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Abstract

Assumption-based argumentation is one of the most prominent formalisms for logical (or structured) argu-
mentation, with tight links to different forms of defeasible reasoning. In this paper we study the Dung semantics
for extended forms of assumption-based argumentation frameworks (ABFs), based on any contrapositive propo-
sitional logic, and whose defeasible assumptions are expressed by arbitrary formulas in that logic. We show that
unless the falsity propositional constant is part of the defeasible assumptions, the grounded and the well-founded
semantics for ABFs lack most of the desirable properties they have in abstract argumentation frameworks (AAFs),
and that for simple definitions of the contrariness operator and the attacks relations, preferred and stable semantics
are reduced to naive semantics. We also show the redundancy of the closure condition in the standard definition
of Dung’s semantics for ABFs, and investigate the use of disjunctive attacks in this setting. Finally, we show
some close relations of reasoning with ABFs to reasoning with maximally consistent sets of premises, and con-
sider some properties of the induced entailments, such as being cumulative, preferential, or rational relations that
satisfy non-interference.
Keywords: ABA frameworks, structured argumentation, Dungs semantics, assumption-based argumentation,
deductive argumentation, defeasible reasoning, inconsistency management

1 Introduction
Assumption-Based Argumentation (ABA), thoroughly described in [9], was introduced in the 1990s, as a com-
putational framework to capture and generalize default and defeasible reasoning. It was inspired by Dung’s se-
mantics for abstract argumentation and logic programming with its dialectical interpretation of the acceptability of
negation-as-failure assumptions based on “no-evidence-to-the-contrary”.

ABA systems are represented in different ways in the literature. A cornerstone in all of them is a distinc-
tion between two types of assumptions for the argumentation: the strict (non-revised) ones and the defeasible
ones. Traditionally, the latter are usually expressed in terms of logic-programming-like expressions of the form
A1∧ . . .∧An→ B (intuitively understood by ‘if all of A1, . . . ,An hold, then so does B’). Here we do not confine our-
selves to any specific syntactical forms of the (strict or deafeasible) expressions, but rather allow any propositional
assertion. The logical foundation for making arguments and counter-arguments in our setting may be based on any
logic respecting the contraposition rule, where the contrariness operator is of the simple and most natural form:
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the contrary of a formula is its negation. The outcome is what we call simple contrapositive assumption-based
(argumentation) frameworks (simple contrapositive ABFs, for short).

In this work we investigate the main Dung-style semantics [16] of simple contrapositive ABFs. This includes,
among others, the following new findings:

1. We show that while non-flat ABFs may not have complete extensions (and so grounded and well-founded
extensions may not available for them), simple contrapositive ABFs are non-flat ABFs that always have such
extensions.

2. We consider the well-founded semantics for ABFs and show that under a simple condition this semantics
coincides with the grounded semantics for the same ABFs.

3. We identify some conditions, without which the grounded (and the well-founded) semantics of (non-flat)
ABFs lose many of their desirable properties that are assured in the context of abstract argumentation frame-
works (AAFs).

4. We show that at least for the standard form of attack and simple definitions of the contrariness operator,
the main types of Dung’s semantics reduce to the naive semantics (a phenomenon that is known already for
some specific AAFs, see [1, 2, 3]).

5. We show that for simple contrapositive ABFs the closure requirement on the frameworks’ extensions is in
fact redundant. As a consequence, most of the concepts that are related to such ABFs are simplified, and
their computation becomes easier.

6. We show that as in the case of abstract and logical argumentation frameworks, the Dung’s semantics for
ABFs is tightly related to reasoning with maximal consistency [27].

7. We consider a generalization of the attack relation in ABFs, called disjunctive attacks. The use of these
attacks avoids some problems of the grounded semantics under standard attacks (see Item 2 above). The
consistency of extensions and correspondence to maximal consistency-based reasoning are preserved under
the generalization to disjunctive attacks, which means that some of the long-standing problems that were
reported by [11] for other logic-based argumentation formalisms using disjunctive attacks are avoided in our
setting.

8. We study some of the properties of the entailment relations that are induced by simple contrapositive ABFs.
This includes the well-known postulates introduced by Kraus, Lehmann, and Magidor (KLM) [22, 23], and
some other properties, such as non-interference [10].

The rest of this paper is organized as follows: in the next section we recall the main notions behind ABFs and
introduce simple contrapositive ABFs. Then, in Section 3 we consider the main Dung-style semantics for such
ABFs – first the preferred and the stable semantics, and then the grounded and the well-founded semantics. In
Section 4 we examine some of the properties of the induced entailment relations, in particular their relations to the
base logic, belonging to the KLM-defined families for non-monotonic entailments, and the satisfaction of proper-
ties that are related to inconsistency handling such as non-interference. Then we consider two generalizations of
our settings: one (Section 5) is related to the removal of the closure requirement in the definition of the semantics,
and the other (Section 6) involves extended attack relations, called disjunctive attacks. It is shown that in both
cases most of the properties of the semantics and the entailment relations before the generalizations are preserved.
In Section 7 we conclude.1

1This paper is a revised and extended version of the papers in [19, 20, 21].
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2 Simple Contrapositive ABFs
We start by some preliminaries, concerning assumption-based argumentation frameworks and their ingredients.
We then define what simple contrapositive ABFs are.

In what follows we shall denote by L an arbitrary propositional language. Atomic formulas in L are denoted
by p,q,r, compound formulas are denoted by ψ,φ ,σ , and sets of formulas in L are denoted by Γ, ∆, Θ (possibly
primed or indexed). The powerset of L is denoted by ℘(L ).

Definition 1 A logic for a language L is a pair L = 〈L ,`〉, where ` is a consequence relation for L [29], that
is, a binary relation between sets of formulas and formulas in L , satisfying the following conditions:

Reflexivity: if ψ ∈ Γ then Γ ` ψ .

Monotonicity: if Γ ` ψ and Γ⊆ Γ′, then Γ′ ` ψ .

Transitivity: if Γ ` ψ and Γ′,ψ ` φ then Γ,Γ′ ` φ .

In addition, we shall assume that L satisfies the following standard conditions:

Structurality (closure under substitutions): if Γ ` ψ then θ(Γ) ` θ(ψ) for every L -substitution θ .

Non-triviality: there are a non-empty set Γ and a formula ψ such that Γ 6` ψ .

The `-transitive closure of a set Γ of L -formulas is Cn`(Γ) = {ψ | Γ ` ψ}. When ` is clear from the context,
we will sometimes just write Cn(Γ).

Definition 2 We shall assume that the language L contains at least the following connectives and constant:

a `-negation ¬, satisfying: p 6` ¬p and ¬p 6` p (for every atomic p).

a `-conjunction ∧, satisfying: Γ ` ψ ∧φ iff Γ ` ψ and Γ ` φ .

a `-disjunction ∨, satisfying: Γ,φ ∨ψ ` σ iff Γ,φ ` σ and Γ,ψ ` σ .

a `-implication ⊃, satisfying: Γ,φ ` ψ iff Γ ` φ ⊃ ψ .

a `-falsity F, satisfying: F ` ψ for every formula ψ .2

We abbreviate {¬γ | γ ∈ Γ} by ¬Γ, and when Γ is finite we denote by
∧

Γ (respectively, by
∨

Γ), the conjunction
(respectively, the disjunction) of all the formulas in Γ. We shall say that Γ is `-consistent if Γ 6` F (otherwise Γ is
`-inconsistent).

Definition 3 A logic L = 〈L ,`〉 is explosive, if for every L -formula ψ the set {ψ,¬ψ} is `-inconsistent.3 We
say that L is contrapositive, if for every Γ and ψ it holds that Γ ` ¬ψ iff either ψ = F,4 or for every φ ∈ Γ we have
that Γ\{φ},ψ ` ¬φ .

Example 1 Perhaps the most notable example of a logic which is both explosive and contrapositive, is classical
logic, CL. Intuitionistic logic, the central logic in the family of constructive logics, and standard modal logics are
other examples of well-known formalisms having these properties.

The next, simple observation, will be useful in what follows.

2Note that F is not a standard atomic formula, since F ` ¬F.
3That is, ψ,¬ψ ` F. Thus, in explosive logics every formula follows from complementary assumptions.
4In particular, /0 ` ¬F.
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Lemma 1 Let L= 〈L ,`〉 be an explosive logic. Then Γ is `-inconsistent iff both Γ ` ψ and Γ ` ¬ψ .

Proof. If Γ is `-inconsistent then Γ ` F, and since both F ` ψ and F ` ¬ψ we get by transitivity one direction.
For the converse, suppose that Γ ` ψ and Γ ` ¬ψ . Since ∧ is a `-conjunction, we get Γ ` ψ ∧¬ψ . Also, since
L is explosive, ψ,¬ψ ` F so by the conjunction properties ψ ∧¬ψ ` F. Thus, by transitivity, Γ ` F, and so Γ is
`-inconsistent. 2

We are now ready to define assumption-based argumentation frameworks (ABFs). The next definition is a
generalization of the definition from [9].

Definition 4 An assumption-based framework is a tuple ABF = 〈L,Γ,Ab,∼〉 where:

• L= 〈L ,`〉 is a propositional logic.

• Γ (the strict assumptions) and Ab (the candidate/defeasible assumptions) are distinct (countable) sets of
L -formulas, where the former is assumed to be `-consistent and the latter is assumed to be nonempty.

• ∼ : Ab→℘(L ) is a contrariness operator, assigning a finite set of L -formulas to every defeasible assump-
tion in Ab, such that for every `-consistent ψ ∈ Ab\{F} it holds that ψ 6`

∧
∼ψ and

∧
∼ψ 6` ψ .

Note 1 Some remarks on the relations between assumption-based frameworks as in Definition 4 and elsewhere in
the literature (e.g., [9, 12, 12]) are in order.

a) An ABF in our setting may be based on any propositional logic L and the strict as well as the candidate
assumptions consist of arbitrary formulas in the language of that logic. While this is the case also according
to the definitions in [9, 12, 12], in practice the ABFs that are investigated in these papers are only those that
are based on atomic (strict and defeasible) assumptions.

Concerning the contrariness operator, we note that it is not a connective of L , as it is restricted only to the
candidate assumptions. The conditions on the contrariness operator express the requirement that a formula
should not imply, nor it should be implied by, its contrary.

b) Traditionally, ABFs make use of some set of domain dependent rules as known from e.g. logic programming
(i.e., rules of the form φ1, . . . ,φn → φ , as in logic programming). It is not difficult to see that our setting
also applies to this subclass of ABFs by assuming that the implication ⊃ is deductive (i.e., it is an `-
implication, see above) and treating such rules as strict premises

∧n
i=1 φi ⊃ φ . Such a framework is a simple

contrapositive ABF if the rules are closed under contraposition. Thus, the traditional definition of ABFs by
domain dependent rules can be seen as a special case of ABFs in our setting.

c) Assumption-based frameworks as defined in this paper can just as well be seen as a special class of ABFs
using domain dependent rules. Indeed, given a propositional logic L = 〈L ,`〉, one may define a domain
dependent set of rules RL as {φ1, . . . ,φn → φ | φ1, . . . ,φn ` φ}. Such a translation views ABFs as defined
in our paper as a special case of the traditional definition of assumption-based argumentation, and as such
ensures that all the results, tools and concepts from assumption-based argumentation can be applied to our
study of ABFs.

Defeasible assertions in an ABF may be attacked in the presence of a counter defeasible information. This is
described in the next definition.

Definition 5 Let ABF = 〈L,Γ,Ab,∼〉 be an assumption-based framework, ∆,Θ⊆ Ab, and ψ ∈ Ab. We say that ∆

attacks ψ iff Γ,∆ ` φ for some φ ∈∼ψ . Accordingly, ∆ attacks Θ if ∆ attacks some ψ ∈Θ.
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{s}{p,¬p,s}
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{p,s}

{¬p,s}

Figure 1: An attack diagram for Example 2

Example 2 Let L = CL, Γ = /0, Ab = {p,¬p,s}, and ∼ψ = {¬ψ} for every formula ψ . A corresponding attack
diagram is shown in Figure 1.5

Note that since in classical logic inconsistent sets of premises imply any conclusion, the classically inconsistent
set {p,¬p,s} attacks all the other sets in the diagram (For instance, {p,¬p,s} attacks {s}, since p,¬p,s ` ¬s).

Note 2 In contrast to most of the structured accounts of argumentation (such as ASPIC+ [24, 25, 26], deductive
argumentation [8], DeLP [18] and sequent-based argumentation [4]), in which attacks are defined between indi-
vidual arguments, in ABA systems attacks are defined between sets of assumptions. This may be viewed a higher
level of abstraction, operating on equivalence classes that consist of arguments generated from the same assump-
tions. (There are some formulations of ABA systems that define attacks on the level of individual arguments, see
for instance [17]. However, since attacks are only possible on assumptions, these formulations are equivalent to
the standard ones. See also [32].)

Definition 5 gives rise to the following adaptation to ABFs of the usual Dung-style semantics [16] for abstract
argumentation frameworks.

Definition 6 ([9])6 Let ABF = 〈L,Γ,Ab,∼〉 be an assumption-based framework, and let ∆ be a set of defeasible
assumptions. Below, maximum and minimum are taken with respect to set inclusion. We say that:

• ∆ is closed (in ABF) if ∆ = Ab∩Cn`(Γ∪∆).

• ∆ is conflict-free (in ABF) iff there is no ∆′ ⊆ ∆ that attacks some ψ ∈ ∆.

• ∆ is naive (in ABF) iff it is closed and maximally conflict-free (i.e., there is no conflict-free and closed
∆′ ⊆ Ab such that ∆ ( ∆′).

• ∆ defends (in ABF) a set ∆′ ⊆ Ab iff for every closed set Θ that attacks ∆′ there is ∆′′ ⊆ ∆ that attacks Θ.

• ∆ is admissible (in ABF) iff it is closed, conflict-free, and defends every ∆′ ⊆ ∆.

• ∆ is complete (in ABF) iff it is admissible and contains every ∆′ ⊆ Ab that it defends.

• ∆ is well-founded (in ABF) iff ∆ =
⋂
{Θ⊆ Ab |Θ is complete}.7

• ∆ is grounded (in ABF) iff it is minimally complete (i.e., no ∆′ ( ∆ is complete).

• ∆ is preferred (in ABF) iff it is maximally admissible (i.e., there is no admissible ∆′ ⊆ Ab such that ∆ ( ∆′).

• ∆ is stable (in ABF) iff it is closed, conflict-free, and attacks every ψ ∈ Ab\∆.
5For reasons that will become apparent in the sequel we include in the diagram only closed sets (i.e., only subsets ∆ ⊆ Ab such that

∆ = Ab∩Cn`(Γ∪∆) (see Definition 6). Thus, the set {p,¬p} is omitted from the diagram.
6To be precise, the naive and grounded semantics were not defined in [9], but as they are very frequently discussed in the context of

argumentation-based frameworks, we include here as well their definitions, adjusted to ABA systems.
7Clearly, the well-founded extension of an ABF is unique.
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Note 3 According to Definition 6, extensions of an ABF are required to be closed. This is a standard requirement
for ABFs (see, e.g., [9, 31]). In many works on ABA (e.g., [14, 15, 32]) attention is even restricted to flat ABFs,
which are frameworks ABF = 〈L,Γ,Ab,∼〉 for which for no ∆ ⊆ Ab it holds that Γ,∆ ` φ for some φ ∈ Ab \∆.
Notice that in flat ABFs, any set of assumptions is closed. We do not impose such a restriction, but require closeness
in agreement with the literature on non-flat ABA, although most other frameworks for structured argumentation
(such as ASPIC [25, 26], sequent-based argumentation [4] or argumentation based on classical logic [7]) do not
demand extensions to be closed under strict rules. In Section 5 we show under which conditions this requirement
can be conservatively given up.

The set of the complete (respectively, the naive, grounded, well-founded, preferred, stable) extensions of ABF
is denoted Com(ABF) (respectively, Naive(ABF) Grd(ABF), WF(ABF), Prf(ABF), Stb(ABF)). In what follows
we shall denote by Sem(ABF) any of the above-mentioned sets. The entailment relations that are induced from an
ABF (with respect to a certain semantics) are defined as follows:

Definition 7 Given an assumption-based framework ABF = 〈L,Γ,Ab,∼〉 and Sem ∈ {Naive,WF,Grd,Prf,Stb},
we denote:

• ABF |∼∩Semψ iff Γ,∆ ` ψ for every ∆ ∈ Sem(ABF).

• ABF |∼∪Semψ iff Γ,∆ ` ψ for some ∆ ∈ Sem(ABF).

Note 4 Unlike standard consequence relations (Definition 1), which are relations between sets of formulas and
formulas, the entailments in Definition 7 are relations between ABFs and formulas. This will not cause any
confusion in what follows.

Example 3 Consider again Example 2, where L = CL, Γ = /0, and Ab = {p,¬p,s} (see also Figure 1). Here,
Naive(ABF) = Prf(ABF) = Stb(ABF) = {{p,s},{¬p,s}}, and so ABF |∼∗Sem s for every ∗ ∈ {∪,∩} and Sem ∈
{Naive,Prf,Stb}.

In the rest of the paper we shall investigate the semantics and entailment relations induced by the following
common family of ABFs according to Definitions 6 and 7.

Definition 8 A simple contrapositive ABF is an assumption-based framework ABF = 〈L,Γ,Ab,∼〉, where L is an
explosive and contrapositive logic, and ∼ψ = {¬ψ}.

Since in what follows we consider simple contrapositive ABFs, we shall often denote the contrariness operator
by ¬, to emphasize that this operator is represented by negation of L.

3 Characterization Results
In this section we investigate the main types of Dung’s semantics for simple contrapositive ABFs. First, we
consider the preferred and stable semantics (Section 3.1), and then the grounded and the well-founded semantics
(Section 3.2).

3.1 Naive, Preferred and Stable Semantics
We start by examining the preferred and the stable semantics of ABFs. First, we show that in simple contrapositive
ABFs stable and preferred semantics actually coincide with naive semantics.

Proposition 1 Let ABF = 〈L,Γ,Ab,¬〉 be a simple contrapositive ABF. Then ∆ ⊆ Ab is naive in ABF iff it is a
stable extension of ABF, iff it is a preferred extension of ABF.
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Proof. We first show that every naive ∆ ⊆ Ab is a stable extension of ABF. Let ∆ ⊆ Ab be a naive extension of
ABF and suppose for a contradiction that it is not stable. Since ∆ is naive, it is closed, and since it is not stable,
there is some ψ ∈ Ab\∆ that is not attacked by ∆, that is: Γ,∆ 6` ¬ψ . Now, ψ 6∈ ∆ means that either Γ∪∆∪{ψ}
is not conflict-free or ∆∪{ψ} is not closed, and Cn(Γ∪∆∪{ψ})∩Ab is not conflict-free (since ∆ is maximally
conflict-free). In both cases, this means that Γ,∆,ψ ` ¬φ for some φ ∈ ∆∪{ψ}. Suppose first that φ = ψ . Then
Γ,∆,ψ ` ¬ψ , and since L is contrapositive, for every σ ∈ Γ∪∆, we have (Γ∪∆) \ {σ},ψ ` ¬σ .8 Again, by
contraposition this implies that Γ,∆ ` ¬ψ , a contradiction to the assumption that Γ,∆ 6` ¬ψ . Suppose now that
φ ∈ ∆. Then again since L is contrapositive, Γ,∆ ` ¬ψ , again a contradiction to the assumption that Γ,∆ 6` ¬ψ .

Now we show that every stable ∆ ⊆ Ab is naive in ABF. Indeed, suppose that ∆ ⊆ Ab is stable but not naive
in ABF. Then ∆ ( Θ for some conflict-free set Θ ⊂ Ab. Let φ ∈ Θ \∆. Since ∆ is stable, it attacks φ , that is
Γ,∆′ ` ¬φ for some ∆′ ⊆ ∆. It follows that ∆′∪{φ} is not conflict-free. Since the latter is a subset of Θ, we have
that Θ cannot be conflict-free either.

Next, we show that every preferred ∆ ⊆ Ab is naive in ABF. Indeed, let ∆ ⊆ Ab be a preferred extension.
Suppose for a contradiction that some strict superset Θ of ∆ is closed and conflict-free. By the first case, Θ is stable
and consequently admissible, contradicting that ∆ is preferred.

Finally, to see that every naive extension is preferred, suppose that ∆ is a naive extension. By the first case, ∆

is stable. Since every stable extension is preferred [16], ∆ is preferred. 2

Proposition 1 allow us to show that like abstract argumentation (as well as some other forms of structured
argumentation, such as ASPIC [25, 26], sequent-based argumentation [4], and even flat ABFs), preferred/stable
extensions are complete, and maximally complete extensions are preferred/stable. This is what we show in the
next proposition. This is a significant result, since for arbitrary non-flat ABFs this is not necessarily true (Indeed,
in such ABFs preferred extensions always exist while complete extensions do not; See e.g. [12, Examples 2.15
and 2.18]).

Proposition 2 Let ABF = 〈L,Γ,Ab,¬〉 be a simple contrapositive assumption-based framework. Then:

a) Any preferred or stable extension of ABF is complete.

b) Any maximally complete extension of ABF is preferred and stable.

Proof. By Proposition 1 it is sufficient to show the first item for stable extensions. So suppose for a contradiction
that ∆ is stable, yet some A ∈ Ab\∆ is defended by ∆. Since ∆ is stable, Γ,∆ ` ¬A. Since ∆ defends A, ∆ attacks
itself, a contradiction to ∆ being conflict-free.

For the second item, suppose that ∆ is complete and there is no ∆ ( ∆′ such that ∆′ is complete. Since ∆ is
complete, it is also admissible. Suppose towards a contradiction that ∆ is not preferred, i.e., there is a ∆ ( ∆′

such that ∆′ is admissible. Without a loss of generality, we may assume that such ∆′ is maximally admissible, and
so it is a preferred extension of ABF. By the first item of the proposition, ∆′ is complete, which contradicts our
assumption. It follows that ∆ is preferred and by Proposition 1 it is also stable. 2

Next, we show the relation to reasoning with maximal consistent subsets of the premises.

Definition 9 Let ABF = 〈L,Γ,Ab,∼〉. A set ∆⊆ Ab is maximally consistent in ABF, if

a) Γ,∆ 6` F and

b) Γ,∆′ ` F for every ∆ ( ∆′ ⊆ Ab.

The set of the maximally consistent sets in ABF is denoted MCS(ABF). Accordingly, we denote:

• ABF |∼e
MCSψ iff Γ,

⋂
MCS(ABF) ` ψ .

8Note that Γ∪∆ is not empty, otherwise ψ ` ¬ψ , contradicting the condition on ¬ in Definitions 2 and 4.
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• ABF |∼∩MCSψ iff Γ,∆ ` ψ for every ∆ ∈MCS(ABF).

• ABF |∼∪MCSψ iff Γ,∆ ` ψ for some ∆ ∈MCS(ABF).

Note 5 Clearly, if ABF |∼e
MCSψ then ABF |∼∩MCSψ . To see that the converse does not hold, consider for instance

the simple contrapositive ABF where L= CL, Γ = {¬(p∧q), p⊃ s,q⊃ s} and Ab = {p,q}. Here MCS(ABF) =
{{p},{q}} and

⋂
MCS(ABF) = /0, thus ABF |∼∩MCSs but ABF 6 |∼e

MCSs.

Example 4 Consider again Examples 2, where L = CL, Γ = /0, and Ab = {p,¬p,s} (see also Figure 1). Here,
MCS(ABF) = {{p,s},{¬p,s}}, and so ABF |∼∗MCS s for every ∗ ∈ {∪,∩,e}. Note the similarity to the result in
Example 3. As the next theorem and corollary show, this is not a coincidence.

Theorem 1 Let ABF = 〈L,Γ,Ab,¬〉 be a simple contrapositive assumption-based framework, and let ∆ ⊆ Ab.
Then ∆ is a stable extension of ABF, iff it is a preferred extension of ABF, iff it is naive in ABF, iff it is an element
in MCS(ABF).

Proof. Follows from Proposition 1 and the next lemma.

Lemma 2 Let ABF= 〈L,Γ,Ab,¬〉 be a simple contrapositive assumption-based framework. Then ∆⊆Ab is naive
in ABF iff ∆ ∈MCS(ABF).

Proof. [⇒]: Suppose that ∆ ⊆ Ab is naive. Then Γ,∆ 6` F, otherwise since for every ψ ∈ ∆ it holds that F ` ¬ψ ,
by transitivity we get Γ,∆ ` ¬ψ , and so ∆ cannot be conflict-free. To see the maximality condition in Definition 9,
suppose for a contradiction that there is some set ∆′ that properly contains ∆ and Γ,∆′ 6` F. Since ∆ is naive, either
∆′ is not conflict-free or ∆′ is not closed and Cn(∆′∪Γ)∩Ab is not conflict-free. In both cases, again by transitivity
with F ` ¬ψ we get Γ,∆′ ` ¬φ for some φ ∈ ∆′. Since by reflexivity Γ,∆′ ` φ , Lemma 1 implies that Γ∪∆′ is
`-inconsistent, a contradiction to Γ,∆′ 6` F. Thus ∆ ∈MCS(ABF).
[⇐]: Suppose that ∆ ∈MCS(ABF). Then ∆ is obviously conflict-free. Suppose for a contradiction that there is a
set ∆′ that properly contains ∆ and is still conflict-free. Since ∆ is a maximal consistent set in ABF, Γ,∆′ ` F. But
then Γ,∆′ ` ¬φ for any φ ∈ ∆′, thus ∆′ cannot be conflict-free. Suppose now ∆ is not closed, i.e., Γ∪∆ ` φ for
some φ ∈ Ab\∆. Since ∆ ∈MCS(ABF), Γ,∆,φ ` F and consequently, Γ,∆ ` ¬φ . But since Γ,∆ ` φ , by Lemma 1
we get again that Γ,∆ ` F, contradicting the fact that Γ,∆ 6` F. 2

Note 6 Under the definition of the contrary by negation, the assumption that L is explosive is essential for Lemma 2
(and so also for Theorem 1). To see this, consider a logic for which φ ,¬φ 6` F (e.g. Batens’ CLuNs, Priest’s 3-
valued LP, or Dunn-Belnap’s 4-valued logic). Then for ABF = 〈L, /0,{p,¬p},¬〉 we have that MCS(ABF) =
{{p,¬p}}, yet {p} attacks {¬p} and vice versa, i.e., the naive extensions are {p} and {¬p}.

By Theorem 1 we thus have:

Corollary 1 Let ABF = 〈L,Γ,Ab,¬〉 be a simple contrapositive assumption-based framework. Then:

• ABF |∼∩Naiveψ iff ABF |∼∩Prfψ iff ABF |∼∩Stbψ iff ABF |∼∩MCSψ .

• ABF |∼∪Naiveψ iff ABF |∼∪Prfψ iff ABF |∼∪Stbψ iff ABF |∼∪MCSψ .

The collapsing of the preferred and stable semantics to naive semantics in simple contrapositive ABFs is not
surprising. Similar results for specific AAFs are reported in [1] and [3].9 Yet, as shown in [3], when more
expressive languages, and/or attack relations, and/or entailment relations are involved, this phenomenon ceases to
hold.

9See also the survey in [2].
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3.2 The Grounded and the Well-Founded Semantics
We now turn to the more conservative semantics of simple contrapositive ABFs: grounded and well-founded. We
start with the general case, in which we show that some of nice properties of these semantics in the context of
AAFs are not guaranteed for ABFs. Then we show that by adding a simple condition, namely that F ∈ Ab, those
properties can be assured also for ABFs.

3.2.1 The General Case

A. The Grounded Semantics

The grounded extension in abstract argumentation frameworks (AAFs) has many nice properties. For example, it
is unique, always exists, and can be built up recursively starting from the set of unattacked arguments. The latter
property stems from the following postulate, known as Dung’s fundamental lemma (in short, DFL):

DFL: If ∆ is admissible10 and defends ψ , then ∆∪{ψ} is also admissible.

These properties of the grounded semantics carry on to flat ABFs.11. However, when non-flat ABFs are con-
cerned, and thus also when the ABFs under consideration are contrapositive (not even simple ones), none of these
properties is guaranteed anymore.12 For instance, to see that the DFL fails (and so the usual iterative process for
constructing grounded extensions in AAFs may fail for non-flat ABFs), consider the following example:

Example 5 Let L= CL (classical logic), Γ = {p⊃¬s, s⊃¬r, p∧ r ⊃ t}, and Ab = {p,r,s, t}. A fragment of the
attack diagram (for singletons only) is shown in Figure 2.

{p}{s}{r} {t}

Figure 2: An attack diagram for Example 5

Note that {p} is admissible and that {p} attacks {s}, which is the only attacker of {r}, thus {p} defends {r}.
However, {p,r} is not closed and therefore it is not admissible (while {p,r, t} is admissible).

The next example shows that Grd(ABF) 6=
⋂
MCS(ABF), thus an analogue of Theorem 1 does not hold for

the grounded semantics

Example 6 Consider again Examples 2 and 3, where L = CL, Γ = /0, and Ab = {p,¬p,s} (see also Figure 1).
Note that the grounded set of defeasible assumptions is the emptyset, since there are no unattacked arguments.
However, here

⋂
MCS(ABF) = {s}. The intuitive reason for this behavior is that the inconsistent set {p,¬p,s}

contaminates the argumentation framework, thus keeping s out of the grounded set of defeasible assumptions.

The last example also demonstrates the problems of the grounded semantics in handling inconsistencies in
ABFs. Indeed, in the presence of an inconsistency the whole argumentation framework may be contaminated,
blocking any informative output, such as the innocent bystander s in Examples 2 and 6.

Finally, we show that (unlike abstract argumentation) uniqueness is not guaranteed for grounded semantics.

Example 7 Let L be an explosive logic, Ab = {p,¬p,q} and Γ = {s,s ⊃ q}. Note that the emptyset is not ad-
missible, since it is not closed (indeed, Γ ` q). Also, {q} is not admissible since p,¬p ` ¬q. The two minimal
complete extensions in this case are {p,q} and {¬p,q}, thus there is no unique grounded extension in this case.

10Recall that generally, in structured argumentation frameworks this does not mean that ∆ is closed.
11Recall (Note 3) that these are ABFs in which no set of assumptions ∆⊆ Ab implies an assumption φ ∈ Ab\∆
12We note that in [9] and [12] the grounded semantics was not defined for non-flat ABA, but only for flat ABFs. Thus, one may regard this

section as an answer to the question: “does it make sense to define the grounded extension also for (the non-flat) simple contrapositive ABFs?”.
As we show in this section, such a definition is not without problems, but these problems can be easily solved, as shown in Section 3.2.2.
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B. The Well-Founded Semantics

We now consider the well-founded semantics for ABFs. The existence of a well-founded extension for any simple
contrapositive ABF follows from the following claim:

Proposition 3 Any simple contrapositive ABF has a complete extension.

Proof. It is clear from Definition 9 that MCS(ABF) 6= /0 for every ABF. By Theorem 1, then, Stb(ABF) 6= /0.
Since every stable extension is complete (Proposition 2(a)), this concludes the proof. 2

Note 7 As indicated in [12, 12], non-flat ABFs may not have a complete extension (and so well-founded and
grounded extensions may not be available for them; See e.g. [12, Example 2.15]). As Proposition 3 shows, this is
not the case in simple contrapositive ABFs.

As already noted in Definition 6, the well-founded extension is unique and thus problems like those described
in Example 7 for the grounded extension are avoided for the well-founded semantics. However, the next example
shows that, as in the case of the grounded semantics, the well-founded extension of ABF does not always coincide
with

⋂
MCS(ABF) (cf. Example 6).13

Example 8 Consider again Examples 2 and 3. We have that Com(ABF)= { /0,{p,s},{¬p,s}}, therefore WF(ABF)=
/0. However,

⋂
MCS(ABF) = {s}.

3.2.2 A More Plausible Case

In the previous section we have shown that in the context of contrapositive ABFs (as well as in the context of
other non-flat ABFs), the well-founded semantics and the grounded semantics do not have some of the expected
properties shared by the same semantics in the context of abstract argumentation frameworks or flat assumption-
based frameworks. In this sections we show that these properties can be guaranteed also for simple contrapositive
ABFs by requiring that F ∈ Ab.14 To get some intuition why this is the case, let’s first observe how the addition of
F to Ab would change Examples 6 and 8.

Example 9 Consider the same ABF as of Example 2, except that now F is added to Ab. Note that {p,¬p} ` F and
consequently {p,¬p} is not closed, whereas {p,¬p,s,F} is. Furthermore, /0 ` ¬F and consequently we have the
attack diagram, shown in Figure 3. Now the grounded as well as the well-founded set of defeasible assumptions is
{s} (cf. Example 6 and 8).

/0 {s}{p,¬p,s,F}
{p}

{¬p}

{p,s}

{¬p,s}

Figure 3: An attack diagram for Example 9

In the rest of this section we therefore assume that F ∈ Ab, and check the grounded semantics and the well-
founded semantics in this case.

13Although this is not necessarily a shortcoming of the well-founded semantics, it deviates from the usual behavior of similar semantics
of structured argumentation frameworks that are based on contrapositive logics (see [2]) and related semantics for e.g. logic programming
(see [33] where the well-founded semantics does allow to derive innocent bystanders, i.e. formulas not involved in any conflict). Furthermore,
this behavior also makes for a violation of the rationality postulate of non-interference (see Section 4).

14Intuitively, this means that any inconsistent set of arguments will be attacked by the emptyset and thus it is excluded from any admissible
extension.
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A. The Grounded Semantics, Revisited

First we show that, despite of the failure of the DFL in simple contrapositive ABFs, when F ∈ Ab we can still get
the grounded extension by the well-known iterative construction [9, Definition 5.2].

Definition 10 Let ABF = 〈L,Γ,Ab,∼〉 be an assumption-based framework.

• G0(ABF) consists of all φ ∈ Ab such that no ∆⊆ Ab attacks φ .

• Gi+1(ABF) consists of the union of Gi(ABF) and all the assumptions that are defended by Gi(ABF).

• G (ABF) =
⋃

i>0 Gi(ABF).

When ABF is clear from the context we will sometimes just write G0, Gi and G .

Theorem 2 Let ABF be a simple contrapositive ABF and suppose that F ∈ Ab. Then Grd(ABF) = {G }.

For the proof of Theorem 2 we first need to show a few lemmas. In all of these lemmas we assume that
ABF = 〈L ,`,Γ,Ab,¬〉 is a simple contrapositive ABF, and that F ∈ Ab.

Lemma 3 The emptyset defends every formula in Ab that follows from Γ.

Proof. Suppose that Γ ` φ and some Θ =Cn(Θ∪Γ)∩Ab attacks φ , i.e., Γ,Θ ` ¬φ . By the monotonicity of ` we
thus have that Γ,Θ ` φ and Γ,Θ ` ¬φ , so by Lemma 1, Γ,Θ ` F. Since Θ is closed, F ∈Θ. But, then since /0 ` ¬F,
/0 attacks Θ. 2

Lemma 4 G1(ABF) is conflict-free.

Proof. If G1 = /0 then it is conflict-free by definition. Suppose for a contradiction that Γ,G1 ` ¬φ for some φ ∈ G1.
Then G1 attacks itself, and so G0 attacks some δ ∈ Cn(G1 ∪Γ)∩Ab, i.e. Γ,G0 ` ¬δ . Since L is contrapositive,
Γ,(G0 \ {ψ}),δ ` ¬ψ for any ψ ∈ G0. But this contradicts the fact that G0 contains only unattacked defeasible
assumptions. 2

Lemma 5 G2(ABF) = G1(ABF).

Proof. By Definition 10, G1(ABF) ⊆ G2(ABF). To see that G2(ABF) ⊆ G1(ABF) we have to show that every
assumption that is defended by G1 is also defended by G0. For this, it is enough to show that if G1 attacks a closed
set Θ (i.e., Θ =Cn(Γ∪Θ)∩Ab), G0 also attacks Θ.

Suppose for a contradiction that Θ=Cn(Γ∪Θ)∩Ab is attacked by G1 but not by G0. This means that Γ,G1 `¬φ

for some φ ∈Θ.
Suppose first that Γ,(G1∪G0)`¬φ . By contraposition, there is some ψ ∈G0 such that Γ,(G0∪G1)\ψ,φ `¬ψ ,

contradicting the fact that ψ is not attacked.
Thus, Γ,(G1 \ G0) ` ¬φ . Now, by contraposition, Γ,(G1 \ (G0 ∪ {ψ})),{φ} ` ¬ψ for every ψ ∈ G1. Let

ψ1 ∈ (G1 \ (G0 ∪ {ψ}))∪ {φ} be such a formula. Since ψ1 ∈ G1 \ G0, ψ1 is defended by G0, thus there is a
δ ∈Cn(Γ∪ ((G1 \ (G0∪{ψ1}))∪{φ})∩Ab s.t. Γ,G0 ` ¬δ . We consider three possibilities:
• if δ ∈ G1, then G1 is not conflict-free, contradicting Lemma 4.
• if δ = φ , then G0 attacks Θ, which contradicts the choice of Θ.
• Suppose finally that δ ∈Cn(Γ∪ (G1 \ (G0∪{ψ1}))∪{φ})∩Ab\ (G1 \ (G0∪{ψ1})∪{φ}). By contraposition,
for every θ ∈ G0, Γ,(G0 \{θ}),δ ` ¬θ . Since Γ,(G1 \(G0∪{ψ1})),φ) ` δ , we have that Γ,G1 ` ¬θ , contradicting
that θ is not attacked. 2

Corollary 2 G (ABF) = G0(ABF)∪G1(ABF) = G1(ABF).

Proof. Follows immediately from Lemma 5. 2
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Lemma 6 G is closed.

Proof. Suppose for a contradiction that Γ,G ` φ for some φ ∈ Ab and φ 6∈ G . In particular, φ 6∈ G0, thus there
is some Θ ⊆ Ab such that Γ,Θ ` ¬φ and Γ,G 6` ¬θ for any θ ∈ Θ (otherwise G attacks Θ, thus defends φ ,
contradicting φ 6∈ G ). Thus, Γ,G1 6` ¬θ for any θ ∈ Θ (note that by Corollary 2, G = G1). Suppose first that
Γ ` φ . Then, by Lemma 3, /0 defends φ , and so also G0 defends φ , contradicting the choice of φ . Suppose now
that Γ 6` φ . Note that for every δ ∈ G1, Γ,Θ,G1 \{δ} ` ¬δ . Thus, since G0 defends δ ∈ G1, Γ,G0 ` ¬λ for some
λ ∈Cn(Γ∪Θ∪G1 \{δ})∩Ab. We consider the following possibilities:
• λ ∈Θ. This contradicts the assumption that Γ,G1 6` ¬θ for any θ ∈Θ.
• λ ∈ G1. This means that G0 attacks G1, contradicting G1 being conflict free (Lemma 4).
• λ 6∈ Θ∪G1, implying that Γ,Θ,G1 \{δ} ` λ . Then since L is contrapositive, Γ,Θ,∆,G0 \{ξ ,δ} ` ¬ξ for any
ξ ∈ G0, contradicting G0 containing only unattacked defeasible assumptions. 2

Now we can show Theorem 2.

Proof. It is clear from the construction of G that it is unique and that φ ∈ G iff φ is defended by G . Moreover, by
Lemma 4 and Corollary 2, G is conflict-free. By Lemma 6, G is also closed. Thus G it is complete. It remains
to show that G is minimal among the complete sets of ABF. If G is empty we are done. Otherwise, suppose
for a contradiction that there is some complete ∆ ( G , and let φ ∈ G \∆. If φ ∈ G0, then φ has no attackers and
consequently φ is (vacuously) defended by ∆, in which case ∆ cannot be complete. Thus φ 6∈ G0 and G0 ⊆ ∆.
Suppose now that φ ∈ G1. Then ∆ defends φ since G0 ⊆ ∆. Again, this contradicts the completeness of ∆. Thus,
G1 ⊆ ∆. By Corollary 2, G = G1 and consequently, G ⊆ ∆, contradicting the assumption that ∆ ( G . 2

The following is the counterpart, for the grounded semantics, of Theorem 1.

Theorem 3 Let ABF = 〈L,Γ,Ab,¬〉 be a simple contrapositive assumption-based framework in which F ∈ Ab.
Then Grd(ABF) = {

⋂
MCS(ABF)}.

Proof. By Theorem 2 it suffices to show that G (ABF) =
⋂
MCS(ABF).

To see that G (ABF)⊆
⋂
MCS(ABF), let Θ ∈MCS(ABF). By Theorem 1, Θ is stable, and so G (ABF)⊆ Θ.

(Indeed, suppose otherwise. Then there is ψ ∈ G \Θ, and since Θ is stable, it attacks ψ . Since ψ ∈ G , by
Lemma 5, G0 attacks Θ (note that G = G1 by Corollary 2). Since obviously G0 ⊆Θ, this contradicts the fact that Θ

is conflict-free).
To see that

⋂
MCS(ABF) ⊆ G (ABF), suppose for a contradiction that there is φ ∈

⋂
MCS(ABF) yet φ 6∈

G (ABF). By Lemma 5, this means that some Θ = Cn(Γ∪Θ)∩Ab attacks φ but G0(ABF) does not attack Θ.
Since φ ∈

⋂
MCS(ABF), Θ 6∈MCS(ABF). Suppose first that Θ∪Γ ` F. Then F ∈ Θ and consequently G0(ABF)

attacks Θ, which is a contradiction. Suppose then that Θ ( Θ′ for some Θ′ ∈ MCS(ABF). In this case, by
monotonicity Θ′∪Γ `¬φ , thus φ 6∈Θ′ (otherwise, Θ′∪Γ ` F and so Θ′ cannot be in MCS(ABF)). This contradicts
the assumption that φ ∈

⋂
MCS(ABF). 2

From Theorems 2 and 3 the following result is obtained (cf. Corollary 1):

Corollary 3 Let ABF = 〈L,Γ,Ab,¬〉 be a simple contrapositive assumption-based framework in which F ∈ Ab.
Then: ABF |∼∩Grdψ iff ABF |∼∪Grdψ iff ABF |∼e

MCSψ .

Proof. The equality of |∼∩Grd and |∼∪Grd follows from Theorem 2, since it shows that under the conditions of the
corollary Grd(ABF) is a singleton. The equality of |∼∩Grd and |∼e

MCS follows from Theorem 3. 2

B. The Well-Founded Semantics, Revisited

In what follows we show that as in the case of the grounded extension (see Theorems 2 and 3), the correspon-
dence of the well-founded extension to the (intersection of the) maximally consistent sets of assumptions can be
guaranteed by requiring that F ∈ Ab (cf. Example 8).
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Proposition 4 Let ABF= 〈L ,Γ,Ab,¬〉 be a simple contrapositive ABF. If F∈Ab then WF(ABF)= {
⋂
MCS(ABF)}.

Proof. By Theorem 2 and since F ∈ Ab, there exists a unique grounded extension for any ABF. From this it
follows that

⋃
Grd(ABF) ⊆ ∆ for any ∆ ∈ Com(ABF). This implies that

⋂
Com(ABF) =

⋃
Grd(ABF), that is:

WF(ABF) = Grd(ABF). 2

By Theorem 3 and Proposition 4 we thus have:

Corollary 4 Let ABF = 〈L ,Γ,Ab,¬〉 be a simple contrapositive ABF. If F ∈ Ab then WF(ABF) = Grd(ABF).

Note 8 In relation to Corollary 4, we note the following:

a) The fact that (unlike flat ABFs) the grounded semantics and the well-founded semantics may not be the same
in non-flat ABFs is already known (see, e.g., [12, Example 2.16]). However, to the best of our knowledge,
Corollary 4 is the first one that introduces a condition under which these two semantics coincide in non-flat
ABFs.

b) Examples 7 and 8 show that the condition that F ∈ Ab is indeed necessary for the last corollary.

4 Properties of the Induced Entailments |∼∩Sem and |∼∪Sem
In this section we consider some further properties of the entailment relations introduced in Definition 7, and which
are induced from simple contrapositive ABFs. Below, when ABF |∼ψ for some ABF = 〈L,Γ,Ab,¬〉 (where |∼ is
a relation defined in Definition 7), we shall just write Γ,Ab |∼ψ .15

4.1 Relations to the Base Logic
First, we note the following relations between |∼ and the consequence relation ` of the base logic:

Proposition 5 If Γ∪Ab is `-consistent then for every relation |∼ in Definition 7, Γ,Ab |∼ψ iff Γ,Ab ` ψ .16

Proof. When Γ∪Ab is `-consistent, WF(ABF) = Grd(ABF) = Prf(ABF) = Stb(ABF) = {Ab}, so the claim
immediately follows from Definition 7. 2

Proposition 6 For every relation |∼ in Definition 7 it holds that:

• If Γ,Ab |∼ψ then Γ,Ab ` ψ .

• If ` ψ then Γ,Ab |∼ψ for every Γ and Ab.

Proof. For the first item, note that if Γ,Ab |∼ψ then there is at least one subset ∆ ⊆ Ab for which Γ,∆ ` ψ . By
the monotonicity of `, then, Γ,Ab ` ψ . For the second item, note that if ` ψ , then for every ∆ ⊆ Ab it holds that
Γ,∆ ` ψ , thus Γ,Ab |∼ψ . 2

15Note that this writing is somewhat ambiguous, since, e.g. when Γ,Ab,φ are the premises, φ may be either a strict or a defeasible assumption.
Yet, we chose this notation because usually it won’t make a difference whether φ is a strict or a defeasible assumption, so this notation covers
both cases. When it does make a difference, we shall indicate this explicitly.

16Note, in particular, that skeptical and credulous reasoning coincide in this case.
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4.2 Cumulativity, Preferentiality and Rationality
Next, we consider the entailments in Definition 7 in the context of the reasoning patterns introduced by Kraus,
Lehmann and Magidor in [22] and [23].

Definition 11 A relation |∼ between ABFs and formulas in their languages is called cumulative, if the following
conditions are satisfied:

• Cautious Reflexivity (CR): For every `-consistent formula ψ it holds that ψ |∼ψ .

• Cautious Monotonicity (CM): If Γ,Ab |∼φ and Γ,Ab |∼ψ then Γ,Ab,φ |∼ψ .

• Cautious Cut (CC): If Γ,Ab |∼φ and Γ,Ab,φ |∼ψ then Γ,Ab |∼ψ .

• Left Logical Equivalence (LLE): If φ ` ψ and ψ ` φ then Γ,Ab,φ |∼ρ iff Γ,Ab,ψ |∼ρ .

• Right Weakening (RW): If φ ` ψ and Γ,Ab |∼φ then Γ,Ab |∼ψ .

A cumulative relation is called preferential, if it satisfies the following condition:

• Distribution (OR): If Γ,Ab,φ |∼ρ and Γ,Ab,ψ |∼ρ then Γ,Ab,φ ∨ψ |∼ρ .

A cumulative entailment is called rational, if it satisfies the following condition:17

• Rational Monotonicity (RM): If Γ,Ab |∼ρ and Γ,Ab 6|∼¬ψ then Γ,Ab,ψ |∼ρ .

Theorem 4 Let ABF = 〈L ,Γ,Ab,¬〉 be a simple contrapositive ABF. Then |∼∩Sem is preferential for Sem ∈
{Naive,Prf,Stb}.

Proof. We show preferentiality for |∼∩Sem where Sem ∈ {Naive,Prf,Stb}, based on Corollary 1. In the proofs
below, when ABF = 〈L,Γ,Ab,¬〉, we shall sometimes write MCS(Γ,Ab) instead of MCS(ABF).

CR: This property holds by Proposition 5 and the reflexivity of ` (thus ψ ` ψ).18

CM: Since Γ,Ab |∼∩semψ , by Corollary 1 we have that Γ,∆`ψ for every ∆∈MCS(Γ,Ab), and so, by monotonicity,
(∗) Γ,∆,φ ` ψ for every ∆ ∈MCS(Γ,Ab). Also, since Γ,Ab |∼∩sem φ , we have that Γ,∆ ` φ for every ∆ ∈
MCS(Γ,Ab), thus (∗∗) MCS(Γ,Ab,φ) = {∆∪{φ} | ∆ ∈MCS(Γ,Ab)}. By (∗) and (∗∗), then, Γ,∆′ ` ψ for
every ∆′ ∈MCS(Γ,Ab,φ), and by Corollary 1 again Γ,Ab,φ |∼∩sem ψ .

CC: Suppose that Γ,Ab |∼∩Semφ . By Corollary 1 we have that, (∗) Γ,∆` φ for every ∆∈MCS(ABF). Let ABF′=
〈L ,Γ,Ab∪{φ},¬〉 or ABF′ = 〈L ,Γ∪{φ},Ab,¬〉. ]Then, in the first case, MCS(ABF′) = {∆∪{φ} | ∆ ∈
MCS(ABF)}, and since Γ,Ab,φ |∼∩Semψ , by Corollary 1 we have in both cases that (∗∗) Γ,∆,φ `ψ for every
∆ ∈MCS(ABF). Thus, by Transitivity on (∗) and (∗∗) we have that Γ,∆ ` ψ for every ∆ ∈MCS(ABF),
and by Corollary 1, Γ,Ab |∼ψ .

LLE: Suppose that Γ,Ab |∼∩sem ψ . By Corollary 1 we have that Γ,∆ ` ψ for every ∆ ∈ MCS(ABF). Thus, by
transitivity with ψ ` φ , it holds that Γ,∆ ` φ for every ∆ ∈MCS(ABF). By Corollary 1 again, Γ,Ab |∼∩sem φ .
The converse is dual.

RW: Suppose that Γ,Ab |∼∩sem φ . By Corollary 1 we have that Γ,∆ ` φ for every ∆ ∈MCS(ABF). By transitivity
with φ ` ψ we get that Γ,∆ ` ψ for every ∆ ∈MCS(ABF), and by Corollary 1 again, Γ,Ab |∼∩sem ψ .

17Notice that we do not require rational entailment to be preferential, but merely cumulative.
18If ψ is a strict assumption, this property can be strengthened as follows: Γ |∼ψ for every ψ ∈ Γ. Note that this strengthening ceases to hold

for defeasible assumptions: if Ab = {F, p,¬p} then Ab 6|∼∩semp and Ab 6|∼∩sem¬p.
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OR: We first show the case where the primary formulas ψ , φ , and ψ,φ ∨ψ are defeasible. For λ ∈ {φ ,ψ,φ ∨
ψ} we denote ABFλ = 〈L ,Γ,Ab∪{λ},¬〉. Suppose for a contradiction that ABFφ |∼ρ and ABFψ |∼ρ ,
however ABFφ∨ψ 6|∼ρ . By Corollary 1, there is some ∆∈MCS(Γ,Ab,ψ∨φ) such that Γ,∆ 6` ρ . We consider
two cases:
• If ψ ∨ φ 6∈ ∆, then ∆ ∈ MCS(Γ,Ab) and so in particular ∆ is a consistent subset of Γ∪Ab∪{ψ}. We
show that it is a maximally consistent set of the latter. Indeed, for every δ ∈ Ab\∆ the set Γ,∆∪{δ} is not
consistent, otherwise ∆ 6∈MCS(Γ,Ab). Moreover, ∆∪{ψ} is not consistent either, otherwise Γ,∆,ψ 6` F,
and since ∨ is a disjunction, by Definition 2 we have that Γ,∆,φ ∨ψ 6` F, thus ∆∪{φ ∨ψ} is a consistent
subset of Γ∪Ab∪{φ ∨ψ} that properly includes ∆, contradicting that ∆ ∈MCS(Γ,Ab,φ ∨ψ). It follows,
then, that ∆ ∈MCS(Γ,Ab,ψ). By Corollary 1, this contradicts the assumption that Γ,Ab,ψ |∼∩sem ρ .
• If ∆ = ∆′ ∪ {ψ ∨ φ} where ∆′ is some consistent subset of Γ∪ Ab, then ∆′,ψ ∨ φ 6` ρ and since ∨ is
a disjunction, by Definition 2 we have that either ∆′,ψ 6` ρ or ∆′,φ 6` ρ . Thus, either ∆′ ∪ {ψ} is not
maximally consistent in Γ∪Ab∪{ψ} or ∆′ ∪{φ} is not maximally consistent in Γ∪Ab∪{φ} (otherwise,
by Corollary 1 we get a contradiction to one of the assumptions). Without loss of generality, suppose the
former. Then ∆′ ∈MCS(Γ,Ab,ψ), and so, by Corollary 1, Γ,Ab,ψ 6|∼∩sem ρ , a contradiction again.

We now show the case where the primary formulas are strict. For λ ∈ {φ ,ψ,φ ∨ψ} we denote ABFλ =
〈L ,Γ∪{λ},Ab,¬〉. Suppose towards a contradiction that ABFφ |∼ ρ and ABFψ |∼ ρ , but ABFφ∨ψ 6|∼ ρ .
By Corollary 1, there is some ∆ ∈MCS(Γ∪{ψ ∨φ},Ab) such that Γ∪{ψ ∨φ},∆ 6` ρ . We show that this
implies that ∆ ∈MCS(Γ∪{φ},Ab) or ∆ ∈MCS(Γ∪{ψ},Ab), contradicting the assumption that ABFφ |∼ρ

and ABFψ |∼ρ . Indeed, by Definition 2, Γ∪{ψ ∨φ},∆ 6` F implies that Γ∪{ψ},∆ 6` F or Γ∪{φ},∆ 6` F.
Without loss of generality, suppose the former. If ∆ 6∈MCS(Γ∪{ψ},Ab), there is a ∆′ ∈MCS(Γ∪{ψ},Ab)
such that ∆′ ⊇ ∆. For this ∆′, still Γ∪{ψ},∆′ 6` F. By Definition 2 again, this means that Γ∪{ψ∨φ},∆′ 6` F,
contradicting the assumption that ∆ ∈MCS(Γ∪{ψ ∨φ},Ab). Thus, ∆ ∈MCS(Γ∪{ψ},Ab). 2

Unlike |∼∩Sem, the credulous entailments |∼∪Sem are not preferential, since they do not satisfy the postulate OR.
This is shown in the next example.

Example 10 Let L = CL, Γ = /0, and Ab = {r ∧ (q ⊃ p),¬r ∧ (¬q ⊃ p)}. Then Ab,q |∼ p and Ab,¬q |∼ p but
Ab,q∨¬q 6 |∼ p for every entailment |∼ of the form |∼∪Sem where Sem ∈ {Naive,Prf,Stb}.

As the next proposition shows, the entailments |∼∪Sem for Sem ∈ {Naive,Prf,Stb} are still cumulative.

Theorem 5 Let ABF = 〈L ,Γ,Ab,¬〉 be a simple contrapositive ABF. Then |∼∪Sem is cumulative for every Sem ∈
{Naive,Prf,Stb}.

Proof. Similar to that of Theorem 4. 2

We now turn to the grounded and well-founded semantics.

Theorem 6 Let ABF = 〈L ,Γ,Ab,¬〉 be a simple contrapositive ABF where F∈ Ab. Then |∼∩Sem is preferential
for Sem ∈ {WF,Grd}.

Proof. It is rather a simple exercise to modify the proof of Theorem 4 to a proof of Theorem 6 for Sem = Grd,
using Corollary 3 instead of Corollary 1. Then, by Corollary 4 we get also the case where Sem=WF. We therefore
show only CM for |∼∩Grd, leaving the other cases to the reader.

Since Γ,Ab |∼∩Grd ψ , by Corollary 3 we have that Γ,∩MCS(Γ,Ab) ` ψ , and so, by monotonicity, we have
that (∗) Γ,∩MCS(Γ,Ab),φ ` ψ . Also, since Γ,Ab |∼∩Grd φ , by Corollary 3 it holds that Γ,∩MCS(Γ,Ab) ` φ ,
which implies that φ ∈ ∩MCS(Γ,Ab,φ) (since, by monotonicity, Γ,Θ ` φ for every Θ ∈ MCS(Γ,Ab)), and so
(∗∗) ∩MCS(Γ,Ab)∪ {φ} ⊆ ∩MCS(Γ,Ab,φ). Now, by (∗), (∗∗), and monotonicity, Γ,∩MCS(Γ,Ab,φ) ` ψ .
Thus, by Corollary 3 again, Γ,Ab,φ |∼∩Grd ψ . 2
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Note 9 By Theorem 2, if F∈Ab then |∼∪Grd = |∼
∩
Grd, and so, by Theorem 6, |∼∪Grd is preferential. Similarly, by

Corollary 4, |∼∪WF is preferential.

We now turn to rationality. The next example shows that RM does not hold for skeptical entailments based on
the naive, preferred and stable semantics, as well as for the grounded and well-founded semantics when F 6∈ Ab:

Example 11 ([28]) Let ABF = 〈CL, /0,Ab,¬〉 be a simple contrapositive assumption-based framework in which
Ab = {r, p∧ q∧¬r, (p∧ r) ⊃ ¬q, ¬p∧ q}. By Theorem 1, when Sem ∈ {Naive,Prf,Stb} we can just consider
MCS(ABF) = {{r,(p∧ r) ⊃ ¬q,¬p∧ q},{p∧ q∧¬r,(p∧ r) ⊃ ¬q}}. Note that none of the two elements of
MCS(ABF) implies ¬p, while both of them imply q.

Now, consider ABF′= 〈CL, /0,Ab∪{p},¬〉. We get: MCS(ABF′)= {{r,(p∧r)⊃¬q,¬p∧q},{p∧q∧¬r,(p∧
r) ⊃ ¬q, p},{r, p,(p∧ r) ⊃ ¬q}}. Since {r, p,(p∧ r) ⊃ ¬q} 6`CL q, we have that /0,Ab, p 6|∼∩Semq for every Sem ∈
{Naive,Prf,Stb}. Thus, rational monotonicity does not hold for |∼∩Sem for such Sem.

Note, further, that in this example MCS(ABF) also coincides with the grounded extensions of MCS(ABF) and
the minimally complete subsets of Ab. Thus, this example shows that RM is not satisfied also for |∼∩Grd and |∼∩WF.

The next example considers rationality of entailments based on the grounded and well-founded semantics when
F ∈ Ab.

Example 12 Let ABF = 〈CL,Γ,Ab,¬〉 be a simple contrapositive assumption-based framework in which Γ =
{¬(p∧ q∧ s),¬(p∧ r)} and Ab = {p,q,r,F}. By Theorem 3 we can just consider

⋂
MCS(ABF) = {q} (since

MCS(ABF) = {{p,q},{r,q}}). We thus have that Γ,
⋂
MCS(ABF) ` q and Γ,

⋂
MCS(ABF) 6` ¬s.

Now, consider the framework ABF′ = 〈CL,Γ,Ab∪{s},¬〉. We get: MCS(ABF′) = {{p,q},{r,q,s},{s, p}}
and thus

⋂
MCS(ABF′) = /0, so now

⋂
MCS(ABF′) 6` q.

It follows that rational monotonicity does not hold for |∼∩Grd = |∼
∪
Grd = |∼

∩
WF = |∼

∪
WF even if F ∈ Ab.

Note 10 The results in Theorems 4, 6, and Examples 11, 12 resemble similar results for other formalisms. For
instance, in [5, 6] is it shown that reasoning with (preferred) maximally consistent subsets of a knowledge-base
yields, under classical logic, preferential but not rational relations.

For the credulous entailments based on the naive, preferred and stable semantics, however, RM does hold:

Proposition 7 Let ABF = 〈L ,Γ,Ab,¬〉 be a simple contrapositive ABF. Then |∼∪Sem satisfies RM for Sem ∈
{Naive,Prf,Stb}.

Proof. By Theorem 1 it suffices to show that if ∆ ∈ MCS(Γ,Ab) and ∆ ` φ and ∆ 6` ¬ψ , there is a Θ ∈
MCS(Γ,Ab,ψ) s.t. Θ ` φ . Indeed, suppose that ∆ ∈ MCS(Γ,Ab) and ∆ ` φ and ∆ 6` ¬ψ . Suppose for a con-
tradiction that ∆,ψ ` F. This means that ∆,ψ ` ¬ψ , so by contraposition for any δ ∈ ∆ it holds that ∆\{δ},ψ `
¬δ . Again, by contraposition, ∆ ` ¬ψ , contradicting the assumption. Thus, ∆ ∪ {ψ} is consistent. Since
∆ ∈MCS(Γ,Ab), necessarily ∆∪{ψ} ∈MCS(Γ,Ab,ψ). Since ∆ ` φ , by monotonicity, ∆,ψ ` φ . 2

4.3 Non-Interference
The following is an adaptation to ABFs of the property of non-interference (NI), introduced in [10]. It assures a
proper handling of contradictory assumptions.

Definition 12 Given a logic L = 〈L ,`〉, let Γi (i = 1,2) be two sets of countable L -formulas, and let ABFi =
〈L,Γi,Abi,∼i〉 (i = 1,2) be two ABFs based on L.

• We denote by Atoms(Γi) (i = 1,2) the set of all atoms occurring in Γi.

• We say that Γ1 and Γ2 are syntactically disjoint if Atoms(Γ1)∩Atoms(Γ2) = /0.
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• ABF1 and ABF2 are syntactically disjoint if so are Γ1∪Ab1 and Γ2∪Ab2.

• We denote: ABF1∪ABF2 = 〈L,Γ1∪Γ2,Ab1∪Ab2,∼1 ∪ ∼2〉.

An entailment |∼ satisfies non-interference, if for every two syntactically disjoint assumption-based frameworks
ABF1 = 〈L,Γ1,Ab1,∼1〉 and ABF2 = 〈L,Γ2,Ab2,∼2〉where Γ1∪Γ2 is consistent, it holds that ABF1 |∼ψ iff ABF1∪
ABF2 |∼ψ for every L -formula ψ such that Atoms(ψ)⊆ Atoms(Γ1∪Ab1).

Theorem 7 For Sem ∈ {Naive,Prf,Stb}, both |∼∪Sem and |∼∩Sem satisfy non-interference with respect to simple
contrapositive assumption-based frameworks.

Proof. By Theorem 1 and the fact that if ABF1 and ABF2 are syntactically disjoint, then MCS(ABF1∪ABF2) =
{∆1∪∆2 | ∆1 ∈MCS(ABF1),∆2 ∈MCS(ABF2)}. 2

As the next example shows, non-interference is not satisfied with respect to |∼Grd (either for |∼Grd = |∼
∩
Grd or

|∼Grd = |∼
∪
Grd) and |∼WF.

Example 13 Consider the syntactically disjoint simple contrapositive frameworks ABF1 = 〈CL, /0,{s},¬〉 and
ABF2 = 〈CL, /0,{p,¬p},¬〉. Clearly, ABF1 |∼Grd s, but by Example 6, ABF1∪ABF2 6|∼Grd s. The same holds for
|∼WF.

Again, the addition of F to Ab guarantees non-interference for |∼Grd and |∼WF:

Theorem 8 |∼Grd and |∼WF satisfy non-interference with respect to simple contrapositive ABFs in which F ∈ Ab.

Proof. By Theorem 3 and the fact that if ABF1 and ABF2 are syntactically disjoint, then
⋂
MCS(ABF1∪ABF2) =⋂

MCS(ABF1)∪
⋂
MCS(ABF2). Thus, by Corollary 4, non-interference holds also for |∼WF. 2

Table 1 summarizes the results of this section. An asterisk indicates that the property holds only for ABFs
in which F ∈ Ab. Cells with a gray background indicate that the relevant properties do not hold (and contain
references to counterexamples). The other cells contain references to the proofs of the relevant properties.

Entailment Cumulativity Preferentiality Rationality Non-Interference
|∼∩Naive = |∼

∩
Prf = |∼

∩
Stb Thm 4 Thm 4 Ex 11 Thm 7

|∼∪Naive = |∼
∪
Prf = |∼

∪
Stb Thm 5 Ex 10 Prop 7 Thm 7

|∼Grd = |∼WF Thm 6∗ Thm 6∗ Ex 12∗ Thm 8∗

Table 1: Properties of |∼∩Sem and |∼∪Sem

5 Lifting the Closure Requirement
According to Definition 6, extensions of an ABF are required to be closed. This is a standard requirement for
ABFs (see, e.g., [9, 13, 31]). In this section we show that in fact the closure condition is not necessary for simple
contrapositive ABFs.

Definition 13 Let ABF = 〈L,Γ,Ab,∼〉 be an assumption-based framework, a let ∆⊆ Ab. We say that:

• ∆ is weakly admissible (in ABF) iff it is conflict-free, and defends every ∆′ ⊆ ∆,

• ∆ is weakly complete (in ABF) iff it is weakly admissible and contains every ∆′ ⊆ Ab that it defends.
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Weak admissibility (respectively, weak completeness) is thus admissibility (respectively, completeness) with-
out the closure requirement.

Below, we fix a simple contrapositive argumentation framework ABF = 〈L,Γ,Ab,¬〉. First, we show that
closure is redundant in the definition of stable extensions for ABF.

Proposition 8 If ∆⊆ Ab is conflict-free and attacks every ψ ∈ Ab\∆ then it is closed.

Proof. Suppose that ∆ is conflict-free and attacks every ψ ∈ Ab\∆, yet Γ,∆ ` φ for some φ ∈ Ab\∆. In this case
Γ,∆ ` ¬φ , and by Lemma 1, Γ,∆ ` F. By the property of F and transitivity, Γ,∆ ` ¬δ for every δ ∈ ∆, thus ∆ is
not conflict-free – a contradiction. 2

By Proposition8 the following corollary immediately follows.

Corollary 5 A set ∆⊆ Ab is stable iff it is conflict-free and attacks every ψ ∈ Ab\∆.

Next we show that closure is redundant for naive semantics as well.

Proposition 9 If ∆⊆ Ab is maximally conflict-free, it is closed.

Proof. Suppose that ∆ is maximally conflict-free and Γ,∆ ` φ . Suppose for a contradiction that φ ∈ Ab\∆. Since
∆ is maximally conflict-free, this means that Γ,∆,φ ` ¬ψ for some ψ ∈ ∆∪{φ}. Suppose first that ψ = φ .19 Then
Γ,∆,φ ` ¬φ and by transitivity Γ,∆ ` ¬φ . In this case, then, Γ,∆ ` φ and Γ,∆ ` ¬φ , thus Γ,∆ ` F (by Lemma 1),
which implies, by the property of F and transitivity, that Γ,∆ ` ¬δ for every δ ∈ ∆. Thus ∆ is not conflict-free –
a contradiction. Suppose now that ψ ∈ ∆. Then by contraposition, Γ,∆ ` ¬φ , and the same arguments as in the
previous case lead to a contradiction. 2

The next corollary immediately follows from the last proposition.

Corollary 6 ∆⊆ Ab is naive iff it is maximally conflict-free.

We now turn to preferential semantics. For this (Proposition 10 and Corollary 7), we first need the following
lemma:

Lemma 7 A maximal conflict-free ∆ attacks every φ ∈ Ab\∆.

Proof. Suppose that ∆ is maximally conflict-free and let φ ∈ Ab\∆. Since ∆ is maximally conflict-free, Γ,∆,φ `
¬ψ for some ψ ∈ ∆∪{φ}. Either when ψ = φ or ψ ∈ ∆, as in to the proof of Proposition 9 we get Γ,∆ ` ¬φ . 2

Proposition 10 If ∆ is maximal weakly admissible then it is closed.

Proof. By Proposition 9 it suffices to show that a maximal weakly admissible set is maximally conflict-free.
Indeed, suppose for a contradiction that ∆ is maximal weakly admissible, yet for some φ ∈ Ab\∆, the set ∆∪{φ}
is still conflict-free. Then ∆ ⊂ Θ for some maximally conflict-free Θ. By Lemma 7, Θ attacks every ψ ∈ Ab\Θ.
This means that Θ is weakly admissible, contradicting the assumption that ∆ is maximal weakly admissible. 2

We thus get the following corollary:

Corollary 7 A set ∆⊆ Ab is preferred iff it is maximal weakly admissible.

19Note that this assumption implies in particular that ∆ 6= /0. Otherwise, the assumption that Γ,∆ ` φ means that Γ ` φ , and Γ,∆,φ ` ¬ψ

with the assumption that ψ = φ implies that Γ,φ ` ¬φ , so by transitivity with Γ ` φ we get Γ ` ¬φ . This means, together with Γ ` φ , that Γ is
not consistent (recall Lemma 1) – a contradiction.
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Proof. By Proposition 10, since it implies that a set is maximal weakly admissible iff it is maximally admissible 2

Finally, we consider the grounded and the well-founded semantics. First, we note that when F 6∈ Ab the closure
condition is not superfluous. To see this, let Γ= {s,s⊃ q}, Ab= {p,¬p,q}, and let classical logic be the base logic.
Without the closure requirement, the emptyset is minimally complete in Ab.20 However, the closure requirement
excludes the emptyset from being a complete extension in this case, since it is not closed (indeed, Γ ` q).

When F ∈ Ab the closure condition is superfluous:

Proposition 11 If F ∈ Ab, a set ∆⊆ Ab is grounded and well-founded iff it is minimal weakly complete.

Proof. When F ∈ Ab, we know by Lemma 6 that the grounded extension is closed. By Corollary 4, so is the
well-founded extension. 2

6 Using Disjunctive Attacks
In this section we extend the pointed attacks in Definition 5 to disjunctive ones. First (Section 6.1) we motivate this
generalization and provide some intuition for it. Then (Sections 6.2 and 6.3), we examine Dung semantics under
this generalization, and finally (Section 6.4) we show that the properties of the induced entailments are preserved
under this generalization.

6.1 Motivation and Intuition
The following definition is a conservative extension of the definition of (pointed) attacks (see Definition 5).

Definition 14 Let ABF = 〈L,Γ,Ab,¬〉 be a simple contrapositive ABF. We say that a set ∆ ⊆ Ab attacks a set
Θ⊆ Ab if there is a finite subset Θ′ ⊆Θ such that Γ,∆ `

∨
¬Θ′.

Note 11 When the ABF is not simple (that is, when the contrariness operator is defined by sets of formulas),
disjunctive attacks may be defined as follows: we let ∼θ ′ = {∼ν | ν ∈ θ ′} and say that a set ∆⊆ Ab attacks a set
Θ⊆ Ab if there is a finite subset Θ′ ⊆Θ such that Γ,∆ `

∨
θ ′∈Θ′

∨
σ ′∈Σ′⊆∼θ ′ σ

′.

The next example demonstrates the differences between ‘standard’ (pointed) attacks and disjunctive attacks.

Example 14 Let L = CL, Γ = /0, and Ab = {p,¬p,s}. A corresponding attack diagram is shown in Figure 4,21

where the strict lines represent standard attacks (Definition 5), and the dashed lines represent attacks that are
applicable only according to the disjunctive version of attacks (Definition 14).

/0 {s}{p,¬p,s}

{p}

{¬p}

{p,s}

{¬p,s}

Figure 4: An attack diagram for Example 14.

Note that the ‘contaminating’ set {p,¬p,s} attacks the set {s}. However, when disjunctive attacks are allowed
the attacking set {p,¬p,s} is counter-attacked by the emptyset (since /0 ` ¬p∨¬¬p), thus {s} is defended by /0
(which is not the case when only ‘standard’ attacks are allowed, cf. Example 2).

20In particular, it does not defend q from the attack p,¬p ` ¬q.
21Again, we refer only to closed sets, thus the set {p,¬p} does not appear in the diagram.
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In what follows we again fix some simple contrapositive assumption-based argumentation framework ABF =
〈L,Γ,Ab,¬〉, this time with disjunctive attacks as in Definition 14. We further assume that the base logic L respects
the following de-Morgan rules:

(?) de-Morgan I:
∨
¬∆ ` ¬

∧
∆, de-Morgan II: ¬

∧
∆ `

∨
¬∆.

One benefit of using disjunctive attacks is that the notion of defense in Definition 6 can be independent of
closed sets (see also Section 5). Indeed, the following definition is the same as Definition 6, but without any
reference to closed sets.

Definition 15 We say that ∆ purely defends ∆′ ⊆ Ab iff for every Θ that attacks ∆′, there is some ∆′′ ⊆ ∆ that
attacks Θ.

Proposition 12 When disjunctive attacks are used, the notions of defense and pure defense coincide.

Proof. Clearly, pure defense implies defense, since if a set is capable of counter-attacking any attacker of its subset,
then in particular it is capable of attacking any attacker of its subset, which is closed. The converse follows from
the following lemma:

Lemma 8 Let ABF = 〈L ,Γ,Ab,¬〉 be a simple contrapositive ABF with disjunctive attacks. If ∆ attacks Cn(Θ∪
Γ)∩Ab, then it attacks Θ.

Proof. Suppose that ∆ attacks Cn(Θ∪Γ)∩Ab, i.e., there is some Θ′ ⊆Cn(Θ∪Γ)∩Ab such that Γ,∆ `
∨
¬Θ′. By

de-Morgan I, Γ,∆ ` ¬
∧

Θ′. By the definition of conjunction, Γ,
∧

∆ ` ¬
∧

Θ′. By contraposition, Γ,
∧

Θ′ ` ¬
∧

∆.
Since Θ′ ⊆Cn(Θ∪Γ)∩Ab, we know that Γ,Θ `

∧
Θ′ and thus by transitivity and the definition of conjunction,

Γ,
∧

Θ ` ¬
∧

∆. By contraposition, Γ,
∧

∆ ` ¬
∧

Θ. By de-Morgan II, Γ,
∧

∆ `
∨
¬Θ and by the definition of

conjunction, Γ,∆ `
∨
¬Θ which implies that ∆ attacks Θ. 2

It remains to show the following simple, technical lemma:

Lemma 9 Γ,
∧

∆ ` ψ iff Γ,∆ ` ψ .

Proof. Suppose first that Γ,
∧

∆`ψ . By reflexivity, Γ,∆` δ for any δ ∈∆, thus, since∧ is a conjunction, Γ,∆`
∧

∆.
By transitivity, Γ,∆ ` ψ . For the converse, suppose that Γ,∆ ` ψ . By reflexivity, Γ,

∧
∆ `

∧
∆, thus by definition of

conjunction, Γ,
∧

∆ ` δ for any δ ∈ ∆. By transitivity (applied |∆|-times), Γ,
∧

∆ ` ψ . 2

This concludes the proof of Proposition 12. 2

Note 12 To see that the condition of having disjunctive attacks is indeed necessary for Proposition 12, consider
again Example 14. As indicated in that example, when only standard attacks are used, {s} cannot be purely
defended from the attacking set {p,¬p}. On the other hand, {s} is defended according to Definition 6, simply
because any attacker of {s} not containing F is not closed (e.g., {p,¬p} is not closed since {p,¬p} ` F).22

6.2 Naive, Preferred and Stable Semantics with Disjunctive Attacks
We now consider Dung’s semantics for ABFs with disjunctive attacks. In this section we treat naive, preferred, and
stable semantics. In the next section we turn to the grounded and well-founded semantics, in which case another
benefit of using disjunctive attacks will become evident (see, e.g., Example 15).

The main results of this section is that, again,when disjunctive attacks are involved:

a) preferential and stable semantics are reducible to naive semantics, and

22This is exactly the reason why the restriction to closed sets is imposed when standard attacks are used, while for disjunctive attacks this is
not necessary.
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b) the correspondence to reasoning with maximally consistent subsets is preserved.

To show these results we first indicate that also when switching to the more generalized (i.e., disjunctive)
attacks, the closure requirement in the definitions of naive, preferred, and stable extensions (Definition 6) remains
redundant. Namely:

Proposition 13 For a set ∆⊆ Ab, we have:

1. ∆ is stable iff it is conflict-free in ABF and attacks every ψ ∈ Ab\∆.

2. ∆ is naive iff it is maximally conflict-free in ABF.

3. ∆ is preferred iff it is maximal weakly admissible in ABF.

The proofs of Items 1–3 above are similar to those of Corollaries 5–7 (respectively) in Section 5, except that
instead of the fact that Γ,∆,ψ `¬ψ implies Γ,∆`¬ψ (when ∆ 6= /0), we use the following adjustment to disjunctive
attacks:

Lemma 10 If Γ,∆,ψ `
∨
¬∆′ for some ∆′ ⊆ ∆∪{ψ}, then Γ,∆ ` ¬ψ .

Proof. First, we show the following lemma:

Lemma 11 Γ,∆ ` ¬φ iff Γ,φ `
∨
¬∆.

Proof. Suppose that Γ,∆ ` ¬φ . Then by Lemma 9 we have that Γ,
∧

∆ ` ¬φ . By contraposition, Γ,φ ` ¬
∧

∆.
By de-Morgan II and transitivity, Γ,φ `

∨
¬∆. Conversely: if Γ,φ `

∨
¬∆ then by de-Morgan I and transitivity,

Γ,φ ` ¬
∧

∆. By contraposition Γ,
∧

∆ ` ¬φ , and by Lemma 9 we get, Γ,∆ ` ¬φ . 2

Back to the proof of Lemma 10: Suppose that Γ,∆,ψ `
∨
¬∆′ for some ∆′ ⊆ ∆∪{ψ}. By Lemma 11 and since

∆′ ⊆ ∆∪{ψ}, we get that Γ,∆ ` ¬ψ . 2

We now show (see Proposition 14 below) that when disjunctive attacks are incorporated in simple contrapos-
itive ABFs, preferential and stable semantics collapse to naive semantics (just as in the case of standard attacks,
cf. Proposition 1). For the proof of this result we first need the following two lemmas.

Lemma 12 If ∆ is maximally conflict-free it attacks every ψ ∈ Ab\∆.

Proof. Suppose that ∆ is maximally conflict-free and ψ ∈ Ab \∆. Since ∆ is maximally conflict-free, Γ,∆,ψ `∨
¬∆′ for some ∆′ ⊆ ∆∪{ψ}. By Lemma 10, Γ,∆ ` ¬ψ . 2

Lemma 13 If ∆ is maximal weakly admissible then it is also maximally conflict-free.

Proof. Suppose that ∆ is maximal weakly admissible, yet for some φ ∈ Ab\∆ the set ∆∪{φ} is conflict-free. Then
there is a proper superset Θ of ∆ that is maximally conflict-free. By Lemma 12, Θ attacks every ψ ∈ Ab\Θ. This
means that Θ is weakly admissible, contradicting the assumption that ∆ is maximal weakly admissible. 2

Proposition 14 A set ∆⊆ Ab is naive in ABF iff it is stable, iff it is preferred.

Proof. By Lemma 12, together with Items 1 and 2 in Proposition 13, a naive set in Ab is also stable. By Items 1
and 3 of Proposition 13, a stable extension is also preferred (Indeed, a stable extension ∆ is conflict-free, thus every
attacker of ∆ contains an argument in Ab \∆, and the latter is attacked by ∆, since ∆ is stable thus attacks every
element in Ab\∆). Finally, by Lemma 13 together with Items 2 and 3, in Proposition 13, a preferred extension is
also naive. 2

We now show the relation to maximally consistent sets.
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Proposition 15 ∆ is naive in ABF iff it is in MCS(ABF).

Proof. [⇒]: Let ∆ be a naive set in Ab. Suppose for a contradiction that Γ,∆ ` F. By the property of F and transi-
tivity, this means that Γ,∆ `

∨
¬∆′ for any ∆′ ⊆ ∆, contradicting the conflict-freeness of ∆. Thus ∆ is consistent.

To see that ∆ is maximally consistent in ABF, note that since ∆ maximally conflict-free, for every proper superset
∆′ of ∆ there is some Θ ⊆ ∆′ such that Γ,∆′ `

∨
¬Θ. By de-Morgan I and transitivity, then, Γ,∆′ ` ¬

∧
Θ. On the

other hand, Θ⊆ ∆′, and so Γ,∆′ `
∧

Θ. By Lemma 1, then, Γ,∆′ ` F. Thus, ∆ is maximally consistent in ABF.
[⇐]: Let ∆ ∈MCS(ABF) and suppose for a contradiction that Γ,∆ `

∨
¬∆′ for some ∆′ ⊆ ∆. Again, by de-Morgan

condition and transitivity we get on one hand that Γ,∆ ` ¬
∧

∆′, and since ∆′ ⊆ ∆, by reflexivity we get on the other
hand that Γ,∆ `

∧
∆, which together contradict the assumption that Γ,∆ 6` F. Thus ∆ is conflict-free. To see that ∆

is maximally conflict-free, suppose for a contradiction that ∆∪{φ} is conflict-free for some φ ∈ Ab \∆. Since ∆

is maximally consistent, Γ,∆,φ ` F, thus by the property of F and transitivity, Γ,∆,φ ` ¬δ for every δ ∈ ∆∪{φ},
contradicting the assumption that ∆∪{φ} is conflict-free. 2

By Propositions 14 and 15 we have the following counterpart of Theorem 1:

Theorem 9 Let L be a logic in which de-Morgan’s rules in (?) are satisfied, and let ABF = 〈L,Γ,Ab,¬〉 be a
simple contrapositive ABF with disjunctive attacks. Then ∆ is a stable extension of ABF, iff it is a preferred
extension of ABF, iff it is naive in ABF, iff it is an element in MCS(ABF).

6.3 Grounded and Well-Founded Semantics with Disjunctive Attacks
We now turn to the use of disjunctive attacks with the grounded and the well-founded semantics. The next example
helps to appreciate the role of disjunctive attacks in such cases.

Example 15 Recall Examples 2, 6, and 14 (together with, respectively, Figures 1 and 4), in which L= CL, Γ = /0,
and Ab = {p,¬p,s}. As indicated in these examples, when only standard attacks are allowed, the grounded
extension is the emptyset, while when disjunctive attacks are allowed the grounded and the well-founded extension
are both the set {s} (which is defended by the emptyset). As s should not be contaminated by the inconsistency
about p and ¬p, having {s} as the grounded extension makes much more sense in this case, and – what is more –
it holds that Grd(ABF) =WF(ABF) = {{s}}= {

⋂
MCS(ABF)} (see also Theorems 10 and 11 below).

In what follows we shall show that the grounded extension (which, as we shall show, is also the well-founded
extension) is well-behaved for disjunctive attacks, even without requiring that F ∈ Ab (cf. Theorem 2).

Theorem 10 Let L be a logic in which de-Morgan’s rules in (?) are satisfied. If ABF is a simple contrapositive
ABF with disjunctive attacks, then Grd(ABF) = {G }.23

The proof of Theorem 10 is similar to that of Theorem 2, with some adjustments to disjunctive attacks. In the
sequel we shall use the notations of Definition 10. Again, we first need a few lemmas. In what follows we suppose
that ABF = 〈L ,Γ,Ab,¬〉 is a simple contrapositive ABF with disjunctive attacks and that ∆⊆ Ab.

Lemma 14 Let L be a logic that satisfies the two de-Morgan rules. If ∆ `
∨
¬(Θ∪∆′) and ∆′ ⊆ ∆ then ∆ `

∨
¬Θ.

Proof. Suppose ∆ `
∨
¬(Θ∪∆′). By de-Morgan I, ∆ ` ¬

∧
(Θ∪∆′). By Lemma 11, de-Morgan I and transitivity,∧

(Θ∪∆′) ` ¬
∧

∆. By the definition of conjunction and transitivity,
∧

Θ,∆′ ` ¬
∧

∆. By Lemma 11, ∆′,
∧

∆ `
¬
∧

Θ. Since ∆′ ⊆ ∆, by the definition of conjunction and transitivity, ∆ ` ¬
∧

Θ. By de-Morgan II, ∆ `
∨
¬Θ. 2

Lemma 15 G0(ABF) is (disjunctively) unattacked.

23Recall that G is defined in Definition 10.
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Proof. Suppose for a contradiction that there is some Θ⊆ G0(ABF) and some ∆⊆ Ab such that ∆ attacks Θ, i.e.,
Γ,∆ `

∨
¬Θ. By de-Morgan I and definition of conjunction, Γ,

∧
∆ ` ¬

∧
Θ. By contraposition, Γ,

∧
Θ ` ¬

∧
∆.

By definition of conjunction and transitivity, Γ,Θ ` ¬
∧

∆. Again by contraposition, definition of conjunction and
transitivity, Γ,∆,Θ\φ ` ¬φ for any φ ∈Θ. However, since φ ∈ G0(ABF), by Definition 10 φ cannot be (pointed)
attacked. 2

Lemma 16 If G1 attacks a closed set Θ then G0 also attacks Θ.

Proof. Suppose that G1 attacks a closed set Θ and assume for a contradiction that G0,Γ 6`
∨
¬Θ′ for any Θ′ ⊆ Θ.

Since G1 attacks Θ, there is a Θ′ ⊆ Θ s.t. Γ,G1 `
∨
¬Θ′. Suppose first that Γ,G0 ∪G1 `

∨
¬Θ′. In that case, by

de-Morgan I and transitivity, Γ,(G1∪G0) ` ¬
∧

Θ′. By contraposition and Lemma 9, Γ,((G1∪G0)\{δ}),Θ′ ` ¬δ

for any δ ∈ G0, thus G0 is attacked, in a contradiction to Lemma 15.
Thus, Γ,(G1 \G0) `

∨
¬Θ′. By de-Morgan I and transitivity, Γ,(G1 \G0) ` ¬

∧
Θ′. Now, by contraposition,

Γ,(G1 \G0)∪{ψ},
∧

Θ′ ` ¬ψ for every ψ ∈ G1. Let ψ1 ∈ G1 be such a formula. Since ψ1 ∈ G1 \G0, ψ1 is defended
by G0, there is a Λ⊆Cn(Γ∪ ((G1 \ (G0∪{ψ1}))∪Θ′)∩Ab such that Γ,G0 `

∨
¬Λ. By Lemma 9, Γ,

∧
G0 `

∨
¬Λ.

By de-Morgan I and contraposition, Γ,
∧

Λ ` ¬
∧

G0. By de-Morgan II and Lemma 9 Γ,Λ `
∨
¬G0, contradicting

the fact that G0 is not attacked (Lemma 15 again). 2

Lemma 17 G2(ABF) = G1(ABF).

Proof. By Definition 10, G1(ABF) ⊆ G2(ABF). To see that G2(ABF) ⊆ G1(ABF), we have to show that every
assumption that is defended by G1 is also defended by G0. This follows from Lemma 16. 2

Corollary 8 G (ABF) = G0(ABF)∪G1(ABF) = G1(ABF).

Proof. Follows from Lemma 17. 2

Lemma 18 ∆⊆ G (ABF) iff ∆ is defended by G (ABF).

Proof. [⇒]: Suppose that some Θ = Cn(Θ∪Γ)∩Ab attacks ∆ ⊆ G (ABF). First, we assume that Θ and ∆ are
minimal, i.e., for no Θ′ ⊂Θ and no ∆′ ⊂ ∆, Θ′ attacks ∆′. Note that since Θ attacks ∆, it holds that Γ,Θ `

∨
¬∆.

Suppose first that ∆∩G0 6= /0. Since Γ,Θ `
∨
¬∆, by Lemma 14, Γ,Θ,∆\G0 `

∨
¬(∆∩G0). But this contradicts

the fact that G0 is unattacked (by Lemma 15).
We can thus suppose that ∆∩ G0 = /0. Since Γ,Θ `

∨
¬∆, by de-Morgan I, definition of conjunction and

transitivity Γ,
∧

Θ ` ¬
∧

∆. By contraposition, definition of conjunction and transitivity Γ,∆ ` ¬
∧

Θ. Again by
contraposition, definition of conjunction and transitivity, for every φ ∈ ∆ we have that Γ,Θ,∆ \ {φ} ` ¬φ . Since
φ ∈ G1 \G0, it follows that G0 defends φ from Θ∪∆\{φ}. This means that for some Θ′ ⊆Θ and some ∆′ ⊆ ∆\{φ}
it holds that Γ,G0 `

∨
¬(∆′∪Θ′).

• Suppose first that ∆′ 6= /0.

– Suppose that Γ 6`
∨
¬(∆′∪Θ′). By de-Morgan I, Γ,G0 ` ¬

∧
(∆′∪Θ′). By Lemma 11, the definition of

conjunction and transitivity, Γ,∆′∪Θ′ ` ¬
∧

G0. By de-Morgan II, Γ,∆′∪Θ′ `
∨
¬G0. This contradicts

that fact that G0 is unattacked (Lemma 15).

– Suppose that Γ `
∨
¬(∆′∪Θ′). By Lemma 14, Γ,Θ′ `

∨
¬∆′, in contradiction to the minimality of Θ

and ∆.

• Suppose now that ∆′ = /0. In that case, Γ,G0 `
∨
¬Θ′ and thus ∆ is defended by G0.

Suppose now that Θ is not minimal, i.e., there is some Θ′ ( Θ that attacks ∆. Without loss of generality, we
can now suppose that Θ′ is minimal, that is, for no Θ′′ ⊂ Θ′ does Θ′′ attack ∆. In that case, we have established
above that G0 attacks Θ′. But then G0 also attacks Θ. Thus ∆ is defended by G (ABF).
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Suppose finally that ∆ is not minimal, i.e., there is some ∆′ ( ∆ that is attacked by Θ. We have already
established above that we can suppose Θ to be minimal. Without loss of generality, then, suppose that ∆′ ⊂ ∆ is
minimal, i.e., for no ∆′′ ⊂ ∆ does Θ attack ∆′′. As we have shown above, G0 attacks Θ. Thus, G0 also defends ∆

from Θ, and so, again, ∆ is defended by G (ABF).

[⇐]: Suppose that ∆ is defended by G (ABF). Then clearly every δ ∈ ∆ is defended by G (ABF). But then by
Definition 10, for every δ ∈ ∆, δ ∈ G (ABF). Thus, ∆⊆ G (ABF). 2

Lemma 19 G is closed.

Proof. Suppose for a contradiction that Γ,G ` φ for some φ ∈ Ab \G . In particular, φ 6∈ G0, thus there is some
Θ⊆ Ab such that, Γ,Θ ` ¬φ . By Lemma 11 we get Γ,φ `

∨
¬Θ. But then Γ,G `

∨
¬Θ by transitivity, and so G

defends φ from Θ. By Lemma 18, this means that φ ∈ G , a contradiction. 2

Now we can show Theorem 10.

Proof. It is clear from the construction of G that it is unique. By Lemma 18, φ ∈ G iff φ is defended by G , thus
G is complete. By Lemma 19, G is closed. It therefore remains to show the minimality of G among the complete
sets of ABF. If G is empty we are done. Otherwise, suppose for a contradiction that there is some complete
proper subset ∆ of G , and let Θ ⊆ G \∆. If Θ ⊆ G0, then Θ has no attackers by Lemma 15 and consequently Θ

is (vacuously) defended by ∆, in which case ∆ cannot be complete. Thus Θ 6⊆ G0 and G0 ⊆ ∆. Suppose now that
Θ ⊆ G1, i.e., Θ ⊆ G1 \G0. By Definition 10, Θ ⊆ Ξ for every set Ξ that is maximally defended by G0. Thus Θ is
defended by G0. But since G0 ⊆ ∆ this means that ∆ defends Θ. Again, this contradicts the completeness of ∆.
Thus, G1 ⊆ ∆. By Corollary 8 G = G1, and consequently G ⊆ ∆, contradicting the assumption that ∆ ( G . 2

The correspondence of the grounded semantics to reasoning with maximally consistent subsets is also carried
on from the standard case (cf. Theorem 3).

Theorem 11 Let L be a logic in which de-Morgan’s rules in (?) are satisfied, and let ABF = 〈L,Γ,Ab,¬〉 be a
simple contrapositive assumption-based framework with disjunctive attacks. Then Grd(ABF) = {

⋂
MCS(ABF)}.

Proof. By Theorem 10 it suffices to show that G (ABF) =
⋂
MCS(ABF).

To see that G (ABF) ⊆
⋂
MCS(ABF), let Θ ∈ MCS(ABF). We show that G (ABF) ⊆ Θ, thus G (ABF) ⊆⋂

MCS(ABF). Indeed, suppose otherwise that G 6⊆ Θ. Then there is φ ∈ G \Θ, and since Θ is stable (by Theo-
rem 9), it attacks φ . Since φ ∈ G , by Lemma 17, G0 attacks Θ (note that G = G1 by Corollary 8). Since obviously
G0 ⊆Θ, this contradicts the fact that Θ is conflict-free.

We now show that
⋂
MCS(ABF) ⊆ G (ABF). Indeed, suppose that ∆ ⊆

⋂
MCS(ABF). Suppose also that

some Θ ⊆ Ab attacks ∆. Thus, Γ,Θ `
∨
¬∆. Suppose first that Γ,Θ 6` F. By de-Morgan rules, the definition

of conjunction and contraposition, we have (‡): Γ,Θ,∆ ` F, i.e., for no consistent set of defeasible assumptions
Θ ⊆ Ab, Θ∪ ∆ ⊆ Ab. Since Γ,Θ 6` F, there is a Θ′ ∈ MCS(ABF) such that Θ′ ⊆ Θ. But by (‡), ∆ 6⊆ Θ′, a
contradiction to ∆ ⊆

⋂
MCS(ABF). Thus, (†): for any attacker Θ of ∆, Γ,Θ ` F. By Lemma 11, this means that

Γ,¬F `
∨
¬Θ. Since Γ ` ¬F, by transitivity, Γ `

∨
¬Θ. But then ∆ is defended by /0 ⊆ G0. We have thus shown

that ∆ is defended by G0 from every attacker, and so by Lemma 18 it follows that ∆⊆ G . 2

We now turn to the well-founded semantics.

Proposition 16 Let ABF be a simple contrapositive ABF with disjunctive attacks. Then WF(ABF)= {
⋂
MCS(ABF)}.

Proof. Similar to that of Proposition 4, using Theorem 10 instead of Theorem 2. 2

By Theorem 11 and Proposition 16 we thus have:

Corollary 9 Let ABF be a simple contrapositive ABF with disjunctive attacks. Then WF(ABF) = Grd(ABF).
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6.4 Properties of the Induced Entailments
Given a simple contrapositive assumption-based framework ABF = 〈L,Γ,Ab,¬〉 with disjunctive attacks and a
logic L satisfying de-Morgan’s rules in (?) , most of the properties of the induced entailment relations (Definition 7)
remain the same as those of the entailments that are induced from ABFs with pointed attacks. Below, we list some
of them (Cf. Section 4. Since the proofs are similar to those for pointed attacks, in most case we just present the
results).

Reasoning with MCS:

By Theorem 9, we have (cf. Corollary 1):

• ABF |∼∩Prfψ iff ABF |∼∩Stbψ iff ABF |∼∩Naiveψ iff ABF |∼∩MCSψ .

• ABF |∼∪Prfψ iff ABF |∼∪Stbψ iff ABF |∼∪Naiveψ iff ABF |∼∪MCSψ .

Similarly, by Theorem 11 and Corollary 9, we have (cf. Corollary 3):

• ABF |∼∩Grdψ iff ABF |∼∪Grdψ iff ABF |∼∩WFψ iff ABF |∼∪WFψ iff ABF |∼e
MCSψ .

Cumulativity, Preferentiality and Rationality:

• |∼∩Sem is preferential for Sem ∈ {Naive,Grd,WF,Prf,Stb}.

• |∼∪Sem is cumulative for Sem ∈ {Naive,Prf,Stb}.24 25

The proof is ultimately the same as that of Theorem 4.

• |∼∪Sem is rational for Sem ∈ {Naive,Prf,Stb}.

The proof is similar to that of Proposition 7.26

Non-interference:

• |∼∪Sem and |∼∩Sem satisfy non-interference for Sem ∈ {Naive,Grd,WF,Prf,Stb}.

The proof of the last claim is similar to that of Theorem 7.

7 Summary and Conclusion, In View of Related Work
In this paper we have considered the main Dung-style semantics of assumption-based argumentation frameworks
based on contrapositive logics. Different perspectives were considered:

• We have shown that some of the problems of Dung’s semantics for structured argumentation frameworks
that are reported in [1] are carried on to (simple contrapositive) ABFs. Moreover, we delineated a class of
anomalies in the application of the grounded semantics for non-flat ABFs, and specified conditions under
which these anomalies can be avoided. Similar phenomena are discussed in [12, 12], but to the best of our
knowledge this paper is the first one27 where a solution (adding F to Ab) is suggested.

• Some rationality postulates are considered. The closure and consistency postulates have also been studied
for certain assumption-based argumentation frameworks in [30], but this paper is the first investigation of
the property of non-interference in assumption-based argumentation.

24Example 10 shows that |∼∪Sem is not preferential even for ABFs with standard (pointed, non-disjunctive) attacks.
25Note that by Theorem 10, |∼∪Grd = |∼

∩
Grd, and so |∼∪Grd is not only cumulative, but also preferential. The same holds for |∼∪WF.

26Example 11 provides a counterexample for the skeptical entailments.
27Except, of-course, of the conference papers [19, 20, 21] on which this paper is based.
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• The relation between Dung’s semantics for ABFs and other general patterns of non-monotonic reasoning
were investigated. In particular, we have studied the connections to approaches based on maximal consis-
tency [27] and to the KLM cumulative, preferential and rational entailments [22, 23]. While the relations
between Dung-style semantics and reasoning with maximal consistency have been investigated before in,
e.g., [1, 3, 11, 34], none of these works have considered ABFs. Thus, this paper closes a gap in the literature
and shows the exact relation between MCS approaches, KLM semantics, and assumption-based argumenta-
tion based on contrapositive logics. Moreover, while all of these approaches give rise to an infinite number
of arguments even for a finite set Ab of defeasible assumptions, our approach avoids this problem by consid-
ering sets of assumptions (as opposed to derivations of a specific conclusion) as nodes in the argumentation
graph, whose size is bounded by the size of the powerset of Ab.

• We showed that for simple contrapositive ABFs the closure requirement from the framework’s extensions is
in fact redundant. As a consequence, most of the concepts that are related to such ABFs were simplified,
and their computation became easier. To the best of our knowledge, this is the first time that such a question
has been asked and answered for assumption-based argumentation.

• We considered a generalization of the attack relation in ABFs, called disjunctive attacks. The use of these
kind of attacks guarantees some desirable properties of the grounded semantics without the extra-condition
that is required when standard attacks are used (see the first item in this list). Concerning the other types
of semantics, we have shown that (as in the case of ordinary attacks), preferential and stable semantics are
reducible to naive semantics.

• We have shown that the entailment relations induced from the generalized ABFs still correspond to reasoning
with maximal consistency. They are proved preferential for skeptical reasoning, and cumulative and rational
for credulous reasoning. For both of these kinds of entailments the property of non-interference is satisfied.
These results again resemble similar findings concerning other forms of structured argumentation, presented
e.g. in [2, 3]. Since our formalism preserves consistency and the correspondence to maximal consistency-
based reasoning even when using disjunctive attacks, it avoids some of the long-standing problems that were
reported by [11] for other logic-based argumentation formalisms using disjunctive attacks.

Future work includes, among others, the incorporation of more expressive languages, involving preferences
among arguments, and the introduction of other kinds of contrariness operators as well as further forms of attacks.
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