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Abstract. In this paper, Ginsberg’s/Fitting’s theory of bilattices is in-
voked as a natural accommodation and powerful generalization to both
intuitionistic fuzzy sets (IFSs) and interval-valued fuzzy sets (IVFSs),
serving on one hand to clarify the exact nature of the relationship be-
tween these two common extensions of fuzzy sets, and on the other hand
providing a general and intuitively attractive framework for the repre-
sentation of uncertain and potentially conflicting information.

1 Introduction

Bilattices are algebraic structures that were introduced by Ginsberg [19] as a
general and uniform framework for a diversity of applications in artificial intel-
ligence. In a series of papers it was then shown that these structures may serve
as a foundation of many areas, such as logic programming [15], computational
linguistics [23], distributed knowledge processing [22], and reasoning with im-
precise information [1,2, 18]. The usefulness of bilattices in the context of fuzzy
set theory was recently made explicit in [3], where we demonstrated that so-
called bilattice-based ‘squares’ and ‘triangles’ provide an elegant framework for
bridging between intuitionistic fuzzy sets (IFSs) and interval-valued fuzzy sets
(IVFSs), thus also shedding a clear light on the syntactical equivalence of these
two commonly encountered extensions of Zadeh’s fuzzy sets.

The present work is an elaboration on the latter observation. Starting from
a complete lattice, we study the corresponding bilattice-based squares and tri-
angles, compare and relate them to various extensions of IFSs and/or IVFSs
that have been proposed in the literature, and equip them with suitable logical
connectives. In this sense, this paper can also be viewed as a generalization of
other papers [10-12] that refer to particular forms of ‘triangle’ and ‘square’; in
which the underlying structure is the unit interval.

2 Preliminaries

2.1 Intuitionistic fuzzy sets and interval-valued fuzzy sets

Intuitionistic fuzzy set (IFS) theory [4] is an extension of fuzzy set theory in
which any element v in a universe U is assigned not only a membership degree,



pa(u), but also a non-membership degree v4(u), where both degrees are drawn
from the unit interval [0, 1]. While in Zadeh’s fuzzy set theory [27] always va(u) =
1 — pa(u), in IFS theory a weaker constraint is imposed: va(u) < 1 — pa(u).?
IF'Ss can also be regarded as a particular kind of Goguen’s L-fuzzy sets [20], i.e.,
as mappings from a universe U into the complete lattice £L*, defined as follows:

Definition 1. [13] £* = (L*, <), where L* = {(z1,22) € [0,1]* | 1 + 22 < 1}
and (21, 22) <p» (y1,y2) iff ©1 <y; and z2 > yo.

Interval-valued fuzzy set (IVES) theory is an alternative method of extending
fuzzy set theory, motivated by the need to replace crisp, [0, 1]-valued member-
ship degrees by intervals in [0, 1] that approximate the (unknown) membership
degrees. Interval-valued fuzzy sets are also L-fuzzy sets, for which the corre-
sponding lattice is £!, defined as follows:

Definition 2. [11] £ = (L, <;1), where LT = {[x1,22] | (z1,72) € [0,1]%, 21 <
xo} and [z1,22] <pr [y1,y2] iff 21 < y; and zo < yo.

2.2 Bilattices

As noted above, bilattices are the mathematical structures used here for relating
IFSs and IVFSs. We first review some basic definitions that pertain to bilattices.

Definition 3. [16] A pre-bilattice is a structure B = (B, <t, <), such that B is
a set containing at least two elements, and (B, <;), (B, <j) are complete lattices.

Definition 4. Let B = (B, <, <x) be a pre-bilattice.

A negation of B is a unary operation — on B satisfying the following properties:
(1) —z=2 (2)if z <;ythen ~x >; ~y, (3)if z <iy then -z < —.

A conflation of B is a unary operation — on B satisfying the following properties:
(1) ——zxz=2a (2)if x <}y then —z >}, —y, (3)if x <;y then —z <; —y.

Definition 5. [19] A bilattice is a structure B = (B, <;,<g,), such that
(B, <t,<j) is a pre-bilattice with a negation —.

In the sequel, following the usual notations for the basic bilattice operations,
we shall denote by A (respectively, by V) the <;-meet (the <;-join) and by ®
(respectively, by @) the <g-meet (the <j-join) of a bilattice B. f and t denote
the <;-extreme elements, and L, T denote the <g-extreme elements. Intuitively,
these elements can be perceived as ‘false’; ‘true’, ‘unknown’ (i.e., neither true
nor false) and ‘contradictory’ (both true and false), respectively. The two partial
orders <; and <j, are taken to represent differences in the degree of truth and
in the amount of information (respectively), conveyed by a given assertion.

Proposition 1. Let B = (B, <;,<k,) be a bilattice.

3 The ‘intuitionistic’ characterizations of this approach should be understood here in
a ‘broad’ sense, as it loosely denies the law of excluded middle. This approach bears
no relationship to the conservative extension of intuitionistic logic [24].



a) [19] For every x,y in B:
(zAy) = —~xV-y, (2Vy) = ~eA-y, ~(2Qy) = 2@y, ~(2@Y) = ~rd-y.
ﬂf:t; _\t:f7 ﬂl:l} ﬂT:T'
b) [16] If B has conflation —, then, for every z,y in B:
—(@Ay) =—zA—y, —(aVy)=—aV—y, —(2®y) =—26—y, —(v8y)=—28—y.
—f=f, —t=t, —1L=T, —T=L1.
Definition 6. A bilattice B = (B, <y, <g, ) is distributive [19] if all the (twelve)
possible distributive laws concerning A, V, ®, and & hold.

Following Fitting [14], we consider a special kind of distributive bilattices.

Definition 7. A distributive bilattice B = (B, <, <y, ) with a conflation —
that commutes with — is called classical, if x V ——x =t for every x in B.

3 Relating IFSs and IVFSs through bilattices

In this section, we introduce a general context featuring a number of bilattice-
based structures to relate and generalize the IFS/IVFS constructs £* and £f,
as well as some of their extensions.

Definition 8. [19] Let £ = (L, <) be a complete lattice. A (bilattice-based)
square is a structure £2 = (L x L,<4,<g,™),* where —(z1,22) = (22, 71), and
(1) (z1,22) <t (y1,92) & 21 <p y1 and 2 >, y2,
(2) (w1, 72) <k (y1,y2) & 21 <p y1 and z2 <f, Yo.

An element (71, 72) of a square £2 may intuitively be understood such that x;
represents the amount of belief for some assertion, and x5 is the amount of belief
against it. This corresponds to Atanassov’s idea [4] of distinguishing between a
membership component p4(u) and a non-membership component v4(u), with
the amendment that in the case of a square no restriction like pa(u) +va(u) <1
for every w in U is imposed. Note also that the <;-ordering of £2 is completely
in line with the partial order of L£*; the <j-ordering additionally discriminates
couples in L? according to the amount of information they carry®.

Denoting the join and meet operations of the complete lattice £ by M and L,
respectively, we have, for (1, x2), (y1,y2) in L?,

(w1, 22) A (y1,92) = (21 Ny, 22 Uy2), (21,72) V (y1,y2) = (21 Uy1, 12 1Y)
(71, 22) ® (y1,92) = (21 Ny1, 22 M y2), (¥1,22) S (y1,¥2) = (z1 Uy1, 72 U yo)
Moreover, denoting 0, = inf L and 1, = sup L, it holds that 1 .2 = (0.,0.),

Tre=(1g,1z), tez = (1£,0z), and fr2 = (0z,12). When A is an involution of
L, then — (21, 22) = (M(22), N (21)) is a conflation of £2.

It is easy to verify that every square £? is distributive when £ is distributive.

4 Incidentally, Ginsberg considered slightly more general structures defined on the
cartesian product of two not necessarily equal complete lattices.

5 Note also that the <j-order of a square appears to correspond to the partial order
of £1.



Ezample 1. Let L3 = ({0,1}, <) and L3 = ({0, %, 1} , <), with < in each case the
usual ordering. The bilattices £3 and £3 are shown in Figure 1. In the literature,
these structures are commonly referred to as FOUR (after Belnap’s [6, 7] original
four-valued logic) and NZNE (see, e.g., [1,2]), respectively. Both these bilattices
are distributive, and FOUR is also classical, while NZNE is not. An example

of a square with an infinite amount of elements is, for instance, ([0, 1], <)2.

<k (1,1)

(0,1) (1,0)

<t

Fig. 1. The bilattices £% and L2

The second bilattice-based structure investigated here is due to Fitting [16].

Definition 9. Let £ = (L, <) be a complete lattice, and I(L) = {[z1,z2] |
(w1,22) € L%, 21 < x2}. A (bilattice-based) triangle is a structure Z(L) =
(I(L), <, <g), where

(1) [z1, 22] <¢ [y1,92] & 21 <r 91 and x2 < Yo,

(2) [z1, 2] <k [y1,92] © 21 <p y1 and 22 > yo.

Note that a triangle Z(£) is in fact not a (pre-)bilattice, since the substructure
(I(L), <g) is not a lattice (the supremum of any two elements does not necessarily
exist). Still, triangles are very much in the same spirit as bilattices, since the
<k-ordering also represents differences in the amount of information that each
interval exhibits.

Ezample 2. The triangles Z(L2) and Z(L3) are shown in Figure 2. When L is the
unit interval with the usual ordering, Z(L£) is a structure that extends the lattice
£ in the sense that £! is exactly (1([0,1]),<;). Moreover, Z(£) also contains
the partially ordered set (I([0,1]), <j) that orders intervals according to their
exactness.

Definition 10. [16] Let B = (B, <4, <, ) be a bilattice with a conflation —.
An element z in B is called ezact with respect to this conflation if z = —z; it is
consistent if x <p —x.



0,0] 1,1] 1,1

[0,1] [0,1]
<t <t

Fig. 2. The triangles Z(L2) and Z(L3)

Intuitively, exact elements exhibit precise information, while the consistent
ones endorse non-contradictory evidence about their assertions.

Definition 11. Let — be a conflation of a bilattice B = (B, <t, <k, ). Denote
by C~(B) the substructure of B with the consistent elements (w.r.t. —) of B.

The following proposition relates squares and triangles:

Proposition 2. [16] Suppose that L is a complete lattice with an involution N .
Then I(L) is isomorphic to C~~ (L?).

The isomorphism f between Z(£) and C~+ (£?) for Proposition 2 is given
by f([z1,22]) = (1, N (z2)). If L is the unit interval, f([z1,z2]) = (x1,1—x2),
which is the transformation considered in [10] for switching between IVFSs and
IFSs. The above result shows that the same transformation is useful not only
for relating £7 and £* (i.e., when the underlying lattice is the unit interval), but
also for any complete lattice with an involution.

The result above may also serve as a clarification of Atanassov’s decision to
consider only the elements (x1,z2) in [0,1]? s.t. 21 + z2 < 1: these are exactly
the consistent elements of [0,1]?, when the conflation is defined in [0, 1]?, by
—(x1,22) = (1 — 2,1 — x1). The fact that we consider super-lattices of L* (i.e.,
all the elements in [0, 1]? are considered) allows us to introduce elements such as
(x1,22) = (1,1), in which the membership degree (x1) and the non-membership
degree (z2) are both maximal, so we have a totally inconsistent belief in this
case. As an important aspect of fuzzy set theory is reasoning with uncertainty,
such values should not be ruled out.

Note 1. In [5], Atanassov introduced a pair of bijections between L* and [0, 1]?,
which at first glance seems to shatter the remarks made above that the latter is a
more expressive structure. It was shown in [11], however, that these bijections do
not preserve order and hence they do not constitute an isomorphism between £*
and ([0, 1]2, <;). The following proposition generalizes this result to any complete
lattice £ with an involution N.

Proposition 3. For a complete lattice £ = (L, <p) with an involution N, the
structures £2 and C~~ (L2) are not isomorphic.



4 Graded (bilattice-based) logical connectives

In this section we recall some common extensions to L-fuzzy set theory of the
main connectives of classical logic, and show how they can be related to bilattices.
In what follows £ = (L, <) is a complete lattice, 0, = inf L and 1, = sup L.

4.1 Negation

Definition 12. A negator on L is any <j-decreasing mapping N’ : L — L
satisfying N'(0z) = 12 and N'(12) = 0¢. If, for every z in L, N'(N(z)) = x, then
N is called an involutive negator on L.

The operation — in Definition 5 is an involutive negator on the lattice (B, <;).
Therefore, the operation —, defined on the square £2 by —(z1,z2) = (z2,21), is
an involutive negator on (L2, <;). If a bilattice B has a conflation —, then by its
definition this operation is an involutive negator on the lattice (B, <j).

Suppose now that N is an involutive negator on £. Then, as we have shown
above, a conflation —ar of £2 may be defined by —y (21, x2) = (N (z2), N(z1)).
In this case, another natural negator ~x on (L?,<;) is obtained by combining
= and — as follows: ~pr (21, 22) = 7—n (21, 22) = (N (z1), N (22)).

One might wonder if there exist other ‘interesting’ negators apart from the
prototypical ones described above. In [12] it was shown however that for the par-
ticular structure ([0, 1], <;) all involutive negators can be generated by simple
transformations of the two basic choices - and ~,s. The next proposition is a
generalization of that result to squares.

Definition 13. For z = (21, z2) in L2, denote: pri(z) = z1 and pra(x) = 2.

Proposition 4. Let L = (L,<r) be a chain. An operation N is an involutive
negator on (L?,<;) iff either

N(x1,22) = (N1 (21), Na(22)) (1)

where N1 and Ny are two involutive negators on L such that N1(x) = prifM(z,07)
and Na(z) = praN(0z, ), or

N(a1, 22) = (p(2), 97 (21)) (2)
where @ is an increasing permutation of L such that o(x) = priM(0g¢, x).

Clearly, ~ s is obtained from Expression (1) where N' = A = N3, and — is
obtained from Expression (2) where ¢ is the identity permutation of L.

One of the advantages of ~,s is that it preserves the following weakened
version of the law of the excluded middle.

Definition 14. An involutive negator N on L is called Kleene negator, if for
all z,y in L, z Ap N(z) <p y VL N(y).



The intuition here is that even when the excluded middle or contradiction law
do not hold, ‘intended’ contradictions should not surpass ‘intended’ tautologies.

Proposition 5. If N is a Kleene negator on L, then ~, is a Kleene negator
on (L%, <y).

Unlike ~ s, the negator — never satisfies Kleene’s condition (to see this, con-
sider, for instance, (z1,22) = (1¢,12) and (y1,y2) = (0£,02)). On the other
hand, ~ also has some disadvantages. For instance, it cannot serve as a (bilat-
tice) negation on £2 in the sense of Definition 5, since it does not preserve the <j-
order (In £%, for example, although (1,0) <j (1, 1), still ~pr(1,0) £x ~nr(1,1)).

Consider now negators in triangles Z(L£), or — equivalently — the substruc-
ture C~~(L). By the following proposition, it is rather straightforward to find an
analogous definition of = for these structures, while for ~ s this is not possible.

Proposition 6. Let L be a complete lattice with an involutive negator N'. Then
C~N(L) is closed under — but not under ~r.

Thus, for the negator -, a corresponding triangle operation may be obtained
by applying the isomorphism f([z1,z2]) = (21, N (22)), used in the context of
Proposition 2, to obtain an operation M defined, for every [z1,z2] in I(L), by

N([z1, 22]) = N (w2), N(21)]. (3)
As [N(z2), N (z1)] is an interval, M is an involutive negator on (I(L), <y).

Next we show, as we did for squares (cf. Proposition 4), that Expression (3)
is a characterization of involutive negators in many common triangles:

Definition 15. For x = [z1, 23] € I(L), denote: I(x) = 21 and r(z) = z2.

Proposition 7. Let L = (L, <) be a chain with at least four elements. An op-
eration M is an involutive negator on (I(L), <¢) iff N([z1, x2]) = N (22), N (21)],
where N is an involutive negator on L such that N'(x) = r(M[x, 12]) = I(M[0¢, z]).

Proposition 7 is not true unless the chain £ has at least four elements:

Ezample 3. Consider a mapping N on (I(L3), <;), defined as follows:

[%, %] if [1, 2] = [0, 1]
N([wlaxﬂ) = [Oa 1] if [ZlaIQ] = [%a %]
[1 — 22,1 —a1] otherwise

It is easy to check that this is an involutive negator on (I(Ls), <t), which is not of
the form of Expression (3) (thus it is not generated as described in Proposition 7).

In [12] it is shown that there does not exist a Kleene negator on Z([0, 1], <¢).
The following example shows that this does not hold in general for any triangle.



Example 4.

a) The operation NV, defined by N ([0, 0]) = [1,1], N([1,1]) = [0,0] and N (][0,1]) =
[0,1] is a Kleene negator on (I(Lz), <;).

b) The mapping N of Example 3 is a Kleene negator on (I(L3), <¢).

Proposition 8. Let L = (L,<y) be a chain with at least four elements. Then
there does not exist a Kleene negator on (I(L),<y).

4.2 Conjunction and disjunction

Definition 16. A triangular norm (a t-norm, for short) on £ = (L, <) is a
mapping 7 : L X L — L that is <p-increasing in both arguments, commutative,
associative, and satisfies, for every x in L, T (12, 2) = .

Definition 17. A triangular conorm (a t-conorm, for short) on £ = (L, <p) is
amapping S : L x L — L that is <p-increasing in both arguments, commutative,
associative, and satisfies, for every x in L, S(0z,z) = x.

Given a pre-bilattice B = (B, <¢, <g), its <;-meet A and <j-meet ® are
clearly t-norms on (B, <;) and (B, <), respectively. Also, the <;-join V and
the <j-join @ of B are t-conorms on (B, <), and (B, <j), respectively. This
implies that for a complete lattice £ = (L,<) with a meet A; and a join
Ve, T<,((x1,22), (y1,y2)) = (z1 AL y1, 22 VL y2) is a t-norm on (L% <;) and
T<, ((z1,72), (y1,92)) = (z1 AL Y1, T2 AL y2) is a t-norm on (L2, <j). Simi-
larly, S<, ((z1, 22), (y1,%2)) = (21 VL Y1, T2 AL y2) is a t-conorm on (L2, <;) and
S<, ((x1,22), (y1,92)) = (x1 VL y1, T2 VL y2) is a t-conorm on (L2, <j). Also,
T<, is the <;-greatest t-norm of (L27 <;) and 7<, is the <j-greatest t-norm of
(L?,<y). Similarly, S<, and S<, are, respectively, the <;-smallest t-conorm of
(L?,<;) and the <g-smallest t-conorm of (L%, <j).

The definition of 7<,, S<,, 7<,, and S<, is an example of an effective way
of generating t-(co)norms on (substructures of) squares £? by taking advantage
of existing connectives on the underlying lattice £. This leads us to define the
notion of L-representability.

Definition 18. Let £ = (L, <z) be a complete lattice. A t-norm ¥ on (L2, <;)
(respectively, a t-conorm &) is called L-representable, if there exist a t-norm 7°
and a t-conorm S on L (respectively, a t-conorm &’ and a t-norm 7’ on £) such
that, for every (r1,22), (y1,92) in L2,

(21, 22), (Y1, 92)) = (T (21, 91), S(22, 2)) (4)
S((z1,22), (y1,92)) = (8'(@1,41), T" (22, 92)) (5)
7 and S (resp. 8’ and 77) are called the representants of T (resp. G).

Analogously, £-representable t-(co)norms on (L2, <) can be defined in the ob-
vious way.



The definition above allows a straightforward construction of t-(co)norms by
operations that meet Definitions 16 and 17; it suffices to take any t-norm 7
and t-conorm S on £, and to use them as representants in formulas (4) and
(5) above. The converse, however, is not true; not any t-(co)norm on £2 can be
obtained by a representation. For instance, in [21] it is shown that the mapping
7 :[0,1]*> — [0,1], given by:

T ((1,22), (Y1,y2)) = (min(x1, y1, max(xa, y2)), min(zz, y2)) (6)

is indeed a t-norm on ([0, 1], <), but clearly it is not £-representable, since its
first component also depends on x5 and ys.

Next we relate t-norms and t-conorms by appropriate negators. A natural
way of doing so is to impose de Morgan’s laws.

Definition 19. Let 7 be a t-norm on £, and let N be an involutive negator

on L. A t-conorm S on £ defined by S(z,y) = N (T (N (z),N(y))) is called the
N-dual of T. A t-norm on L that is the N'-dual of a given t-conorm, is defined
on L in a similar way.

For L-representable t-norms with N-dual representants on e.g. (L?, <;), the
choice of the negator ~ s or = does not affect the identity of the dual t-conorm.

Proposition 9. Suppose that T is an L-representable t-norm on (L%, <;) with
representants (T,8S), such that T is the N'-dual t-norm of S and N is an invo-
lutive negator on L. Then the (~x)-dual and the (=)-dual of T are the same.

A similar discussion applies also to the definitions of t-(co)norms on (sub-
structures of) Z(L£), with the caveat that (1) there are no t-norms and t-conorms
on (I(L), <), and (2) in the choice of representants on £ it must be assured
that the resulting composite operation always yields an element of I(L).

4.3 Implication

Definition 20. An implicator on a lattice £ is a mapping Z: L x L — L, <p-
increasing in its first component and <y-decreasing in its second component,
such that I(OL,Og) = 15, 2(15705) = 05, I(Oﬁ, 15) = 15, and I(1£7 15) = 15.

Given a t-norm 7 and an implicator Z on L, it is usual to require the following
condition, known as the residuation principle.

T(z,2) <py <+ z<pI(z,y). (7)
This leads to the following class of implicators:

Definition 21. Let 7 be a t-norm on £. An R-implicator Zr (the residuum of
T) is defined, for every x,y in L, by Zr (z,y) =sup{z € L | T(z,2) <1, y}.

Another definition of a family of implicators is motivated by the classical
definition of the material implication z — y as -z V y.



Definition 22. Let S be a t-conorm and A a negator on £. The S-implicator
Is n (generated by S and N) is defined by Zs ar(x,y) = S(N(2),y).

Clearly, each R-implicator and S-implicator is in particular an implicator.
Moreover, these definitions reveal that very often implicators are linked to ‘sim-
pler’ connectives. Also, we can exploit the classical equivalence between the
formulas x — f and —z, to define the following special kind of negator on L.

Definition 23. Let £ = (L, <) be a complete lattice with an implicator Z. Then
N7 defined by Nz(z) = Z(x,0.), is called the induced negator of Z.

Examples of all the above operations on bilattice-based squares and triangles
are thus easy to generate using the constructs introduced in the previous sections.

Proposition 10. Let B = (B, <, <x, ) be a classical bilattice with conflation
—. Then I\ = Z(y ), thus Z, is an S-implicator and an R-implicator on (B, <¢).
Proposition 10 substantiates the claim, hinted at by Definition 7, that in

classical bilattices the combination ‘— =’ is the one that really plays the role of
Boolean negation, and x V ——x are the analogies of classical tautologies.

Definition 24. Let £ = (L, <p) be a complete lattice. Let 7 be a t-norm on £
for which Equation (7) holds together with Z = Zr, and for every z,y in L,

Ir(Ir(x,y),y) = Ir(Zr(y,x),x) =z VL y. (8)
Then (L, <y, T) is called an MV-algebra.

Proposition 10 follows from the following observation and the facts that if
(B, <t, <k, ) is a classical bilattice then (B, A, V, ——) is a Boolean algebra, and
any Boolean algebra (B, Ap, Vg, ) is an MV-algebra, where 7 =Ap (see [26]).

Proposition 11. In an MV-algebra (L,<p,7), the mappings Zr and Zs y,
where N = Nz, and S is the N-dual of 7, are identical.

Now we investigate what happens in squares that correspond to non-classical
bilattices. The following proposition presents the general picture.

Proposition 12. Let £ = (L, <r) be a complete lattice, and let T be a t-norm
on (L2, <;). Then (L?, <t, %) is an MV-algebra if and only if there exist t-norms
7 and 7’ on £ such that (L,<p,7) and (L,<p,7’) are both MV-algebras,
and such that ¥ is L-representable with representants 7 and S, where S is the
N-dual t-conorm of a t-norm 7" for some involutive negator N.

We turn now to triangles. In these structures the situation is complicated by
the fact that there need not exist a Kleene negator on (I(L), <;), while this is a
prerequisite of an MV-algebra [9].” The following example summarizes previous
findings when L is the unit interval.

6 This definition is not a reproduction of the original, lengthy one, given in [8], but is
rather a minimal characterization in terms of required properties (see e.g. [26]).

" Indeed, if (£, <r,T) is an MV-algebra, then Nz, is a Kleene negator on £; see [9,
Theorem 2.31].



Ezample 5. Consider the lattice (I([0,1]), <;). The mapping 7 ([x1, z2], [y1,y2]) =
[max(0, x1 +y1 — 1), max(0, 2 — 1+y1,y2 — 1 +21)] is a non-representable t-norm
and it satisfies the residuation principle (7) together with Z = Z7. Moreover,
here T; = Is, -, where S is the —-dual of 7. Nevertheless, since there is no Kleene
negator on (I([0,1]), <¢), the triple (I([0,1]), <, 7) is not an MV-algebra.

Example 5 thus shows that the property of having coinciding R- and S-
implicators is not unique to MV-algebras. Conversely, one might also wonder if
substructures of bilattice-based triangles can ever be MV-algebras; the following
example answers this question in the affirmative.

Ezample 6. Consider the triangle Z(Ls2) from Example 2. As we have seen, the
mapping N defined in Example 4 is a Kleene negator on (I(Ls), <;). Consider the
following truth tables that define a t-norm 7" and an implicator Zon (I(La),<y):

7 |,

0]
0,0]
0,0]
0,0]

)

Y

0,0] [1,1]
[0, OJ|[ [0, 0]
(L, 1|l [1,1]
[0,1}][0,0] [0,1]
Then Z = Z7, the residuation principle is satisfied in this case, and as it is easily
verified (e.g., by checking the truth tables), (I(L2), <, 7) is an MV-algebra.

We note, finally, that even if a Kleene negator exists on (I(L), <;), it might
happen that there is no t-norm 7 on this triangle such that (I(L),<;,7) is an
MV-algebra. An example of this situation is the triangle Z(£3) from Example 2.
As we have shown (Example 4-b), there exists a Kleene-negator on (I(Ls), <¢).
Nevertheless, there is no t-norm on (I(L3), <¢) satisfying Conditions (7) and (8).

5 Conclusion

In this paper we have described an ongoing work that identifies bilattices, and
in particular the constructs of bilattice-based squares and triangles, as appro-
priate structures for relating IVFSs and IFSs within one uniform and general
framework. By not constraining ourselves to consistent elements only, a natural
setting to represent and handle contradictions emerges.

We have shown that the definition and representation of suitable logical con-
nectives within this setting can benefit a lot from bringing together results from
both bilattice and £—fuzzy set theory, and — moreover — it raises many non-trivial
questions regarding the inter-relationships among the various alternatives. In a
forthcoming paper we illustrate the application potential and the intuitive ap-
peal of our framework in the context of preference modeling, showing that our
approach clarifies and simplifies exiting works in this area (e.g., [17] and [25]).
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