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Abstract. We present a four-valued approach for recovering consis-
tent data from inconsistent set of assertions. For a common family of
knowledge-bases we also provide an efficient algorithm for doing so au-
tomaticly. This method is particularly useful for making model-based
diagnoses.

1 Introduction

It is well-known that the classical calculus allows only trivial reasoning in the
presence of inconsistency. This property is particularly problematic when the
system under consideration is aimed to deal with conflicts. This is the case, for
instance, with diagnostic systems that are supposed to explain the discrepancy
between the actual behavior of some device and the way it is meant to behave. A
common approach of handling inconsistent information is to consider some con-
sistent subsets that still contain meaningful data. The usual method of doing so
is to consider the maximal consistent subsets of the “polluted” data. The main
drawback of this method is that none of these subsets necessarily correspond
to the intended semantics of the original information. Even in the simplest in-
consistent knowledge-base KB={p,¬p} every maximal consistent subset of KB
classically contradicts an explicit data of KB. In the case of diagnostic systems
this means that a diagnosis based on a maximal consistent subset might not
truthfully determine why a given system is not functioning as it was intended.
One might, of course, use the intersection of all the maximal consistent subsets.
This, however, might be very expensive.

We propose here a different approach to “salvage” consistent data without
contradicting any assertion of the original information. Our approach is based
on the idea of reducing the number of models by using a second order relation
(see details below). For a common family of knowledge-bases we also provide
an efficient algorithm for recovering this data. We then illustrate the ideas in
a diagnostic system for checking faulty circuits. The underlying formalism is
based on Belnap’s four-valued logic [Be77a,Be77b], and it is nonmonotonic and
paraconsistent [dC74] in nature.



2 Preliminaries

We present a formalism that is based on Belnap’s well-known four-valued logic.
For a detailed discussion on this logic see, e.g., [Be77a,Be77b]. We denote by t
and f the classical values. ⊥ and > denote, respectively, lack of knowledge and
“over”-knowledge (conflict). It is usual to consider these four values according
to two partial orders: One, ≤t, might intuitively be understood as reflecting
differences in the “measure of truth” that every value represents. According to
this order, f is the minimal element, t is the maximal one, and ⊥,> are two
intermediate values that are incomparable. ({t, f,>,⊥},≤t) is a distributive
lattice with an order reversing involution ¬, for which ¬>=> and ¬⊥=⊥. We
shall denote the meet and the join of this lattice by ∧ and ∨, respectively. The
other partial order, ≤k, is understood (again, intuitively) as reflecting differences
in the amount of knowledge or information that each truth value exhibits. Again,
({t, f,>,⊥},≤k) is a lattice where ⊥ is its minimal element, > – the maximal
element, and t, f are incomparable.

A double-Hasse diagram with the four elements and the two lattices is given
in Figure 1 below.
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Fig. 1. The four-valued structure

The language we treat here is the propositional language based on {¬, ∨, ∧,
⊥, >}.1 Given a set S of propositional formulae, we shall denote by A(S) the
set of the atomic formulae that occur in S, and by L(S) the set of the literals
that occur in S. The semantic notions are natural generalizations to the four-
valued case of similar classical notions: A valuation ν is a function that assigns a

1 t and f are definable in this language: f =>∧⊥ and t =>∨⊥. ∧ is of course also
definable, using de-Morgan law.



truth value from {>,⊥, t, f} to each atomic formula. Any valuation is extended
to complex formulae in the standard way. We shall sometimes write ψ : b ∈ ν
instead of ν(ψ)=b. We will say that ν satisfies ψ, iff ν(ψ)∈{t,>}. t and > are
called designated values. A valuation that satisfies every formula in a given set of
formulas S is said to be a model of S. The set of the models of S will be denoted
mod(S). Note that unlike in the classical calculus, there are no tautologies here.
In fact, excluded middle is not a valid rule in the four-valued case.

The formulae on which we are going to concentrate here are clauses, i.e.:
disjuncts of literals. As the following lemma shows, by doing so we do not reduce
the generality.

Lemma 1. For every formula ψ there is a finite set S of clauses such that for
every valuation ν, ν(ψ)∈{>, t} iff ν(φ)∈{>, t} for every φ∈S.

Proof: By an induction on the structure of ψ. The proof is similar to that of
the classical case. Using the fact that de-Morgan’s laws, distributivity, commu-
tativity, associativity, and the double negation rule (¬¬ϕ = ϕ) remain valid in
the four-valued case, we can transform any formula into an equivalent one in
conjunctive normal form. The lemma follows now from the fact that φ1∧φ2 is
designated here iff both φ1 and φ2 are designated. 2

Lemma 2. Let ψ be a clause, li (i = 1 . . . n) – its literals, and ν – a valuation
on A(ψ). Then ν(ψ)∈{t,>} iff there is an 1≤ i≤n s.t. ν(li)∈{t,>}.
Proof: Immediate from the fact that {f,⊥} is closed under disjunction. 2

Definition 1. A knowledge-base KB is a pair (S,Exact), where S is a set of
clauses, and Exact is a set of atoms in A(S) that are assumed to have only
classical values. mod(KB) = mod(S, Exact) denotes the set of exact models of
S, i.e.: the models of S in which every element of Exact is assigned a classical
value. Formally: mod(S, Exact)={M ∈mod(S) | ∀p∈Exact M(p)∈{t, f}}.

We introduced the set Exact because there are cases in which we do not
want to leave room to any doubts. For example, what a law says about something
should be very clear; It might not be very obviouse, however, if the law is obayed2

(we shall give a concrete example in Section 5).

Definition 2. Let M ∈mod(S). Define: IncM (S) = {p∈A(S) | M(p)=>}.
Definition 3. Let M, N be two exact models of a knowledge-base KB = (S,Exact).
a) M is more consistent than N (M >con N) iff IncM (S)⊂IncN (S). M is smaller
than N (M≤k N) iff for any p∈A(S), M(p)≤k N(p).
b) mcem(KB), kmin(KB), and Ω(KB) respectively denote the set of the most
consistent exact models of KB (mcems, for short), the set of the k-minimal ex-
act models of KB, and the set of the k-minimal models among the elements of
mcem(KB) (minimal mcems, for short).
2 The use of the set Exact is actually a kind of integrity constraint that we force on

the system.



Definition 4. Let KB=(S, Exact) be a knowledge-base, and ψ – a formula.
a) KB |=ψ if every exact model of KB is a model of ψ.
b) KB |=mcem ψ if every mcem of KB is a model of ψ.
c) KB |=kmin ψ if every k-minimal exact model of KB is a model of ψ.
d) KB |=Ω ψ if every minimal mcem of KB is a model of ψ. 3

Note: The consequence relations |=mcem, |=kmin, and |=Ω are preferential logics
in the sense of Shoham [Sh87,Sh88]; Such consequence relations are based on
the idea that inferences should not take into account every model of a given
theory, but only a subset of them, determined according to a certain preference
criteria. (Preferential logics has recently received a considerable attention. See,
e.g., [KLM90,Pr91,LM92,KL92]).

Example 1. Consider the knowledge-base KB = (S, Exact) where S = {p, ¬p ∨
¬q}, and Exact=∅. The single (k-minimal) mcem of KB is M ={p : t, q :f}. M
and N ={p :>, q :⊥} are the k-minimal models of KB. Thus KB |=mcem¬q and
KB |=Ω ¬q, while KB 6|=kmin ¬q and KB 6|=¬q. When Exact = {q}, M remains
the (minimal) mcem of KB, but now it is also the single element of kmin(KB),
therefore KB |=kmin¬q.

Several consequence relations similar to |=mcem are considered in the liter-
ature. Priest [Pr91] uses a similar consequence relation |=LPm for defining the
logic LPm from the three-valued logic LP. In [AA95] it is shown that |=mcem

and |=Ω are the same in case Exact = ∅. The proof there applies in the gen-
eral case as well. Therefore, when switching to four valued semantics and using
only the k-minimal mcems, one might consider fewer models than in the case
of LPm, since for every k-minimal mcem that assigns ⊥ to atomic formulae pi

i = 1,. . .n, there are 2n corresponding minimaly consistent models of LP, each
one assigns either t or f to these pi. Moreover, three valued reasoning can be
simulated in our framework, since the entailment KB |=LPm ψ is equivalent to
KB, p1∨¬p1, . . . pn∨¬pn |=mcem ψ, where A(KB)={p1, . . . , pn}.

Another difference between the present work and [Pr91] is that Priest con-
siders, in fact, only the case Exact=∅.

Kifer and Lozinskii [KL92] also consider a similar relation in the framework
of annotated logics. Like Priest, they only consider the most consistent models
among all the possible models. They do not restrict the attention to some rele-
vant subset (as we do) by constraining them in the meta-level. Further discussion
and a comparison between |=mcem and the consequence relation of [KL92] can
be found in [AA94,AA96].

A basic property of the knowledge-bases that we use here is that for every
exact model there is an mcem which is at least as consistent. For finite knowledge-

3 One can view the consequence relation |=Ω as a composition of the relations |=mcem

and |=kmin. First we confine ourselves to the mcems of KB by using |=mcem, then
we minimize the valuations that we have got by using |=kmin.



bases this is trivialy the case. The following proposition assures that this property
holds in every propositional knowledge-base:

Proposition 1. (Lin’s Lemma, [Pr91]) Let KB be a (possibly infinite) set of
clauses. For every exact model M of KB there is an mcem M ′ of KB s.t. M ′≥con

M . 4

3 Recovery of knowledge-bases

In this section we describe what we mean by saying “recovering an inconsistent
knowledge-base”. In particular we define and characterize the recovered parts of
a knowledge-base. For that we first have to expand the notion of “consistency”
to the four-valued case:

Definition 5. Let S be a set of clauses.
a) A model M of S is consistent if IncM (S)=∅.
b) S is consistent if it has a consistent model.
c) KB=(S,Exact) is consistent if S has a consistent exact model.

Lemma 3. S is consistent iff it is classically consistent.

Proof: One direction is obvious. For the other, assume that M is a consistent
model of S. Then there is no p∈A(S) s.t. M(p)=>. Consider the valuation M ′

defined for every p∈A(S) as follows: M ′(p)=f if M(p)∈{f,⊥}, and M ′(p)= t
otherwise. By Lemma 2, M ′ is a model of S as well. 2

Definition 6. A subset S′⊆S is consistent in S w.r.t. Exact if S′ is a consis-
tent set that has a consistent exact model M ′, and there is a (not necessarily
consistent) exact model M of S s.t. M(p)=M ′(p) for every p∈A(S′).

Example 2. S′ = {p} is a consistent set, but it is not consistent in S = {p,¬p}
w.r.t. any set Exact, since there is no consistent model of S′ that is expandable
to a model of S. Similarly, S′ = {p} is consistent in S = {p, ¬p ∨ q, ¬p ∨ ¬q}
w.r.t. Exact={p}, but it is not consistent in S w.r.t. Exact={q}, since there is
no consistent exact model of S′ that is expandable to an exact model of S.

Definition 7. Let M be an exact model of a knowledge-base KB=(S, Exact).
The set that is associated with M is: KBM ={ψ∈S | A(ψ) ∩ IncM (S)=∅}.
Example 3. Consider the knowledge-base KB = (S, {e}) where S = {p, q, ¬p ∨
r, ¬q ∨¬r, p∨ s, ¬r ∨ e, ¬r ∨¬e}. M ={p :>, q : t, r :f, s :⊥, e : t} is an exact
model of KB, and KBM ={q, ¬q ∨ ¬r, ¬r ∨ e, ¬r ∨ ¬e}.
Proposition 2. A set that is associated with an exact model of KB is consistent
in KB.
4 This lemma is proved in [Pr91] for the three-valued case, and under the implicit

assumption that Exact = ∅. However, it is easy to prove this lemma in our case as
well by the same method.



Proof: Let M be an exact model of KB = (S, Exact) and suppose that M ′ is
its reduction to A(S) \ IncM (S) only. Obviously, KBM ⊆S. It is a consistent set
in KB, since M ′ is a consistent exact model of KBM that is expandable to an
exact model (M) of KB. 2

Definition 8. A recovered set of (S, Exact) is a maximal subset of S that is
consistent in S w.r.t. Exact.

Example 4. Consider again Example 3. KBM is a recovered set of KB, since it
is a maximal subset of KB that has a consistent model ({q : t, r :f, s :⊥, e : t})
which is expandable to a model (M) of KB.

Proposition 3. Every recovered set of KB is associated with an mcem of KB.

Proof: Suppose that S′ is any set that is consistent in a knowledge-base KB =
(S,Exact). Let N ′ be a consistent exact model of S′, and N – its expansion to
the whole S. Consider any mcem M that satisfies N ≤con M (by Proposition 1
such a valuation exists). Since A(S′)⊆A(S)\IncN (S)⊆A(S) \ IncM (S), every
formula ψ∈S′ consists only of literals that are assigned consistent truth values
under M . Hence S′ ⊆KBM . Proposition 2 assures that KBM is consistent in
KB, hence S′=KBM in case S′ is maximal. 2

Next we provide a condition that implies the existence of a nonempty recov-
ered set for a given knowledge-base:

Proposition 4. Let KB = (S,Exact) be a knowledge base, and suppose that
there is an l∈L(S) s.t. KB |=mcem l and KB 6|=mcem l. Then there is a nonempty
recovered set for KB.

Proof: Without a loss of generality, assume that KB |=mcem p and KB 6|=mcem¬p.
Then there is an M ∈mcem(KB) s.t. M(p) ∈ {t,>} while M(¬p) 6∈ {t,>}, i.e.
M(p) = t. Consider the set KBM . It cannot be empty, since otherwise every
ψ∈S contains some element of IncM (S) or its negation. Define: N ={r :f | r∈
A(S) \ IncM (S)} ∪ {s :> | s∈ IncM (S)}. By Lemma 2, N is an exact model of
KB. Moreover, N is an mcem of KB, since IncN (S)= IncM (S). But N(p)= f ,
and so KB 6|=mcem p – a contradiction. Therefore KBM is a nonempty set, and
by Proposition 2 it is consistent in KB. Now, if KBM is a maximal set with this
property then it is the required recovered set of KB, otherwise it is included in
a recovered set of KB which cannot be empty. 2

4 Stratified knowledge-bases and their recovered sets

In general, computing mcems for a given knowledge-base and discovering its
recovered sets might not be an easy task. Even in relatively simple cases, where
S is consistent and Exact=A(S), finding a recovered set for (S, Exact) reduces
to the problem of logical satisfaction, since in this case one has to provide a
classical model for S. Therefore, we confine ourselves to a special (nevertheless
common) family of knowledge-bases, for which we provide an efficient algorithm
that computes recovered sets.



Definition 9. Let S be a set of formulae. Sν — the dilution of S w.r.t. a given
partial valuation ν — is constructed from S by the following transformations:

1. Deleting every ψ∈S that contains > or a literal l s.t. ν(l)∈{t,>},
2. Removing from every formula other than ⊥ that is left every occurrence of
⊥ and every occurrence of a literal l such that ν(l)∈{f,⊥}. 5 6

Proposition 5. If ν can be extended to an exact model of S then Sν has an
exact model. Moreover, the union of ν with any exact model of Sν is an exact
model of S.

Definition 10. Let S be a set of assertions. An atom p∈A(S) is called a positive
(negative) fact of S if p∈S (¬p∈S). p is called strictly positive (negative) fact
of S if it is a positive (negative) fact of S and ¬p 6∈S (p 6∈S).

Definition 11. A knowledge-base KB = (S, Exact) is called stratified , if there
is a sequence of “stratifications” S0 =S, S1, S2, . . ., Sn =∅, so that:
a) No Si (0≤ i≤n) contains a fact p s.t. {p,¬p}⊆Si ∩ Exact.
b) For every i<n there is a (positive or negative) fact pi∈A(Si) s.t. Si+1 is the

dilution of Si w.r.t. the partial valuation pi : t iff pi is a strictly positive fact,
pi :f iff pi is a strictly negative fact, and pi :> iff pi is both a positive and a
negative fact of Si.

In all the examples given here, as well as in most of the known puzzles of the
literature, the involved knowledge-bases are stratified.

Proposition 6. Let S0, S1, . . . , Sn be a stratification of a knowledge-base KB.
For every 0≤ i≤n−1 let νi be the partial valuation according to which Si+1 is
obtained from Si (I.e., Si+1 =(Si)νi). Then M =∪n−1

i=0 νi is a model of KBi.

Proof: By an induction on the structure of a formula in KB. 2

Note: Had the dilution of each stratification level been performed w.r.t. more
than a single atom (cf. Definition 11b), Proposition 6 wouldn’t have been valid
anymore. To see this consider, e.g., KB = (S, ∅) where S = {p, q, ¬p∨¬q}. A
dilution of S w.r.t. both p and q would have yield a valuation ν = {p : t, q : t},
which is not an (exact) model of KB.

Example 5. Let KB=(S, {e}) be the same knowledge-base of Examples 3 and 4.
A possible stratification of S is S0 ={p, q, ¬p∨r, ¬q∨¬r, p∨s, ¬r∨e, ¬r∨¬e},
S1 ={p, ¬p ∨ r, ¬r, p ∨ s, ¬r ∨ e, ¬r ∨ ¬e}, S2 ={p, ¬p, p ∨ s}, S3 =∅.

The algorithm given in Figure 2 checks whether a given knowledge-base
(S,Exact) is stratified. If so, the algorithm produces stratifications, and al-
lows to construct recovered sets by providing corresponding (minimal) mcems
of (S, Exact) (see Theorem 1 below).
5 To simplify matters we shall take here the empty clause as identical with ⊥ rather

than with f (as the definition of ∨ actually dictates).
6 Note the similarity between the the dilution process and the Gelfond–Lifschitz trans-

formation [GL88] used for providing semantics to logic programs with negations.



input: a knowledge-base KB = (S, Exact)

call RECOVER(S, ∅, 0)

procedure RECOVER(S, ν, i)

/* S – the i-th stratification level of KB, ν – the valuation constructed so far. */

{
if (S = ∅) then output ν and return; /* ν∈Ω(KB) */

pos := {p∈A(S) | p∈S}; /* positive-facts */

neg := {p∈A(S) | ¬p∈S}; /* negative-facts */

if (pos = ∅ ∧ neg = ∅) halt; /* KB is not stratified */

if (⊥ ∈ S) return; /* backtracking; not a stratification */

if (∃p ∈ Exact ∩ pos ∩ neg) return; /* backtracking; not a stratification */

while ((∃p ∈ Exact ∩ pos) ∨ (∃p ∈ Exact ∩ neg) ∨ (∃p ∈ pos ∩ neg)) {
pick such a p;

if (p ∈ Exact ∩ pos) {
pos := pos \ {p};
νi := {p : t};

}
if (p ∈ Exact ∩ neg) {

neg := neg \ {p};
νi := {p : f};}

else {
pos := pos \ {p};
neg := neg \ {p};
νi := {p : >};}

Si+1 := Sνi ; /* dilution */

do (∀q s.t. νi(q) is undefined and q ∈ A(S) \ A(Si+1)) /* filling */

if (q 6∈ Exact) then νi := νi ∪ {q : ⊥} else νi := νi ∪ {q : t};
RECOVER(Si+1, ν ∪ νi, i+1);}

while (∃p ∈ pos ∪ neg) {
pick such a p;

if (p ∈ pos) {
pos := pos \ {p};
νi := {p : t};}

else {
neg := neg \ {p};
νi := {p : f};}

Si+1 := Sνi ; /* dilution */

do (∀q s.t. νi(q) is undefined and q ∈ A(S) \ A(Si+1)) /* filling */

if (q 6∈ Exact) then νi := νi ∪ {q : ⊥} else νi := νi ∪ {q : t};
RECOVER(Si+1, ν ∪ νi, i+1);}}

Fig. 2. An algorithm for recovering stratified knowledge-bases



Every valuation ν produced by the algorithm is determined by a sequence of
picked atoms p0, p1, . . . , pn of the calls to RECOVER. For shortening notations
we shall just write ν instead of ν(p0, p1, . . . , pn).

Example 6. In our canonical example (3, 4, and 5), the algorithm produces two
(minimal) mcems of KB: M1 = {p : t, q : t, r :>, s :⊥, e : t} and M2 = {p :>, q :
t, r : f, s :⊥, e : t} Figure 3 illustrates the processing of the algorithm in this
case.

{p, q, ¬p ∨ r, ¬q ∨ ¬r, p ∨ s, ¬r ∨ e, ¬r ∨ ¬e}

p : t, s :⊥ q : t

XXXXXXXXXXXX»»»»»»»»»»»»

{q, r, ¬q ∨ ¬r, ¬r ∨ e, ¬r ∨ ¬e} {p,¬p ∨ r, ¬r, p ∨ s, ¬r ∨ e, ¬r ∨ ¬e}

q : t r : t p : t, s :⊥ r :f, e : t
HHHHHH©©©©©© HHHHHH©©©©©©

{r,¬r,¬r ∨ e,¬r ∨ ¬e} {q,¬q, e,¬e} {r,¬r,¬r ∨ e,¬r ∨ ¬e} {p,¬p, p ∨ s}
r :> r :> p :>
e : t e : t s :⊥

∅ not a stratification ∅ ∅

Fig. 3. Generation of minimal mcems and recovered sets for KB

Proposition 7. Let KB =(S,Exact) be a finite knowledge-base. If it is strati-
fied then the algorithm of Figure 2 finds every stratification of KB and outputs
corresponding well-defined valuations for A(S). The algorithm halts without
giving any valuation iff KB is not stratified.

Outline of proof: Every stratification of (S, Exact) is produced by the al-
gorithm since it performs a breadth first search on the atomic facts of every
stratification level. The other parts of the proposition are easily verified, using
the following facts:
(a) If a knowledge-base is stratified, then any order in which the facts are chosen
determines stratification. This is so since dilution does not change facts; A fact
(positive, negative, or both) of a certain level remains a fact in the successive
levels unless it is used for the next dilution.
(b) The order in which the facts are chosen might be significant for checking
condition (b) in the definition of stratification (Definition 11); This is the case,
e.g., in our canonical example (see Figure 3). 2



It follows from Proposition 7 that the algorithm halts with a valuation for a
finite KB iff KB is stratified. For the rest of this section suppose, then, that KB
is finite and stratified.

Theorem 1. Let ν be a valuation produced by the algorithm for a knowledge-
base KB. Then: (a) ν∈ kmin(KB), (b) ν∈mcem(KB), and (c) ν∈Ω(KB).

Proof: We show the claim using three lemmas:

Lemma 1a: Every valuation ν produced by the algorithm is an exact model of
KB.
Proof: Let ψ be a clause that appears in S. From Definition 9 and the algorithm
of Figure 2 it is obvious that some part of ψ is eliminated from some Si+1 during
the dilution of Si. This happens iff (at least) one of its literals l is assigned a des-
ignated truth value by ν (note that a formula cannot be eliminated by sequently
removing every literal of it according to (2) of Definition 9, since the last literal
left must be assigned a designated value). By Lemma 2, then, ν(ψ)∈{t,>}, and
so ν is a model of KB. ν is an exact model of KB, since no element of Exact is
assigned > or ⊥ by the algorithm.

Lemma 1b: Every valuation produced by the algorithm is an mcem of KB.
Proof: The proof is by an induction on the number of the recursive steps (n)
that are required for creating a valuation ν. If n = 0 then S1 = ∅, so there is
only the initial step in which ν might assign > only to a literal l that is both
a positive and a negative fact of S. Since in this case l is assigned > by every
model of S, ν must be most consistent. Suppose now that it takes n≥1 recursive
steps to create ν. Denote by νi the part of the valuation ν that is determined
during step i. Then:

(1): Incν(S) =
⋃

0≤i≤n

Incνi(Si) = Incν0(S) ∪ Incν′(S1)

where ν′ =
⋃

1≤i≤n

νi. Now, let M be an exact model of KB. We show that

M 6>con ν. For this suppose that M1 is the reduction of M to A(S1).

(2): IncM (S) = {p∈A(S)\A(S1) | M(p)=>} ∪ {p∈A(S1) | M(p)=>}
= {p∈A(S)\A(S1) | M(p)=>} ∪ IncM1(S1)

By its definition, ν0 might assign > only to l∈L(S) s.t. l, l∈S. Obviously, such
an l must be assigned > by every model of S, in particular M(l)=>. Thus:

(3): Incν0(S) ⊆ {p∈A(S)\A(S1) | M(p)=>}
• Suppose first that M1 is an exact model of S1. Since the creation of ν′ requires
only n−1 steps, then by the induction hypothesis ν′ is an mcem of S1. In par-
ticular, either Incν′(S1) and IncM1(S1) are incomparable w.r.t. the containment
relation, or else:

(4): Incν′(S1) ⊆ IncM1(S1)

From (1) – (4), either Incν(S) and IncM (S) are incomparable, or Incν(S) ⊆



IncM (S).

• If M1 is not an exact model of S1 then M1 is cannot be a model of S1 either,
since it is a reduction of an exact model (M) of S. Thus there is a ψ1 ∈S1 s.t.
M1(ψ1) 6∈{t,>}. Since M is a model of S, then by Lemma 2 there is a ψ∈S and
l∈L(ψ) s.t. M(l)∈{t,>}, and {l} ∪ L(ψ1)⊆L(ψ). Obviously, l∈A(S) \ A(S1).
But then ν0(l) 6∈ {t,>} (otherwise ψ is eliminated in the dilution of S, and so
ψ1 6∈S1). Moreover, ν0(l)∈{t,>}, since if ν0(l) 6∈{t,>} then necessarily ν0(l)=⊥,
and this happens only if ψ is eliminated in the dilution of S, i.e. ψ1 6∈S1. There-
fore, ν0(l) 6∈ {t,>} and ν0(l)∈{t,>}, so ν0(l)=f . l is not assigned this value in
the filling process, since again, this would imply that ψ is eliminated in the di-
lution of S, and so ψ1 6∈S1. Thus, by the definition of ν0 and since S is stratified
then necessarily l∈S and l 6∈S. Hence KB |= l. But M is an exact model of KB
and so M(l)∈{t,>}. Since we have shown that M(l)∈{t,>} as well, it follows
that M(l)=> while ν(l)=f . Therefore IncM (S) 6⊆Incν(S) in this case as well.

Lemma 1c: The algorithm produces k-minimal exact models of KB.
Proof: Again, we denote by νi the part of the valuation ν that is created in the
i-th recursive call to RECOVER. The proof is by an induction on the number
of recursive steps required to create ν:
n = 0 : ν0 may assign > only to a literal l s.t. l∈S and l∈S. In this case > is
the only possible value for l, and so it is k-minimal. The same argument is true
for any literal l s.t. l∈S and l 6∈S (for that l, ν(l)= t). It is also obviously true
for all the literals in Exact, and for the literals that are assigned ⊥.
n≥1 : Let M be a model of KB. We show that M 6<k ν. Let M1 be the reduction
of M to A(S1), and suppose first that M1 is an exact model of S1. By the induc-
tion hypothesis ν1 is a k-minimal exact model of S1, thus there exists p∈A(S1),
s.t. M1(p) 6≤k ν1(p), therefore M 6<k ν. The other possibility is that M1 is not
an exact model of S1. In this case M1 cannot be a model of S1 either, therefore
there must be a clause ψ1∈S1 s.t. M1(ψ1) 6∈ {t,>}. Since M is an exact model
of S, then by Lemma 2 there is a ψ∈S and an l∈L(ψ) s.t. M(l)∈{t,>}, and
{l} ∪ L(ψ1) ⊆ L(ψ). But then ν(l) 6∈ {t,>} (Otherwise, ψ is eliminated in the
dilution of S and so ψ1 6∈S1), while M(l)∈{t,>}. It follows that M(l) 6<k ν(l),
therefore again M 6<k ν.

Now, by Lemma 1b, ν∈ mcem(KB), by Lemma 1c, ν∈ kmin(KB), and by both,
ν∈Ω(KB). This ends the proof of Theorem 1. 2

Note: It is possible to assign any other truth value to the atoms that are assigned
⊥, and still ν would be an exact model of KB. However, in such a case ν cannot
be minimal w.r.t. ≤k. Also, when assigning > instead of ⊥, ν cannot be an mcem
of KB. It is also possible to assign f to the elements of Exact that are assigned
t during the filling process without losing any of the properties discussed above.

Theorem 2. Let ν be a valuation produced by the algorithm for KB. Then
KBν is a recovered set of KB.



Example 7. Consider again Example 6 and Figure 3. KBM1 ={p, q, p ∨ s} and
KBM2 ={q, ¬q ∨ ¬r, ¬r ∨ e, ¬r ∨ ¬e} are the recovered sets of KB.

Proof of Theorem 2: By Theorem 1, every valuation ν that is generated by
the algorithm is an exact model of KB. Thus, by Propositions 2, KBν is con-
sistent in KB. It is left to show that KBν is also a maximal subset with this
property. Suppose not. Then by Proposition 3 there is an mcem M of KB s.t.
KBν ⊂ KBM , hence Incν(KB) 6= IncM (KB). Since ν is also an mcem of KB
(Theorem 1 again), there is a p ∈ A(S) s.t. ν(p) 6=> while M(p) =>. In par-
ticular, since M is an exact model of KB, p 6∈Exact. Consider some ψ ∈S s.t.
p∈A(ψ). Since ψ 6∈KBM , ψ 6∈KBν either. Thus there is a q∈A(ψ) s.t. ν(q)=>.
By the definition of ν this is possible only if there is a stratification S0, . . . , Sn

of S and an index 1≤ i≤n s.t. q,¬q ∈Si. Therefore ν(p) 6=⊥ (Otherwise, p as
well as all the other elements of A(ψ) are diluted from Sj for some j ≤ i, and
so q 6∈ A(Si)). It follows that either ν(p) = t or ν(p) = f . Since p 6∈Exact, then
by the construction of ν, either p or ¬p is a strict fact (positive or negative) of
some stratification level Sk of S. It follows that there is some φ∈S s.t. p∈A(φ)
and A(φ) ∩ Incν(S)=∅ (Otherwise, if there is some r∈A(φ) s.t. ν(r)=>, then
φ and its atoms are diluted in some stage before stage k, and so p cannot be a
strict fact of Sk). Therefore φ∈KBν while φ 6∈KBM – a contradiction. 2

Finally, let’s consider some complexity issues. As we have noted before, the
problem of recovering arbitrary knowledge-base is at least NP-complete. Denote
by O(AB) that it takes O(A) running time to solve a certain problem when
using an oracle for solving problems with complexity O(B). Then our algorithm
requires O(|S||A(S)|) running time to recover a knowledge-base (S, Exact) that is
stratified.7 As the following proposition shows, the complexity of the algorithm
might sometimes be considerably reduced:

Proposition 8. Whenever each stratification level of KB = (S,Exact) does
not contain a pair of complementary exact literals, it takes only O(|S| · |A(S)|)
running time to check whether KB is stratified, and if so, this is also the time
needed to find some recovered set of it.

Proof: By the conditions of the proposition, in order to find some recovered set
of KB it is sufficient to execute the algorithm on a single sequence of recursive
calls to RECOVER, without backtracking. Now, computing stage i of the recur-
sion requires only O(|Si|) running time. Since there are at most |A(S)| recursive
calls to RECOVER, the whole process does not take more than O(|S| · |A(S)|)
running time. By 2, this is also the time required to supply a recovered set KBν

for KB. 2

Obvious cases in which the condition of the last proposition is met are when
Exact=∅, or if there is no l∈Exact s.t. both l∈L(S) and l∈L(S).

7 In our case, at every stratification level the oracle chooses a fact that yields, even-
tually, a stratification.



5 Model-based diagnosis

Suppose that we are given a description of some faulty device. Our goal is to
find some minimal set of components the collective failure of which can explain
an observed malfunction. In this section we show that the mcems and their cor-
responding recovered sets of the knowledge-base that describes that device are
good candidates for providing accurate diagnoses regarding the faulty compo-
nents. For that we first expand the discussion to first-order logic. It is possible
to do so in a straightforward way, provided that each clause that contains vari-
ables is considered as universally quantified. Consequently, a knowledge-base
containing non-grounded formula, ψ, will be viewed as representing the cor-
responding set of ground formulae formed by substituting each variable that
appears in ψ with every possible element of the Herbrand universe, U . Formally:
KBU =(SU , Exact), where SU ={ρ(ψ) | ψ∈S, ρ :var(ψ)→U}, ρ is a ground sub-
stitution from the variables of every ψ∈KB to the individuals of U , and Exact
consists of predicates every instance of which should be assigned classical values.
The exact models are the elements of mod(SU , Exact) = {M ∈mod(SU ) | ∀p∈
Exact ∀xi∈U M(p(x1,. . ., xn))∈{t, f}}.
Example 8. Figure 4 depicts a binary full adder. It consists of five components:
two and-gates A1 and A2, two xor-gates X1 and X2, and an or-gate O1.
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Fig. 4. A full adder

The full adder’s description is given by system FA in Figure 5. Notice that this
specific circuit is faulty; both circuit outputs are wrong for the given inputs.

The predicates in1(x), in2(x), and out(x) of FA are assigned values that
correspond to binary values of the wires of the system, therefore they should
have only classical values. Also, it seems natural to restrict the values of the
predicates andGate, orGate, and xorGate to be only classical as well. This
is because we know in advance what is the kind of each gate G in the sys-
tem, and so the only open question about G is whether it behaves as expected.



andGate(x) ∧ ok(x) → (out(x) ↔ (in1(x) ∧ in2(x))),

xorGate(x) ∧ ok(x) → (out(x) ↔ (in1(x)⊕ in2(x))),

orGate(x) ∧ ok(x) → (out(x) ↔ (in1(x) ∨ in2(x))),

andGate(x) → (¬orGate(x) ∧ ¬xorGate(x)),

xorGate(x) → (¬andGate(x) ∧ ¬orGate(x)),

orGate(x) → (¬andGate(x) ∧ ¬xorGate(x)),

in1(X1) ↔ in1(A1), in2(X1) ↔ in2(A1), in1(A2) ↔ in2(X2),

out(X1) ↔ in2(A2), out(X1) ↔ in1(X2), out(A1) ↔ in2(O1), out(A2) ↔ in1(O1),

andGate(A1), andGate(A2), xorGate(X1), xorGate(X2), orGate(O2),

ok(A1), ok(A2), ok(X1), ok(X2), ok(O1),

in1(X1), ¬in2(X1), in1(A2), out(X2), ¬out(O1)

Fig. 5. The system FA

The knowledge-base that represents the full adder is then (FA,Exact), where
Exact={in1, in2, out, andGate, orGate, xorGate}.

The table of Figure 6 lists the elements of mcem(FA,Exact). We have omit-
ted from the table predicates that have the same value in every exact model,
and any predicate that has the same values as some predicate in the table.

Model in1 in1 in2 ok ok ok ok ok
No. X2 O1 O1 A1 A2 X1 X2 O1

M1 f f f t t > t t
M2 t f f t > t > t
M3 t t f t t t > >

Fig. 6. The mcems of (FA, Exact)

The mcems of (FA,Exact), and the recovered sets that are associated with
them preserve what Reiter [Re87] calls the principle of parsimony ; they represent
the conjecture that some minimal set of components are faulty. For instance,
according to M1 the only component that behaves incorrectly is the xor gate
X1. The set that is associated with M1 reflects this indication:
FAM1 =FA\{ok(X1), xorGate(X1)∧ok(X1)→(out(X1)↔(in1(X1)⊕in2(X1)))}
In particular, FAM1 entails (w.r.t. both |= and |=mcem) ok(x) for x∈ {A1, A2,
X2, O1}, but it does not entail ok(X1). Similarly, the other two mcems M2
and M3, together with their associated sets represent (respectively) situations,
in which gates {X2, A2} and gates {X2, O1} are faulty. These are the generally
accepted diagnoses of this case (see, e.g., [Re87, Example 2.2], [Gi88, Sections
15,16], and [Ra92, Examples 1,4]).



One might treat FAM1 as the preferred recovered set, since it is the only set
that entails that only a single component is faulty, and one normally expects
components to fail independently of each other. This kind of diagnosis is known
as a single fault diagnosis.

As it is proved below, the correspondence in the previous example between
the fault diagnoses and the inconsistent assignments of the mcems is not acci-
dental. For showing that we first present two basic notions from the literature
on model-based diagnosis:

Definition 12. [Re87] A system is a triple (Sd,Comps,Obs), where: Sd, the
system description, is a set of first order sentences; Comps, the system compo-
nents, is a finite set of constants; and Obs, the observations set , is a finite set of
sentences.

Definition 13. [Re87] A diagnosis is a minimal set ∆⊆Comps s.t. Sd ∪Obs ∪
{ok(c) | c∈Comps \∆} ∪ {¬ok(c) | c∈∆} is classically consistent.

Definition 14. A correct behavior assumption for a given set of components
∆⊆Comps is the set CBA(∆) = {ok(c) | c∈∆}.

Definition 15. For a given system (Sd,Comps,Obs), and a set of components
∆⊆Comps, denote S(∆) = Sd∪Obs∪CBA(∆). Whenever ∆ = Comps we shall
write just S instead of S(Comps). We shall continue to assume that S(∆) is a
set of clauses.

Proposition 9. [Re87] Denote by |=cl the consequence relation of the first order
classical logic.
a) ∆ is a diagnosis for (Sd,Comps,Obs) iff ∆ is a minimal set s.t. S(Comps \∆)
is classically consistent.
b) If ∆ is a diagnosis for (Sd,Comps,Obs) then S(Comps \ ∆) |=cl ¬ok(c) for
every c∈∆.

In the present treatment, unlike in the classical case, an inconsistency does
not yield trivial reasoning, and only a subset of the atomic formulae must have
classical values. In our terms, then, a diagnostic system is defined as follows:

Definition 16. A diagnostic knowledge-base is a knowledge-base (S, Exact),
where S =Sd∪Obs∪CBA(Comps), and Exact consists of every ground atom of
S except the elements of CBA(Comps).8

Theorem 3. Let (S,Exact) be a diagnostic knowledge-base. An exact model M
of (S,Exact) is an mcem of (S, Exact) iff IncM (S)=CBA(∆) for some diagnosis
∆ of S.

8 Note that this requirement is met in Example 8.



Proof: (⇐) Assume that M is an exact model of (S, Exact) and that ∆ is
a diagnosis of S s.t. IncM (S) = CBA(∆). If M is not an mcem of S then by
Proposition 1 there is an exact model M ′ s.t. IncM ′(S)⊂ IncM (S) = CBA(∆),
i.e.: there is a c0∈∆ s.t. M ′(ok(c0)) 6=>. But:
(a) M ′ is a model of S and ok(c0)∈S thus M ′(ok(c0))∈{t,>}, and
(b) By Proposition 9(b), S(Comps \ ∆) |=cl ¬ok(c0). Hence by Lemma 4.11 of
[AA96] 9, S(Comps\∆) |=mcem ¬ok(c0). Since M is a (most) consistent exact
model of S(Comps \∆), so is M ′. Therefore M ′(¬ok(c0))∈{t,>}.
By (a) and (b), M ′(ok(c0))=> – a contradiction.
(⇒) From the condition on Exact it follows that for every exact model M
of (S, Exact), IncM (S)⊆ CBA(Comps). Suppose, then, that M is an mcem of
(S,Exact) and that IncM (S)=CBA(∆) for some ∆⊆Comp. By Proposition 9,
in order to prove that ∆ is a diagnosis for S it is sufficient to show that ∆ is a
minimal set such that S(Comps\∆) is classically consistent. Suppose not. Then
there is a proper subset ∆′⊂∆ s.t. S(Comps\∆′) is classically consistent, and
so has a consistent model, N . Let M ′ be the following valuation:

M ′(p) =
{

N(p) if p∈A(S(Comps\∆′)).
> otherwise.

It is easy to verify (using Lemma 2) that M ′ is a model of S. Therefore, since
Exact(S)⊂A(S(Comps\∆′)), M ′ is an exact model of mod(S, Exact). Moreover,
IncM ′(S) = CBA(∆′), and ∆′ ⊂ ∆, thus IncM ′(S) = CBA(∆′) ⊂ CBA(∆) =
IncM (S). It follows that M cannot be a mcem of (S, Exact). 2

Corollary 1. Let (S, Exact) be a diagnostic knowledge-base. If ∆ is a diagnosis
of S then there exists an mcem M of (S,Exact) s.t. IncM (S)=CBA(∆).

Proof: By Proposition 9(a), S(Comps\∆) is classically consistent, therefore
there is an exact model M of (S, Exact) that assigns > only to CBA(∆). This
M is an mcem of (S, Exact) by Theorem 3. 2

It follows that whenever the requirement of Theorem 3 is met and (S,Exact)
is stratified, one can use the algorithm of Section 4 for finding diagnoses and
constructing recovered knowledge-bases of the faulty system. This is the case,
e.g., in Example 8.

6 Conclusion

We have proposed a four-valued mechanism for recovering consistent data from
inconsistent set of assertions. This approach regards some contradictory data as
useless, and considers all the remaining information as unaffected. The logics
9 According to that lemma, if S is a classically consistent set of assertions, ψ is a clause

that does not contain any pair of complementary literals, and ψ classically follows
from S, then S |=mcem ψ. In [AA96] this is proved only for the case Exact= ∅, but
the proof can easily be adapted to the general case.



behind this kind of method are nonmonotonic and paraconsistent in nature. For
a common family of knowledge-bases we have also provided an algorithm for an
automatic recovery. Our method is particularly useful for diagnostic systems,
where it might be used for supplying a description of the well-behaved parts of
a faulty device.
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