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Abstract

The problem of inconsistent information in databases often arises in the context of data in-
tegration and data exchange. In these areas the common assumption is that the real world is
consistent, thus an inconsistent database does not correspond to any reliable state and it needs to
be “repaired” according to a chosen policy. Many of these policies have to deal with the problem
of an exponential blowup in the number of possible repairs. For this reason, recent approaches
advocate more flexible and fine-grained policies based on the user’s preference. In this paper we
take a further step towards more personalized inconsistency management by incorporating ideas
from context-aware systems. The idea is to employ grades of different repairs according to their
relevance for a particular user. The outcome is a graded framework for inconsistency maintenance
in database systems, controlled by context-aware and distance-based considerations.

1 Introduction

Inconsistency handling in constrained databases is a primary issue in the context of consistent query
answering, data integration, and data exchange. The general view in such cases is that the inconsistent
database does not provide a faithful description of its domain of discourse and therefore it should be
“repaired” so that its consistency will be restored. The standard approaches to this issue are usually
based on the principle of minimal change, aspiring to achieve consistency via a minimal amount of
data modifications (see, e.g., [4, 12, 13, 22]). A key question in this respect is how to choose among
the different possibilities of restoring the consistency of a database (i.e., ‘repairing’ it).

Earlier approaches to inconsistency management were based on the assumption that there should
be some fixed, pre-determined way of repairing a database. Recently, there has been a paradigm shift
towards user-controlled inconsistency management policies. Works taking this approach provide a
possibility for the user to express some preference over all possible database repairs, preferring certain
repairs to others (Some examples are [35, 41, 46, 60]; See [56] for a survey of other related works).
While such approaches provide the user with flexibility and control over inconsistency management, in
reality they entail a considerable technical burden on the user’s shoulders of calibrating, updating and
maintaining preferences or policies. Moreover, in many cases these preferences should be dynamic,
changing quickly on the go (e.g., depending on the user’s geographical location). In the era of ubiq-
uitous computing, with database systems practically everywhere, database users have little technical
background, and even less time to dwell on the technical details of inconsistency management. As a
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consequence, there is a frequent demand for easy – and sometimes even fully automatic – inconsis-
tency management solutions with little cognitive load, which are still expected to be personalized and
tuned for particular needs. This leads to the idea of introducing context-awareness into inconsistency
management.

Context-awareness is defined as the use of contexts to provide task-relevant information and ser-
vices to the user (see [1]). We believe that inconsistency management has natural relations to the
concept of context. Accordingly, the goal of this paper is to incorporate notions and techniques that
have been studied by the context-aware computing community (see, e.g., [20] and [54]) into consis-
tency management in database systems. For this, we use a logical approach for preferring repairs,
which combines the following two grading ingredients:

• Distance-based semantics for restoring the consistency of inconsistent databases according to
the principle of minimal change, and

• Context-awareness considerations, based on graded ranking, for incorporating user preferences.

Example 1 Let us consider the following simple database instance:

empNum name address salary

1 John Tower Street 3, London, UK 70K$
1 John Herminengasse 8, Wien, AT 80K$
2 Mary 42 Street 15, New York, US 90K$

A functional dependency that may be violated in this case is empNum→ salary, stating that the
salary of an employee is uniquely determined by the employee’s number. Thus, assuming that this
database contains an information coming from several equally reliable sources, one has to resolve the
inconsistency in it, although each source could have provided a completely consistent data. Minimal
change considerations (which will be expressed in what follows by distance functions) imply in this
case that it is enough to delete either the first or the second tuple for restoring consistency. Now,
the decision which tuple to delete may be context-dependent . For instance, for tax assessments tuples
with higher salaries may be preferred, while tuples with lower salaries may have higher priority when
loans or grants are considered.

The choice between the first two tuples may also be determined by other, more dynamic consid-
erations. For instance, it is quite possible that two different employees called John were assigned the
same employee number by mistake. Alternatively, the same employee (John) may have two different
addresses in two different countries, but the salary information associated with at least one of them
is erroneous. In either cases, a user located in Austria is most probably interested in the Austrian
address (or the Austrian employee), while a user located in the UK will make the most out of the
other address (or employee).

The rest of this paper is organized as follows. In Section 2 we review some of the basic definitions
of database concepts and distance-based semantics. In Section 3 we show how context-awareness can
be modeled in our framework using a graded approach, and incorporate context-aware considerations
into distance-based semantics. In Section 4 we consider some applications of our approach and in
Section 5 we discuss some future work and conclude.1

1This paper is an extension of the work presented in the 35th Linz Seminar on Fuzzy Set Theory, dedicated to
Graded Logical Approaches and their Applications (Linz, Austria, February 2014). A short version of this paper was
also published in [64].
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2 Inconsistent Databases and Distance Semantics

To simplify of the presentation, in this paper we remain on the propositional level and reduce first-order
databases to our framework by grounding them. In the sequel, L denotes a propositional language
with a finite set of atomic formulas Atoms(L). An L-interpretation I is an assignment of a truth value
in {T, F} to every element in Atoms(L). Interpretations are extended to complex formulas in L in the
usual way, using the truth tables of the connectives in L. The set of two-valued interpretations for L
is denoted by ΛL. An interpretation I is a model of an L-formula ψ, denoted by I |= ψ, if I(ψ) = T ,
and it is a model of a set Γ of L-formulas, denoted by I |= Γ, if it is a model of every L-formula in Γ.
The set of models of Γ is denoted by mod(Γ). We say that Γ is satisfiable if mod(Γ) is not empty.

Definition 2 A database DB in L is a pair 〈D, IC〉, where D (the database instance) is a finite subset
of Atoms(L), and IC (the integrity constraints) is a finite and consistent set of L-formulas.

The meaning of D is determined by the conjunction of its facts, augmented with Reiter’s closed
world assumption, stating that each atomic formula that does not appear in D is false. This may
be expressed by the set CWA(D) = {¬p | p 6∈ D}. Henceforth, a database DB = 〈D, IC〉 will be
associated with the theory ΓDB = IC ∪ D ∪ CWA(D).

In the sequel we shall sometimes identify a database with its associated theory. Thus, for instance,
a model of DB is any interpretation satisfying ΓDB.

Definition 3 A database DB is consistent iff ΓDB is satisfiable.

When a database is not consistent at least one integrity constraint is violated, and so it is usually
required to look for “repairs” of the database, that is, changes of the database instance so that its
consistency will be restored. There are numerous approaches for doing so (see, e.g., [4, 12, 22] for
some surveys on this subject). Here we follow the distance-based approach described in [5, 7], which
we find suitable for our purposes as it provides a modular and flexible framework for a variety of
methods of (cardinality-based) database repair and consistent query answering (see also [12, 13] and
the references therein).

Distance-based reasoning is extensively studied in the context of, e.g., paraconsistent reasoning,
belief revision, knowledge integration, and consistent query answering in database systems. It is based
on the notion of preferential semantics [47, 55], where preferences are expressed in terms of distance
functions. In the context of database systems this approach aims at addressing the problem that when
DB is inconsistent mod(ΓDB) is empty, so reasoning with DB is trivialized. This may be handled by
replacing mod(ΓDB) with the set ∆(DB) of interpretations that, intuitively, are ‘as close as possible’
to (satisfying) DB, while still satisfying the integrity constraints. When DB is consistent, ∆(DB)
and mod(ΓDB) coincide (see Proposition 15 below), which assures that distance-based semantics is a
conservative generalization of standard semantics for consistent databases.

In what follows, we recall the relevant definitions for formalizing the intuition above (see also [5, 7]).

Definition 4 A pseudo-distance on a set U is a total function d : U × U → R+, which is

• symmetric: for all ν, µ ∈ U , d(ν, µ) = d(µ, ν), and

• preserves identity: for all ν, µ ∈ U , d(ν, µ) = 0 if and only if ν = µ.

A pseudo-distance d is called a distance (metric) on U , if it satisfies the triangular inequality:

• for all ν, µ, σ ∈ U , d(ν, σ) ≤ d(ν, µ) + d(µ, σ).
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Example 5 One may define the following distances on ΛL:

dU (I, I ′) =

{
1 if I 6= I ′,
0 otherwise.

dH(I, I ′) = | {p ∈ Atoms(L) | I(p) 6= I ′(p)} |.

dU is sometimes called the uniform distance and dH is known as the Hamming distance. We note
that the above distance functions are simple but not always sensitive enough.2 More sophisticated
distances based on aggregation of distances between (sets of) facts, are the Hausdorff distance [25],
Eiter and Mannila’s distance [28], and distances defined by matching functions [7]. We refer to [7] for
demonstrating how the latter distances may be incorporated in a database repairing framework.

Definition 6 A (numeric) aggregation function is a function f , whose domain consists of multisets
of real numbers and whose range is the real numbers, satisfying the following properties:

• f is non-decreasing when a multiset element is replaced by a larger element,

• f({x1, . . . , xn}) = 0 if and only if x1 = x2 = . . . xn = 0, and

• f({x}) = x for every x ∈ R.

We say that an aggregation function f is hereditary , if f({x1, . . . , xn}) < f({y1, . . . , yn}) entails that
f({x1, . . . , xn, z1, . . . , zm}) < f({y1, . . . , yn, z1, . . . , zm}).

In what follows we shall aggregate distance values. Since distances are non-negative numbers,
aggregation functions in this case include, e.g., the summation and the maximum functions, the
former is also hereditary.

Definition 7 A distance setting (for a language L) is a pair DS = 〈d, f〉, where d is a pseudo-distance
on ΛL and f is an aggregation function.

The next definition is a common way of using distance functions for maintaining inconsistent data
(see, e.g, [5, 42, 43]).

Definition 8 For a finite set Γ = {ψ1, . . . , ψn} of formulas in L, an interpretation I ∈ ΛL, and a
distance setting DS = 〈d, f〉 for L, we denote:

• dDS(I, ψi) = min{d(I, I ′) | I ′ |= ψi},

• δDS(I,Γ) = f({dDS(I, ψ1), . . . , dDS(I, ψn)}).

Proposition 9 [5, 43] Let Γ be a finite set of formulas in L, ψ a formula in L, I an interpretation
in ΛL, and DS = 〈d, f〉 a distance setting for L. Then it holds that I |= ψ iff dDS(I, ψ) = 0 and I |= Γ
iff δDS(I,Γ) = 0.

The interpretations that are ‘closest’ to being models of ΓDB are defined as follows:

Definition 10 Given a database DB = 〈D, IC〉 in L and a distance setting DS = 〈d, f〉 for L, the set
of the most plausible interpretations of DB (with respect to DS) is defined as follows:

∆DS(DB) =
{
I ∈ mod(IC) | (∀I ′) I ′ ∈ mod(IC) =⇒ δDS(I,D ∪ CWA(D)) ≤ δDS(I ′,D ∪ CWA(D))

}
. 3

2For instance, according to both of these functions, {p(a, b)} and {p(c, d)} are equally distant from {p(a, e)}, although
p(a, b) and p(a, e) share the first argument.

3Closed word assumption is needed here to take into account atomic formulas that are not mentioned in the database
instance but appear, e.g., in the integrity constraints or in the user’s context environment (see Definition 18 below).
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Note 11 Since IC is satisfiable and ΛL is finite, for every database DB = 〈D, IC〉 and a distance
setting DS for its language, it holds that ∆DS(DB) 6= ∅.

Definition 12 Let DB = 〈D, IC〉 be a database and DS = 〈d, f〉 a distance setting. We say that
R is a DS-repair of DB, if there is an I ∈ ∆DS(DB) such that R = {p ∈ Atoms(L) | I(p) = T}.
We shall sometimes denote this repair by R(I) and say that it is induced by I (or that I is the
characteristic model of R). The set of all the DS-repairs is denoted by RepairsDS(DB), that is,
RepairsDS(DB) = {R(I) | I ∈ ∆DS(DB)}.

An alternative characterization of the DS-repairs of DB is given next.

Proposition 13 Let DB = 〈D, IC〉 be a database and DS = 〈d, f〉 a distance setting. Let IS be the
characteristic function of S ⊆ Atoms(L) (that is, IS(p) = T if p ∈ S and IS(p) = F otherwise). The
DS-inconsistency value of S (with respect to DB) is defined by: 4

IncDBDS (S) =

{
δDS(IS ,D ∪ CWA(D)) if IS ∈ mod(IC),
∞ otherwise.

Then R ⊆ Atoms(L) is a DS-repair of DB iff its DS-inconsistency value is minimal among the DS-
inconsistency values of the subsets of Atoms(L).

Proof. Let R ⊆ Atoms(L) such that IncDS(R) ≤ IncDS(S) for every S ⊆ Atoms(L). Since IC is
satisfiable, IncDS(R) < ∞, and so IR ∈ mod(IC). Let now R′ be a DS-repair of DB. Then there is
an element I ′ ∈ ∆DS(DB) such that R′ = {p ∈ Atoms(L) | I ′(p) = T}. But δDS(IR,D ∪ CWA(D)) ≤
δDS(I ′,D ∪ CWA(D)), and so IR ∈ ∆DS(DB) as well, which implies that R is a DS-repair of DB.

For the converse, let R be a DS-repair of DB and let S ⊆ Atoms(L). We have to show that
IncDS(R) ≤ IncDS(S). Indeed, if IS 6∈ mod(IC) then IncDS(S) = ∞ and so the claim is obtained.
Otherwise, both IR and IS are models of IC, and since R is a DS-repair of DB, IR ∈ ∆DS(DB). It
follows that δDS(IR,D ∪ CWA(D)) ≤ δDS(IS ,D ∪ CWA(D)) and so IncDS(R) ≤ IncDS(S). 2

Note 14 Interestingly, viewed as a preferred way to update an inconsistent database (and so to
recover its inconsistency), the above construction of RepairsDS(DB) satisfies the five properties listed
in [56].5 This easily follows from Proposition 13 above. Indeed, by this proposition, for every database
DB and a distance setting DS, RepairsDS(DB) = min<DS

{S | S ⊆ Atoms(L)}, where S1 <DS S2 iff
IncDS(S1) < IncDS(S2). This implies the satisfaction of the following postulates:

P1 Non-Emptiness: RepairsDS(DB) 6= ∅ because a <DS-minimum over the finite set 2Atoms(L) is always
obtained. (Also since RepairsDS(DB) = {R(I) | I ∈ ∆DS(DB)} and ∆DS(DB) 6= ∅ by Note 11).

P2 Monotonicity: If <DS1
⊆<DS2

then min<DS2
2Atoms(L) ⊆ min<DS1

2Atoms(L), and so RepairsDS2
(DB) ⊆

RepairsDS1
(DB).

P3 Non-Discrimination: If <DS= ∅ then RepairsDS(DB) = 2Atoms(L).

P4 Categoricity: If <DS is a total order then |RepairsDS(DB)| = 1.

P5 Conservativeness: RepairsDS(DB) ⊆ 2Atoms(L).

By Proposition 9 and Definition 12, we also have the following result:

4In what follows, when the underlying database is fixed or clear from the context, we shall omit the superscript DB
from the notations of the inconsistency value.

5In [56] these properties are considered with respect to methods for making preferences among all the possible repairs.
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Proposition 15 Let DB = 〈D, IC〉 be a database and DS a distance setting. The following conditions
are equivalent:

1. DB is consistent,

2. ∆DS(DB) = mod(ΓDB),

3. RepairsDS(DB) = {D},

4. The DS-inconsistency value of every DS-repair of DB is zero.

Proof. Suppose that ∆DS(DB) = mod(ΓDB). By Note 11 this means that mod(ΓDB) 6= ∅, and so
DB is consistent. Conversely, if DB is consistent then ΓDB is satisfiable. It’s unique model ID is the
following:

∀p ∈ Atoms(L) ID(p) =

{
T if p ∈ D,
F if p 6∈ D.

It follows that for every data setting DS = 〈d, f〉, δDS(ID,D ∪ CWA(D)) = 0 and so ∆DS(DB) =
mod(ΓDB) = {ID}. This also implies that in this case RepairsDS(DB) = {R(ID)} = {D} and so, by
Proposition 9, IncDBDS (D) = 0. Finally, if the DS-inconsistency value of every DS-repair of DB is zero,
then every such repair is induced by a model of ΓDB. This means that RepairsDS(DB) = {R(I) | I ∈
∆DS(DB)} may be represented by {R(I) | I ∈ mod(ΓDB)}, thus ∆DS(DB) = mod(ΓDB). 2

Example 16 Let us return to the database in Example 1. The projection of the database table on

the attributes id and salary is:
{
〈1, 70K$〉 , 〈1, 80K$)〉 , 〈2, 90K$〉

}
. After grounding the database and

representing the tuple 〈empNum, salary〉 by a propositional variable TempNum
salary , we have:

D ∪ CWA(D) =
{
T1

70K$,T
1
80K$,¬T

1
90K$,¬T

2
70K$,¬T

2
80K$,T

2
90K$

}
,

and the functional dependency empNum→ salary is formulated as follows:

IC =
{
Tx
y → ¬Tx

z | y 6= z, y, z ∈ {70K$, 80K$, 90K$}, x ∈ {1, 2}
}
.

Using the distance dH from Example 5 and f = Σ, we compute:

R(I) dH(I,T1
70) dH(I,T1

80) dH(I,¬T1
90) dH(I,¬T2

70) dH(I,¬T2
80) dH(I,T2

90) δdH,Σ(I,ΓDB)
∅ 1 1 0 0 0 1 3

{T1
70} 0 1 0 0 0 1 2

{T1
80} 1 0 0 0 0 1 2

... ... ... ... ... ... ... ...
{T1

70,T
2
90} 0 1 0 0 0 0 1

{T1
80,T

2
90} 1 0 0 0 0 0 1

... ... ... ... ... ... ... ...

It follows that ∆〈dH ,Σ〉(DB) = {I1, I2} and RepairsDS(DB) = {R(I1),R(I2)}, whereR(I1) = {T1
70,T

2
90}

and R(I2) = {T1
80,T

2
90}}. Note that R(I1) means that in order to repair the database the tuple with

empNum = 1 and salary = 80K$ has to be removed, while R(I2) indicates that the tuple with
empNum = 1 and salary = 70K$ should to be deleted. Thus, only T2

90 holds in all the repairs of DB,
that is, only the salary of Employee 2 is certain.

Example 17 Consider the database DB = 〈D, IC〉 where D = {rain, warm} and IC = {rain →
take umbrella}. By the closed word assumption this database is not consistent, since ¬take umbrella ∈
ΓDB. Using the same distance setting as in Example 16 we again have two ways of repairing the
inconsistency in DB, but this time one of them involves an insertion of a new fact to the database:
one repair is by removing the assumption that it is rainy, and the other repair is by inserting an
indication to take an umbrella.
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3 Context-Aware Inconsistency Management

3.1 Context Modeling

As defined in [1],

“Context is any information that can be used to characterize the situation of an entity. An
entity is a person, place or object that is considered relevant to the interaction between a
user and an application, including the user and application.”

This notion has been found useful in several domains, such as machine learning and knowledge acqui-
sition (see, e.g., [15, 19]). We shall consider as a context any data that can be used to characterize
database-related situations, involving database entities, user contexts and preferences, etcetera [11, 23].
This includes computational environments (e.g., network connectivity, nearby resources), user-related
context (such as profile, location, mood, family situation), and measurable contexts (like noise levels,
temperature, and time) [16].

There is a wide variety of methods for modeling contexts (see, e.g., [59]). Here we follow the
data-centric approach introduced in [58], and refer to contexts using a finite set of special-purpose
variables, which may not be part of the database.

Definition 18 A context environment (or just a context) C is a finite tuple of distinct variables
〈c1, . . . , cn〉, where each variable ci (1 ≤ i ≤ n) has a corresponding range Range(ci) of possible values.
A context state for C (a C-state, for short) is an assignment S such that S(ci) ∈ Range(ci). The set
of context states is denoted by States(C).

Intuitively, a context environment C represents the parameters that may be taken into considera-
tion for the database inconsistency maintenance.

Example 19 Consider a process of repairing an obsolete database that contains information about
the nationality of citizens of European Union countries. Such a database may contain data about
people from countries that no longer exist, such as Czechoslovakia or Yugoslavia (violating a constraint
listing the valid countries). It might also happen that, e.g., as a result of data integration, former
Czechoslovakians are reported as being both Slovak and Czechs. In such a case a person’s name could
be used as a context to help tracing the correct nationality and resolve the contradiction, satisfying
the integrity constraint of unique nationality of each person.

Example 20 A possible context for the database of Example 1 could be C = {location, usermode},
where Range(location) contains possible countries and Range(usermode) contains various modes of using
the database. Accordingly, a state S in which S(location) = US and S(usermode) = tax assessment
reflects an interest in tax-assessments of US companies.

Note 21 As follows from the last example, context variables need not necessarily refer to the content
of the database instance. For another illustration of this, note that the decision how to repair the
database of Example 17 may be affected by geographic locations or by the relevant season: in winter
one may prefer to add the recommendation to take an umbrella, while in summer one may want to
remove the assumption that it is rainy.

Note 22 It is possible to refer to a context state as a function rather than an assignment . According
to this view, a context state of C is a tuple 〈r1(c1), . . . , rn(cn)〉, where ri(ci) (1 ≤ i ≤ n) is an
application of a ranking function r(ci) : Range(ci) → N on ci. These functions may be useful, e.g.,
when a context involves fuzzy concepts or when more fine-grained discrimination is required among
the possible values that ci may have. This extended view of context states is beyond the scope of the
present paper.
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3.2 Context Settings and Context Sensitivity

We are now ready to incorporate context-awareness into distance considerations. We do so by making
the ‘most plausible’ interpretations in DB (that is, the elements in ∆DS(DB)) sensitive to context , in
the sense that more ‘relevant’ formulas have higher impact on the distance computations than less
‘relevant’ formulas. Thus, while we still strive to minimize change, the latter will be measured in a
more subtle, context-aware way. For this purpose we introduce graded functions which measure the
relevance of information depending on context.

Definition 23 A relevance ranking for a set Γ of formulas and a context environment C, is a total
function R : Γ× States(C)→ (0, 1].

Given a set Γ and a context environment C, a relevance ranking function for Γ and C assigns
to every formula ψ ∈ Γ and every state S of C a (positive) relevance factor R(ψ, S) indicating the
relevance of ψ according to S. Intuitively, higher values of these factors correspond to higher relevance
of their formulas, which makes changes to these formulas in computing database repairs less desirable.

Note 24 Grading information, either by numerical values or by preference orders, is not unusual in
AI systems, as it often helps to maintain consistency and cope with other anomalies in the data.
In that respect, we may recall the CP-orders on the rules of multi-context systems, which can be
used to explain inconsistency in those systems [27], probabilistic qualification of attack relations that
help to provide a subtle conflict-free understanding of argumentation systems [39], and the methods
for prioritized reasoning in logic programming with preference relations among the rules for providing
coherent semantics to such programs (see [36] and the references therein). For some other monographs
on preference modeling and further references see e.g. [18] and [48]. Here, relevance factors may be
thought of as a context-dependent interpretation of preference/scoring functions [2] or of weights in
prioritized theories [6]. However, unlike the grading approaches mentioned above, the domain of the
ranking functions is not restricted to the available data, and so it can involve any kind of information
which may be used to determine the most plausible repairs. In particular, this makes the concepts of
contexts and personalization somewhat more abstractive and dynamic.

Definition 25 A context setting for a set of formulas Γ is a triple CS(Γ) = 〈C, S,R〉, where C is a
context environment, S ∈ States(C) is a C-state, and R is a relevance ranking function for Γ and C.
In what follows we shall sometimes denote by CS(L) a context setting CS(Γ) in which Γ is the set of
all the well-formed formulas of L.

Consistency restoration for databases can now be defined as before (see Definitions 8 and 10). The
outcome of this is demonstrated by the following example.

Example 26 Let us reconsider the database of Example 17. Let CS = 〈C, S,R〉 be a context setting
where C = {season} with Range(season) = {summer, autumn,winter, spring}, and

R(rain, S) = R(take umbrella, S) =

{
1, if S(season) = winter or S(season) = autumn,
0.5, otherwise.

R(warm, S) =

{
1, if S(season) = summer or S(season) = spring,
0.5, otherwise.

Suppose also that for every p ∈ {rain,warm, take umbrella} we have R(¬p, S) = max(1−R(p, S), ε) for
some small ε > 0.6 Now, let DS = 〈dCSΣ ,Σ〉 be a corresponding distance setting, where

dCSΣ (I, I ′) = Σ({R(p, S) · |I(p)− I ′(p)| | p ∈ {rain,warm, take umbrella}}).
6We need the ε to avoid zeroed R-values. Clearly, its value should be less than 0.5; The exact value of ε may depend

on various considerations, such as the size of the database instance or the ratio between the ‘cost’ of the insertion and
the deletion operations.
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It is not difficult to verify that dCSΣ is indeed a pseudo-distance. Calculations that are similar to
those of Example 16 (where f is still Σ but now the distance is dCSΣ ) show that in a state S where
S(season) ∈ {winter, autumn} the repair in which take umbrella is added to the database will be
preferred, and in a state S where S(season) ∈ {spring, summer} the repair in which rainy is removed
from the database will be preferred.

As we show below (and as indicated at the beginning of this subsection), to properly reflect the
user preference in the database repairs, the distance setting should be tightly linked to the underlying
preference setting. More precisely, the underlying distance setting DS = 〈d, f〉 should be context-
sensitive in the sense that dDS should preserve the order induced by ranking function, as defined
next.

Definition 27 Let CS(L) = 〈C, S,R〉 be a context setting for a language L. A distance setting DS =
〈d, f〉 is called CS-sensitive, if for every two atomic formulas p1 and p2 such that R(p1, S) > R(p2, S),
it holds that dDS(I2, p1) > dDS(I1, p2) for every I1 ∈ mod(p1) \mod(p2) and I2 ∈ mod(p2) \mod(p1).

Clearly, the results of Section 2 (e.g., Proposition 15) still hold for context-sensitive distance
settings. Next, we demonstrate the effect of incorporating context sensitive distance settings on
inconsistency management.

Proposition 28 Let DB = 〈D t {p1, p2}, IC〉 be a database7, CS = 〈C, S,R〉 a context setting and
DS = 〈d, f〉 a CS-sensitive distance setting in which f is hereditary. If R(p1, S) > R(p2, S), then for
every D′ ⊆ Atoms(L)\{p1, p2} such that D′t{p1} |= IC, the DS-inconsistency value of D1 = D′t{p1}
is smaller than the DS-inconsistency value of D2 = D′ t {p2}.

Proof. Let D′ ⊆ Atoms(L)\{p1, p2} and D1 = D′∪{p1}. Since D1 |= IC, we have that IncDS(D1) <∞.
Thus, IncDS(D1) < IncDS(D2) whenever D2 6|= IC. Suppose then that D2 |= IC as well. In this
case, in the notations of Proposition 13, we have that ID1 and ID2 differ only in the assignments
for p1 and p2 (I.e., ID1 satisfies p1 and falsifies p2 while ID2 satisfies p2 and falsifies p1. Else-
where, both interpretations are equal to ID′). Now, since DS is CS-sensitive, by the facts that
(i) R(p1, S) > R(p2, S), (ii) ID1

∈ mod(p1) \ mod(p2) and (iii) ID2
∈ mod(p2) \ mod(p1), we have

that dDS(ID1
, p2) < dDS(ID2

, p1). Let D∪CWA(Dt{p1, p2}) = {ψ1, . . . , ψn}. By the assumption that
f is hereditary,

IncDS(D1) = δDS(ID1 ,D ∪ CWA(D))
= f({dDS(ID1 , ψ1), . . . , dDS(ID1 , ψn), dDS(ID1 , p1), dDS(ID1 , p2)}) (by the definition of δDS)
= f({dDS(ID1

, ψ1), . . . , dDS(ID1
, ψn), 0, dDS(ID1

, p2)}) (since ID1
satisfies p1)

= f({dDS(ID2
, ψ1), . . . , dDS(ID2

, ψn), 0, dDS(ID1
, p2)}) (ID1

, ID2
differ only in p1, p2)

< f({dDS(ID2
, ψ1), . . . , dDS(ID2

, ψn), 0, dDS(ID2
, p1)}) (CS-sensitivity; f is hereditary)

= f({dDS(ID2 , ψ1), . . . , dDS(ID2 , ψn), dDS(ID2 , p2), dDS(ID2 , p1)}) (since ID2 satisfies p2)
= δDS(ID2 ,D ∪ CWA(D)) = IncDS(D2) (by the definition of δDS) 2

It follows that when context-sensitive distances are incorporated, “more relevant” formulas are
preferred in the repairs. This is shown next.

Proposition 29 Let DB = 〈D t {p1, p2}, IC〉 be a database, CS = 〈C, S,R〉 a context setting and
DS = 〈d, f〉 a CS-sensitive distance setting in which f is hereditary. If

1. DB1 = 〈D t {p1}, IC〉 is a consistent database,

2. R(p1, S) > R(p2, S), and

7We denote by D t {p1, p2} the disjoint union of D and {p1, p2}.
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3. IC ∪ {p1, p2} is (classically) inconsistent.

Then no DS-repair of DB contains p2.8

Proof. Suppose otherwise, and let R2 ∈ RepairsDS(DB) be a DS-repair of DB such that p2 ∈ R2. In
particular, R2 is induced by some I2 ∈ ∆DS(DB). Note that since p2 ∈ R2, necessarily I2(p2) = T , and
since I2 |= IC (because I2 ∈ ∆DS(DB)), necessarily I2(p1) = F (otherwise I2 is a model of IC∪{p1, p2}
which contradicts the assumption that the latter is inconsistent). It follows that R2 = D′ t {p2} for
some D′ ⊆ D. Consider now the set R1 = D′ t {p1}. Since DB1 is a consistent database, R1 |= IC,
and so by Proposition 28, IncDS(R1) < IncDS(R2). Thus, δDS(I1,DB) < δDS(I2,DB), where I1 is the
characteristic model of R1 (see Definition 12). This contradicts the assumption that I2 ∈ ∆DS(DB).
2

Under a further condition (Definition 30) Proposition 29 can be strengthened (Proposition 31).

Definition 30 A distance setting DS = 〈d, f〉 for a language L is called uniform, if for every two
interpretations I1, I2 ∈ ΛL and for every atom p ∈ Atoms(L), I1(p) = I2(p) implies that dDS(I1, p) =
dDS(I2, p).

It is easy to verify that every distance setting in which the distance is one of those mentioned in
Example 5, is uniform.

Proposition 31 Let DS be a uniform distance setting. Then in the notations of Proposition 29 and
under its assumptions, D1 = D t {p1} is the unique DS-repair of DB.

Proof. We show that ∆DS(DB) = {I1}, where I1 ia the (unique) model of ΓDB1
, defined by I1(p) = T

if p ∈ D1 and I1(p) = F otherwise (such a model exists since DB1 is consistent). The claim then
follows from the fact that D1 = R(I1), i.e., D1 is the DS-repair of DB, which is induced by I1.

Suppose that D ∪ CWA(D t {p1, p2}) = {ψ1, . . . , ψn}, and let I ∈ ∆DS(DB). Then

δDS(I,DB) = f({dDS(I, ψ1), . . . , dDS(I, ψn), dDS(I, p1), dDS(I, p2)}).

Now, by Proposition 29, since DS is CS-sensitive, I(p2) = F . Also, by the definition of I1 we have
that I1(p2) = F , and so, since DS is uniform, dDS(I, p2) = dDS(I1, p2). It follows that

δDS(I,DB) ≥ f({0, . . . , 0, 0, dDS(I, p1), dDS(I, p2)}) ≥
f({0, . . . , 0, 0, dDS(I, p2)}) =
f({0, . . . , 0, 0, dDS(I1, p2)}) =
δDS(I1,DB).

Thus, I1 ∈ ∆DS(DB). On the other hand, if there is some q ∈ {ψ1, . . . , ψn, p1} for which dDS(I, q) 6=
0, then since f is hereditary the above inequality becomes strict, which contradicts the assumption
that I ∈ ∆DS(DB). It follows that for every q ∈ {ψ1, . . . , ψn, p1} dDS(I, q) = dDS(I1, q) = 0, i.e., I |= q.
One concludes, then, that I is a model of DB1, that is, I = I1. 2

Propositions 29 and 31 can be generalized as follows:

Corollary 32 Let DB = 〈D, IC〉 be a database, CS = 〈C, S,R〉 a context setting and DS = 〈d, f〉 a
CS-sensitive distance setting in which f is hereditary. Suppose that D = D′ t D′′ can be partitioned
to two disjoint nonempty subsets D′ and D′′ such that

• DB′ = 〈D′, IC〉 is a consistent database,

8Note that this is true even in case that DB2 = 〈D t {p2}, IC〉 is a consistent database.
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• ∀p′′ ∈ D′′ ∃p′ ∈ D′ such that IC ∪ {p′, p′′} is not consistent, and

• ∀p′ ∈ D′ and ∀p′′ ∈ D′′ it holds that R(p′, S) > R(p′′, S).

Then for every DS-repair R of DB, R∩D′′ = ∅.

Proof. Let p2 ∈ D′′. By Condition (2), there is p1 ∈ D′ such that IC ∪ {p1, p2} is not consistent.
Thus, by similar considerations as those in the proof of Proposition 29, no DS-repair of DB contains
the fact p2. 2

Corollary 33 In case that DS is a uniform distance setting, then in the notations of Proposition 32
and under its assumptions, D′ is the unique DS-repair of DB.

Proof. Similar to that of Proposition 31, using Corollary 32. 2

3.3 A Simple Construction of Context-Sensitive Distance Settings

In what follows we provide a concrete method for defining context-sensitive distance settings and
exemplify some of the properties of the settings that are obtained.

Definition 34 Let CS(L) = 〈C, S,R〉 be a context setting for L and let g be an aggregation function.
The (pseudo) distance dCSg on ΛL is defined as follows:

d CS
g (I, I ′) = g({R(p, S) · |I(p)− I ′(p)| | p ∈ Atoms(L)}).

It is easy to verify that for any CS and g, the function dCSg is indeed a pseudo-distance on ΛL. In

particular, for any context setting CS(L) = 〈C, S,R〉 where R is uniformly 1, dCSΣ coincides with the
Hamming distance dH in Example 5. Note also that the pseudo distance used in Example 26 is a
particular case of the definition above.

Note 35 Let DB = 〈D, IC〉, CS = 〈C, S,R〉, and DS = 〈dCSg , f〉. For every set S ⊆ Atoms(L) whose
characteristic function IS (recall Proposition 13) is a model of IC, we have that:

IncDS(S) = δDS(IS ,D ∪ CWA(D)) =
f({dDS(IS , p) | p ∈ D} ∪ {dDS(IS ,¬p) | ¬p ∈ CWA(D)}) =
f({dDS(IS , p) | p ∈ D} ∪ {dDS(IS ,¬p) | p ∈ Atoms(L) \ D}).

Since dDS(IS , p) = 0 for every p ∈ S and dDS(IS ,¬p) = 0 for every p 6∈ S, we have that

IncDS(S) = f(0 ∪ {dDS(IS , p) | p ∈ D \ S} ∪ {dDS(IS ,¬p) | p ∈ S \ D}) =
f(0 ∪ {g(0 ∪ {R(p, S)}) | p ∈ D \ S} ∪ {g(0 ∪ {R(¬p, S)}) | p ∈ S \ D}).

Denote f(0, x) = f({0, . . . , 0, x, 0, . . . , 0}). Whenever f(0, x) = f(x) and g(0, x) = g(x) (e.g., when
f, g are the summation or the maximum function over non-negative values) we have that

IncDS(S) = f({g(R(p, S)) | p ∈ D \ S} ∪ {g(R(¬p, S)) | p ∈ S \ D}).

For monotonic f and g, then, what matters are the R-values of the atoms in the symmetric difference
of D and the set of atoms (i.e., S) under consideration. The latter is a repair of D (with respect to
IC) when these R-values are as minimal as possible.

The next proposition provides a general way of constructing context-sensitive distance settings,
based on the functions in Definition 34.

Proposition 36 Let CS = 〈C, S,R〉 be a context setting and let DS = 〈dCSg , f〉 be a distance setting,
where g is a hereditary. Then DS is CS-sensitive.
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Proof. Let p1 and p2 be atomic formulas such thatR(p1, S) > R(p2, S), and let I1 ∈ mod(p1)\mod(p2)
and I2 ∈ mod(p2) \mod(p1). Again, we denote g(0, x) = g({0, . . . , 0, x, 0, . . . , 0}). By Definition 8,

dDS(I1, p2) = min{d CS
g (I1, J) | J |= p2}

= min{g({R(p, S) · |I1(p)− J(p)| | p ∈ Atoms(L)}) | J |= p2}.

Since g is hereditary, the minimum above must be obtained for a model J of p2 that coincides with I1
on every atom p 6= p2. It follows, then, that dDS(I1, p2) = g(0, R(p2, S)). By similar considerations,
dDS(I2, p1) = g(0, R(p1, S)). Now, since R(p1, S) > R(p2, S) and since g is hereditary, dDS(I2, p1) >
dDS(I1, p2). 2

The next proposition demonstrates how CS-sensitive distance settings of the form defined above
give precedence to “more relevant” facts: if two facts are the cause for the database inconsistency, the
one with higher relevance ranking will be accepted while the other one will be rejected.

Proposition 37 Let CS = 〈C, S,R〉 be a context setting and let DS = 〈dCSg , f〉 be a distance setting,
where g and f are hereditary aggregation functions. Let DB = 〈D t {p1, p2}, IC〉 be a database such
that the following conditions are satisfied:

1. R(p1, S) > R(p2, S) (i.e., p1 is more relevant than p2), and

2. IC ∪ {p1, p2} is not consistent (thus DB is not a consistent database), but the database DB1 =
〈D t {p1}, IC〉 is consistent.9

Then ∆DS(DB) = {I1}, where I1 is the (unique) model of DB1.

Proof. By Proposition 36 DS is CS-sensitive. It is easy to see that DS is also uniform, and so by
Proposition 31 the proposition is obtained. 2

Example 38 Consider again Example 16, but this time let D = {T2
90K$}. In terms of that example,

the insertion of T1
70K$ and T1

80K$ violates IC, thus only the fact with the higher rank will be accepted.

Proposition 37 may be extended in various ways. The next proposition gives one such extension.

Proposition 39 Let DB = 〈D, IC〉 be a database, CS = 〈C, S,R〉 a context setting and DS = 〈dCSg , f〉
a distance setting where g and f are hereditary aggregation functions. Suppose that D can be partitioned
to two nonempty subsets D′ and D′′, such that

1. DB′ = 〈D′, IC〉 is a consistent database,

2. ∀p′′ ∈ D′′ ∃p′ ∈ D′ s.t. IC ∪ {p′, p′′} is not consistent, and

3. ∀p′ ∈ D′ and ∀p′′ ∈ D′′, R(p′, S) > R(p′′, S).

Then ∆DS(DB) = {I ′}, where I ′ is the (unique) model of DB′.

Proof. Similar to the proof of Proposition 33, using the fact that DS is uniform and CS-sensitive.
Below, we repeat the main arguments, adjusted to the specific construction in Definition 34.

Again, we denote: g(0, x) = g({0, . . . , 0, x, 0, . . . , 0}). Then, for every atom p and interpretation I,
we have that:

dDS(I, p) =

{
0 if I |= p,
g(0, R(p, S)) otherwise.

9Again, DB2〈D t {p2}, IC〉 may be consistent as well, but this is not a prerequisite.
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Let D′ = {p1, . . . , pn}, D′′ = {q1, . . . , qm}, and CWA(D) = {ψ1, . . . , ψk}. By similar consideration as
in the proof of Proposition 37, we have that:

(∗) δDS(I ′,DB) =
f({dDS(I ′, ψ1), . . . , dDS(I ′, ψk), dDS(I ′, p1), . . . , dDS(I ′, pn), dDS(I ′,q1), . . . , dDS(I ′, qm)}) =
f({0, . . . 0, dDS(I ′, q1), . . . , dDS(I, qm)}) =
f({0, . . . , 0, g(0, R(q1, S)), . . . , , g(0, R(qm, S))}).

Let now I ∈ ∆DS(DB). By Corollary 32, I 6|= qi for every 1 ≤ i ≤ m, thus dDS(I, qi) = g(0, R(qi, S))
for every 1 ≤ i ≤ m. It follows that:

(∗∗) δDS(I,DB) =
f({dDS(I,ψ1), . . . , dDS(I,ψk), dDS(I,p1), . . . , dDS(I,pn), dDS(I,q1), . . . , dDS(I,qm)}) =
f({dDS(I,ψ1), . . . , dDS(I,ψk), dDS(I,p1), . . . , dDS(I,pn), g(0, R(q1, S)), . . . , g(0, R(qn, S))}).

A pointwise comparison of the arguments of f in the last lines of (*) and (**) above indicates that
the i-th argument of f in (*) is less than or equal to the i-th argument of f in (**). Thus δDS(I ′,DB) ≤
δDS(I,DB), and so I ′ ∈ ∆DS(DB), i.e., DB′ is a repair of DB. Moreover, if I characterizes a repair
R other than DB′ then the inequality above becomes strict (because f is hereditary and at least one
argument of f in (*) is strictly smaller than the corresponding argument of f in (**)), but this is a
contradiction to the assumption that I ∈ ∆DS(DB). This implies that I must coincide with I ′, and
so ∆DS(DB) = {I ′}. 2

Example 40 Consider again the database in Example 1. By Example 16, the distance setting DS =
〈dH ,Σ〉 leads to the following two equally good repairs:

Repair 1 : Repair 2 :
eNum name address salary

1 John ..., UK 70K$
2 Mary ..., US 90K$

eNum name address salary

1 John ..., AT 80K$
2 Mary ..., US 90K$

Sensitivity to context may differentiate between these repairs, preferring one to another. Let us again
denote by T1

UK, T1
AT and T2

US the tuple according to which John lives in the UK and is payed 70K$,
John lives in Austria and is payed 80K$, and the tuple with the information about Mary.

Now, consider the context setting CS(L) = 〈C, S,R〉 and the distance setting DS = 〈dCSΣ ,Σ〉, where
the context environment is C = {country}, its range is Range(country) = {US,UK,AT}, the state is
S(country) = UK, and the relevance ranking is given by the following functions:

R(Ti
c, S) =

{
1, if c = S(country),
0.5, otherwise.

R(¬Ti
c, S) =

{
0.5, if c = S(country),
1, otherwise.

Computation of ∆DS is given in the table below (where we abbreviate d(ψ, S) for dCSΣ (ψ, S)).

R(I) d(I,T1
UK,S) d(I,T1

AT,S) d(I,¬T1
US,S) d(I,¬T2

UK,S) d(I,¬T2
AT,S) d(I,T2

US,S) δDS(I,Γ, S)
∅ 1 0.5 0 0 0 0.5 2

{T1
UK} 0 0.5 0 0 0 0.5 1

{T1
AT} 1 0 0 0 0 0.5 1.5

{T1
US} 1 0.5 1 0 0 0.5 3
... ... ... ... ... ... ... ...

{T1
UK,T

2
US} 0 0.5 0 0 0 0 0.5

{T1
AT,T

2
US} 1 0 0 0 0 0 1

... ... ... ... ... ... ... ...
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According to CS, the single element in ∆DS(DB) satisfies {T1
UK,T

2
US}, and so Repair 1 is preferred.

Dually, in a state S′ where S′(country) = AT, Repair 2 is preferred. Thus, context-aware considera-
tions lead us to choose different repairs according to the relevance ranking, as indeed guaranteed by
Propositions 37 and 39 (see also Example 38).

Note 41 A more sophisticated relevance ranking, which makes preferences among locations according
to their distances from the state location, could be

R(Tx
y , s) = 1− Dist(y, S(location))

N + 1
,

where N denotes the maximal distance from S(location). Similarly, if one prefers higher salary values,
the relevance ranking for the same database could assign to each salary its value normalized to the
(0, 1]-interval. If lower salary values are preferred, one may consider instead a ranking assigning 1

x to
a salary of x, and so forth. A proper choice of the ranking functions is of-course a crucial issue here,
but this is beyond the scope of the present paper.

4 Some Notes on Applications

In this section we comment on some concrete applications of our framework. Specifically, we demon-
strate how two different approaches to database repair may be interpreted as contexts in our frame-
work and as a consequence may be applied using our setting. These approaches involve two types of
considerations: repair operations and user preferences specified as partial orders.

4.1 Repair Operations

A common way to repair an inconsistent database is by minimizing the number of changes in the
database instance (see, e.g., [4, 7, 12, 13, 45]). This ‘cardinality-based’ approach is reproduced in the
next definition.

Definition 42 Given a (possibly inconsistent) database DB = 〈D, IC〉 for a language L, a pairwise
repair of DB is a pair R = (R+, R−), where R+, R−⊆Atoms(L), such that:

(a) R+ ∩ D = ∅ and R− ⊆ D,10

(b) The database 〈D ∪R+−R−, IC〉 is consistent, and

(c) (R+, R−) is minimal in its cardinality: there is no pair 〈S+, S−〉 that satisfies Conditions (a)
and (b), and for which |S+ ∪ S−| < |R+ ∪R−|.

Intuitively, R+ is the set of atoms that should be inserted to D and R− is the set of atoms that
should be deleted from D for restoring the consistency of DB. Repaired databases are then consistent
databases which are derived from a given database by means of a minimal number of insertions and
deletions. The correspondence between the repairs in Definition 42 and in Definition 12 is realized
in [7], where (a variation of) the next result is shown:

Proposition 43 Let DB = 〈D, IC〉 be a database and denote by Repairscard(DB) the set of (cardinality-
based) pairwise repairs of DB, as defined in Definition 42. Then there is a one-to-one correspondence
between the elements in Repairscard(DB) and the elements in RepairsDS(DB) for DS = 〈dU ,Σ〉. More-
over, it holds that:

10In particular, R+ ∩R− = ∅.
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1. If R ∈ RepairsDS(DB) then 〈R−D,D−R〉 ∈ Repairscard(DB),

2. If (R+, R−) ∈ Repairscard(DB) then D ∪R+−R− ∈ RepairsDS(DB).

We note that another common way of repairing databases is obtained by exchanging the cardinality-
based requirement in Condition (c) of Definition 42 by a set-inclusion criterion (stating that there is
no 〈S+, S−〉 satisfying Conditions (a) and (b), for which S+ ∪ S− ( R+ ∪ R−). This is the basic
idea behind the repairing method introduced in [3], followed by the works in, e.g., [4, 8, 34, 37, 44].
Clearly, every pairwise repair that is obtained by the cardinality-based Definition 42 is also a repair
according to the set-inclusion approach, but the converse is not necessarily true (see also [12, 13, 45]).

In [34], Greco et al. introduced a qualitative approach to database repair, using polynomial
functions that assign a numeric value to each repair that reflects its quality. A certain repair of DB is
considered preferred with respect to a given function f , if its f -value is minimal among the f -values
of the repairs of DB. Among the functions used in [34] for repair evaluations are those that count the
number of inserted atoms (thus, repairs with a minimal number of insertions are preferred over other
repairs), the number deleted atoms (so the amount of retractions is minimized), and the number of
modified atoms. It is easy to see that these preference criteria may be simulated by corresponding
contexts in our framework. Indeed, given a database DB = 〈D, IC〉, let 〈C, S,R〉 be the context
setting where C = {minimized action}, Range(minimized action) = {insertion, deletion}, and, for some
small11 ε > 0,

R(p, S) =


1− ε, if S(minimized action) = deletion and p ∈ D

or S(minimized action) = insertion and p 6∈ D,

ε, if S(minimized action) = deletion and p 6∈ D
or S(minimized action) = insertion and p ∈ D.

For every p and S we let R(¬p, S) = 1 − R(p, S). Using the distance setting DS = 〈dCSΣ ,Σ〉, we have
that in a state S where S(minimized action) = deletion repairs with a minimal number of deletions are
preferred, and when S(minimized action) = insertion repairs with a minimal number of insertions are
preferred.

4.2 User Preference

User preference has been widely explored in the database community, in particular in the context of
query personalization. It reflects the subjective value of information, a notion that is well-studied in
information systems and related communities (see, e.g., [53]). While the information preferred by the
user is highly subjective and hard to measure, measuring the value of information in the presence of
inconsistency is even more challenging. Yet, one could say that the relation between inconsistency and
information value is a kind of an inverse dependency: the information becomes less valuable as the
inconsistency in it increases. Moreover, inconsistency related to more valuable information is often
more significant. Thus, given the user preference, we can express it in terms of information value, and
then strive to minimize the significance of inconsistency.

A common way of expressing user preferences is by partial orders [21, 56]. Below, we assume that
preferred data is assigned higher values.

Definition 44 Let L be a finite set of literals. A preference P for L is an irreflexive and transitive
partial order on L. A path in P is a sequence p = 〈l1, . . . , ln〉 ∈ L, such that (l1, l2), . . . , (ln−1, ln) ∈ P.
In this case, for every 1 ≤ i ≤ n we denote weightp(li) = i

n . Finally, for every literal l ∈ L, we define:
valP(l) = min{weightp(l) | p is a path in P and l ∈ p}.

11Here, again, the exact value of ε may depend on various considerations, like the relative cost of insertions versus
deletions, to what extent the content of the database is reliable (and so whether deletions are allowed), etc.
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Given an inconsistent database DB and a preference P for D∪CWA(D), we can use P for defining
a context setting for the computation of the most plausible repairs.

Definition 45 Let DB be a database, and let PR be the set of all possible preferences on Γ =
D ∪ CWA(D). This induces a variety of context settings CS(Γ) = 〈C, S,R〉 for Γ, in which C = 〈pref〉
with Range(pref) = PR, S ∈ PR, and the relevance ranking R : Γ× States(C)→ (0, 1] is defined for
every l ∈ Γ and P ∈ PR by R(l,P) = valP(l).12

Example 46 In Example 16, let P = {(T1
70K ,T

1
80K), (T2

70K ,T
2
80K)} be a preference on D∪CWA(D).

Then, e.g., R(T1
70K ,P) = 1

2 and R(T1
80K ,P) = 1. Since none of the negative literals occurs in P, all

of them are evaluated by 1.

We note, finally, that our approach may be useful also for providing distance-based indications
about the inconsistency of DB, like those considered, e.g., in [33]. Such a measurement could be, for
instance, the numerical value δDS(I,D ∪ CWA(D)) where I ∈ ∆DS(DB). Since this value is the same
for every I ∈ ∆DS(DB), it reflects a property of the database itself.13 Note that this measurement is
zeroed only if DB is consistent and is strictly positive otherwise.

5 Concluding Remarks and Further Research

This paper focuses on personalizing the process of management of inconsistent information in database
systems by means of context-aware considerations. As observed in [29], contexts are still understudied
in the AI community. In the scope of database systems, context awareness has only recently been
addressed in relation to user preference in querying (consistent) databases [52, 57]. To the best of
our knowledge, the approach presented here is the first one to directly apply context-aware consider-
ations for an automated inconsistency management. Combined with the extensive work available on
personalization and automatically determining user’s context and preferences (see, e.g., [10, 24, 38]),
it may open the door to new inconsistency management solutions and novel database technologies.
A by-product of this work is therefore a step towards linking works on consistent-query answering in
database systems (like [3, 4, 12, 13, 22, 37, 63]) and disciplines that are originated from information
science perspective (e.g., [1, 10, 11, 15, 19, 20, 23, 29, 58, 59]). Implementation and evaluation of the
methods in this paper are currently a work in progress.14

There are a number of directions for further research. First, we mainly focus here on propositional
databases. As hinted, e.g., in Example 5, more sophisticated definitions of context and distance
settings are available for first-order languages (see also [49] and [63]), which are yet to be incorporated
in our framework.

Another issue for further exploration is considering knowledge bases which may contain also com-
plex formulas. In this case one may take further advantage of the basic ideas of mathematical fuzzy
logic, namely that grades are combined using some logical operators and define, e.g., the following
principles for ranking complex formulas:

R(¬ψ, S) = 1−R(ψ, S), 15

R(ψ1 ∧ ψ2, S) = min(R(ψ1, S), R(ψ2, S)),
R(ψ1 ∨ ψ2, S) = max(R(ψ1, S), R(ψ2, S)),
R(ψ1 ⊃ ψ2, S) = max(R(¬ψ1, S), R(ψ2, S)).

12Note that each literal l has at least one path to which it belongs: the path 〈l〉 of size 1. Thus, in the absence of
longer paths, the relevance ranking of l is 1.

13In fact, this value may be expressed by: min{IncDBDS (S) | S ⊆ Atoms(L)}; See Proposition 13.
14See http://mailng.hevra.haifa.ac.il/∼annazam/publications/publications.html for a (Java-based) demon-

stration of computing context-aware repairs by d CS
Σ and by d CS

max. Extending this tool to a more general setting could
also allow for an integration with the Tweety project libraries [62].
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One interesting domain in which the ideas described in this paper can be potentially useful is
that of requirement engineering (RE). The requirements problem was originally formulated by Zave
and Jackson in [65] as an abductive problem: given requirements R and domain assumptions D, find
specification S, satisfying D ∪ S ` R under the condition that D ∪ S is consistent. The last condition
reflects the standard approach in RE that all contradictions must be eliminated before the solutions
are identified. It has been acknowledged that this is rarely possible to achieve (see, e.g., [50, 51])
and so several inconsistency-tolerant substitute approaches were proposed. One such approach is a
paraconsistent language for modeling requirements, called Techne [30, 40]. This language allows to
relax the consistency assumption and is based on the idea of looking for the most suitable maximally
consistent subsets of the theory. This is done by means of r-nets, which are directed labeled graphs
representing goals, tasks, and relationships between them, such as conflict (that is understood as
logical inconsistency), optionality, and preference. An example of an r-net (capturing requirements
of a scheduler) is shown in Figure 1. The relationships of conflicts are represented by arcs labeled by
C-marked triangles.16

Figure 1: An r-net (taken from [17])

Finding maximally consistent subsets of requirements in r-nets can be simulated in our framework
by translating an r-net into a logical theory, taking the nodes representing requirements as its literals,
and formulas encoding the relationships of conflicts and non-optional nodes as integrity constraints.
That is, a conflict between r1, . . . , rn can be represented via the formula r1 ∧ . . . ∧ rn → ⊥ (where ⊥
is a propositional constant representing falsity). Preference can then be transformed into a relevance
ranking as described above. An actual implementation of this idea is left for future work.

Future work also involves computational considerations regarding our framework. Results concern-
ing the computational complexity of decision problems in related frameworks show that (as expected)
these problems are not tractable. For instance, Theorem 1 in [14] shows that even for simple integrity
constraints of the form of functional dependencies or inclusion dependencies, determining whether
there is a repair whose weighted distance17 from the database theory is not bigger than a certain

15In this case, one may restrict the range of R to the open unit interval (0, 1) to avoid zeroed values of R.
16For instance, the requirements that the location should be sent on an interactive map is in conflict with the

requirement that scheduling is manual.
17That is, the DS-inconsistency value of the repair, where distances are factored by numeric data (as in Definition 34).

17



threshold, is NP-complete. Yet, our conjecture is that the incorporation of context-awareness ingre-
dients in the distance computations does not increase the complexity of the related problems, at least
as far as the context sensitive distances in Section 3.3 are concerned. Known techniques for query
answering that are based on (answer set) logic programming [4, 26, 31], as well as studies on the
computational complexity of related problems [56, 61] may be helpful to verify these issues. Likewise,
experience gained in similar implementations [44] and experiments with algorithms for reasoning with
distance semantics [9, 32] and for producing similar repairs [14] can help in checking the suitability of
our framework for handling practical cases.
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