
Preferential Reasoning Based On
Abstract Argumentation Semantics

Ofer ARIELI a and Tjitze REINSTRA b

a School of Computer Science, The Academic College of Tel-Aviv, Israel
b Interdisciplinary Centre for Security, Reliability and Trust, University of Luxembourg

Abstract. We introduce a preferential-based setting for reasoning with different
types of argumentation-based semantics, including those that are not necessarily
conflict-free or admissible. The induced entailments are defined by n-valued label-
ing and may be computed by answer-set programs.

Keywords. semantics for abstract argumentation, preferential reasoning, n-valued
labeling, answer-set programming.

1. Introduction

The seminal paper of Dung [12], published nearly twenty years ago, gave rise to a
wide variety of graph-based approaches for representing disputes and giving semantics
to argumentation-based conflicts (see, e.g., the surveys in [5,15]). Generally, these ap-
proaches indicate what sets of arguments can be collectively accepted and what can be
inferred based on these sets. Often, the sets of arguments are assumed to have some
basic properties and are obtained by certain preference criteria posed on the set of all
arguments.

The idea of this paper is to capture the common background behind many of the
semantic approaches to abstract argumentation in a formal and uniform way. This will
allow us to provide a general method of representing different kinds of argumentation
semantics, including those that do not presuppose the ‘standard’ assumptions on accept-
able arguments (like conflict-freeness and admissibility), or those that include ‘extra’
assumptions on the acceptable arguments in the form of integrity constraints. Another
important aspect of our approach is its applicability in terms of answer-set programs.

The rest of this paper is organized as follows: in the next section we briefly review
some basic concepts behind abstract argumentation and introduce our approach for rep-
resenting their semantics. In Section 3 we apply our method for different cases and then
exemplify this in Section 4. In Section 5 we show how our approach is implementable
by ASP, and in Section 6 we conclude.

2. Preferential n-Labeling Semantics

Definition 1 An argumentation framework [12] is a pair AF = ⟨Args,Attack⟩, where
Args is an enumerable set of elements, called arguments, and Attack is a relation on

1

Args×Args whose instances are called attacks. When (A,B) ∈ Attack we say that A
attacks B (or that B is attacked by A).

In the sequel we denote by A+ the set of arguments attacked by A, that is, A+ =
{B ∈ Args | Attack(A,B)}, and denote by A− the set of arguments that attack A, i.e.,
A− = {B ∈ Args | Attack(B,A)}.

Our approach extends the standard 3-valued labeling semantics for abstract argu-
mentation framework [9,17] by allowing an arbitrary number of labels as follows.

Definition 2 Given an argumentation framework AF = ⟨Args,Attack⟩, an n-valued
labeling of AF is a complete function lab :Args → {val1, . . . , valn}. For 1 ≤ i ≤ n, we
denote Vali(lab) = {A ∈ Args | lab(A) = vali}. The set of all the n-valued labelings
on Args is denoted Labn(Args).

To simplify the reading, the labels of 2-valued labelings will be denoted in and out.
For 3-valued labelings we shall use in addition the label undec, and for 4-valued label-
ings we shall replace undec by none and add the label both. The corresponding sets of
arguments will be denoted similarly (e.g., In(lab) = {A ∈ Args | lab(A) = in}).

The semantics of an argumentation framework is determined by first focusing on the
n-valued labelings that satisfy certain conditions (specified by the propositional formulas
in Cond(AF), see below), and then considering only the most preferred labelings (with
respect to some normality considerations, represented by ≤). This is formalized next.

Given an argumentation framework AF = ⟨Args,Attack⟩ where Args =
{A1, A2, . . .}. For expressing the condition(s) that the ‘legitimate’ n-valued labelings
of AF should meet, we fix a propositional language LnArgs , whose atomic formulas are
associated with the labeling of the argument of AF , and whose compound formulas are
generated by the following BNF:

A ∈ Arguments := A1 | A2 | . . .
v ∈ LabelValues := v1 | . . . | vn
ψ, ϕ ∈ Formulas := val(A, v) | ¬ψ | ψ ∨ ϕ | ψ ∧ ϕ | ψ ⊃ ϕ | f

For defining the semantics of LnArgs we identify the n-valued labelings functions
with n-valued valuations for formulas in LnArgs . Accordingly, the satisfaction relation is
defined as follows:

Definition 3 The satisfaction relation for LnArgs is a binary relation |=nArgs between n-
valued labelings of Args and formulas of LnArgs , defined as follows:

• lab |=nArgs val(A, v) iff lab(A) = v,
• lab |=nArgs ¬ψ iff lab ̸|=nArgs ψ,
• lab |=nArgs ψ ∨ ϕ iff lab |=nArgs ψ or lab |=nArgs ϕ,
• lab |=nArgs ψ ∧ ϕ iff lab |=nArgs ψ and lab |=nArgs ϕ,
• lab |=nArgs ψ ⊃ ϕ iff lab ̸|=nArgs ψ or lab |=nArgs ϕ,
• lab ̸|=nArgs f.

We denote: modnArgs(ψ) = {lab ∈ Labn(Args) | lab |=nArgs ψ} and modnArgs(Γ) =∩
ψ∈Γmod

n
Args(ψ). When Args and n are known and fixed, we shall sometimes omit

them from these notations.

2

Preferential n-labeling semantics is now defined as follows:

Definition 4 Let AF = ⟨Args,Attack⟩ be an argumentation framework and LnArgs a
corresponding propositional language for some n ∈ N. A preferential n-labeling seman-
tics for AF is a triple SEM(AF) = ⟨Labn(Args),Cond(AF), <⟩, where Cond(AF)
is a set of formulas in LnArgs and < is a relation on Labn(Args)× Labn(Args).

A preferential n-labeling semantics thus consists of the possible labelings for AF ,
conditions that express what the valid labelings are, and a preference criterion for choos-
ing the ‘best’ labelings among the valid ones. The induced conclusions are defined next.

Definition 5 Let SEM(AF) = ⟨Labn(Args),Cond(AF), <⟩ be a preferential n-
labeling semantics for an argumentation framework AF = ⟨Args,Attack⟩.

• The SEM-labelings of AF are the elements of the following set:
modn<(Cond(AF)) = {lab ∈ modnArgs(Cond(AF)) |

¬∃ lab′∈modnArgs(Cond(AF)) such that lab′ < lab}.
• ψ is a skeptical SEM-conclusion of AF , if modn<(Cond(AF)) ⊆ modnArgs(ψ).

1

• ψ is a credulous SEM-conclusion, if modn<(Cond(AF)) ∩modnArgs(ψ) ̸= ∅.

3. Applications

In this section we show that the preferential semantics described in the previous section
captures different forms of reasoning with abstract argumentation frameworks. We start
with Dung-type semantics [5,12], in which the underlying labelings are both conflict-free
and admissible (Section 3.1). We also show how integrity constraints may be handled in
this context (Section 3.2). Then we describe semantics in which either of these condi-
tions is relaxed: fallback semantics [8] and Jakobovits-Vermeir’s semantics [14], which
are coherent-based approaches that preserve conflict-freeness but give-up admissibility
(Sections 3.3 and 3.5), and conflict-tolerant semantics [1,3], which is a paraconsistent
approach that sticks to admissibility but abandons conflict-freeness (Section 3.4).

3.1. Standard Semantics Based On Complete Labelings

Many of the semantical approaches to reasoning with Dung-style abstract argumentation
frameworks can be represented by 3-valued semantics as described in Definition 4. Some
of them are considered next.

Definition 6 Given an argumentation framework AF = ⟨Args,Attack⟩, we consider
the following conditions on a 3-valued labeling lab of AF :

Pos: If lab(A) = in then for every B ∈ A− it holds that lab(B) = out.
Neg: If lab(A) = out then there exists some B ∈ A− such that lab(B) = in.
Neither1: If lab(A) = undec then there is no B ∈ A− such that lab(B) = in.
Neither2: If lab(A) = undec then there is B ∈ A− such that lab(B) ̸= out.

1Intuitively, this means that all the <-most preferred valid labelings of AF are models of ψ.

3

Now, given a 3-valued labeling lab of AF , we say that

1. lab is conflict-free if it satisfies conditions Pos and Neither1.2

2. lab is admissible if it is conflict-free and satisfies condition Neg.
3. lab is complete if it is admissible and satisfies condition Neither2.

Let labcmp be a complete 3-valued labeling of AF . Below, the minimum and maximum
are taken with respect to set inclusion.

• labcmp is a grounded labeling of AF iff In(labcmp) is minimal in the set
{In(lab) | lab is a 3-valued complete labeling of AF}.

• labcmp is a preferred labeling of AF iff In(labcmp) is maximal in the set
{In(lab) | lab is a 3-valued complete labeling of AF}.

• labcmp is a stable labeling of AF iff Undec(labcmp) = ∅.

• labcmp is a semi-stable labeling of AF iff Undec(labcmp) is minimal in
{Undec(lab) | lab is a 3-valued complete labeling of AF}.

Note 7 Intuitively, a labeling is conflict-free if all the neighbors of an in-labeled argu-
ment are labeled out. This definition of a conflict-free labeling is equivalent to what is
called a subcomplete labeling in [7] and it deviates from the definitions of a conflict-free
labeling used, e.g., in [9], where a conflict-free labeling should satisfy Condition Neg
and the following weaker version of Pos:

w-Pos If lab(A) = in then there is no B ∈ A− such that lab(B) = in.

The reason for using a modified definition is that it assures the following two properties
that are not guaranteed by Neg and w-Pos:

1. A partial labeling of a conflict-free labeling (obtained by removing arguments
from the original labeling) is still conflict-free:

Proposition 8 For every conflict-free labeling lab of AF = ⟨Args,Attack⟩ and
every restriction AF ′ = ⟨Args ′,Attack ∩ (Args ′ × Args ′)⟩ of AF to a subset
Args ′ ⊆ Args , the restriction of lab to Args ′ is a conflict-free labeling of AF ′.

Proof. Simple, and omitted due to short of space. 2

2. A conflict-free labeling can be turned into (part of) a complete labeling by adding
arguments and/or attacks:

Proposition 9 For every conflict-free labeling lab of AF = ⟨Args,Attack⟩,
there is an expansion AF ′ = ⟨Args ′,Attack ′⟩ of AF for some Args ⊆ Args ′

and Attack ⊆ Attack ′ such that lab is the restriction to Args of a complete
labeling lab′ of AF ′.

Proof. (Sketch) Let lab be a conflict-free labeling of AF = ⟨Args,Attack⟩, and
let Illegal(lab) be the subset of Args , defined as follows:

Definition 10 The set Illegal(lab) (of arguments that have illegal labelings ac-
cording to complete semantics) consists of the arguments A ∈Args that satisfy
either of the following conditions:

2Here and in what follows satisfaction of the conditions is taken with respect to every A ∈ Args .

4

• lab(A) = out and there is no B ∈ A− such that lab(A) = in,
• lab(A) = undec and either there is some B ∈ A− such that lab(B) = in or

there is no B ∈ A− such that lab(B) = undec.

Consider now the argumentation framework AF ′ = ⟨Args ∪ {α, β},Attack ∪
Attack ′⟩, where Attack ′ = {(β, β)} ∪ {(α,A) | lab(A) = out, A ∈
Illegal(lab)} ∪ {(β,A) | lab(A) = undec, A ∈ Illegal(lab)}. We define lab′ by
lab′(α) = in, lab′(β) = undec and lab′(A) = lab(A) if A ∈ Args . It can be
checked that lab′ is a complete labeling of AF ′ and that the restriction of lab′ to
Args equals lab. 2

Additionally, our notion of admissible labeling is not the same as that of [9], where
admissible labelings are defined by Conditions Pos and Neg. The reason is that in our
case there is a one-to-one correspondence between admissible labelings and admissible
extensions, while this is not the case according to [9].

We note, finally, that complete labelings in our sense are the same as complete la-
belings in the sense of [9] (and so are grounded, preferred, stable, and semi-stable label-
ings). In [9], Conditions Neither1 and Neither2 are merged to one property:

Neither If lab(A) = undec then not for every B ∈ A− it holds that lab(B) = out and
there does not exist a B ∈ A− such that lab(B) = in.

Definition 11 Let AF = ⟨Args,Attack⟩ and let A ∈ Args .

• A skeptically follows from AF by complete (resp, grounded, preferred, stable,
semi-stable) semantics, if lab(A) = in for every complete (resp. grounded, pre-
ferred, stable, semi-stable) 3-valued labeling lab of AF .

• A credulously follows from AF by complete (resp, grounded, preferred, stable,
semi-stable) semantics, if lab(A) = in for some complete (resp. grounded, pre-
ferred, stable, semi-stable) 3-valued labeling lab of AF .

Next we show that the argumentation semantics in Definition 4 indeed capture those
in Definition 6.

Definition 12 Let AF = ⟨Args,Attack⟩ be an argumentation framework. Consider the
following theory in the language L3

Args for 3-states argumentation:

CMP(AF) =
∪

A∈Args

val(A, in) ⊃

∧
B∈A− val(B, out),

val(A, out) ⊃
∨
B∈A− val(B, in),

val(A, undec) ⊃
(
¬
∧
B∈A− val(B, out) ∧ ¬

∨
B∈A− val(B, in)

)

Definition 13 Let AF = ⟨Args,Attack⟩ be an argumentation framework. Consider the
following preferential 3-labeling semantics for AF :

• CMP(AF) = ⟨Lab3(Args),CMP(AF), ∅⟩.

• GRND(AF) = ⟨Lab3(Args),CMP(AF), <min
in ⟩,

where <min
in is defined by lab1 <min

in lab2 iff In(lab1) (In(lab2).

5

• PREF(AF) = ⟨Lab3(Args),CMP(AF), <max
in ⟩,

where <max
in is defined by lab1 <max

in lab2 iff In(lab1)) In(lab2).

• ST (AF) = ⟨Lab3(Args),CMP(AF) ∪ EM(Args), ∅⟩,
where EM(Args) =

∪
A∈Args

{
val(A, in) ∨ val(A, out)

}
. 3

• SST (AF) = ⟨Lab3(Args),CMP(AF), <min
undec⟩,

where <min
undec is defined by lab1 <min

undec lab2 iff Undec(lab1) (Undec(lab2).

Proposition 14 An argument A ∈ Args skeptically follows from AF under complete
(resp. grounded, preferred, stable, semi-stable) semantics iff val(A, in) is a skepti-
cal conclusion of AF according to CMP(AF) (resp., according to GRND(AF),
PREF(AF), ST (AF), SST (AF)).

Proof. We show for instance the case of skeptical acceptance under the grounded seman-
tics; The other cases are proved similarly. It is easy to see that the models of CMP(AF)
are the complete labelings of AF . Thus, the valuations in mod3

<min
in
(CMP(AF)) are ex-

actly the grounded labelings of AF . It follows that A is a skeptical conclusion of AF
according to GRND(AF) iff all the grounded labelings of AF satisfy val(A, in), iff
A is labeled in by every grounded labeling of AF , iff A skeptically follows from AF
according to the grounded semantics. 2

Proposition 15 An argument A ∈ Args credulously follows from AF under com-
plete (resp. grounded, preferred, stable, semi-stable) semantics iff val(A, in) is a cred-
ulous conclusion of AF according to CMP(AF) (resp., according to GRND(AF),
PREF(AF), ST (AF), SST (AF)).

Proof. Similar to that of Proposition 14. 2

Note 16 Other types of semantics, such as stage, ideal and eager semantics (see [5]), are
also representable by 3-valued semantics in the form described in Definition 4. For these
semantics one has to represent the condition CMP(AF) in terms of quantified Boolean
formulas (that is, formulas involving only propositional languages and quantifications
over propositional variables). We refer to [4] for the details.

3.2. Semantics of Constrained Argumentation Frameworks

In [11], Coste-Marquis, Devred and Marquis introduced the notion of a constrained ar-
gumentation frameworks (CAFs), with the aim of handling constraints on the evaluation
of an argumentation framework. In this section we show that their approach fits together
with our setting in a natural way.

Note 17 The formalism in [11] is expressed by sets of arguments (extensions) instead
of labelings, and uses a similar language to ours , with the same interpretations for the
connectives ∨ and ¬. To keep the presentation uniform and coherent, in what follows we
adjust the notations and notions used in [11] to our setting.

3That is, EM(Args) ‘excludes the middle label’, undec.

6

Definition 18 [11] A constrained argumentation framework is a triple CAF =
⟨Args,Attack , IC⟩, where ⟨Args,Attack⟩ is an argumentation framework and IC is a
set of formulas in L3

Args .

• lab is an admissible labeling of CAF if it is an admissible labeling of
⟨Args,Attack⟩ and an element in mod3Args(IC).

• lab is a preferred labeling of CAF if it is an admissible labeling of CAF and
In(lab) is maximal in {In(lab) | lab is an admissible labelling of CAF}.

• lab is a (semi-)stable labeling of CAF if it is a (semi-)stable extension of
⟨Args,Attack⟩ and an element in mod3Args(IC).

Definition 19 Let CAF = ⟨Args,Attack , IC⟩ and let A ∈ Args .

• A skeptically follows from CAF by admissible (resp. preferred, stable, semi-
stable) semantics, if lab(A) = in for every admissible (resp. preferred, stable,
semi-stable) 3-valued labeling lab of CAF .

• A credulously follows from CAF by admissible (resp. preferred, stable, semi-
stable) semantics, if lab(A) = in for some admissible (resp. preferred, stable,
semi-stable) 3-valued labeling lab of CAF .

Below we show that preferential 3-valued labeling semantics captures also the se-
mantics of constrained argumentation frameworks.

Definition 20 Let AF = ⟨Args,Attack⟩ and CAF = ⟨Args,Attack , IC⟩ be an ar-
gumentation framework and a constrained argumentation framework, respectively. Con-
sider the following theory in the language L3

Args for 3-valued argumentation:

ADM(AF) =
∪

A∈Args

val(A, in) ⊃

∧
B∈A− val(B, out),

val(A, out) ⊃
∨
B∈A− val(B, in),

val(A, undec) ⊃ ¬
∨
B∈A− val(B, in)

 .

Accordingly, we defined the following preferential 3-valued labeling semantics:

• ADM(CAF) = ⟨Lab3(Args),ADM(AF) ∪ IC, ∅⟩,
• PREF(CAF) = ⟨Lab3(Args),ADM(AF) ∪ IC, <max

in ⟩,
• ST (CAF) = ⟨Lab3(Args),CMP(AF) ∪ EM(Args) ∪ IC, ∅⟩.
• SST (CAF) = ⟨Lab3(Args),CMP(AF) ∪ IC, <min

undec⟩.

Like the case of standard semantics, we have the following results (cf. Proposi-
tions 14 and 15).

Proposition 21 A ∈ Args skeptically follows from CAF under admissible (resp. pre-
ferred, stable, semi-stable) semantics iff val(A, in) is a skeptical conclusion of CAF ac-
cording to ADM(CAF) (resp. according to PREF(CAF), ST (CAF), SST (CAF)).

Proposition 22 A ∈ Args credulously follows from CAF under admissible (resp. pre-
ferred, stable, semi-stable) semantics iff val(A, in) is a credulous conclusion of CAF ac-
cording to ADM(CAF) (resp. according to PREF(CAF), ST (CAF), SST (CAF)).

7

3.3. Fallback Belief Semantics

It is well-known that every argumentation framework has a complete labeling (and so
also a grounded and a preferred labeling). Such a labeling is a 3-valued valuation that
satisfies the theory CMP(AF) in Definition 12. However, when integrity constraints
are introduced the existence of complete labelings is not guaranteed anymore. As we
saw in Section 3.2, in this case some approaches give up completeness and require only
admissibility. A more radical step, taken e.g. in [8], is to give up admissibility and require
only conflict-freeness. By Definition 6 these are the 3-valued labelings satisfying the
following theory:

CF(AF) =
∪

A∈Args

{
val(A, in) ⊃

∧
B∈A− val(B, out),

val(A, undec) ⊃ ¬
∨
B∈A− val(B, in)

}
.

The following relation is considered in [8] as a preference criterion among conflict-
free labelings. Intuitively, it counts (and minimizes) the number of violations of the con-
ditions for complete labelings that can be made by conflict-free labelings.

Definition 23 Let AF = ⟨Args,Attack⟩ be an argumentation framework. Given a 3-
valued conflict-free labeling lab for AF , we denote by |Illegal(lab)| the size of the set
Illegal(lab), considered in Definition 10. Accordingly, we define: lab1 <illeg lab2 iff
|Illegal(lab1)| < |Illegal(lab2)|.

It follows that the fallback belief semantics considered in [8] can be described in
terms of the preferential 3-labeling semantics

FBB(AF) = ⟨Lab3(Args),CF(AF) ∪ IC(Args), <illeg⟩,

where IC(Args) are the integrity constraints that the arguments should satisfy, expressed
in the language L3

Args .

3.4. Conflict-Tolerant Semantics

Another type of semantics for abstract argumentation frameworks that can be represented
by preferential n-labeling semantics is the conflict-tolerant approach introduced in [1,3].
This time, the underlying semantics is based on 4-valued labeling, where in addition to
acceptance (in) and rejection (out), the two other labelings intuitively indicate lack of in-
formation (none) and contradictory information (both). Below are rationality postulates
for 4-valued labelings (see [1,3]):

pIn if lab(A) = in then for every B ∈ A− it holds that lab(B) = out.

pOut if lab(A) = out then there is B ∈ A− such that lab(B) ∈ {in, both}.

pBoth if lab(A) = both then for every B ∈ A− lab(B) ∈ {out, both}
and there is B ∈ A− such that lab(B) = both.

pNone if lab(A) = none then for every B ∈ A−, lab(B) ∈ {out, none}.

These conditions are expressible by the following theory in L4
Args :

8

CT(AF) =
∪

A∈Args

val(A, in) ⊃
∧
B∈A− ¬val(B, out),

val(A, out) ⊃
(∨

B∈A−

(
val(B, in) ∨ val(B, both)

)
val(A, both) ⊃

(∧
B∈A−

(
val(B, out) ∨ val(B, both)

)
∧∨

B∈A− val(B, both)
)

val(A, none) ⊃
(∧

B∈A−

(
val(B, out) ∨ val(B, none)

)

The labeling both implies that in some situations contradictory arguments must be

accepted. Yet, while inconsistent belief about certain arguments is sometimes unavoid-
able, this is usually not desirable and should be avoided as much as possible. This is
the intuition behind the following order relation: lab1 <min

both lab2 iff Both(lab1)| (
Both(lab2).4

It follows that the conflict-tolerant semantics described in [1,3] can be described in
terms of the following preferential 4-labeling semantics:

CT (AF) = ⟨Lab4(Args),CT(AF), <min
both⟩.

Note 24 In [2] consistency tolerance semantics is adjusted to handle integrity con-
straints. Just as we did in Section 3.2, it is possible to capture that semantics in our setting
by augmenting CT (AF) with a set IC(Args) of integrity constraints that are specified
in the language L4

Args . The preferential 4-valued labeling semantics that is obtained in
this case is the following:

CT (CAF) = ⟨Lab4(Args),CT(AF) ∪ IC(Args), <min
both⟩,

where CAF = ⟨Args,Attack , IC⟩ is the corresponding constraint argumentation frame-
work.

3.5. Jakobovits and Vermeir’s Labeling

In an attempt to satisfactorily handle arguments that, directly or indirectly, contradict
themselves, Jakobovits and Vermeir [14] introduced another family of argumentation
semantics that are based on four-valued labelings. The latter are complete functions on
the set of arguments that satisfy the following conditions expressed by formulas in L4

Args :

∪
A∈Args

(
val(A, out) ∨ val(A, none

)
⊃

(∨
B∈A−

(
val(B, in) ∨ val(B, both)

)(
val(A, in) ∨ val(A, both

)
⊃

(∧
B∈A−

(
val(B, out) ∨ val(B, none)

)(
val(A, in) ∨ val(A, both

)
⊃

(∧
B∈A+

(
val(B, out) ∨ val(B, none)

)
 .

Complete labelings are labelings that in addition satisfy the following condition:∪
A∈Args

(
val(A, in) ∨ val(A, out) ∨ val(A, both)

)
.

Preference criteria are then developed for selecting the most ‘robust’ labelings among
the complete ones (see [14] for the details).

4Recall that Both(lab) = {A ∈ Args | lab(A) = both}.

9

4. An Example

Let us illustrate the preferential n-labeling semantics considered here, using the argu-
mentation framework AF in the figure below. As usual, the framework is represented by
a directed graph in which the arguments are the nodes and attacks are the arrows.

• The CMP-labelings of AF are the following:

A B C D E
lab1 undec undec undec undec undec
lab2 in out undec undec undec
lab3 out in out in out

• In the notation of the previous item, lab1 is the <min
in -preferred one, so it is the

(only) GRND-labeling of AF , while both lab2 and lab3 are<max
in -preferred, thus

they are the PREF-labelings of AF . The latter are also the ST -labelings and
the SST -labelings of AF .

• Denote by CAF1 the constraint argumentation framework that consists of AF
and the constraint IC1 = {val(B, in)}. Since only lab3 satisfies this constraint, it
is the only ST -labeling of CAF1.

• Let CAF2 be the constraint argumentation framework that consists of AF and the
integrity constraints IC2 = {val(B, in), val(E, in)}. This time there is no CMP-
labeling (nor ST -labeling) for CAF2. Yet, using fallback belief semantics, we
have that the (unique) FBB-labeling of CAF2 is lab(A) = lab(C) = lab(D) =

out, lab(B) = lab(E) = in. Note that only D is illegally labeled in lab. It can be
checked that there is no other labeling that satisfies the constraints and has a set
with a smaller or equal number of arguments that are illegally labeled.

• Since A and B attack each other, there are no conflict-free labelings for AF
(nor for any constraint argumentation framework that is based on AF) in which
both of these arguments are mutually accepted. Conflict-tolerant semantics sup-
ports this situation. Let CAF3 be the constraint argumentation framework that
consists of AF and the constraints IC3 = {acceptl(A), acceptl(B)}, where
accept(Ψ) = val(Ψ, in) ∨ val(Ψ, both). Using conflict-tolerant semantics, we
have that the (single) CT -labeling of CAF3 is lab(A) = lab(B) = both,
lab(C) = lab(E) = out, and lab(D) = in.

10

5. Implementation by ASP

Preferential n-labeling semantics is not only representable by formal languages, but in
many cases it is also programmable and computable. We demonstrate this by answer-
set programming (ASP), which has been shown very useful for reasoning with different
kinds of non-monotonic formalisms in general and argumentation semantics in particular
(see, e.g., [10,13,16]).5

Generally, in order to reason with a preferential n-labeling semantics SEM(AF) =
⟨Labn(Args),Cond(AF), <⟩ by answer-set programs, both the conditions in Cond(AF)
and the preferential order < must be computable. For this, the formers are usually rep-
resented by clause rules and the latter is expressed by a relation which is minimized. We
refer, e.g., to [13,16] for some discussions on how this can be done in case of semantics
like those considered in Section 3.1. ASP computations for the semantics discussed in
Sections 3.3 and 3.4 are illustrated in the encodings shown in Figures 1 and 2. In these
encodings we assume that the argumentation framework is represented by statements of
the form arg(X) for every argument X and att(X,Y) for every attack. Furthermore,
the constraints are assumed to be encoded by statements that assign labels to arguments.

Example 25 The answer-set program in Figure 1 computes fallback semantics.

1 <-- Framework encoding here -->
2 1 { in(X), out(X), undec(X) } 1 :- arg(X).
3 out(Y) :- att(X, Y), in(X).
4 out(X) :- att(X, Y), in(Y).
5 legally out(X) :- out(X), att(Y, X), in(Y).
6 legally undec(X) :- undec(X), att(Y, X), undec(Y).
7 illegally out(X) :- out(X), not legally out(X).
8 illegally undec(X) :- undec(X), not legally undec(X).
9 illegal(X) :- illegally out(X).
10 illegal(X) :- illegally undec(X).
11 <-- Constraint encoding here -->
12 # minimize { illegal(X) }.

Figure 1. Fallback semantics computation

Example 26 The program in Figure 2 computes conflict-tolerant semantics.

6. Conclusion

In this paper we introduced a general and uniform approach for representing a variety
of labeling semantics for (constrained) argumentation frameworks, and hinted on their
computation by answer-set programs. Future work involves a development of automated
tools for supporting a more comprehensive implementation of our setting and a compara-
tive study on the expressive power of different preferential n-labeling semantics, as well
as their suitability for properly handling practical problems.

5Other tools for computerized reasoning may be incorporated as well. See, e.g., [4,6].

11

1 <-- Framework encoding here -->
2 1 in(X), out(X), both(X), none(X) 1 :- arg(X).
3 :- in(X), not out(Y), att(Y,X).
4 :- out(X), not in(Y), not both(Y), att(Y, X).
5 :- out(X), not in(Y), not none(Y), att(Y, X).
6 :- both(X), in(Y), att(Y, X).
7 :- both(X), none(Y), att(Y, X).
8 :- both(X), not both(Y), att(Y, X).
9 :- none(X), in(Y), att(Y, X).
10 :- none(X), both(Y), att(Y, X).
11 <-- Constraint encoding here -->
12 # minimize [both(X)].

Figure 2. Conflict-tolerant semantics computation

References

[1] O. Arieli. Conflict-tolerant semantics for argumentation frameworks. In Proc. JELIA’12, LNCS 7519,
pages 28–40. Springer, 2012.

[2] O. Arieli. Towards constraints handling by conflict tolerance in abstract argumentation frameworks. In
Proc. FLAIRS’2013, pages 585–590. AAAI Press, 2013.

[3] O. Arieli. On the acceptance of loops in argumentation frameworks. Journal of Logic and Computation,
2014. doi:10.1093/logcom/exu009.

[4] O. Arieli and M. W. A. Caminada. A QBF-based formalization of abstract argumentation semantics.
Journal of Applied Logic, 11(2):229–252, 2013.

[5] P. Baroni, M. W. A. Caminada, and M. Giacomin. An introduction to argumentation semantics. The
Knowledge Engineering Review, 26(4):365–410, 2011.

[6] Ph Besnard, A. Hunter, and S. Woltran. Encoding deductive argumentation in quantified boolean for-
mulae. Artificial Intelligence., 173(15):1406–1423, 2009.

[7] R. Booth, S. Kaci, T. Rienstra, and L. van der Torre. Conditional acceptance functions. In Proc.
COMMA’12, volume 245 of Frontiers in Artificial Intelligence and Applications, pages 470–477. IOS
Press, 2012.

[8] R. Booth, S. Kaci, T. Rienstra, and L. van der Torre. A logical theory about dynamics in abstract
argumentation. In Proc. SUM’13, LNCS 8078, pages 148–161. Springer, 2013.

[9] M. W. A. Caminada and D. M. Gabbay. A logical account of formal argumentation. Studia Logica,
93(2-3):109–145, 2009. Special issue: New ideas in argumentation theory.

[10] G. Charwat, J. P. Wallner, and S. Woltran. Utilizing ASP for generating and visualizing argumentation
frameworks. CoRR, abs/1301.1388, 2013.

[11] S. Coste-Marquis, C. Devred, and P. Marquis. Constrained argumentation frameworks. In Proc. KR’06,
pages 112–122. AAAI Press, 2006.

[12] P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning,
logic programming and n-person games. Artificial Intelligence, 77:321–357, 1995.

[13] U. Egly, S. A. Gaggl, and S. Woltran. Answer-set programming encodings for argumentation frame-
works. Argument and Computation, 1(2):144–177, 2010.

[14] H. Jakobovits and D. Vermeir. Robust semantics for argumentation frameworks. Journal of Logic and
Computation, 9(2):215–261, 1999.

[15] I. Rahwan and G. R. Simari. Argumentation in Artificial Intelligence. Springer, 2009.
[16] F. Toni and M. Sergot. Argumentation and answer set programming. In M. Balduccini and T. Son,

editors, Logic Programming, Knowledge Representation, and Nonmonotonic Reasoning, LNCS 6565,
pages 164–180. Springer, 2011.

[17] B. Verheij. Two approaches to dialectical argumentation: admissible sets and argumentation stages. In
Proc. NAIC’96, pages 357–368, 1996.

12

