ∼ is a strong negation N, for which
∼p ⊃ ¬p but not necessarily vice versa (where ¬ is the classical negation).69 N can
be used to express different argument label/statuses: a holds if a is in, Na holds if a
is out and ¬a ∧ ¬Na holds if a is undec.

Remark 115. The negationN in the second item also has an elegant modal characterization
in the logic CNN [102]. Like G3, there are two worlds in the underlying pointed Kripkean

68To express this, the set Args is supposed to be finite (otherwise a second-order approach is needed). In
order to express properties of specific semantics the authors enhance their modal logic by unary non-normal
modal operators. We refer to [178] for further details.

69An earlier characterization of Dung-style argumentation in classical logic has been presented in [101] for
stable semantics (as well as for complete semantics in a 3-valued setting). The only logical connective in the
presented system is the “Peirce-Quine-Dung dagger” ⇓, a generalization of the Peirce-Quine dagger or of NOR:
⇓ Δ is true iff ⋁

Δ is false. The attack relation corresponds in this representation to the direct subformula
relation (which is generalized to equivalence classes in order to deal with attack cycles): note that if ⇓Δ is true
all members ofΔ are false and, vice versa, if some member ofΔ is true, ⇓Δ is false. In this context Gabbay also
develops a “geometric concept of proof” which concerns inference rules (such as geometrical modus ponens)
that operate on patterns of a given attack diagram and which are adequate to a given proof procedure in the
Peirce-Quine-Dung-Dagger logic. Similar to the modal systems discussed here, the logic in [101] offers several
generalizations, such as quantifiers, higher-order attacks, etc.
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models, just now for each world the other world is the only accessible one. The modal
truth conditions for N are then spelled out by: N� holds in one world iff ¬� holds in the
other. Similarly to intuistionistic possible worlds models (including those of G3), models of
CNN are constrained by a “monotony” requirement on ⊧: if p holds at the actual world, it
necessarily holds at the other world as well. However, if p holds at the non-actual world, it
need not hold at the actual world, although the actual world is accessible.

The translations of a given argumentation framework into the language of G3 (see Equa-
tion (1)) or of CNN (see Equation (2)) are also similar for both systems, where for each
x ∈ Args, x− = {y ∈ Args ∣ y → x} and the formula n in Equation (1), introduced to
identify the actual world, can be defined by⋀x∈Args(x ∨ ¬x):70

⋀
x∈Args

⎛
⎜⎜⎜⎜⎝

if in, all attackers out
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞(
x ⊃ (n ∨

⋀
y∈x−

¬y)
)
∧

if all attackers out, then in
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞(⋀
y∈x−

¬y ⊃ (n ∨ x)
)
∧

if out, some attackers in
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞(
¬x ⊃ (n ∨

⋁
y∈x−

y)
)

∧

if some attackers in, then out
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞(⋁
y∈x−

y ⊃ (n ∨ ¬x)
)
⎞⎟⎟⎟⎟⎠

(1)

⋀
x∈Args

⎛
⎜⎜⎜⎜⎝

x in iff all attackers out
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞(⋀
y∈x−

Ny↔ x
)
∧

if all attackers not in and some und, then und
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞((⋀
y∈x−

¬y ∧
⋁
y∈x−

¬Ny
)
⊃ (¬x ∧ ¬Nx)

)
∧

x attacks y
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞(⋀
x∈y−

x ⊃ Ny
)
⎞
⎟⎟⎟⎟⎠

(2)

In both systems (i.e., the Kripkean semantics for G3 and in CNN), we can, for each
atom, identify one of the truth-assignment patterns in (the left part of) Table 16 relative to
the two worlds in a given model. These patterns correspond to argument labels as indicated
in the same table. This means that the models of the translated argumentation frameworks
are one-to-one related to the complete labelings of the framework. As a consequence, the
entailed atoms characterize the grounded extension. Stable semantics can be characterized
by demanding excluded middle p ∨ ∼p (where again in the case of G3 ∼ is intuitionistic
negation and in the case of CNN it is strong negation).

We illustrate this by means of the argumentation framework in Figure 12.
70Clearly, like previous encodings, the translations presuppose a finite set of arguments.
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G3 / CNN LN1

in out undec in out undec

w1 1 0 0 1 0 1 w1

w2 1 0 1 1 0 0 w2

1 0 1 w3

Table 16: Overview: truth-value assignment pattern and argument labelings. Note that in
G3 and CNN two worlds are used, while in LN1 there are three worlds.

A

A′

B C

G3 / CNN LN1

w1 w2 w1 w2 w3 label
C 1 1 1 1 1 in

B 0 0 0 0 0 out

A 1 1 1 1 1 in

A′ 0 1 1 0 1 undec

Figure 12: Example for the characterizations of the given AF on the left in the logics G3,
CNN and LN1

A related approach is introduced in [100] and [62], where argumentation frameworks
are characterize in terms of provability logic71 and argumentation labelings are modeled in
terms of fixed points of modal formulas. The underlying logic LN1 is given by K4, enhanced
with:

• LÃűb’s axiom (◊� ⊃ ◊(� ∧□¬�)),
• an axiom of linearity ((◊� ∧◊ ) ⊃ (◊(� ∧  ) ∨◊(� ∧◊ ) ∨◊( ∧◊�))), and
• some axioms characterizing the behavior of atoms: (p ⊃ □(¬p ⊃ □p),□(□⊥∨p)↔
□p and□(□⊥ ∨ ¬p)↔ □¬p).

Pointed LN1models are such that the accessibility relation < forms finite linear chains start-
ing with the actual world. Additionally, it is required that if all non-endpoints of < agree on
the assignment of an atom, then the endpoint takes over the same assignment.

71A similar approach was used in [99] for cyclic logic programs.
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Let G� = � ∧□�. Argumentation frameworks are translated into the language of LF1
as follows:

G

⎛
⎜⎜⎜⎝
□⊥ ∨

⋀
x∈Args
x−≠∅

(
x↔

⋀
y∈x−

◊¬y

)⎞
⎟⎟⎟⎠
∧

⋀
x∈Args
x−=∅

Gx (3)

In [100] it is shown that there is a one-to-one correspondence between LP1-models of
the formula in Equation (3), whose states form chains of length 3, and complete labelings
of the given argumentation framework. As was the case for G3 and CNN, we can again
uniquely associate argument labels with valuation patterns at the given possible worlds (see
the right-hand side of Table 16). We show how this plays out in our example in Figure 12.
Remark 116. The logics G3,CNN and LN1 can readily express higher-order and joint at-
tacks, as well as argument quantifiers. We refer to the original papers for more details.

3.2.2 Belief, Informativeness and Awareness
One of the advantages of using modal argumentation logics is the possibility to integrate
epistemic modalities. In this section we demonstrate this.

Grossi and van der Hoek [115] propose a modal product logic (see [105]) in which the
argumentation logic from [113; 114] (see our discussion in the previous section) provides
one ingredient and a KD45 epistemic logic provides another. The latter have frames of the
form ⟨ ,⟩, where  is a set of (epistemic) states and  ⊆  is a non-empty subset of  ,
namely those that a given agent considers possible. A frame of the product logic is then
the product of an epistemic frame ⟨ ,⟩ and an argumentation frame ⟨,←⟩. The domain
of a model  of the product logic is the Cartesian product between epistemic states and
arguments ( ×Args) and its assignment function v associates propositional atoms with sets
of state-argument pairs in its domain. One can picture the workings of such a product logic
in terms of a chess-board with epistemic states providing the x-axis and arguments providing
the y-axis (see Example 117 below for a concrete illustration). The epistemic modality,⊟b,
and its universal cousin, ⊟u, move along the x-axis while keeping arguments fixed. The
argumentative modality ⊟ a and ⊟ u, move along the y-axis while keeping states fixed:

• , (s, A) ⊧ ⊟ a� iff for all B ∈ Args such that A ← B, we have: , (s, B) ⊧ �

• , (s, A) ⊧ ⊟ u� iff for all B ∈ Args, we have: , (s, B) ⊧ �

• , (s, A) ⊧ ⊟b� iff for all s′ ∈  , we have: , (s′, A) ⊧ �.
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• , (s, A) ⊧ ⊟u� iff for all s′ ∈  , we have: , (s′, A) ⊧ �.
Grossi and van der Hoek also introduce a designated symbol/atom � to signify that an

argument A supports an epistemic state s in case, (s, A) ⊧ �.
To illustrate these definitions, we take a look at an example.

Example 117. Consider the following argumentative scenario (inspired by [143] and
[113]):

Default (C) It was sunny yesterday, so it will be sunny today.

Pete (B) Currently there are thick clouds, it is going to rain and storm.

CNN (A) The weather report of the CNN reports sunny but windy weather.

FOX (A′) The weather report of FOX news reports sunny and calm weather.

We use the atoms w for it “being windy”, s for it “being sunny”, and CNN, FOX, and
Pete are atoms that indicate sources of information.

We consider the epistemic states  = {s1, s2, s3} where the possible epistemic states of
our agent are = {s1, s2}. Figure 13 illustrates the situation. On the y-axis we find our four
arguments where the arrows between them illustrate the inverted(!) attack relation. On the
x-axis we find the epistemic state, where the possible epistemic states in  are highlighted.

• Highlighted in boxes along the x axis are properties of arguments that are robust under
changes of the epistemic state. For instance,

– , (si, A) ⊧ CNN for all 1 ≤ i ≤ 3, which indicates that argument A is based on
evidence from CNN.

– Similarly, argument A′ is based on evidence from FOX, etc.

• Highlighted in boxes along the y-axis are properties of epistemic states that are robust
under changes of the considered argument. For instance,

– , (s1, x) ⊧ s ∧ ¬w for all x ∈ {A,A′, B, C}, which expresses that according
to state s1 we have calm and sunny weather.

• The symbol � indicates which arguments support which epistemic states. For instance,

– , (s2, A′) ⊧ � meaning that argument A′ supports state s2.

In the given systemwe can express properties that concern information states that involve
both beliefs and argumentative properties, such as:
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Figure 13: Model in for Example 117. The vertical [horizontal] boxes represent proper-
ties of states [arguments] that are robust under changes of the considered arguments [states].

•  ⊧ (¬s ∧ �) ⊃ ⊟ a(CNN ∧ FOX) meaning that if an argument supports “not sunny”
then all attackers of it rely on CNN or FOX.

•  ⊧ ⊟b(s ∧ ((w ∧ �) ⊃ (FOX ∨ �
aPete))) meaning that our agent believes s and

that if an argument supports windy weather then it relies on FOX or it is attacked by
an argument that relies on Pete.

Grossi and van der Hoek enrich this framework further by an endorsement operator

⊟ e that works similar to ⊟b except that it operates on the y-axis and therefore concerns
arguments rather than epistemic states: instead of fixing a set of possible belief states we
now fix a set of endorsed arguments  ⊆ Args and define:

• , (s, A) ⊧ ⊟ e� iff for all a ∈  , , (s, a) ⊧ �.
This way it is possible to formally characterize several types of argumentation-based beliefs:

• SB� = ⊟b( ⊟ u� ∧ � u�) expressing an (argumentatively) supported belief in �,
• EB� = ⊟b( ⊟ u� ∧ � e�) expressing an endorsed supported belief in �, and
• JB(�,  ) = ⊟b( ⊟ u�∧ � e(� ∧⊟u )) expressing a belief in �, justified by a belief in
 .72

72In this definition also a universal belief modality is used, which is defined as usual.
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Example 118. Suppose that in Example 117 we have six agents, Anne, Bill, Chris, Dan, Eli,
and Fay that endorse different arguments and have different beliefs. We have, for instance:

Anne Bill Chris Dan Eli Fay

Endorsed arguments {A′, C} {C} {A} {B} {A′, C} {B}

Possible belief states {s2} {s1, s2} {s1} {s1, s2} {s3} {s3}

SBs Yes Yes Yes Yes No No

EBs Yes Yes Yes No No No

JB(s, FOX) Yes No No No No No

JB(s, CNN) No No Yes No No No

JB(¬s, Pete) No No No No No Yes

While in the framework of Grossi and van der Hoek belief and argumentative considera-
tions are treated by independent modalities, in [161] beliefs are dependent on the underlying
argumentative structure. For this they consider argumentation-support modelswhich are de-
fined as product modal logics similar to the models discussed above. Let us highlight some
differences. First, the language in [161] does not allow for arbitrary nesting of modalities.
The underlying grammar is defined as follows:

� ∶= ⊤ ∣ p ∣ ¬� ∣ � ∧ � ∣ ⊟u� ∣ ⊟ u� � ∶= ⊤ ∣ □a� ∣ ¬� ∣ � ∧ � ∣ ⊟ �a� ∣ Gfp
�

While �-formulas express facts about possible worlds, �-formulas describe arguments.
To explain the meaning of the different modal operators, let us take a look at the semantics.

For this we take a closer look at the argumentation-support models introduced. An ar-
gumentation-support model is given by a tuple ⟨ ,Args, {←X ∣ X ⊆ }, vs, va⟩, where  is
a (non-empty) set of (factual) states, Args is a set of arguments, for each X ⊆  , ←X is a
contextualized (inverted) attack relation, and vs [respectively, va] associates propositional
atoms [respectively, arguments] with [non-empty] sets of states.73 74 Just like in [115],
formulas are evaluated at state-argument pairs. For all classical connectives this works as
expected (e.g.,M, (s, A) ⊧ p iff s ∈ vs(p), and,M, (s, A) ⊧ �1 ∧ �2 iffM, (s, A) ⊧ �1 and
M, (s, A) ⊧ �2, etc.). Let us therefore take a look at the modal operators.

First, we notice that the attack modality ⊟ �a is contextualized to formulas � expressing
claims that are disputed in the respective attacks.

73Note the difference of this approach to the models of [115], in which there is only one assignment function
v ∶ Atoms → ℘( × Args).

74In [160] and in a similar setting the same authors propose a topological semantics to model evidence
supporting arguments.
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• , (s, A) ⊧ ⊟ �a iff for all B for which A ←J�K B, it holds that , (s, B) ⊧  
(where J�K = {s′ ∈  ∣M, (s, C) ⊧ � for any C ∈ Args}). In words: all attackers
B of the argument A in a dispute about the claim � satisfy  (where, just like in the
product logics of [115] discussed above, we keep the given state fixed).

The authors consider several constraints on this relation:
1. A ←X B iff A ←W ⧵X B. Clearly, if the attack concerns the question whether X is

the case, it will equally concern the question whetherW ⧵X is the case.
2. If A←X B then

(a) va(A) ⊆ X or va(A) ⊆ W ⧵X, and
(b) va(A) ⊆ X implies va(B) ⊆ W ⧵X.

The attacked argument will either support X or W ⧵ X and the attacking argument
should have an opposite stance.

3. If A ←X B and va(A) ⊆ Y ⊂ X, then A ←Y B. If B attacks A concerning the claim
X and A supports the stronger claim Y , then B also attacks A on the stronger claim.

The universal vertical and horizontal modalities ⊟ u and ⊟u are analogous to those in
[115] discussed above. For the□a modality we have:

• , (s, A) ⊧ □a� iff va(A) ⊆ J�K, meaning that the considered argumentA supports
the claim �.

Also, Shi et al. enhance the logic with a �-operator Gfp� (similar to [113], see the
discussion in the previous section) to express membership in admissible extensions:75

• , (s, A) ⊧ Gfp� iff A is in an admissible set of arguments in the argumentation
framework ⟨Args,→J�K⟩.

An agent believes in � in case there is an admissible argument for � and there is no
admissible argument for ¬�. This can be expressed by putting

B� ∶=

there is an argument s.t. . . .
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
�

u( □a�
⏟⏟⏟

it supports �

∧ Gfp�
⏟⏟⏟

it is admissible

) ∧

there is no argument s.t. . . .
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
¬ � u ( □a¬�

⏟⏟⏟
it supports ¬�

∧ Gfp¬�
⏟⏟⏟

it is admissible

) .

Example 119. Consider again the scenario in Example 117. Given a set of states  =
{s1, s2, s3} we let our assignments be as in Table 17.

We then get, for instance, where 1 ≤ i ≤ 3,
75Gfp� is the greatest postfix point of ⊟

�
a
� �

a . See [161] for an axiomatization. Note also that the discussion
in [161] is restricted to uncontroversial argumentation frameworks (see also [85] for a definition).
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atom vs(⋅)
s {s1, s2}
w {s2, s3}

arg. va(⋅)
A {s1}
A′ {s2}
B {s3}
C {s1, s2} A′

A

B C� �

JsK, J¬sK
JwK, J¬wK

JsK, J¬sK
Js ∧wK

J¬s ∨ ¬wK

JsK, J¬sK

Table 17: Left and Middle: Assignments for Example 119; Right: The attack-diagrams for
the contextualized attack relations. Arrows exist for each of the listed labels (e.g., B →JsK C
and B →J¬sK C), where � is a placeholder for Js ∧wK, J¬s ∨ ¬wK, JwK and J¬wK.

• , (si, x) ⊧ Gfps ∧□as for x ∈ {A,A′, C}, while, (si, B) ⊧̸ Gfps and, (si, B) ⊧̸
□as

• , (si, A′) ⊧ Gfps∧w ∧□a(s ∧w) and , (si, A) ⊧ Gfp¬(s∧w) ∧□a¬(s ∧w)

•  ⊧ Bs while ̸⊧ B(s ∧w).

The systems presented above have the merit of allowing for argumentation-based ap-
proaches to belief and justification, which allow for new and interesting insights. E.g., for
all of Grossi’s and van der Hoek’s belief types (SB,EB and JB) negative introspection fails
for beliefs that are not supported by arguments, but succeeds otherwise. That is (where
XB ∈ {SB,EB}), while:

⊭ ¬XB� ⊃ XB¬XB�, and
⊭ ¬JB(�,  ) ⊃ JB(¬JB(�,  ),  )

we have (see [115, Proposition 6])
⊨ (¬XB� ∧⊟b

�
e �) ⊃ XB¬XB�, and

⊨ (¬JB(�,  ) ∧⊟b
�

e (� ∧⊟u )) ⊃ JB(¬JB(�,  ),  )

Similarly, in Shi et al.’s system the aggregation of beliefs fails, i.e.,⊭ (B�∧B�′) ⊃ B(�∧�′),
which may give rise to applications to paradoxes, respectively difficult scenarios, such as the
lottery or the preface paradox.
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3.3 Reasoning with Dynamic Derivations
Although the satisfiability methods described in the previous sections are logic-based, from
a pure logical perspective they have some drawbacks:

• In many of the described formalisms, the encoding of the arguments are by proposi-
tional variables, thus arguments are treated as abstract entities. As such, thesemethods
are more adequate to abstract argumentation [23] than to structured argumentation.
Put differently, if these methods are applied to argumentation frameworks such as the
ones considered in Section 2, the construction of the frameworks and the reasoning
methods are distinguished: first the arguments and the attacks among them are pro-
duced, and only then the satisfiability-based methods can be applied on them.

• Even more serious is the fact that many of these methods are applicable only to finite
argumentation frameworks, as for the encoding of the formulas a finite set of argu-
ments is assumed. As such, these methods are suitable only for some logical instan-
tiations (assumption-based frameworks, for instance), but not for all of them (e.g.,
logic-based argumentation frameworks which are infinite since so are the transitive
closures of sets of assertions).

In this section we describe an alternative method to reasoning with logic-based argumen-
tation, which overcomes the two shortcomings of the other approach described above: it is
applicable to infinite frameworks and is affected by the logical content of the arguments and
the attack rules.

LetL,() = ⟨ArgL(), Attack()⟩ be a logical argumentation framework (Defini-
tion 8) and let be a sound and complete proof system forL.76 The idea is to use (inference)
rules in  for deriving new arguments from already derived ones, and to use (attack) rules in for excluding derived arguments, when opposing arguments are also derived. This gives
rise to the notion of dynamic proofs (or dynamic derivations), which are intended for ex-
plicating the actual non-monotonic flavor of reasoning processes in a logical argumentation
framework. The main idea behind these formalisms is that, unlike ‘standard’ proof methods,
an argument can be challenged (and possibly withdrawn) by a counter-argument, and so a
certain argument may be considered as not accepted at a certain stage of the proof, even if
it were considered accepted in an earlier stage of the proof. It is only when an argument is

76 may be a Hilbert-type proof system, a Gentzen-type sequent calculus, a natural deduction system, a se-
mantic tableaux system, or any other proof method that is based on finite sequences (or trees) of finite syntactical
expressions which are based on the underlying language (see e.g. Section 1.3 of [20] for a general definition of
such proof systems). Here we concentrate on sequent calculi, since a sequent is in fact a multiple-conclusion
argument. For the other kinds of proof systems some simple modifications of the definitions in what follows are
needed.
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‘finally derived’ (in the sense that will be explained later on) that it can be safely concluded
by the dynamic proof. In the rest of this section we elaborate on this idea (full details and
formal definitions can be found in [16]).

A proof system in our case is determined by a proof settingS = ⟨L, ,⟩ consisting of
a logicL, a corresponding sound and complete proof calculus for producingL-arguments,
and a set  of attack rules for eliminating (undefended) attacked arguments. An argument
⟨ ,  ⟩ that is eliminated (i.e., is attacked by an application of a rule in ) will be denoted
in what follows by ⟨ ,  ⟩.
Definition 120 (proof tuple). A (proof) tuple is a triple T = ⟨i, A, J⟩, where i (the tuple’s in-
dex) is a natural number, A ∈ {⟨Γ,Δ⟩,⟨Γ,Δ⟩} (the tuple’s argument) is a (possibly attacked)
multiple-conclusion argument,77, 78 and J (the tuple’s justification) is a string, consisting of
a rule name followed by a sequence of numbers.79 In the sequel we shall sometimes identify
a proof tuple with its argument.
Definition 121 (simple derivation). LetS = ⟨L, ,⟩ be a proof setting. A simpleS-der-
ivation based on a set  of formulas in , is a finite sequenceS() = ⟨T1,… Tm⟩ of proof
tuples, where each Ti ∈  is of either of the following forms:

• Ti = ⟨i, A, J⟩, where J =“ i1,… , in” and A is obtained by applying the inference
rule ∈  on the arguments of the tuples Ti1 ,… Tik (i1,… , in < i).

• Ti = ⟨i, A, J⟩, where J =“ i1,… , in” and A is obtained by applying the elimination
rule  ∈  on the arguments of the tuples Ti1 ,… Tik (i1,… , in < i). In this case
both the attacked argument A and the attacking argument Ai1 should be elements of
ArgL().80

Tuples of the first form are called introducing tuples and those of the second form are called
eliminating tuples.
Example 122. Let  be Gentzen’s proof system LK for classical logic. Table 18 presents
this system in terms of (multiple-conclusion) arguments.

Consider now the set of assumptions  = {¬p, p, q} (see also Example 37). Figure 14
presents a simple derivation with respect toLK and Ucut as the sole attack rule. To simplify
the reading, in this and other derivations in the rest of the paper we shall sometimes use
abbreviations or omit some details, e.g. the tuple signs in proof steps.

77Thus Δ, the conclusion of A, is a finite set of formulas and not just a formula. (In classical logic, Δ may
be replaced by its disjunction⋁Δ.) When Δ is a singleton we shall omit the parentheses and identify A with a
standard argument in the sense of Definition 5.

78When the underlying calculus is Hilbert-type or based on a natural deduction system, A may be just a
formula (corresponding to the rule conclusions is those proof systems) rather than an argument.

79This string indicates what rule has to be applied, and on what tuples, in order to derive T .
80 This prevents situations in which, e.g., ⟨¬p,¬p⟩ Ucut-attacks ⟨p, p⟩, although  = {p}.
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Rule Name Acronym Rule’s conditions Rule’s conclusion
Axiom ⟨ , ⟩
Weakening ⟨ ,  ⟩ ⟨ ∪  ′,  ∪  ′⟩
Cut ⟨1, 1 ∪ { }⟩ , ⟨2 ∪ { }, 2⟩ ⟨1 ∪ 2, 1 ∪ 2⟩
Left-∧ [∧L] ⟨ ∪ { } ∪ {�},  ⟩ ⟨ ∪ { ∧ �},  ⟩
Right-∧ [∧R] ⟨ ,  ∪ { }⟩ , ⟨ ,  ∪ {�}⟩ ⟨ ,  ∪ { ∧ �}⟩
Left-∨ [∨L] ⟨ ∪ { },  ⟩ , ⟨ ∪ {�},  ⟩ ⟨ ∪ { ∨ �},  ⟩
Right-∨ [∨R] ⟨ ,  ∪ { } ∪ {�}⟩ ⟨ ,  ∪ { ∨ �}⟩
Left-⊃ [⊃L] ⟨ ,  ∪ { }⟩ , ⟨ ∪ {�},  ⟩ ⟨ ∪ { ⊃ �},  ⟩
Right-⊃ [⊃R] ⟨ ∪ { },  ∪ {�}⟩ ⟨ ,  ∪ { ⊃ �}⟩
Left-¬ [¬L] ⟨ ,  ∪ { }⟩ ⟨ ∪ {¬ },  ⟩
Right-¬ [¬R] ⟨ ∪ { },  ⟩ ⟨ ,  ∪ {¬ }⟩

Table 18: Arguments construction rules according to LK .

Note that in this derivation Tuple 8 represents a Ucut-attack of the argument in Tuple 7
on the argument in Tuple 1 (where the former serves also as the justification of the attack),
and Tuple 11 represents a Ucut-attack of the argument in Tuple 1 on the argument in Tuple 7,
justified by the arguments in Tuples 9 and 10. Thus, Tuples 8 and 11 are eliminating while
the other tuples are introducing.

Not all the attacks in a simple derivation should be successful, since if the attacking
argument is itself attacked by another argument (i.e., it appears in an eliminating tuple) the
attack may not be validated. The iterative process in Figure 15 checks this, and evaluates
each tuple’s argument: Elim is the status of an eliminated argument whose attacker is not
already eliminated, Attack means that the argument attacks an argument whose status is
Elim, and Accept is the status of a derived argument whose status is not Elim.

Definition 123 ((strongly) coherent derivation). A simple derivation  is coherent, if there
is no argument that eliminates another argument and that is eliminated itself. Formally:
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1. ⟨p, p⟩ Axiom
2. ⟨∅, {p,¬p}⟩ Right-¬, 1
3. ⟨∅, p ∨ ¬p⟩ Right-∨, 2
4. ⟨p ∨ ¬p,¬(p ∧ ¬p)⟩ ⋯

5. ⟨¬(p ∧ ¬p), p ∨ ¬p⟩ ⋯

6. ⟨q, q⟩ Axiom
7. ⟨¬p,¬p⟩ Axiom
8. ⟨p, p⟩ Ucut, 7, 7, 7, 1
9. ⟨p,¬¬p⟩ ⋯

10. ⟨¬¬p, p⟩ ⋯

11. ⟨¬p,¬p⟩ Ucut, 1, 9, 10, 7

Figure 14: A derivation with respect to LK and Ucut, based on  = {¬p, p, q}

Input: a simple derivation .
let Attack ∶= Elim ∶= Derived ∶= ∅;
while ( is not empty) do {

if the last element in  introduces an argument A, then
add A to the set Derived;

if the last element in  is an attack of A1 ∉ Elim on A2, then
add A1 to Attack and A2 to Elim;

remove the last element from  }
let Accept ∶= Derived − Elim;
Output: Attack, Elim, Accept.

Figure 15: Evaluation of a simple derivation.

Attack() ∩ Elim() = ∅. We say that  is strongly coherent, if
Sup(Attack()) = ⋃

A∈Attack()
Sup(A)
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is consistent.81

Example 124 (Example 122 continued). Consider the simple derivation of Example 122.

• When considering only the simple derivation consisting of lines 1–8 we have that
⟨q, q⟩, ⟨¬p,¬p⟩ ∈ Accept, Attack = {⟨¬p,¬p⟩} and Elim = {⟨p, p⟩}.

• When considering the simple derivation consisting of lines 1–11 we have that ⟨q, q⟩,
⟨p, p⟩ ∈ Accept, Attack = {⟨p, p⟩} and Elim = {⟨¬p,¬p⟩}. Note that when the
algorithm in Figure 15 reaches line 8, ⟨p, p⟩ is not added to Elim since its attacking
argument ⟨¬p,¬p⟩ is already in Elim at that point.82

In particular, in each step the derivation that is obtained is both coherent and strongly co-
herent.

Now we can define what dynamic derivations are.
Definition 125 (dynamic derivation). Let S = ⟨L, ,⟩ be a proof setting. A dynamic
S-derivation based on a set  of formulas in , is an -based simpleS-derivation S()
which is of one of the following forms:

a) S() = ⟨T ⟩, where T = ⟨1, A, J⟩ is a proof tuple.
b) S() is obtained by adding to a dynamic derivation a sequence of introducing tuples

whose arguments are not in Elim(S()).
c) S() is obtained by adding to a dynamic derivation a sequence of eliminating tuples

where the attacking arguments are in ArgL() and are not attacked by arguments in
Accept(S()) ∩ ArgL(). The attacks must be based on arguments that are proved
in S().83

One may think of a dynamic derivation as a proof that progresses over derivation steps.
At each step the current derivation is extended by a ‘block’ of introduced arguments or elim-
inated arguments. As a result, the statuses of the arguments in the derivation are updated.
In particular, a derived argument may be eliminated in light of new derived arguments, but
also the other way around is possible: an eliminated argument may be ‘restored’ if its at-
tacking argument is counter-attacked. It follows that previously accepted data may not be
accepted anymore (and vice-versa) until and unless new derived information revises the state
of affairs.

81As shown in [11], in the proof setting S = ⟨CL, LK, {Ucut}⟩, strong coherence implies coherence (but
not vice-versa).

82This is so, since the evaluation process progresses backwards, from the last tuple to the first one, so ⟨¬p,¬p⟩
is already eliminated in the first evaluation step, following line 11.

83This condition assures that the attacks are ‘sound’: the attacking arguments are not counter-attacked by an
accepted -based argument.
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Example 126 (Examples 122 and 124, continued). The simple derivation of Example 122 is
also a dynamic derivation. Example 124 demonstrates the dynamic nature of this derivation.
For instance, although the argument ⟨¬p,¬p⟩ is derived in Step 7 of the derivation, it is
eliminated in Step 11 of the derivation as a consequence of an Undercut attack, initiated by
⟨p, p⟩.

The next definition, of the outcomes of a dynamic derivation, indicates when it is ‘safe’
to conclude that a derived argument must hold under any circumstances.
Definition 127 (final derivability). Let S = ⟨L, ,⟩ be a proof setting and let  be a set
of -formulas.

• A formula  is finally derived in a coherent dynamic S-derivation S(), if for
some Γ ⊆  the argument A = ⟨Γ,  ⟩ is in ArgL() ∩ Accept(S()), and for every
coherent dynamic derivation ′

S() extending S() (i.e., any dynamic derivation
whose prefix is S()), still A ∈ Accept(′

S()).
• A formula  is sparsely finally derived in a strongly coherent dynamic S-derivationS(), if for some Γ ⊆  the argument A = ⟨Γ,  ⟩ is in ArgL() ∩ Accept(S()),

and for every strongly coherent dynamic derivation′
S() that extendsS() there

is some Γ′ ⊆  such that the argument A′ = ⟨Γ′,  ⟩ is in ArgL() ∩Accept(′
S()).

Thus, final derivability means that an argument is derived and accepted in a valid dy-
namic derivation and remains in this status in every extension of the derivation. Sparse final
derivability is a weaker notion, meaning that if an argument A is derived and accepted in
a valid dynamic derivation, in every extension of that derivation the conclusion of A is a
conclusion of a derived and accepted argument.
Definition 128 (∣∼S

∩ , ∣∼S
⋒ ). LetS=⟨L,ℭ,⟩ be a proof setting,  a set of -formulas, and

 an -formula.
•  ∣∼S

∩  iff there is aS-derivation based on  , in which  is finally derived.

•  ∣∼S
⋒  iff there is aS-derivation based on  , in which  is sparsely finally derived.

Example 129.

a) q is finally derived (and so also sparsely finally derived) in the derivation of Fig-
ure 14 whereS = ⟨CL, LK, {Ucut}⟩ and  = {p,¬p, q}. Indeed, the only arguments
in ArgCL() that can potentially Ucut-attack ⟨q, q⟩ are of the form ⟨{p,¬p},  ⟩ or
⟨{p,¬p, q},  ⟩, where  is logically equivalent to ¬q. However, such arguments are
counter-attacked by the argument ⟨∅, p∨¬p⟩, obtained in Tuple 3 of the derivation. It
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follows, by the conditions in Item (c) of Definition 125, that no eliminating tuple in
which ⟨q, q⟩ is attacked can be derived in any extension of the derivation above, thus
q is finally derived in this derivation.
We have, then, that {p,¬p, q} ∣∼S

⋆ q, while {p,¬p, q} ̸∣∼S
⋆ p and {p,¬p, q} ̸∣∼S

⋆ ¬p, for
any ⋆ ∈ {∩,⋒}.

b) To see the need for sparse final derivability, let again S = ⟨CL, LK, {Ucut}⟩ and
consider the set  ′ = {p ∧ q,¬p ∧ q}. Note that both A1 = ⟨p ∧ q, q⟩ and A2 =
⟨¬p ∧ q, q⟩ are LK-derivable in this case, but neither of them is finally derivable,
since any S-derivation that includes them can be extended with derivations of A3 =
⟨¬p ∧ q,¬(p ∧ q)⟩ and A4 = ⟨p ∧ q,¬(¬p ∧ q)⟩ that respectively Ucut-attack A1 and
A2. Note, however, that these attacks cannot be applied simultaneously, since the
attackers A3 and A4 counter-attack each other. It follows that in each extension of the
derivation either A1 or A2 is accepted, and so q is sparsely finally derived from  ′.
We have, then, that {p∧q,¬p∧q} ∣∼S

⋒ q (and it is easy to verify that {p∧q,¬p∧q} ̸∣∼S
⋒ p

and {p ∧ q,¬p ∧ q} ̸∣∼S
⋒ ¬p).

The next proposition, introduced in [11], provides some soundness and completeness
results for entailments by dynamic proofs (Definition 128) and entailments induced byDung-
semantics (Definition 12), and relates both of these entailments to reasoning with maximal
consistency (Definition 44).
Proposition 130. Let S=⟨CL, LK, {Ucut}⟩ be a proof setting. Then for every finite set 
of formulas and formula  , it holds that:

•  ∣∼S
∩  iff  ∣∼CL

∩mcs  iff  ∣∼CL,{Ucut}
Grd

 iff  ∣∼CL,{Ucut}
∩Prf  iff  ∣∼CL,{Ucut}

∩Stb  .
•  ∣∼S

⋒  iff  ∣∼CL
⋒mcs  iff  ∣∼CL,{Ucut}

⋒Prf  iff  ∣∼CL,{Ucut}
⋒Stb  .

We refer to [11] for further related results, where e.g. the base logic is not necessarily
classical logic and the attack is not necessarily Undercut.
Example 131. The first item of Example 129 demonstrates the first two items of the last
proposition for  = {p,¬p, q} (Examples 122 and 126), as

⋂
MCSCL() = {q}. The

second item of Example 129 exemplifies the second item of Proposition 130, where  ′ =
{p ∧ q,¬p ∧ q} is the set of assertions.

Some other approaches for reasoning with logic-based (structured) argumentation frame-
works are the following:84

84As indicated before, description of algorithms for reasoning with argumentation frameworks which are not
logic-based, including those for abstract argumentation frameworks, are not in the scope of the current chapter.
For the latter, see e.g. the surveys in [144] and [68].
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• For logic-based methods whose arguments are classical (Definition 4), already the
construction of arguments poses serious computational challenges, since the finding of
aminimal subset of a set of formulas that implies the consequent is in the second level
of the polynomial hierarchy [96]. Algorithms for constructing classical arguments
and counter-arguments can be found e.g. in [93].

• Common computational machineries of logic-based argumentation frameworks are
based on dispute trees and dispute derivations [86; 88], both of which can be repre-
sented as games between proponent and opponent players. For some illustrations and
an overview of their use in ABA frameworks, see [87, Section 5] and [73, Section 5].

• Illustrations of reasoning with ASPIC+ can be found, e.g., in [146, Section 4.5]; In-
ference engines for APSIC+ are surveyed (with relevant further references) in [147,
Section 6].

In [169] a similar dynamic proof theory to the one discussed above has been presented,
but for abstract argumentation instead of structured argumentation. It allows for the addi-
tion of new arguments and new argumentative attacks in an ongoing open-ended proof of an
adaptive logic. The finally derivable propositional atoms are those that are in the intersec-
tion of a given semantics. The latter are characterized in terms of different adaptive proof
strategies.

4 Concluding Remarks
Formal argumentation theory is by now a well-established and still extensively growing
research area, even when restricted to its applications in Artificial Intelligence. There is
no wonder, then, that it has many branches with different disciplines, some of them went
as far as pure graph-theoretical approaches, treating argumentation frameworks as directed
graphs, and so viewing their nodes (that is, the arguments) as totally abstract entities. In
this chapter, we have taken to some extent the opposite approach, arguing that a meaningful
and solid argumentation-based system must have a logic behind it, which takes a primary
role not only in the construction of argumentation frameworks, but is also essential for the
specification of their dynamics and deductive methods of reasoning. In Sections 2 and 3 we
demonstrated, respectively, the fundamental role that logic may (and should) have in relation
to these two aspects of formal argumentation systems. Indeed, the common ground of all
the approaches surveyed in this chapter is that they are logically developed methodologies
towards formal argumentation systems. We believe that this is crucial for justifying the
outcomes of such systems in a logical and rational way.
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A Proofs
Below we provide proofs to propositions that appear in the chapter and to the best of our
knowledge have not been fully proven yet in the literature.
Proposition 88. Let L = ⟨, ⊢⟩ be a propositional logic. The entailments ∣∼L

∩mcs and ∣∼
L
⋒mcs

are ⋓-cautiously cumulative and ⊎-cumulative.

Proof. The properties⊔-(C)REF,RW,⊔-LLE follow directly fromDefinition 44. Note that
for ⋓, full reflexivity does not hold since for an ⊢-inconsistent formula �, MCS∅({�}) =
{∅}. The properties ⊔-CC and ⊔-CM follow for ∣∼L

⋒mcs and ∣∼L
∩mcs by Lemma 132 and

Corollary 133. We paradigmatically show the case for ∣∼L
∩mcs and ⊔ = ⋓: Suppose that

 ′, ∣∼L
∩mcs  . Then the following equivalences hold:  ′, ∣∼L

∩mcs �, iff
⋂

MCS ′L () ⊢
�, iff (by Corollary 133 and since ⋂MCS ′L () ⊢  by the supposition) ⋂MCS ′L ( ∪
{ }) ⊢ �, iff  ′, ∪ { } ∣∼∩mcs �.
Lemma 132. If ⟨ ′,⟩ ∣∼⋒mcs  . Then:

1. MCS ′L ( ∪ { }) = { ∪ { } ∣  ∈ MCS ′L ()}, and
2. MCS ′L () = MCS ′∪{ }L ().

Proof. Item 1, ⊆: Suppose that  ∈ MCS ′L ( ∪ { }). Thus,  ∩  is a ⊢-consistent
subset of  , given  ′. Assume that there is a  ′ ∈ MCS ′L () such that  ∩  ⊊  ′. By
the supposition,  ′ ⊢  . Thus,  ′ ∪ { } is a ⊢-consistent subset of  ∪ { }, given  ′.
But since  ⊊  ′ ∪ { }, this is a contradiction to the ⊆-maximal consistency of  . Thus,
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 ∩  ∈ MCS ′L (). By the assumption again,  ⊢  , and so  ′ = ( ∩ ) ∪ { } is an
element of the set in the right-hand side of the equation of Item 1.

Item 1, ⊇: Suppose that  ∈ MCS ′L (). Thus,  is a ⊢-consistent subset of  , given ′. Since ⟨ ′,⟩ ∣∼⋒mcs  , we have that  , ′ ⊢  and so  ∪ { } is a ⊢-consistent
subset of  ∪ { }, given  ′. Assume for a contradiction that there is a proper superset ′ ⊋ ( ∪ { } such that  ′ ∈ MCS ′L ( ∪ { }). Then,  ⊊ ( ′ ∩ ) and  ′ ∩  is a
⊢-consistent subset of  given  ′, which contradicts the ⊆-maximal consistency of  .

Item 2, ⊇: Suppose that  ∈ MCS ′∪{ }(). Thus,  is a ⊢-consistent subset of 
given  ′ ∪ { }, and so also given S′. Assume that there is a set  ′ ∈ MCS ′L () such that ⊊  ′. Thus,  ′ is ⊢-inconsistent with  (given  ′) since otherwise  ′ is ⊢-consistent
with  given  ′∪{ } in contrast to  ∈ MCS ′∪{ }L (). Thus,  ′, ′,  ⊢ F. By the main
supposition also  ′, ′ ⊢  . Thus, by transitivity,  ′, ′ ⊢ F which is a contradiction to
the choice of  ′. Thus,  ∈ MCS ′().

Item 2, ⊆: The proof is similar to that of the previous item. Briefly, suppose that  ∈
MCS ′L (). Since ⟨ ′,⟩ ∣∼⋒mcs  , necessarily  is a ⊢-consistent subset of  , given
 ′ ∪ { }, and trivially then  ∈ MCS ′∪{ }L ().

The following corollary follows immediately in view of the fact that ∣∼L
∩mcs is contained

in ∣∼L
⋒mcs.

Corollary 133. If ⟨ ′,⟩ ∣∼∩mcs  then Items 1 and 2 of Lemma 132 hold.

Proposition 89. Let L = ⟨, ⊢⟩ be a propositional logic and let ⊔ ∈ {⋓, ⊎}. The entailment
∣∼L
⋒mcs is ⊔-preferential.

Proof. The proposition follows by Proposition 88 and Lemma 134.
Lemma 134. ∣∼L

⋒mcs satisfies ⊔-OR.

Proof. We first consider the case ⊔ = ⋓. Suppose that ⟨ ′, ∪ {�1}⟩ ∣∼L
⋒mcs  and

⟨ ′, ∪ {�2}⟩ ∣∼L
⋒mcs  . Let  ∈ MCS ′L ( ∪ {�1 ∨ �2}) and  ′ =  ∩  . If  ′ is

⊢-inconsistent with �1 ∨�2, then  ′ ∈ MCS ′L ( ∪{�1}) ∩MCS ′L ( ∪{�2}) and  =  ′.
By the supposition  ′, ′ ⊢  and so  , ′ ⊢  .

If  ′ is ⊢-consistent with both �1 and �2, then  ′ ∪ {�1} ∈ MCS ′L ( ∪ {�1}),  ′ ∪
{�2} ∈ MCS ′L ( ∪ {�2}), and  =  ′ ∪ {�1 ∨ �2}. By the supposition  ′, �1, ′ ⊢  
and  ′, �2, ′ ⊢  . Hence,  ′, �1 ∨ �2, ′ ⊢  and so  , ′ ⊢  .

If  ′ is⊢-consistent with�1 but is not⊢-consistent with�2, then  ′∪{�1} ∈ MCS ′L (∪
{�1}),  =  ′ ∪ {�1 ∨ �2}, and  ′,  ′, �2 ⊢ F. Thus  ′,  ′, �2 ⊢  . By the supposition
also  ′, �1, ′ ⊢  and thus  ′, �1 ∨ �2, ′ ⊢  . Hence,  , ′ ⊢  .
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The case that  ′ is ⊢-consistent with �2 but ⊢-inconsistent with �1 is analogous.
Since our case distinction is exhaustive and in every case that  , ′ ⊢  , we have

⟨ ′, ∪ {�1 ∨ �2}⟩ ∣∼L
⋒mcs  .

We now consider the case ⊔ = ⊎. Suppose that ⟨ ′ ∪ {�1},⟩ ∣∼⋒mcs  and also
⟨ ′ ∪ {�2},⟩ ∣∼⋒mcs  . Let  ∈ MCS

 ′∪{�1∨�2}
L (). Thus,  is ⊢-consistent with �1∨�2

in the context of  ′. Then,  is ⊢-consistent with �1 or with �2. Without loss of generality
suppose the former. Hence,  ∈ MCS

 ′∪{�1}
L (). By the supposition,  , ′, �1 ⊢  . If 

is⊢-consistent with�2 in the context of  ′, also  ∈ MCS
 ′∪{�2}
L (), and so  , ′, �2 ⊢  .

Otherwise,  , ′, �2 ⊢ F and thus  , ′, �2 ⊢  . In any case, since ∨ is a disjunction with
respect to ⊢, it holds that  , ′, �1 ∨ �2 ⊢  . Thus, ⟨ ′ ∪ {�1 ∨ �2},⟩ ∣∼L

⋒mcs  .
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