
Towards Constraints Handling by Conflict Tolerance
in Abstract Argumentation Frameworks

Ofer Arieli
School of Computer Science

The Academic College of Tel-Aviv, Israel

Abstract
In this paper we incorporate integrity constraints in
Dung-style abstract argumentation frameworks. We
show that even for constraints of a very simple
form, standard conflict-free semantics for argumenta-
tion frameworks are not adequate as conflicts among ar-
guments should sometimes be accepted and tolerated.
For this, we use conflict-tolerant semantics and show
how corresponding extensions may be represented in
terms of propositional formulas.

Introduction and Motivation
Dung’s argumentation framework (1995) is a graph-style
representation of what may be viewed as a dispute. It is in-
stantiated by a set of abstract objects, called arguments, and
a binary relation on this set that intuitively represents attacks
between arguments. These structures have been found use-
ful for modeling a range of formalisms for non-monotonic
reasoning, including default logic (Reiter 1980), logic pro-
gramming under stable model semantics (Gelfond and Lifs-
chitz 1988), three-valued stable model semantics (Wu, Cam-
inada, and Gabbay 2009) and well-founded model seman-
tics (van Gelder, Ross, and Schlipf 1991), Nute’s defeasible
logic (Governatori et al. 2004), and so on.

Despite of their general nature, experience shows that in
some cases argumentation frameworks lack sufficient ex-
pressivity for accurately capturing their domain, and some
extra apparatus is needed to gain a more comprehensive rep-
resentation. This observation motivated several works, like
those of Amgoud and Cayrol (2002) and Modgil (2009), in
which meta-knowledge, such as preferences relations among
the arguments, is provided for refining the process of select-
ing the arguments that can collectively be accepted from the
argumentation framework at hand.

In this paper we formalize the additional knowledge that
is linked to argumentation frameworks in terms of integrity
constraints, that is, conditions that every accepted set of ar-
guments must satisfy. We show that the satisfaction of such
constraints (and even very simple ones) sometimes requires
to abandon the conflict-freeness assumption behind standard
argumentation semantics, so it might happen that accepted
arguments attack each other. Such a case is considered next.

Copyright c⃝ 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Example 1 The phenomena of interference on one hand
and the photoelectric effect on the other hand may stand be-
hind conflicting arguments about whether light is a particle
or a wave. Any choice between such arguments would obvi-
ously be arbitrary, and the dismissal of one of them would
unavoidably yield erroneous conclusions about the nature of
light. For having a realistic theory it is therefore essential in
this case to adopt an attitude that tolerates both conflicting
arguments.

To be able to capture situations like the one described in
the example above we incorporate the conflicting-tolerant
semantics described in (Arieli 2012). This also allows us to
represent, using propositional languages, different kinds of
semantics for argumentation frameworks, augmented with
integrity constraints, and compute these semantics by off-
the-shelf SAT-solvers.

The rest of this paper is organized as follows: First, we
review the main definitions pertaining to Dung’s theory of
argumentation, then we show how integrity constrains can
be added to this theory, and how four-valued labeling in the
context of conflict-tolerant semantics can be incorporated
for handling constrained argumentation. This is followed by
a section in which we show that what is obtained is repre-
sentable by signed theories whose models describe the in-
tended semantics of the constrained argumentation frame-
works. In the last section we conclude and consider some
future work.

Preliminaries
Let us first recall the basics of abstract argumentation frame-
works.

Definition 2 A (finite) argumentation framework (Dung
1995) is a pair AF = ⟨Args,Att⟩, where Args (the set of
arguments) is a finite set, and Att (the attack relation) is a
relation on Args×Args .

When (A,B) ∈ Att we say that A attacks B (or that
B is attacked by A). The set of arguments that are attacked
by A is denoted by A+ and the set of arguments that attack
A is denoted by A−. Now, for a set S ⊆ Args we denote,
respectively, by S+ =

∪
A∈S A

+ and by S− =
∪

A∈S A
−

the set of arguments that are attacked by some argument in
S and the set of arguments that attack some argument in S.
Accordingly, the set of arguments that are defended by S is

Def(S) = {A ∈ Args | A− ⊆ S+}, that is, each attacker of
an argument in this set is counter-attacked by (an argument
in) S.

The primary principles for accepting arguments are now
defined as follows:

Definition 3 Let AF = ⟨Args,Att⟩ be an argumentation
framework and let S ⊆ Args be a set of arguments.

• S is conflict-free (with respect to AF) iff S ∩ S+ = ∅.
• S is an admissible extension (of AF) iff it is conflict free

and S ⊆ Def(S).
• S is a complete extension (of AF) iff it is conflict free and
S = Def(S).
Thus, conflict-freeness assures that no argument in the

set is attacked by another argument in the set, admissibil-
ity guarantees, in addition, that the set is self defendant, and
complete sets are admissible ones that defend exactly them-
selves.

Example 4 Consider the framework AF1 of Figure 1. This
framework has five admissible extensions: ∅, {A}, {B},
{A,C} and {B,D}, three of them are complete: ∅, {A,C}
and {B,D}.

Figure 1: The argumentation framework AF1

Argument acceptability may now be defined as follows:

Definition 5 Let AF = ⟨Args,Att⟩ be an argumentation
framework. An argument A ∈ Args is credulously accepted
(by completeness semantics), if it belongs to some complete
extension of AF ; it is skeptically accepted (by complete-
ness semantics), if it belongs to all the complete extension
of AF .

Skeptical and credulous acceptance may be defined also
with respect to other types of extensions, some of which are
refinements of complete extensions. We refer, e.g., to (Ba-
roni, Caminada, and Giacomin 2011) for further details.

Constrained Argumentation Frameworks
Consider again Example 1. Ignoring one of the (conflicting)
phenomena described there means a partial and even mis-
leading description of the situation at hand. It is therefore
essential to accept both phenomena in any set of accepted
arguments of the corresponding argumentation framework.
In practice, this has two implications:

1. Some further, ‘meta knowledge’ about the arguments
should be supplied and taken into account in the compu-
tation of extensions, and

2. contradictory conclusions should be maintained without
reducing to triviality (that is, without accepting anything
whatsoever in the presence of contradictions, as is the
case, e.g., in classical logic).

The most straightforward way of supporting the second
issue above is by lifting the conflict-freeness requirement in
Definition 3, while keeping the other properties in the same
definition. It follows that any argument in an extension must
still be defended.
Definition 6 Let AF = ⟨Args,Att⟩ be an argumentation
framework and let Ext ⊆ Args .
• Ext is a paraconsistently admissible (or: p-admissible)

extension for AF , if Ext ⊆ Def(Ext).
• Ext is a paraconsistently complete (or: p-complete) ex-

tension for AF , if Ext = Def(Ext).1

Thus, every admissible (respectively, complete) extension
for AF is also p-admissible (respectively, p-complete) ex-
tension for AF , but not the other way around.
Example 7 The argumentation framework AF2 that is
shown in Figure 2 has two p-complete extensions: ∅ (which
is also the only complete extension in this case), and
{A,B,C}.

Figure 2: The argumentation framework AF2

As follows from Example 7, it may happen that the only
(conflict-free) complete extension of a framework is the
empty set. The next proposition shows that this is not the
case as far as p-complete extensions are concerned.
Proposition 8 There exists a nonempty p-complete exten-
sion (and so a nonempty p-admissible extension) for every
argumentation framework.2

Next, we extend the frameworks with integrity constraints
that should be satisfied by any extension. In this paper we
concentrate on constraints that can be expressed by single
arguments. A natural requirement from such a set of con-
straints is that it should be p-admissible. This is so, since
any accepted argument, not to mention those that must be ac-
cepted, has to be justified, and so such arguments shouldn’t
be exposed to undefended attacks. This leads to the next def-
inition.
Definition 9 A constrained argumentation framework
(CAF, for short) is a triple CAF = ⟨Args,Att ,Const⟩,
where ⟨Args,Att⟩ is an argumentation framework, and
Const (the set of constraints) is a p-admissible subset of
Args .3

1The notions of p-admissibility and p-completeness should not
be confused with similar notions, used in (Coste-Marquis, Devred,
and Marquis 2005) for prudent semantics, which have a different
meaning.

2Due to a lack of space proofs of some results are omitted.
3Alternatively, we shall sometimes refer to a constrained argu-

mentation framework as a pair ⟨AF ,Const⟩, where AF is an ar-
gumentation framework and Const is a set of constraints.

Definition 10 An admissible (respectively, complete, p-
admissible, p-complete) extension for a constrained argu-
mentation framework CAF = ⟨Args,Att ,Const⟩ is a su-
perset of Const , which is an admissible (respectively, com-
plete, p-admissible, p-complete) extension of ⟨Args,Att⟩.
Example 11 Let CAF1 = ⟨Args,Att ,Const⟩ be a
constrained argumentation framework, where AF1 =
⟨Args,Att⟩ is the argumentation framework of Figure 1 and
Const = {A,B}. This constrained framework does not
have admissible nor complete extensions (since Const is
not conflict-free), but it has four p-admissible extensions:
{A,B}, {A,B,C}, {A,B,D} and {A,B,C,D}, the latter
is also p-complete.

Proposition 12 There exists a nonempty p-complete exten-
sion (and so a nonempty p-admissible extension) for every
constrained argumentation framework.

Proof. Let CAF = ⟨Args,Att ,Const⟩ be a constrained
argumentation framework. If Const = ∅ then CAF is in
fact an (‘ordinary’) argumentation framework, and so the
proposition follows from Proposition 8. Suppose then that
Const ̸= ∅. By its definition, Const is a p-admissible
extension of CAF . Now, if Const is also a p-complete
extension of CAF , we are done. Otherwise, there is an
argument A1 ∈ Def(Const) − Const . Let Const1 =
Const ∪ {A1}. Note that Const1 is still p-admissible,
since A1 ∈ Def(Const), and so Const1 = Const ∪
{A1} ⊆ Def(Const) ⊆ Def(Const1). Now, if Const1
is p-complete, we are done. Otherwise, we again choose
an argument A2 ∈ Def(Const1) − Const1, and consider
the set Const2 = Const1 ∪ {A2}. As before, Const2 is
still p-admissible. By this process we get a sequence of
p-admissible extensions Const ,Const1,Const2, . . ., where
each extension is properly included in its successor. Note
that this sequence consists of no more than |Args| p-
admissible sets, and it must culminate with a p-complete
extension of CAF . This is so, since if we keep adding ar-
guments without reaching a p-complete extension, we even-
tually end-up with the whole set of arguments, Args , which
must be a p-complete extension of CAF .4 �
Note 13 The p-complete extension of CAF constructed in
the proof above is minimal in the sense that every set that is
properly contained in it is not p-complete or does not contain
the set Const . In this respect, we have shown that CAF has
what may be called a “p-grounded extension”.

Four-Valued Semantics for CAFs
For computing extensions of constrained argumentation
frameworks we use the conflict-tolerant semantics for argu-
mentation frameworks, introduced in (Arieli 2012). This ap-
proach is based on the following four-valued functions (‘la-
belings’) on the set of arguments: a value t assigned to an
argument indicates that the argument should be accepted, f
indicates that the argument should be rejected, ⊤ indicates

4Indeed, since the sequence contains only p-admissible exten-
sions it holds, in particular, that Args ⊆ Def(Args). Also, obvi-
ously Def(Args) ⊆ Args , thus Args = Def(Args).

that there are both supportive and rejective evidences, and ⊥
is a no-acceptance no-rejection indication.

Definition 14 Let AF = ⟨Args,Att⟩ be an argumentation
framework.

• Given a setExt ⊆ Args of arguments, the function that is
induced by (or, is associated with) Ext is the 4-valued la-
beling pELAF (Ext) of AF ,5 defined for everyA ∈ Args
as follows:

pELAF (Ext)(A) =

t if A ∈ Ext and A ̸∈ Ext+

⊤ if A ∈ Ext and A ∈ Ext+

f if A ̸∈ Ext and A ∈ Ext+

⊥ if A ̸∈ Ext and A ̸∈ Ext+

A 4-valued labeling induced by some subset of Args is
called a paraconsistent labeling (or a p-labeling) of AF .

• Given a 4-valued labeling lab of AF , the set of arguments
that is induced by (or, is associated with) lab is defined by

pLEAF (lab) = {A | lab(A) = t} ∪ {A | lab(A) = ⊤}.

The intuition behind the transformation from a labeling
lab to its extension pLEAF (lab) is that any argument for
which there is some supportive indication (i.e., it is labeled
t or ⊤) should be included in the extension (even if there
are also opposing indications). The transformation from an
extension Ext to the labeling pELAF (Ext) that it induces
is motivated by the aspiration to accept the arguments in the
extension by marking them as either t or ⊤. Since Ext is
not necessarily conflict-free, two labels are required to in-
dicate whether the argument at hand is attacked by another
argument in the extension, or not.

In order to obtain p-admissible extensions of a CAF from
its p-labelings, we pose further rationality postulates on p-
labelings:

Definition 15 Let AF = ⟨Args,Att⟩ be an argumentation
framework. A p-labeling lab for AF is called p-admissible,
if it satisfies the following rules:

pIn If lab(A) = t then ∀B∈A− lab(B) = f .
pOut If lab(A) = f then ∃B∈A− s.t. lab(B)∈{t,⊤}
pBoth If lab(A) = ⊤ then ∀B∈A− lab(B)∈{f,⊤}

and ∃B∈A− s.t. lab(B) = ⊤.
pNone If lab(A) = ⊥ then ∀B∈A− lab(B)∈{f,⊥}.

Proposition 16 (Arieli 2012)

• IfExt is a p-admissible extension of AF then the function
pELAF (Ext) is a p-admissible labeling of AF .

• If lab is a p-admissible labeling of AF then pLEAF (lab)
is a p-admissible extension of AF .

• The functions pELAF and pLEAF , restricted to the p-
admissible labelings and the p-admissible extensions of
AF , are bijective, and are each other’s inverse.

5Here, pEL stands for a paraconsistent-based conversion of
extensions to labelings.

A similar one-to-one correspondence holds between p-
complete extensions and p-labelings that satisfy the follow-
ing postulates:

Definition 17 Let AF = ⟨Args,Att⟩ be an argumentation
framework. A p-labeling lab for AF is called p-complete, if
it satisfies the following rules:

pIn+ lab(A) = t iff ∀B∈A− lab(B) = f .
pOut+ lab(A) = f iff ∃B∈A− s.t. lab(B)∈{t,⊤}

and ∃B∈A− s.t. lab(B)∈{t,⊥}.
pBoth+ lab(A) = ⊤ iff ∀B∈A− lab(B)∈{f,⊤}

and ∃B∈A− s.t. lab(B) = ⊤.
pNone+ lab(A) = ⊥ iff ∀B∈A− lab(B)∈{f,⊥}

and ∃B ∈ A− s.t. lab(B) = ⊥.

Proposition 18 (Arieli 2012)
• If Ext is a p-complete extension of AF then the function
pELAF (Ext) is a p-complete labeling of AF .

• If lab is a p-complete labeling of AF then pLEAF (lab) is
a p-complete extension of AF .

• The functions pELAF and pLEAF , restricted to the p-
complete labelings and the p-complete extensions of AF ,
are bijective, and are each other’s inverse.

Example 19 The four p-complete extensions of CAF1 in
Example 11 and the corresponding p-complete labelings are
represented in the table below.

lab A B C D induced extension
1 t f t f {A,C}
2 f t f t {B,D}
3 ⊥ ⊥ ⊥ ⊥ {}
4 ⊤ ⊤ ⊤ ⊤ {A,B,C,D}

Representation of p-Complete Extensions
In this section we show that p-complete extensions can be
represented (and computed) by logic-based theories. The
idea is the following: by Proposition 18, for computing the
p-extensions of a given CAF it is sufficient to formalize the
postulates in Definition 17 for that CAF, and then compute
the four-valued models of the theory that is obtained. Now,
instead of conducting the computations in the context of
four-valued semantics, a simple syntactic transformation is
applied on the underlying theory for modeling it in the con-
text of two-valued propositional semantics. What is obtained
is called signed theories, and their two-valued models are as-
sociated with the p-complete extensions of the CAF. Below,
we show how this is done.6

Let us first represent the postulates of Definition 17 more
formally:

Definition 20 The set pCMPAF (x) of expressions for an ar-
gumentation framework AF = ⟨Args,Att⟩ is shown in Fig-
ure 3.

6A similar process may be applied also for representing p-
admissible extensions, using Proposition 16 and Definition 15.

In the expressions of pCMPAF (x), x is a variable (to
be sequentially substituted by the elements of Args), and
att(y, x) is replaced by the propositional constant t if
(y, x) ∈ Att (that is, if y attacks x in AF), and otherwise
att(y, x) is replaced by the propositional constant f. The in-
tuitive meaning of the expressions val(x, v) is that the ar-
gument x is assigned the value v, for v ∈ {t, f,⊥,⊤} (see
also Definition 23). It follows that we are in the context of 4-
valued semantics, considered in the previous section, where
t and f represent the classical truth values, and the other
two values, denoted ⊥ and ⊤, intuitively represent lack of
information and contradictory information (respectively).

For representing constraints, we add to pCMPAF (x) the
following set of formulas, assuring that any argument in the
set of constraints is always accepted:

Const(Args) = {val(x, t) ∨ val(x,⊤) | x ∈ Const}.

Altogether, we get the following theory:

Definition 21 Let CAF = ⟨AF ,Const⟩ be a constrained
argumentation framework for the argumentation framework
AF = ⟨Args,Att⟩, and let pCMPAF (x) be the set of ex-
pressions that is obtained from AF according to Figure 3.
We denote by pCMPAF [Ai/x] the substitution of x in these
expressions by an argument Ai ∈ Args . Now,

• pCMP(AF) =
∪

Ai∈Args

pCMPAF [Ai/x].

• pCMP(CAF) = pCMP(AF)
∪

Const(Args).

Example 22 Let us explicate the second expression in Fig-
ure 3 for the argumentation framework AF1 of Figure 1,
where x = A. Since the only attacker of A in AF1 is B, we
have that att(y,A) = t when y = B and att(y,A) = f for
any y ̸= B. Thus, we have:
val(A, f)⊃(val(B, t)∨val(B,⊤))∧(val(B, t)∨val(B,⊥)).
As we shall see shortly, the expressions val(x, v) are
abbreviations of formulas that hold iff the truth value of x is
v (and the connectives in the expression are interpreted as
usual). Thus, the expression above may be replaced by the
simpler expression val(A, f) ⊃ val(B, t). By similar trans-
lations and rewriting considerations, the set pCMP(AF1) is
equivalent to the following set:

val(A, t) ⊃ val(B, f), val(A, f) ⊃ val(B, t),
val(B, t) ⊃ val(A, f), val(B, f) ⊃ val(A, t),
val(C, t) ⊃ val(B, f), val(C, f) ⊃ val(B, t),
val(D, t) ⊃ val(C, f), val(D, f) ⊃ val(C, t),

val(A,⊤) ⊃ val(B,⊤), val(A,⊥) ⊃ val(B,⊥)),
val(B,⊤) ⊃ val(A,⊤), val(B,⊥) ⊃ val(A,⊥)),
val(C,⊤) ⊃ val(B,⊤), val(C,⊥) ⊃ val(B,⊥)),
val(D,⊤) ⊃ val(C,⊤), val(D,⊥) ⊃ val(C,⊥))

Thus, for the constrained argumentation framework CAF1

of Example 11, we have that pCMP(CAF1) consists of the
expressions above, together with the following two extra
conditions:

val(A, t) ∨ val(A,⊤), val(B, t) ∨ val(B,⊤).

val(x, t) ⊃
∧

y∈Args

(
att(y, x) ⊃ val(y, f)

)
,

val(x, f) ⊃
(∨

y∈Args

(
att(y, x) ∧

(
val(y, t) ∨ val(y,⊤)

))
∧
∨

y∈Args

(
att(y, x) ∧

(
val(y, t) ∨ val(y,⊥)

)))
,

val(x,⊤) ⊃
(∧

y∈Args

(
att(y, x) ⊃

(
val(y, f) ∨ val(y,⊤)

))
∧
∨

y∈Args

(
att(y, x) ∧ val(y,⊤)

))
,

val(x,⊥) ⊃
(∧

y∈Args

(
att(y, x) ⊃

(
val(y, f) ∨ val(y,⊥)

))
∧
∨

y∈Args

(
att(y, x) ∧ val(y,⊥)

))
Figure 3: The expressions pCMPAF (x)

As argument labeling may use four values, the intended
semantics of the val(x, v) expressions mentioned previously
is a four-valued one. This is also evident by the four-valued
semantics that was associated with CAF in the previous
section. In this respect, Belnap’s well-known four-valued
framework for computerized reasoning (Belnap 1977) natu-
rally fits to our setting. It is defined by the distributive lattice
FOUR = ({t, f,⊤,⊥},≤) in which t and f are the max-
imal and the minimal elements (respectively), and ⊤,⊥ are
intermediate elements that are ≤-incomparable. This struc-
ture has an order reversing involution ¬, for which ¬t= f ,
¬f = t, ¬⊤ = ⊤ and ¬⊥ = ⊥. We shall denote the meet
and the join of this lattice by ∧ and ∨, respectively. The im-
plication connective is defined as follows: a ⊃ b = t if
a ∈ {f,⊥}, and a ⊃ b = b otherwise.7 As in (Belnap 1977),
we take the values t and ⊤ to be our ‘designated elements’,
i.e., those that designate acceptable assertions.

Let now L be a propositional language consisting of a set
of atomic formulas, Atoms(L). For switching to two-valued
semantics (and then being able to use standard SAT-solver
and other theorem provers for classical logic), we follow the
approach in (Arieli 2007) and consider a signed alphabet
Atoms±(L) that consists of two symbols p⊕, p⊖ for each
atom p ∈ Atoms(L). The language over Atoms±(L) with
the same connectives as those of L is denoted by L±.

Now we are ready to define the (two-valued) signed the-
ory for computing the p-complete extensions of CAFs.

Definition 23 Denote by pCMP±(AF)) the signed theories
obtained from pCMP(AF)) by the following substitutions:

val(p, t) = p⊕ ∧ ¬p⊖,
val(p, f) = ¬p⊕ ∧ p⊖,
val(p,⊤) = p⊕ ∧ p⊖,
val(p,⊥) = ¬p⊕ ∧ ¬p⊖.

The theory pCMP±(CAF) is obtained from pCMP(CAF)
in the same way.

Example 24 By Example 22, we have that pCMP±(AF1),
where AF1 is the argumentation framework of Figure 1, is
the following:

7As it is shown e.g. in (Arieli and Avron 1998), this connective
indeed acts as an ‘implication’ in this context.

A⊕ ∧ ¬A⊖ ⊃ ¬B⊕ ∧B⊖, ¬A⊕ ∧A⊖ ⊃ B⊕ ∧ ¬B⊖,
B⊕ ∧ ¬B⊖ ⊃ ¬A⊕ ∧A⊖, ¬B⊕ ∧B⊖ ⊃ A⊕ ∧ ¬A⊖,
C⊕ ∧ ¬C⊖ ⊃ ¬B⊕ ∧B⊖, ¬C⊕ ∧ C⊖ ⊃ B⊕ ∧ ¬B⊖,
D⊕ ∧ ¬D⊖ ⊃ ¬C⊕ ∧ C⊖, ¬D⊕ ∧D⊖ ⊃ C⊕ ∧ ¬C⊖,

A⊕ ∧A⊖ ⊃ B⊕ ∧B⊖, ¬A⊕ ∧ ¬A⊖ ⊃ ¬B⊕ ∧ ¬B⊖,
B⊕ ∧B⊖ ⊃ A⊕ ∧A⊖, ¬B⊕ ∧ ¬B⊖ ⊃ ¬A⊕ ∧ ¬A⊖,
C⊕ ∧ C⊖ ⊃ B⊕ ∧B⊖, ¬C⊕ ∧ ¬C⊖ ⊃ ¬B⊕ ∧ ¬B⊖,
D⊕ ∧D⊖ ⊃ C⊕ ∧ C⊖, ¬D⊕ ∧ ¬D⊖ ⊃ ¬C⊕ ∧ ¬C⊖

Accordingly, pCMP±(CAF1), where CAF1 is considered
in Example 11, is pCMP±(AF1) and the two constraints:

(A⊕ ∧ ¬A⊖) ∨ (A⊕ ∧A⊖), (B⊕ ∧ ¬B⊖) ∨ (B⊕ ∧B⊖)

which are equivalent to A⊕ and B⊕ (respectively).

The next result shows that the signed theories considered
previously indeed allow to compute the p-complete exten-
sions of (constrained) argumentation frameworks.8

Theorem 25 Let L be a propositional language whose
atomic formulas are associated with the arguments of a
(constrained) argumentation framework AF (CAF), and let
L± be the corresponding signed language. For a two-valued
valuation ν on Atoms±(L), we denote: Accept(ν) = {A |
ν(val(A, t))=1 or ν(val(A,⊤))=1}.9 Then:

• The set of the p-complete extensions of an argumenta-
tion framework AF is the same as the following set:
{Accept(ν) | ν is a model of pCMP±(AF)}.

• The set of the p-complete extensions of a constrained
argumentation framework CAF is the same as the set:
{Accept(ν) | ν is a model of pCMP±(CAF)}.

Outline of proof. First, the correctness of the transformation
between four- and two-valued semantics is proved in (Arieli
2007). The function val in Definition 23 is defined there for
arbitrary formulas in L, and it is shown that for every two-
valued valuation ν2 on Atoms±(L) there is a unique four-
valued valuation ν4 on Atoms(L), and for every four-valued
valuation ν4 on Atoms(L) there is a unique two-valued val-
uation ν2 on Atoms±(L), such that for every formula ψ in
L, ν4(ψ) = x iff ν2(val(ψ, x)) = 1. Now, it remains to

8Below we freely exchange an argument Ai ∈ Args , the propo-
sitional variable that represents Ai (with the same notation), and
the corresponding signed variables A⊕

i , A⊖
i .

9Note that, in fact, Accept(ν) = {A | ν(A⊕) = 1}.

show that the signed theories defined above faithfully repre-
sent p-complete extensions. This follows from the following
facts:

• For every p-complete extension Ext of AF there is a
model ν of pCMP±(AF), such that Ext = Accept(ν) =
{A | ν(A⊕) = 1} (and also Ext+ = {A | ν(A⊖) = 1}).

• For every model ν of pCMP±(AF) there is a p-complete
extension Ext of AF such that Ext = Accept(ν).

Similar facts hold for p-complete extensions of CAF and
the models of pCMP±(CAF). �

Example 26 Consider again the theory pCMP±(AF1) in
Example 24. The two-valued models of this theory are given
in the table below:

A⊕ A⊖ B⊕ B⊖ C⊕ C⊖ D⊕ D⊖

ν1 1 0 0 1 1 0 0 1
ν2 0 1 1 0 0 1 1 0
ν3 0 0 0 0 0 0 0 0
ν4 1 1 1 1 1 1 1 1

Thus, Accept(ν1) = {A,C}, Accept(ν2) = {B,D},
Accept(ν3) = {} and Accept(ν4) = {A,B,C,D}. These
are exactly the p-complete extensions of AF1, as indeed
guaranteed by Theorem 25. Note that only ν4 is also a model
of pCMP±(CAF1), and indeed {A,B,C,D} is the only p-
complete extension of CAF1 (see Example 11).

Conclusion and Perspectives
In this paper we have considered situations in which addi-
tional knowledge in the form of integrity constraints may
have to be taken into account in the computations of ex-
tensions for Dung’s-style argumentation frameworks. The
incorporation of constraints imply that contradictory argu-
ments may have to be accepted, and so the conflict-freeness
assumption, which is a keystone of the existing argumenta-
tion semantics, should be abandoned. It is shown that this
can be achieved by conflict-tolerant semantics, and that ex-
tensions of constrained argumentation frameworks can be
represented in terms of signed theories.

The addition of constraints to argumentation frameworks
has also been considered by Coste-Marquis, Devred, and
Marquis (2006).10 In contrast to the present approach, Coste-
Marquis, Devred, and Marquis require conflict freeness, and
so neither of the constraints nor the extensions of the frame-
work may be contradictory. This requirement implies that
nonempty extensions may not be available for a constrained
argumentation framework. Recall that in our case this cannot
happen, as indicated in Proposition 12.

Our framework may be extended and improved in sev-
eral ways. Future research involves the implementation of
computerized tools for automatically computing extensions
of constrained frameworks, and the incorporation of more
complex constraints in those frameworks. It should be noted
that by using methods like that in (Arieli 2007) for repre-
senting propositional formulas by signed formulas, the latter

10An anonymous reviewer is thanked for pointing this out.

should not be too complicated, at least as long as constraints
remain at the propositional level.11

References
Amgoud, L., and Cayrol, C. 2002. Inferring from inconsis-
tency in preference-based argumentation frameworks. Jour-
nal of Automated Reasoning 29(2):125–169.
Arieli, O., and Avron, A. 1998. The value of the four values.
Artificial Intelligence 102(1):97–141.
Arieli, O. 2007. Paraconsistent reasoning and preferential
entailments by signed quantified Boolean formulas. ACM
Transactions on Computational Logic 8(3). Article 18.
Arieli, O. 2012. Conflict-tolerant semantics for argumenta-
tion frameworks. In Proc. JELIA’12, Lecture Notes in Com-
puter Science 7519, 28–40. Springer.
Baroni, P.; Caminada, M.; and Giacomin, M. 2011. An
introduction to argumentation semantics. The Knowledge
Engineering Review 26(4):365–410.
Belnap, N. D. 1977. A useful four-valued logic. In Dunn,
J. M., and Epstein, G., eds., Modern Uses of Multiple-Valued
Logics. Reidel Publishing Company. 7–37.
Coste-Marquis, S.; Devred, C.; and Marquis, P. 2005. Pru-
dent semantics for argumentation frameworks. In Proc. IC-
TAI’05, 568–572. IEEE Computer Society.
Coste-Marquis, S.; Devred, C.; and Marquis, P. 2006. Con-
strained argumentation frameworks. In Proc. KR’06, 112–
122. AAAI Press.
Dung, P. M. 1995. On the acceptability of arguments
and its fundamental role in nonmonotonic reasoning, logic
programming and n-person games. Artificial Intelligence
77:321–357.
Gelfond, M., and Lifschitz, V. 1988. The stable model se-
mantics for logic programming. In Proc. ICLP’88, 1070–
1080. MIT Press.
Governatori, G.; Maher, M. J.; Antoniou, G.; and Billington,
D. 2004. Argumentation semantics for defeasible logic.
Journal of Logic and Computation 14(5):675–702.
Modgil, S. 2009. Reasoning about preferences in argumen-
tation frameworks. Artificial Intelligence 173(9–10):901–
934.
Reiter, R. 1980. A logic for default reasoning. Artificial
Intelligence 13:81–132.
van Gelder, A.; Ross, K. A.; and Schlipf, J. S. 1991. The
well-founded semantics for general logic programs. Journal
of the ACM 38(3):620–650.
Wu, Y.; Caminada, M.; and Gabbay, D. M. 2009. Complete
extensions in argumentation coincide with 3-valued stable
models in logic programming. Studia Logica 93(1–2):383–
403. Special issue: new ideas in argumentation theory.

11For instance, demanding that the acceptance of an argument A
implies the acceptance of an argument B may be formalized by the
introduction of the constraint A ⊃ B, which can be enforced by
adding the signed formula ¬A⊕ ∨B⊕ to the corresponding signed
theory.

