
Annotated Sequent Calculi for Paraconsistent Reasoning and Their Relations to
Logical Argumentation

Ofer Arieli1 , Kees van Berkel2 and Christian Straßer3
1School of Computer Science, Tel-Aviv Academic College, Israel

2Institute of Logic and Computation, TU Wien, Austria
3Institute for Philosophy II, Ruhr University Bochum, Germany

oarieli@mta.ac.il, kees@logic.at, christian.strasser@rub.de

Abstract

We introduce annotated sequent calculi, which are
extensions of standard sequent calculi, where se-
quents are combined with annotations that repre-
sent their derivation statuses. Unlike in ordinary
calculi, sequents that are derived in annotated cal-
culi may still be retracted in the presence of con-
flicting sequents, thus inferences are made under
stricter conditions. Conflicts in the resulting sys-
tems are handled like in adaptive logics and argu-
mentation theory. The outcome is a robust family
of proof systems for non-monotonic reasoning with
inconsistent information, where revision consider-
ations are fully integrated into the object level of
the proofs. These systems are shown to be strongly
connected to logical argumentation.

1 Introduction
In this paper we introduce a proof-theoretic approach for non-
monotonic reasoning with conflicting information. It con-
sists of analytic sequent calculi [Gentzen, 1934] together with
rules for modeling conflicts between sequents, which are sim-
ilar to attack relations in argumentation theory [Dung, 1995].

The basic idea behind these calculi is to add annotations to
sequents,1 intuitively representing their statuses in a deriva-
tion. An annotated sequent is thus an expression of the form
Γ⇒[a] ∆, where Γ⇒ ∆ is an ordinary sequent and the su-
perscript [a] is the annotation of the sequent. Informally, the
annotation [i] means that the sequent is introduced (condi-
tionally accepted), but is not yet inferred (finally accepted),
because it may be attacked by a counter-sequent. The an-
notation [e] means that the sequent is eliminated, since it
is attacked by an accepted sequent, and the annotation [!]
is attached to finally accepted sequents, whose attackers are
counter-attacked altogether.

A distinctive property of annotated sequent calculi is their
modularity, namely: they can be based on any (propositional)
logic with a sound and complete calculus, and any set of at-
tack rules. In this paper, we demonstrate this novel approach

1Note that unlike annotated logics [Abe et al., 2019], we attach
annotations to sequents instead of formulas in the language.

by focusing on defeat attacks (and the corresponding reacti-
vation and final acceptance rules described in what follows),
mainly due to its commonness and simplicity. We show that
the resulting proof systems are paraconsistent (in the sense
that a contradictory set of premises does not have an explo-
sive set of finally accepted conclusions), and faithfully rep-
resent the semantics of logical argumentation frameworks.
The nature of derivations of annotated sequent calculi, and
in particular the annotation revision process that proceeds the
derivation steps (and that is expressed in the object level of
the derivation) indicate that, despite of the relative simplicity
of the calculi, they are particularly appropriate for modeling
and describing inference processes involving revision of be-
liefs and defeasible reasoning.

2 Annotated Sequent Calculi
In the sequel, we denote by L an arbitrary propositional lan-
guage. Sets of formulas are denoted by S, T , finite sets of
formulas are denoted by Γ,∆, formulas are denoted by φ, ψ,
and atomic formulas are denoted by p, q, r (all possibly in-
dexed). The set of (well-formed) formulas of L is denoted by
WFF(L), and the power set of WFF(L) by ℘(WFF(L)).

A propositional logic is a pair L = 〈L,`〉, where L is
a propositional language and ` is a consequence relation on
℘(WFF(L))×WFF(L), satisfying reflexivity (if φ ∈ S , then
S ` φ), monotonicity (if S ′ ` φ and S ′ ⊆ S , then S ` φ),
and transitivity (if S ` φ and S ′, φ ` ψ then S,S ′ ` ψ). A
logic L is assumed to be non-trivial (S 0 φ for some S 6= ∅
and φ), structural (if S ` φ, then {θ(ψ) | ψ ∈ S} ` θ(φ) for
every substitution θ), and compact (if S ` φ then Γ ` φ for
some finite Γ ⊆ S).

In what follows, we assume that L contains at least a `-
negation operator ¬, satisfying p 6` ¬p and ¬p 6` p (for
atomic p), and a `-conjunction operator ∧, for which S `
ψ ∧ φ iff S ` ψ and S ` φ.2 Also, we denote by

∧
Γ the

conjunction of all the formulas in Γ.
Given a logic L and a set S of L-formulas, an L-sequent

based on S [Gentzen, 1934] is a structure of the form Γ⇒ ∆,
where⇒ is a symbol not in L, and Γ `

∧
∆ for some Γ ⊆ S.

Definition 1. An annotated L-sequent (annotated sequent,
for short) is a structure of the form Γ⇒[a] ∆, where Γ⇒ ∆

2By the definition of ∧, we have that φ∧ψ ` φ; φ∧ψ ` ψ, and
φ, ψ ` φ ∧ ψ, thus S, φ, ψ ` σ iff S, φ ∧ ψ ` σ.

is an L-sequent and a ∈ {i, e, !}. We denote by s[a] the se-
quent s whose annotation is [a] and use [∗] when the annota-
tion of the sequent may be arbitrary.

Next, we define an annotated sequent calculus C, extending
a sequent calculus C. We suppose that C is sound and com-
plete (adequate) for L (so Γ⇒ ∆ is C-provable iff Γ `

∧
∆).

Definition 2. An annotated sequent calculus C consists of
the following components:

1. The axioms and inference rules of C, where the se-
quents in the rules’ conditions are annotated by [∗] and
the sequent in the conclusion is annotated by [i].

2. Attack rules. These are inference rules for changing
the annotations of an attacked sequent from [i] to [e]. To
avoid arbitrary attacks, these rules are restricted to a set
S of premises, thus the attacking and the attacked se-
quents must be S-based. For instance, given such an S,
the rule Defeat looks as follows: for Γ1,Γ

′
1,Γ2 ⊆ S,

Γ1,Γ
′
1 ⇒[i] ψ1 Γ2 ⇒[i] ψ2 ψ2 ⇒[∗] ¬

∧
Γ1

Γ1,Γ′1 ⇒[e] ψ1

Here, the introduced sequent Γ2 ⇒ ψ2 attacks Γ1,Γ
′
1 ⇒

ψ1, and so changes the latter’s status from ‘introduced’
to ‘eliminated’. The status of the attack condition (right-
most) does not matter, as long as it is logically valid.3

This attack rule is accompanied by a variation, in which
Γ2⇒[i] ψ2 is replaced by Γ2⇒[!] ψ2, i.e., attacking se-
quents are either accepted or finally accepted (as defined
in Item 5).

3. Reactivation rules. These are inference rules for chang-
ing the annotations of a sequent that is to be reactivated
from [e] to [i]. Each attack rule has a corresponding reac-
tivation rule. For instance, if Defeat is an attack rule, the
following corresponding reactivation rule may be added
to the calculus:

Γ1,Γ
′
1 ⇒[e] ψ1 Γ2 ⇒[e] ψ2 ψ2 ⇒[∗] ¬

∧
Γ1

Γ1,Γ′1 ⇒[i] ψ1

This rule indicates that if the sequent in the first con-
dition was attacked (due to the third condition, whose
current status does not matter as as long as it is logically
valid), but the attacker (the second sequent in the rule’s
condition) is later counter-attacked, then the originally
attacked sequent changes its status from ‘eliminated’
back to ‘introduced’ (i.e., conditionally accepted).

4. Retrospective attack rules. Unlike attack rules, that al-
low only introduced attackers, retrospective attack rules
allow also eliminated attackers, provided that the attack-
ers can be reactivated.4 These rules may thus be viewed

3Undercut is a similar rule, where Γ1⇒[∗] ¬ψ2 is added to the
conditions of Defeat. In Undercut, the conclusion of the attacker
is equivalent to the negation of some premises of the attacked se-
quent. Further sequent-based attack rules can be imported from,
e.g., [Arieli and Straßer, 2019], using annotations similar to Defeat.

4Intuitively, retrospective attacks will deal with attack cycles.

as pairs of attack and reactivation rules. For instance, for
Γ1,Γ

′
1,Γ2,Γ

′
2,Γ3 ⊆ S, one may define:

Γ1,Γ
′
1 ⇒[i] ψ1 Γ2,Γ

′
2 ⇒[e] ψ2 ψ2 ⇒[∗] ¬

∧
Γ1

Γ1,Γ′1 ⇒[e] ψ1

(attack rule with eliminated attacker)
...

Γ2,Γ
′
2 ⇒[e] ψ2 Γ3 ⇒[e] ψ3 ψ3 ⇒[∗] ¬

∧
Γ2

Γ2,Γ′2 ⇒[i] ψ2

(the eliminated attacker is reactivated)

Note that the rules above need not be consecutive in the
derivation, but the reactivation of the attacker need to
be part of the revision process following the attack rule
(see Definition 3 below). A retrospective attack rule is
only applicable in case that the revision process leads to
a reactivation (see also the examples in Section 3).

5. Final acceptability rules. These are rules for assuring
inferences of sequents. These rules depend on the attack
rules and the sequent whose final acceptability is veri-
fied. The rules are relative to a finite set S of premises.
For instance, let Att(Γ) = {∆ ⊆ S | ∆ ` ¬

∧
Γ} and

suppose that Defeat is the attack rule, then:

Γ⇒[i] ψ
(∀∆ ∈ Att(Γ)) ∆⇒[∗] ¬

∧
Γ

(∀∆ ∈ Att(Γ), ∃Σ ∈ Att(∆)) Σ⇒[!] ¬
∧

∆

Γ⇒[!] ψ

This final acceptability rule means that Γ⇒ ψ is finally
accepted if it is conditionally accepted (the first condi-
tion of the rule), all of its attackers are produced in the
derivation (this is the second condition of the rule),5 and
each such attacker is counter-attacked by a finally ac-
cepted sequent (the last condition of the rule).6

Sequents that cannot be Defeat-attacked by any S-based
sequent, either since their left-hand side is empty these
are tautological sequents), or because S 6∈ Att(Γ), are
accepted. Thus, when Defeat is the attack rule (or any
other premise-attack rule), we also have:

⇒[i] ψ

⇒[!] ψ

Γ⇒[i] ψ S 6∈ Att(Γ)

Γ⇒[!] ψ

Further (admissible) final derivability rules may be ex-
pressed. For instance, for premise-attack rules (e.g., De-
feat), we may have rules expressing that if a sequent is
finally derived, so is any sequent with a weaker support:

Γ,Γ′ ⇒[!] φ Γ⇒[i] ψ

Γ⇒[!] ψ

Γ1 ⇒[!] φ Γ1 ⇒[i]
∧

Γ2 Γ2 ⇒[i] ψ

Γ2 ⇒[!] ψ
(Γ2 ⊆ S)

5Alternatively, that all attackers are produced in a derivation,
may be verified by a refutation calculus R (where Γ 6⇒ ψ is R-
provable iff Γ 6` ψ), like those in [Bonatti and Olivetti, 2002] (for
classical logic) and [Pkhakadze and Tompits, 2020] (for L3).

6By monotonicity, instead of Att(Γ), it suffices to refer in the
rule to MinAtt(Γ) = {∆ ∈ Att(Γ) | (∀∆′ (∆) ∆′ 6∈ Att(Γ)}.

Definition 3. An S-based derivation D of an annotated cal-
culus is a sequence of tuples. Each tuple T contains an index
(the tuple’s order in the derivation), the derived annotated se-
quent (the tuple’s sequent), the derivation rule that is applied
(the tuple’s rule), and the indexes of the tuples whose se-
quents serve as the conditions of the tuple’s rule. The tuples’
rules are those described in Definition 2, and some of them
(like the attack rules) are S-dependent. After each extension
of the derivation with a tuple with an attack or a retrospec-
tive attack rule, an annotation revision process is initiated,
and the derivation is extended with new attack or reactivation
rules for updating the sequent annotations when necessary.

The annotation revision process. Let p(s) be the plain se-
quent (without annotation) of the annotated sequent s. Also,
if s[a1] is derived and at no later point s[a2] is derived, we say
that the most updated status of s is [a1]. Now, when a tuple T
with a [retrospective] attack on s is introduced in the deriva-
tion, we let RevSeq = {p(s)}7 and the derivation sequence is
traversed backwards, starting from the tuple before T .

• Suppose that during the traversal a tuple T of a [retrospec-
tive] attack is encountered, with attacker s1 and attacked s2,
such that p(s1) ∈ RevSeq while p(s2) 6∈ RevSeq.8 Then:

- If the most updated status of s1 is [e] (i.e., p(s1) was
(counter-)attacked during the revision), T should be
“rolled-back” by means of a reactivation rule for p(s2).9
As a consequence, the most updated status of p(s2) in
the derivation becomes [i].

- If the most updated status of s1 is [i] (i.e,. p(s1) was re-
activated during the revision), but still the most updated
status of the attacked sequent p(s2) is also [i], T should
be “reinstated” by means of an attack in which p(s1)
re-attacks p(s2). As a consequence, the most updated
status of p(s2) in the derivation becomes [e].

In both cases, p(s2) is added to RevSeq.

• Suppose that during the traversal a reactivating tuple T is
encountered, where the condition of the reactivation is s1 and
the reactivated sequent is s2, such that p(s1) ∈ RevSeq and
p(s2) 6∈ RevSeq. If the most updated status of s1 is [i] (i.e,
p(s1) has been reactivated during the traversal), T should
be “rolled-back” and the original attack is reinstated in the
derivation by re-applying the original attack rule on p(s2),
using a new tuple T ′. As a consequence, the most updated
status of p(s2) becomes [e] and p(s2) is added to RevSeq.

Definition 4. Let s[i] be an attacking sequent of a derivation
tuple T . Then T is coherent, if at the end of the revision pro-
cess following the introduction of T , the most updated status
of s is still [i].

A derivation is coherent if all its tuples are coherent, and
there is no tuple such that the most updated statuses of both
its attacking and attacked sequents are in {[!], [i]}.

7The set RevSeq consists of the sequents whose annotation are
revised during the traversal.

8That is, the status of the attacker has been modified, but the
status of the attacked sequent has not been modified yet.

9Reactivation rules are applied only during a revision process.

Definition 5. For an annotated calculus C, we write S |∼C ψ
(henceforth, C is omitted) if there is an S-based C-derivation
D and a subset Γ ⊆ S, such that Γ ⇒[!] ψ is derived in D
(i.e., the sequent Γ⇒ ψ is finally accepted in D).

3 Some Examples and Properties
Below are some illustrations of derivations by annotated se-
quent calculi and some basic properties of the induced entail-
ment relation, |∼. In all of the examples we use the proof
system in Definition 2 with Defeat as the sole attack rule (and
the corresponding reactivation and final acceptance rules).10

Example 1. Consider the set of assumptions S = {p,¬p, q}
and let L be classical logic. To see that q ⇒ q is finally
accepted from S (i.e., there is a derivation of q ⇒[!] q), note
that q ⇒[i] q and ⇒[i] p ∨ ¬p are derivable (e.g., by using
Gentzen’s LK). Moreover, by one of the final acceptability
rules,⇒ p ∨ ¬p is finally accepted (since its left-hand side is
empty). Now, the S-based attackers of q ⇒ q are p,¬p⇒ ¬q
and p,¬p, q ⇒ ¬q (thus Att(q) = {{p,¬p}, {p,¬p, q}}).
These attackers are also derivable, but ⇒[!] p ∨ ¬p attacks
both of them. For instance, we have

p,¬p⇒[i] ¬q ⇒[!] p ∨ ¬p p ∨ ¬p⇒[i] ¬(p ∧ ¬p)
p,¬p⇒[e] ¬q

By the final acceptability rule q ⇒[!] q is derived, thus S |∼ q.
The situation regarding the other formulas in S is different,

and we have that S 6|∼ p and S 6|∼ ¬p. Indeed, while both
p⇒[i] p and ¬p⇒[i] ¬p are derivable, none of them is finally
accepted. This may be explained by the fact that each one of
them attacks the other, causing a revision of their statuses, and
so there are no finally accepted sequents that can eliminate at
once all of the attackers. Indeed, after

¬p⇒[i] ¬p p⇒[i] p p⇒[i] ¬¬p
¬p⇒[e] ¬p

p⇒ p is accepted and ¬p⇒ ¬p is eliminated. By extending
the derivation with the retrospective attack

p⇒[i] p ¬p⇒[e] ¬p ¬p⇒[i] ¬p
p⇒[e] p

¬p⇒[e] ¬p p⇒[e] p p⇒[i] ¬¬p
¬p⇒[i] ¬p

the situation is reversed, and now ¬p⇒ ¬p is accepted while
p⇒ p is eliminated. Another application of the retrospective
attack rule, this time when p ⇒[e] p retrospectively attacks
¬p⇒[i] ¬p, reverses their statuses again, and so forth.

Example 2. The previous example demonstrates, e.g., a
cyclic attack of size two (p ⇒ p and ¬p ⇒ ¬p attack each
other). Figure 1 shows a cycle of size four. The left-hand side
of the figure, Stage I, represents a 3-chain of attacks. In the
middle of the figure (Stage II), the chain turns into a 4-cycle.

10To preserve readability of the examples, in what follows we only
consider the sequents of tuples occurring in a derivation (complete
tuples may be easily reconstructed).

Note that in order to close the cycle, a retrospective attack is
needed. After the revision process (denoted by the dashed ar-
rows) s2 and s4 are accepted, while s1 and s3 are eliminated.
These statuses may be reversed by an application of another
retrospective attack, as shown in Stage III of the figure. As a
result, s1 and s3 are accepted while s2 and s4 are eliminated.
The last two steps may be repeated interchangeably, revising
each time the statuses of the sequents involved in the cycle of
attacks. It follows that each of the four sequents is exposed to
repeated attacks, and so none of them is finally accepted.

S1[i] S4[e]

S2[e] S3[i]

attackat
ta

ck

attack

Stage I

13

2

S1[e] S4[i]

S2[i] S3[e]

reactivatio
n

re-attack (2)

Stage II Stage III

retrospective
attack

4re
ac

ti
va

ti
o

n

S1[i] S4[e]

S2[e] S3[i]reactivation

reactivation

5

re
tr

o
sp

ec
ti

ve

at
ta

ck

re-attack (1
)

(+ reactivation)

Figure 1: Derivations for an attack cycle of length four (Example 2).
The numbers represent the order of the derivation steps. Strict ar-
rows are applications of attack rules and dashed arrows denote rules
applied in the corresponding annotation revision process.

A similar analysis holds for any even-length cycle of at-
tacks, thus derivation tuples in even-length cycles are coher-
ent (Definition 4). In contrast, derivations with an odd-length
cyclic attack must be incoherent. See, e.g., derivation step 3
in Figure 2 Stage II, for a 3-cycle. Indeed, for ‘closing’ such a
cycle with an attack rule the attacker must be eliminated at the
end of the revision process (this may be verified by induction
on the length of the cycle). Moreover, if a retrospective attack
is initiated in such cases, the attacker cannot be reactivated.

S1[i]

S2[e] S3[i]

at
ta

ck

attack

Stage I

2

1

S1[e]

S2[i] S3[e]re-attack (1)

Stage II

attack
3

re
ac

ti
va

ti
o

n

(+ reactivation)

Figure 2: Derivations for an attack cycle of length three (Example 2).

Example 3. Consider a logic whose negation ¬ does not
respect double-negation introduction (i.e., p 6` ¬¬p), and
suppose again that Defeat is the only attack rule. Let S =
{p,¬p,¬¬p,¬¬¬p}. We denote by¬ip the formula in which
p is preceded by i negations (in particular, ¬0 p is p) and by
si[a] the annotated sequent ¬ip ⇒[a] ¬ip for a ∈ {i, e, !}.
By reflexivity, si[i] is derivable for every 0 ≤ i ≤ 3. Now,
consider the following derivation (D and R denote Defeat and
Reactivation, respectively).

s0[i]

s1[i] s2[i] s2[i]

s1[e]
D

s2[i] s3[i] s3[i]

s2[e]
D

s2[e]

s1[i]
R

s1[i]

s0[e]
D

At this point, the derived sequents and their most updated
statuses are s0[e], s1[i], s2[e] and s3[i]. Moreover, this is a
kind of a ‘steady state’, in which all the sequents that are
conditionally accepted (and only them) can in fact be finally
accepted (note that all their S-based attackers are derived).
Indeed, since S 6∈ Att(¬3p), we have that Att(¬3p) = ∅
(i.e., s3 cannot be attacked by any S-based sequent), and so
by the final acceptability rule we can derive s3[!]. In turn,
s3[!] attacks s2 , the single attacker of s1, thus s1[!] is derived.
Finally, s1[!] attacks s0 , and so the latter cannot be finally
accepted. It follows, then, that S |∼ ¬p and S |∼ ¬¬¬p.

Now, suppose that¬4p is added to the set of assertions: i.e.,
S ′ = {p, ¬p, ¬¬p, ¬¬¬p, ¬¬¬¬p}. Then s4[i] is derived,
and so the previous derivation may be extended as follows:

s0[e]

s1[i]

s2[e]

s3[i] s4[i] s4[i]

s3[e]
D

s3[e]

s2[i]
R
s2[i]

s1[e]
D

s1[e]

s0[i]
R

The derived sequents and their most updated statuses are
now: s0[i], s1[e], s2[i], s3[e] and s4[i]. Again, for similar rea-
sons as before, all the sequents that are conditionally accepted
(and only them) are also finally accepted, so this time we con-
clude that S ′ |∼ p and S ′ |∼ ¬¬p and S ′ |∼ ¬¬¬¬p.

An alternative representation of the derivation in this ex-
ample is presented in Figure 3.

So[i] S1[i] S2[i]

S4[i]

S3[i]

1 2 3

S1[e]

4 5

S2[e]

6

Reactivation
(4)

S1[i]
7

So[e]

8

9

S3[e]

S2[i]Re-attack
(4)

S1[e]

So[i]

Reactivation
(6)

Reactivation
(7)

S4[!]

10

11

S2[!]12

S0[!]

Figure 3: The derivation of Example 3 for S ′ (progressing along
the vertical axis according to the circled numbers, which represent
derivation steps). The solid arrows are applications of attack rules
and the dashed arrows are the rules applied in the corresponding
annotation revision process. The gray rectangles highlight the status
changing of each sequent.

Next, we consider some basic properties of the entailment
relation |∼ that is induced by annotated calculi. We start with
two observations about derivations in annotated calculi.

Proposition 1. Let D be a derivation (Definition 3).

a) For a fixed set of assumptions, a finally accepted sequent
cannot be eliminated.11

b) Suppose thatD is coherent. Then at the end of a revision
process (following a derivation step) no sequent attacks
another sequent and is eliminated at the same time.

Proof. Item (a) holds simply because a finally accepted se-
quent cannot be attacked. For item (b) suppose that s1 attacks
s2. This may happen in one of the following two cases:

1. The attack is part of a derivation step. If this step is an
application of an attack rule, then the status of s1 is [i]
(or [!]), and thus by coherence (or by the first item, in
case that s1 is finally derived), s1 cannot be eliminated.
The other possibility is that a retrospective attack rule is
applied, in which case s1 must be reactivated, turning its
status back to [i] (and it cannot be modified again in the
revision process, since s1 is in RevSeq).

2. The attack is reinstated as part of the annotation revision
process. This may happen only if s1 was reactivated ear-
lier in the revision process, so its status was changed to
[i] (and cannot be changed again during the revision).

In both cases s1 is not eliminated.

Proposition 2. If S is `-consistent (i.e., S 6` ¬ψ for every
ψ ∈ S), then S ` ψ iff S |∼ ψ.12

Proof. If S is `-consistent, no attack rule is applied, thus no
sequent is eliminated (and so no reactivation or retrospec-
tive attack is applied either). It follows that in this case a
derivation consists only of rules of C and the final acceptabil-
ity rules. Moreover, for every Γ ⊆ S it holds that Att(Γ) = ∅,
thus any derived sequent is also finally accepted (and, of-
course, any finally accepted sequent must be derived). It fol-
lows that S ` ψ iff S ⇒[i] ψ is derived, iff S ⇒ ψ is finally
accepted in that derivation, iff S |∼ ψ.

Proposition 3. If ` is paraconsistent (i.e., p,¬p 6` q) or con-
trapositive (i.e., if Γ ` ψ then Γ,¬ψ ` ¬γ for every γ ∈ Γ),
then |∼ is paraconsistent .

Proof. If ` is paraconsistent, then p,¬p⇒ q is not derivable.
Since neither p⇒ q nor ¬p⇒ q is derivable (the logic is not
trivial), there is no derivable {p,¬p}-based argument whose
conclusion is q. Thus, no such sequent is finally derived, and
so p,¬p 6|∼ q. Suppose then that ` is not paraconsistent. Then
p,¬p ⇒ is derivable, and so by contraposition⇒¬(p ∧ ¬p)
is also derivable. The latter is finally accepted (by the final

11In other words, there is no extension ofD (by further derivation
steps and revisions), based on the same set of assumptions, in which
the annotation of a sequent changes from [!] to [e]. This resem-
bles the notion of final derivability in adaptive logics [Batens, 2007;
Straßer, 2014] and in [Arieli and Straßer, 2019].

12Recall, ` is the consequence relation of the base logic verifying
sequents, and |∼ is the entailment relation given by final acceptance.

acceptability rule), and moreover {p,¬p} ∈ Att(q). Thus,
even if p,¬p ⇒ q is derived, the last condition in the final
acceptability rule is not met. So, Γ⇒ q is not finally derived
for Γ ⊆ {p,¬p}, thus p,¬p 6|∼ q in this case as well.

4 Relations to Logical Argumentation
Annotated calculi, and in particular the attack rules, are in-
spired by similar concepts in formal argumentation [Dung,
1995; Baroni et al., 2018; Gabbay et al., 2021]. In this sec-
tion, we show some relations between the two formalisms.
Definition 6. Let C be an annotated sequent calculus and let
D be an S-based C-derivation. Then:
• Derived(D) is the set of S-based sequents s s.t. s[i] ∈ D;
• Accept(D) is the set of sequents s in Derived(D) such

that their most updated status is [i] or [!];
• Final(D) is the set of sequents s in Derived(D) such that
s[!] ∈ D;
• Attack(D) is the set of pairs (s1, s2) such that s1 attacks

or retrospectively attacks s2 inD (s1, s2 ∈ Derived(D)).
AF(D) = 〈Derived(D),Attack(D)〉 is called the (sequent-
based) argumentation framework that is induced by D.
Example 4. The possible attacks among the sequents in Ex-
ample 1 and the argumentation framework induced by the
corresponding derivation are the following:

q ⇒ q

¬p⇒ ¬p p⇒ p

p,¬p⇒ ¬q

p,¬p, q ⇒ ¬q
⇒ p ∨ ¬p

Definition 6 is a logic-based representation of argumenta-
tion frameworks, which according to Dung [1995] are pairs
AF = 〈Args,Attack〉, where Args is a denumerable set
of elements, called arguments, and Attack is a relation on
Args× Args, whose instances are called attacks.

Given a framework AF , a key issue in its understanding is
the question what combinations of arguments can collectively
be accepted in AF . This is determined as follows:
Definition 7. LetAF = 〈Args,Attack〉 be an argumentation
framework, and let E ⊆ Args.
• E attacks an argument A if there is an argument B ∈
E that attacks A (i.e., (B,A) ∈ Attack). The set of
arguments that are attacked by E is denoted by E+.
• E defends A if E attacks every argument that attacks A.
• E is conflict-free if it does not attack any of its elements

(i.e., E+ ∩ E = ∅), E is admissible if it is conflict-free
and defends all of its elements, and E is complete if it is
admissible and contains all the arguments that it defends.
• E is a stable extension of AF if it is conflict-free and
E ∪ E+ = Args. E is a grounded extension ofAF if it is
⊆-minimal among the complete extensions of AF .

The next results show the close relations between deriva-
tions in annotated calculi (Definition 2) and stable, respec-
tively grounded semantics of argumentation frameworks.

Proposition 4. If D is coherent, then Accept(D) is a stable
extension of AF(D).

Outline of proof. We show that Accept(D) is conflict-free in
AF(D) and attacks any eliminated sequent. The former fol-
lows from the coherence of D. To see the latter, let r be an
eliminated sequent. If r is [retrospectively] attacked by s in
a derivation step, then by coherence the status of s is [i], thus
s ∈ Accept(D). If r is attacked by s during the status revision
process, then it is easy to verify that the statuses of r and s
must interchange. Since r is eliminated, s ∈ Accept(D).

Note 1. The coherence requirement in Proposition 4 is nec-
essary. Consider the derivation D in Figure 2. Step 3 in
Stage II is not coherent, as the attacker s3 is eliminated. Thus,
Accept(D) = {s2}, but AF(D) has no stable extensions.

Example 5. In Example 4, if the last [retrospective] attack of
p⇒ p on ¬p⇒¬p is performed after the last [retrospective]
attack of ¬p ⇒ ¬p on p ⇒ p, then for the corresponding
derivationD we have Accept(D) = {⇒p∨¬p, q⇒q, p⇒p}.
This is indeed a stable extension of AF(D). If the mutual
attacks of p⇒ p and ¬p⇒ ¬p are performed in a reversed
order, then Accept(D) = {⇒ p ∨ ¬p, q ⇒ q, ¬p⇒ ¬p},
which again is a stable extension of AF(D).

Definition 8. An S-derivation D is saturated if Final(D) is
exhaustive in D: i.e., the final acceptability rules are applied
to every derived sequent in D to which it can be applied.13

Proposition 5. If D is saturated, then Final(D) is the
(unique) grounded extension E ⊆ Derived(D) of AF(D).

Proof. We show that Final(D) = E . Let 〈s1[!], . . . , sn[!]〉 be
the ordered set of all [!]-annotated sequents derived in D, in
the order in which they occur in D.

“⊆”. We prove inductively that si[!] ∈ E for i = 1, . . . , n.
Base case. Since s1[!] is derived by an application of a fi-
nal applicability rule and it is the first sequent in D with this
property, it has no attackers. Since E is complete, s1 ∈ E .
Inductive step. Suppose the sequent si+1[!] was derived by
a final acceptability rule calling upon the [!]-annotated se-
quents sj1 [!], . . . , sjm [!]. Then j1, . . . , jm < i+ 1 and by the
inductive hypothesis, sj1 , . . . , sjm ∈ E . Also, the sequents
sj1 , . . . , sjm attack all attackers of si+1, so si+1 is defended
by E and by the completeness of E , si+1 ∈ E .

“⊇”. We show that Final(D) is complete in AF(D).
Since E is ⊆-minimal complete, then E ⊆ Final(D). We
show conflict-freeness inductively by showing that for each
i = 1, . . . , n there is no k ≤ i such that sk attacks si. Base
case. Trivial, since s1 doesn’t have attackers. Inductive step.
Suppose there is a k ≤ i s.t. sk attacks si+1. By the final
acceptability rule there is a j ≤ i s.t. sj attacks sk, which
contradicts the inductive hypothesis. Suppose now that si+1

attacks itself. By the final acceptability rule there is a k ≤ i
such that sk attacks si+1 which we have already excluded.

For admissibility, suppose that s ∈ Derived(D) \ Final(D)
attacks some si. Then by the application of the final accept-
ability rule that produces si[!] ∈ D, there is a k < i such
that sk attacks s. For completeness, let s ∈ Derived(D) be

13For a finite S this is a decidable property.

defended by Final(D). Then we can apply final applicability
rule to derive s[!]. Since D is saturated, s[!] ∈ Final(D).

Proposition 6. For a derivation D, let S =
⋃
{∆ | ∆ ⇒

φ ∈ D}. Let AF(S) = 〈Args(S),Attack〉 where Args(S) =
{Γ ⇒ ψ | Γ ⊆ S and Γ ` ψ} and Attack = {(s, t) | s =
∆ ⇒ φ, t = Γ ⇒ ψ ∈ Args and φ ` ¬

∧
Γ}. Let E be the

grounded extension of AF(S). For every s ∈ E , there is an
S-based derivation D′ of s[!] without attack rules.

Proof. We note that for each r ∈ Args(S) there is an S-based
derivation Dr concluding r[i]. Since D is finite, E =

⋃
i≥1 Ei

where E0 = ∅ and Ei+1 = {s ∈ Args | Ei defends s} [Dung,
1995]. Let s ∈ E . We prove by induction on i, that for each
s ∈ Ei (i = 1, . . . , n) there is an S-based derivationD′s of s[!]
without attacks. Base case. Since s ∈ E1, s has no attackers.
Let D′s be the extension of Ds by an application of the final
acceptibility rule that concludes s[!]. Inductive step. Let s ∈
Ei+1. For each attacker r of s there is an s′ ∈

⋃i
j=1 Ej that

attacks r. By the IH there are derivations D′s′ for each such
defending s′. We obtainD′s by concatenating the proofsDr of
each attacker, the proofs D′s′ for each defender, and applying
the final acceptability rule to conclude s[!].

5 Related Work and Conclusion
Annotated versions of sequent calculi have been introduced
in, e.g., [Došen, 1985; Indrzejczak, 1997]. However, those
calculi significantly deviate from ours and have different mo-
tivations and purposes (we discuss this in future work).

There are a variety of reasoning methods for abstract
and structured (or, more specifically, logical) argumentation
frameworks. We refer to [Cerutti et al., 2017] and [Besnard
et al., 2020] for two extensive surveys on this subject. Most
of the approaches mentioned in these review papers are based
on CSP/SAT/ASP/QBF-solvers, and as such, the reasoning
engine is encapsulated in the solvers and/or limited to spe-
cific base logics. Our approach extends standard sequent cal-
culi using the same notions (sequents, inference rules, etc),
augmented with primary concepts from argumentation the-
ory for a better handling of conflicts among the sequents.
Some other notions, such as final acceptability are bor-
rowed from proof systems for adaptive logics [Batens, 2007;
Straßer, 2014]. Altogether, this results in a modular paracon-
sistent method for reasoning with arguments based on differ-
ent underlying logics and attack rules.

A different approach with a similar motivation is presented
in [Arieli and Straßer, 2019]. The formalism introduced in
this paper has some advantages: First, in our case all infer-
ence rules may be chained, so in particular conclusions of
attack rules may serve as conditions of other rules. Second,
rules for final acceptability are based on the available deriva-
tion and not on its potential extensions, as in [Arieli and
Straßer, 2019], or in adaptive logics. Last, by including se-
quent annotations, the machinery for updating the statuses of
derived sequents is included in the derivation itself and does
not require an external evaluation procedure. By allowing
inference rules to reason about the acceptability statuses of
arguments, our approach integrates meta-argumentative rea-
soning [Jakobovits and Vermeir, 1999; Boella et al., 2009].

Acknowledgements
Ofer Arieli is partially supported by the Israel Science Foun-
dation (Grant No. 550/19). Kees van Berkel is supported by
the projects WWTF MA16-028 and FWF W1255-N23.

References
[Abe et al., 2019] Jair Minoro Abe, Kazumi Nakamatsu, and

João Inácio da Silva Filho. Three decades of paraconsis-
tent annotated logics: a review paper on some applica-
tions. In Proceedings of the 23rd International Confer-
ence Knowledge-Based and Intelligent Information & En-
gineering Systems (KES-2019), volume 159 of Procedia
Computer Science, pages 1175–1181. Elsevier, 2019.

[Arieli and Straßer, 2019] Ofer Arieli and Christian Straßer.
Logical argumentation by dynamic proof systems. Theo-
retical Computer Science, 781:63–91, 2019.

[Baroni et al., 2018] Pietro Baroni, Dov Gabbay, Massimil-
iano Giacomin, and Leon van der Torre, editors. Handbook
of Formal Argumentation, volume I. College Publications,
2018.

[Batens, 2007] Diderik Batens. A universal logic approach to
adaptive logics. Logica universalis, 1(1):221–242, 2007.

[Besnard et al., 2020] Philippe Besnard, Claudette Cayrol,
and Marie-Christine Lagasquie-Schiex. Logical theories
and abstract argumentation: A survey of existing works.
Journal of Argument and Computation, 11(1-2):41–102,
2020.

[Boella et al., 2009] Guido Boella, Dov Gabbay, Leendert
van der Torre, and Serena Villata. Meta-argumentation
modelling I: Methodology and techniques. Studia Logica,
93(2–3):297–355, 2009.

[Bonatti and Olivetti, 2002] Piero Andrea Bonatti and
Nicola Olivetti. Sequent calculi for propositional non-
monotonic logics. ACM Transactions on Computational
Logic, 3(2):226–278, 2002.

[Cerutti et al., 2017] Federico Cerutti, Sarah Alice Gaggl,
Matthias Thimm, and Johannes Peter Wallner. Founda-
tions of implementations for formal argumentation. Jour-
nal of Applied Logics-IfCoLog Journal of Logics and their
Applications, 4(8):2623–2706, 2017.

[Došen, 1985] Kosta Došen. Sequent-systems for modal
logic. Journal of Symbolic Logic, 50(1):149–168, 1985.

[Dung, 1995] Phan Minh Dung. On the acceptability of ar-
guments and its fundamental role in nonmonotonic rea-
soning, logic programming and n-person games. Artificial
Intelligence, 77(2):321–357, 1995.

[Gabbay et al., 2021] Dov Gabbay, Massimiliano Giacomin,
Guillermo R. Simari, and Matthias Thimm, editors. Hand-
book of Formal Argumentation, volume II. College Publi-
cations, 2021.

[Gentzen, 1934] Gerhard Gentzen. Untersuchungen über
das logische Schließen I, II. Mathematische Zeitschrift,
39:176–210, 405–431, 1934.

[Indrzejczak, 1997] Andrzej Indrzejczak. Generalised se-
quent calculus for propositional modal logics. Logica Tri-
anguli, 1:15–31, 1997.

[Jakobovits and Vermeir, 1999] Hadassa Jakobovits and
Dirk Vermeir. Robust semantics for argumentation frame-
works. Journal of Logic and Computation, 9(2):215–261,
1999.

[Pkhakadze and Tompits, 2020] Sopo Pkhakadze and Hans
Tompits. Sequent-type calculi for three-valued and dis-
junctive default logic. Axioms, 9(3), 2020.

[Straßer, 2014] Christian Straßer. Adaptive Logics for De-
feasible Reasoning. Applications in Argumentation, Nor-
mative Reasoning and Default Reasoning, volume 38 of
Trends in Logic. Springer, 2014.

	Introduction
	Annotated Sequent Calculi
	Some Examples and Properties
	Relations to Logical Argumentation
	Related Work and Conclusion

