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Abstract

The use of priorities among formulae is an important
tool to appropriately revise inconsistent knowledge-
bases. We present a four-valued semantical ap-
proach for recovering consistent data from prioritized
knowledge-bases. This approach is nonmonotonic
and paraconsistent in nature.

1 Introduction

There are many cases in which a knowledge-base con-
tains formulae with different importance. For in-
stance, rules that state default assumptions are usu-
ally considered as less reliable than rules without ex-
ceptions. Also, inference rules are usually given a
lower priority than explicit data. These kinds of con-
siderations are particularly common when revising
inconsistent knowledge-bases; If some formulae are
more certain than others, one would probably like to
reject the least certain first.

Many different approaches for resolving conflicts
in prioritized knowledge-bases have been proposed in
the literature (see, e.g., [5, 6, 8, 9, 11, 12]). A lot
of these methods draw conclusions based on maximal
consistent subsets of the knowledge-base under con-
sideration (see, e.g., [6] for a survey). However, the se-
mantics of the maximal consistent sets might not cor-
respond to that of the original knowledge-base. For
example, none of the maximal consistent subsets of
the simplest inconsistent knowledge-base {p, —p} re-
flects its intended meaning. Moreover, each maximal
consistent set even contradicts an explicit assertion
of the original knowledge-base.

The method that is presented here also considers

consistent sets of formulae as representing “recov-
ered” data. However, instead of insisting on maximal-
ity, our major concern here is to preserve the origi-
nal semantics of the assertions that are assigned high
priority in the knowledge-base. Roughly speaking,
the idea is to construct consistent subsets of formulae
that reflect the semantics of the higher priority data,
and to choose one of them according to some pref-
erence criteria. Then it is possible to apply classical
inferences for making plausible conclusions from the
recovered set of assertions. This kind of approach is
called coherent [6] or conservative [13], since it treats
contradictory data as useless, and regards the remain-
ing data unaffected.

2 Recovery of knowledge-bases

2.1 Preliminaries

Our method is based on Belnap well-known logic
[3, 4], which consists of four truth values: the clas-
sical ones (%, f), a value that intuitively represents
lack of information (L), and a value that indicates
inconsistency (T). The two latter values make Bel-
nap logic particularly useful for reasoning with un-
certainty. ({¢,f, T, L}, <) is a distributive lattice in
which f is the minimal element, ¢ is the maximal one,
and 1, T are two intermediate values that are incom-
parable (see Figure 1). We shall denote the meet and
the join of this lattice by A and V, respectively. It is
also possible to define an involution — on this lattice,
for which =T =T and =L = 1. The truth values ¢
and T are called the designated elements, since they
intuitively represent formulae known to be true. The
other semantic notions are natural generalizations of
the similar classical ones: A waluation v is a func-
tion that assigns a truth value from {¢,f, T, L1} to
each atomic formula. Any valuation is extended to
complex formulae in the obvious way. The set of val-
uations on a set S of formulae is denoted V(S). We
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Figure 1: The four-valued lattice

will usually write ¢ : b € v instead of v(¢) =b. A
valuation v satisfies ¢ iff v(¢) € {t, T}. A valuation
that satisfies every formula in S is a model of §. The

set of all the models of S is denoted mod(S).

Definition 2.1 Let S be a set of formulae and v —
a formula. S}=1 if every model of S is a model of 3.

The language we treat here is the standard propo-
sitional one. Given a set S of propositional formulae,
we shall denote by A(S) the set of the atomic formu-
lae that appear in the language of S, and by L(S)
the set of the literals that appear in some formula
of S. The formulae considered here are clauses, i.e.:
disjunctions of literals. A set of clauses is called a
knowledge-base, and is denoted by KB. As the fol-
lowing lemma shows, representing the formulae in a
clause form does not reduce the generality.

Lemma 2.2 For every formula ¢ there is a finite set
S of clauses such that for every valuation v, v(¢) €

{T,t}iff v(p)€{T,t} for every p€S.

Definition 2.3 Let v € V(KB). Define:
Inc,(KB) = {pc A(KB) | v(p)=T}.

Definition 2.4 Let M, N € mod(KB). M is more
consistent than N iff Incpyr(KB) C Iney(KB). M is
a most consistent model of KB (mcm, for short) if
there is no model of KB which is more consistent
than M. The set of the most consistent models of
KB is denoted mem(KB).

2.2 Recovered sets

As we have noted before, a drawback of using maxi-
mal consistent subsets is that none of these sets nec-
essarily corresponds to the intended semantics of the
original information. An approach that “salvages”
consistent data from “polluted” knowledge-bases and

still preserves their semantics is presented in [1, 2].
In what follows we briefly review this method and
in the next section we generalize it for prioritized
knowledge-bases.

Definition 2.5 A model M of a set of clauses KB
is consistent if Incpr(KB) = 0. A knowledge-base is
consistent if is has a consistent model.

Proposition 2.6 A knowledge-base is consistent iff
it is classically consistent.

Definition 2.7 A recovered set S of KB is a subset
of KB with a consistent model M s.t. there is a (not
necessarily consistent) model M’ of KB and M(p)=
M'(p) for every pe A(S).

Definition 2.8 Let v € V(KB). The set that is as-
sociated with v is defined as follows:

S, (KB)={$ € KB | v($)=t, A($) N Inc,(KB)=0}.

Example 2.9 Consider the knowledge-base KB =
{p, q, "pV—g}. S1={p} and S2={q} are the recov-
ered sets of KB. These sets are associated with the
(most consistent) models {p:t, ¢: T}and {p: T, ¢:¢},
respectively. Note that S; is no longer a recovered
set of KB' = KB U {—p}, since there is no consistent
model of S; that is expandable to a model of KB’.

Proposition 2.10 [1, 2] Every set that is associated
with a model of KB is a recovered set of KB.

Given an inconsistent knowledge-base, the idea is
to choose one of its maximal recovered sets (see [2]),
and to treat this set as the relevant knowledge-base
for deducing classical inferences. As the following
proposition shows, there is a strong connection be-
tween maximal recovered sets of a knowledge-base
and its mcms:

Proposition 2.11 [1, 2] Every maximal® recovered
set of KB is associated with some mcm of KB.

3 Prioritized knowledge-bases

Consider a knowledge-base KB = S U {p, -p} where
p 1s an atomic formula, and S is a consistent set of
clauses. For simplicity assume that p ¢ A(S). The
approach described in the previous section considers
S as the recovered set of KB and ignores p, -p. Any
larger consistent set will not properly reflect the in-
tended semantics of KB.

This state of things should completely be changed
if we know, for example, that p is more usual than

1 The maximality is taken w.r.t. the containment relation.



—p. In such a case we would like to include p in
the recovered set after all, since now the intended se-
mantics is affected not only by the assertions in the
knowledge-base, but also by some “meta-knowledge”
that is provided with the original information. In
this case p is given a higher priority than —p, and it
seems reasonable that the recovered knowledge-base
would contain p as well. The idea is, therefore, to dis-
tinguish between higher priority formulae and those
with lower priority, and to assure that it will not be
possible to draw any conclusion that contradicts for-
mulae with high priority. In what follows we formalize
this intuition.

Definition 3.1 Let v € V(KB) and S C KB. The
reduction of v to S is the set v | S={v(p) | p€.A(S)}.

Definition 3.2 A ranking of a knowledge-base KB is
a function r from the clauses in KB to {1,2,...,n}.

The ranking function determines a preference rela-
tion on the clauses of a knowledge-base; Intuitively,
a clause with a lower rank has a higher priority.

Notation 3.3 KB'={¢ € KB | r(¢) <i}.

Definition 3.4 Let R'={S,(KB) | v€V(KB), v |
KB* € mem(KB")}. Denote the maximal elements of
Riby R'. Le,,R*={S€R' | 3T R* s.t. SCT}.

The R'’s are the candidates to be the set of the
recovered knowledge-bases of KB. Following [5], we
provide some criteria for choosing the preferred set.
The index of this set determines what would be con-
sidered as a high ranking level:

o set cardinality: R* >S5 RI if VS c R IT € R/
s.t. |T<]S|.

e set inclusion: R ZSi RI ff VSER' AT ERY s.t.
TCS.

e cardinality of consistent consequences: R* >CC
RIMIVSeR* ITeRI st. [{IcL(KB) | TE
LTI < {IEL(KB) | SEL, S D2

e inclusion of consistent consequences: R ZCi RI
ifVSeR' IT€R? s.t. {I€L(KB) | TEL T
I} C{leL(KB) | SEL, S}

Definition 3.5 The optimal recovery level of KB
w.r.t. <S¢ is ig = max{i | =35 #i s.t. RI >SC R}
The optimal recovery levels of KB w.r.t. SSi, <ce
and <, are defined similarly.

2Where [ denotes the complement of I.

Definition 3.6 Let iy be the optimal recovery level
of a prioritized knowledge-base KB. The recovered
knowledge-bases of KB are the elements of R,

Definition 3.6 generalizes the notion of recov-
ered sets (Definition 2.7) to the case of prioritized
knowledge-bases:

Proposition 3.7 If all the clauses in KB have the
same priority, then S is a recovered set of KB iff
SeR!.

Proof: Immediate from Proposition 2.11 and Defini-
tion 3.4, since KB=KB'. O

Preference criteria like inclusion of consistent con-
sequences (see above) or maximal information [10]
might be applied to the elements of R for choosing
the “best” recovered knowledge-base. For other pref-
erence criteria see, e.g., [6].

Before considering an example we extend the dis-
cussion to a language with predicates and variables.
It is possible to do so in a straightforward way, pro-
vided that each clause that contains variables is con-
sidered as universally quantified. Consequently, a
knowledge-base containing a non-grounded formula,
1, will be viewed as representing the corresponding
set of ground formulae formed by substituting each
variable in ¢ with every possible member of the Her-
brand universe, U. Formally: KBY = {p(¢)) | ¥ €
KB, p:var(y)—=U}.

Example 3.8 (Tweety Dilemma) Consider the
following well-known puzzle:

bird(z) — fly(z),

penguin(z) — —fly(z),

penguin(z)— bird(z),

bird(Tweety), bird(Fred), penguin(Tweety)

Denote the above knowledge-base by KB, and abbre-
viate the predicates bird, penguin, fly with b, p, and
f (respectively)3. Also, T, F will stand for the indi-
viduals Tweety and Fred. KB has three mcms (see
Figure 2) and three corresponding associated sets:

Su,(KB) = KBY \ {¢ ¢ KBY | f(T)c A(%)}
Su,(KB) = KBY \ {$ ¢ KBU | p(T) € A(%)}
Suy(KB) = KBY \ {¢ ¢ KBY | b(T) € A(¥)}

3Note that the symbol f has double meanings here: ab-
breviating the predicate fly, and representing the truth value
FALSE. Each appearance of f will be understood by the

context.



mem | 5(T) | p(T) | f(T) | b(F) | p(F) | f(F)
M, i i T i f i
M, ¢ T ¢ ¢ f ¢
My | T ¢ f ¢ f ¢

Figure 2: The mcms of KB

There is no maximal recovered set of KB that en-
tails all the properties of Tweety that one would ex-
pect to infer (i.e., that it is a bird, a penguin, and
cannot fly). We claim, however, that this state of
things is due to the fact that the actual representa-
tion of the problem does not properly reflect the intu-
itive understanding of this particular puzzle: While
according to the above representation every rule is
given the same importance, usually an explicit data
(i.e. rules with empty bodies) is assigned a higher pri-
ority than other inference rules. Also, the first rule
represents default assumption, and unlike the other
rules it has exceptions, so it should be given a lower
priority. In other words, we claim that a more accu-
rate representation of this problem should be accom-
panied with some mechanism for making precedences
among the rules. In our case this is a ranking function
r. A possible ranking of KB is r(b(T)) = r(b(F)) =
H(p(T)) =1, r(p(z) > ~f(2)) =r(p(z)  b(z)) =2, and
r(b(z) — f(z))=3. By Proposition 3.10 below it fol-
lows that the optimal recovery level w.r.t. either <
or < isi=2, and KB%={b(T), b(F), p(T), p(z)—

—f(z), p(z)—b(z)}. The most consistent models of
KB? are given in the table of Figure 3.

mem | b(T) | p(T) | F(T) | b(F) | p(F) | F(F)
M7 i i f i f f
M2 t t f t f t
M2 t t f t f 1
M} t t f t t f
M2 t t f t 1 f

Figure 3: The mcms of KB?

It follows that R? = {Suz(KB)}, so the recovered
knowledge-base of KB is the following:

Suz(KB) = KB \ {8(T) - f(T)}.

This recovered knowledge-base is associated with
M2, which coincides with the expected conclusions:
Tweety is a bird, a penguin, and cannot fly, while
Fred is a bird that can fly and it is not a penguin.
KBY \ {b(T) — f(T)} is also the (single) recovered
knowledge-base obtained when taking <3¢ or <®! as
the preference order, or when the ranking is the fol-

lowing: #(b(T)) = r(5(F)) = r(p(T)) = r(p(z) -

~f(z)) = r(p(z) = b(z)) = 1, r(b(z) — f(z)) = 2.

O

We conclude with some basic properties of recov-
ered knowledge-bases:

Proposition 3.9 Every recovered knowledge-base S
of KB has a model that assigns classical values to the
element of A(S).

Proof: Every recovered knowledge-base S is of the
form S, (KB), where Vpe A(S) v(p)e{t, f, L}. Con-
sider the valuation v’ s.t. v'(p)=v(p) if v(p) € {¢, f}
and v'(p) =t otherwise. By an induction on the struc-
ture of the clauses 9 € S it is easy to verify that
V() € {t, T} whenever v(y) € {¢, T}, thus v’ is a
model of §. O

Proposition 3.10 Let either <®C or <® be the pref-
erential relation defined on the sets R7, and suppose
that KB! is consistent. Then:

a) The optimal recovery level is the maximal rank 4
s.t. KB® is consistent.

b) Every recovered knowledge-base of KB is associ-
ated with a classical model on A(KB).

Proof: By the assumption on KB!, there exists
at least one R’ for which KB’ is consistent. Ev-
ery such R’ is maximal w.r.t both < and <,
since by Proposition 2.6, mem(KB?) consists only
of consistent models of KB7, which can be modi-
fied to classical models in the same way as in the
proof of Proposition 3.9. These models can be ex-
tended to classical valuations v} on A(KB) by as-
signing classical values to every atom in A(KB\KB7).
Each valuation »j has a set S”i (KB) with which it

is associated, and for every p € A(KB), either p or
-p is in {I € L(KB) | Sui(KB) E l’Sui(KB) W= 1}
Therefore, S ;(KB) € R7, and so part (b) of the
claim obtains? On the other hand, if KB™ is in-
consistent, then for every model M of KB™ there
is a py € A(KBY) s.t. M(py) = T. Thus, if
S (KB)€R™, then neither pas nor —pyy is in the set
{l € L(KB) | Su(KB) =1, Sy (KB) - 1}. Therefore
RI >CCR™ and RV >CL R™. O

Proposition 3.11 Let 7 be the optimal recovery
level of KB and S — a recovered knowledge-base of
KB. Then:

a) SNKB' is a maximal recovered set of KB®.

b) There is an M* € mem(KB*) s.t. S=Sy:(KB).
c) If KB! is consistent, and the preference relation is
either < or <%, then § = KB* U Sy:(KB\ KB"),
where i is the maximal rank s.t. KB is consistent,
and M* is a (most) consistent model of KB'.
Proof: (a) and (b) immediately follow from Propo-
sition 2.11 and Definitions 3.4, 3.6. Part (c) follows



from (b) and Proposition 3.10, since S =S,;:(KB*) U
Su:(KB\KB*)=KB*' U Sy:(KB\KB"). O

Each recovered knowledge-base is therefore a max-
imal set that is consistent (in the sense of Definition
2.5), and preserves the semantics of the clauses with
the i-highest priorities (where ¢ is an optimal recov-
ery level w.r.t. some pre-defined criteria). To the
maximal recovered set of KB' we add clauses with
lower priority than the optimal recovery level, pro-
vided that they are still true in the intended seman-
tics and the consistency of the recovered set is not
damaged.*

Corollary 3.12 Let S be a recovered knowledge-
base of KB, and 7 — the optimal recovery level of
KB. Then:

a) If SEv then S} .

b) If ¢, -y € KB and r(¢) <7 then -9 ¢S.

¢) Under the conditions of Proposition 3.10, if ¥ €
KB* there is no recovered knowledge-base S’ of KB
s.t. §'E-.

Proof: (a) — Otherwise S cannot be consistent. (b)
—If €S then from (a), 79 ¢ S. Suppose, then, that
¥ ¢S. By 3.11(b) S =Sy;:(KB). Since ¥ € KB® nec-
essarily A(¢) NIncyi(KB) #0, and so ¢ & S as well.
(c) — Otherwise, by 3.11(b) S},:(KB) = —¢, where
M' € mem(KB*). Thus M*(¢ ) T and so there ex-
ists some p€ A(¢) s.t. Mi(p) =
t0 3.10(a). O

— a contradiction

4 Conclusion

We introduced a nonmonotonic and paraconsistent [7]
method that copes with inconsistency in prioritized
knowledge-bases. This approach preserves the seman-
tics of the most valuable information of the original
knowledge-base. Clauses with lower priorities are also
added to the recovered knowledge-base provided that
it remains consistent and the correspondence to the
semantics of the data with higher priority is kept.

This method might be applied in various applica-
tions, among which are satisfactions of theories with
prioritized constraints, systems that reason with pri-
oritized default rules, knowledge-bases with multiple
sources that have different priorities, diagnostic sys-
tems that analyze devices with different reliability,
etc.

*In Example 3.8, for instance, b(z) — f(z) is not part of
the recovered knowledge-base, but the instance b(F) — f(F)
is included in it, since this instance is true in the intended
semantics, and its addition still preserves the consistency of
the recovered knowledge-base.
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