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.ilAbstra
t We introdu
e a de
larative semanti
sfor extended logi
 programs, and demonstrate itsusefulness for reasoning with un
ertainty. We showthat this is a robust formalism that over
omes somedrawba
ks of related �xpoint semanti
s for in
om-plete or in
onsistent logi
 programs.Keywords: logi
 programing, �xpoint semanti
s,para
onsisten
y, multiple-valued logi
s.1 Introdu
tionIt is well-known that the restri
ted synta
ti-
al stru
ture of standard logi
 programs1 limitstheir expressive power. This means, in parti
-ular, that it is not possible to properly rep-resent un
ertain information (e.g., 
ontradi
-tions or partial knowledge) by su
h programs.The standard way of dealing with this prob-lem (in the 
ontext of logi
 programing) is to
onsider extended logi
 programs, in whi
h twokinds of negation operators may appear in the
lause bodies, and one of them may also appearin the 
lause heads. It is usual to intuitivelyrefer to one of these operators (denoted hereby :) as representing expli
it negative infor-mation. The other negation operator (denotedhere by not) is intuitively related to a more im-pli
it negative data, and it is often asso
iatedwith a \negation-as-failure" (to prove or verifythe 
orresponding assertion on the basis of theavailable information).1I.e., set of 
lauses of the form p l1; : : : ; ln wherep is an atomi
 formula and l1; : : : ; ln is a 
onjun
tion ofliterals.

Example 1 Let p; q; r be atomi
 formulae,and let t be a propositional 
onstant that rep-resents true assertions. Consider the followingextended logi
 program:P = fq  t; p t; p r; :p not :qgIntuitively, P may be understood su
h thatboth p and q are known to be true, p is de-�ned in terms of r (where no information isavailable about r), and :p holds provided thatthe negation of q 
annot be shown. In this in-terpretation, P 
learly la
ks any informationabout r, and it 
ontains in
onsistent informa-tion regarding p. Thus, a plausible formal-ism for reasoning with P should not assumeanything about r, and (unlike 
lassi
al logi
)should not give P a trivial semanti
s. Thatis, despite the 
ontradi
tions in P, not everyformula may be inferred from it.2Example 1 shows that an adequate formal-ism for giving semanti
s to extended logi
 pro-grams must be para
onsistent [11℄, that is, in-
onsistent information should not entail ev-ery 
on
lusion.3 The next example shows thatthe underlying formalism should also be non-monotoni
 (i.e., 
apable of 
hanging the set of
on
lusions a

ording to new data).Example 2 Consider again the logi
 programP of Example 1, and suppose now that a newdatum arrives, whi
h indi
ates that if p holdsthen :q must hold as well. The new programis therefore P 0 = P [ f:q  pg. Now, the2For instan
e, it is quite obvious that none of :q, r,or :r should follow from P.3See [9℄ for a survey on para
onsistent systems.



information regarding p be
omes 
onsistent (asthe 
ondition for 
on
luding :p does not holdanymore), while the data regarding q turns tobe in
onsistent (and the data regarding r re-mains in
omplete). A non-monotoni
 formal-ism should adapt itself to the new situation. Inparti
ular, while the query :p should su

eedw.r.t. P, it should fail w.r.t. P 0.In this paper we introdu
e a para
onsis-tent and non-monotoni
 de
larative semanti
sfor extended logi
 programs. For this we useBelnap's four-valued stru
ture [6, 7℄, whi
h isparti
ularly useful for our purpose, sin
e inaddition to the \standard" 
lassi
al values italso 
ontains two other values for designatingthe two kinds of un
ertainty mentioned above,namely: partial information and 
ontradi
torydata. We show that the out
ome is a �xpointsemanti
s for extended logi
 programs that is
apable of pinpointing the in
omplete and in-
onsistent parts of the data, while the remain-ing information may be regarded as 
lassi
ally
onsistent. 42 Four-valued semanti
sAs we have noted above, our formalism is basedon four-valued semanti
s. Reasoning with fourtruth values may be tra
ed ba
k to the 1950's[8, 16℄. Here we use Belnap's four-valued al-gebrai
 stru
ture FOUR, introdu
ed in [6, 7℄.This stru
ture 
onsists of four elements: twoelements (t; f) that 
orrespond to the 
lassi
altruth values, an element (?) that intuitivelyrepresents la
k of information, and an element(>) that may intuitively be understood as rep-resenting 
ontradi
tions. These elements aresimultaneously arranged in two partial orders.In one of them (denoted here by �t), f is theminimal element, t is the maximal one, and?;> are two intermediate values that are in-
omparable. This partial order may be intu-itively understood as representing di�eren
esin the amount of truth of ea
h element. We de-note by ^ and _ the meet and join operations4Due to a la
k of spa
e proofs are omitted here. Fullproofs appear in [1℄.

w.r.t �t. In the other partial order (denotedhere by �k), ? is the minimal element, > isthe maximal one, and t; f are two intermediatevalues. This partial order intuitively representsdi�eren
es in the amount of knowledge (or in-formation) that ea
h element exhibits. We de-note by 
 and � the meet and join operationsw.r.t �k. A negation operator : on FOUR re-verses the �t-order and preserves the�k-order,thus :t=f , :f= t, :?=?, and :>=>.A double-Hasse diagram of FOUR is shownin Figure 1.6�k
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Figure 1: FOURThe various semanti
 notions are de�ned onFOUR as natural generalizations of similar
lassi
al ones: a valuation � is a fun
tion thatassigns a truth value in FOUR to ea
h atomi
formula. In what follows we shall sometimeswrite � = fp : x; q : yg instead of �(p) = x,�(q) = y. Any valuation is extended to 
om-plex formulae in the obvious way. The set ofthe four-valued valuations is denoted by V 4.The set of the designated truth values inFOUR (i.e., those elements in FOUR thatrepresent true assertions) is D=ft;>g. A val-uation � satis�es a formula  i� �( ) 2 D.A valuation that assigns a designated value toevery formula in a theory P is a model of P.The set of all the models of P is denoted bymod(P). The synta
ti
al form of the formulaein P is the following:



De�nition 3 In what follows p; q; r denoteatomi
 formulae, l; l1; l2; : : : denote literals (i.e.,atomi
 formulae that may be pre
eded by :),and e; e1; e2; : : : denote extended literals (i.e.literals that may be pre
eded by not). The
omplement of a literal l is denoted by l. An ex-tended 
lause is a formula l e1; : : : ; en wheren� 0. A (possibly in�nite) set P of extended
lauses is 
alled an extended logi
 program.5 A
lause (respe
tively, a set of 
lauses) withoutthe operator not is 
alled a general 
lause (re-spe
tively, a general logi
 program).Let P be a general logi
 program. Themeaning of 
onjun
tions (;) and negations (:)is determined, respe
tively, by the �t-meetand the negation operator on FOUR.6 This
orresponds to the natural extensions for themultiple-valued 
ase of the 2-valued interpre-tations of these 
onne
tives. However, thisshould not be the 
ase with impli
ation: asobserved in [5, 15℄, in the 
ontext of multiple-valued semanti
s the material impli
ation doesnot properly represent entailment. We there-fore 
onsider an alternative de�nition for theimpli
ation 
onne
tive (see [1, 2℄ for a justi�-
ation of this de�nition):De�nition 4 [2, 4℄ Let x; y2FOUR. De�ne:x y = x if y2D, and x y = t otherwise.We 
on
lude this se
tion by de�ning twouseful order relations on the models of a pro-gram P.De�nition 5 A valuation �1 2 mod(P) is k-smaller than another valuation �2 2 mod(P)if for every atomi
 formula p, �1(p) �k �2(p).�2mod(P) is a k-minimal model of P if thereis no other model of P that is k-smaller than�.De�nition 6 [2, 3℄ A valuation �1 2 mod(P)is more 
onsistent than another valuation �2 25Some formalisms also allow the appearan
e of im-pli
it negations in the 
lause heads of extended logi
programs; see e.g. [12℄ for a dis
ussion on possible waysto understand default negation in the 
lause heads.6We shall dis
uss the meaning of the negation asfailure operator not in what follows.

mod(P) if fp j �1(p) =>g � fp j �2(p) =>g.� 2 mod(P) is a most 
onsistent model of Pif there is no other model of P that is more
onsistent than �.3 Para
onsistent �xpoint se-manti
sWe are now ready to introdu
e our �xpointsemanti
s for logi
 programs. First, we treatgeneral logi
 programs (i.e., programs withoutnegation-as-failure), and then we 
onsider ex-tended logi
 programs.3.1 General logi
 programsDe�nition 7 Given a general logi
 programP, de�ne for every i�1 and every literal l,�P0 (l) = ?.valPi (l) = 8><>: t if there is a l Body 2 Ps.t. �Pi�1(Body) 2 D, 7? otherwise.�Pi (l) = valPi (l)� :valPi (l).For a limit ordinal � we de�nevalP� (l) = max�kfvalP� (l) j �<�g,�P� (l) = valP� (l)� :valP� (l).For a propositional 
onstant x2ft; f; 
; ug thatis respe
tively asso
iated with an element x2ft; f;>;?g in FOUR, we de�ne�Pi (x) = valPi (x) = x (i = 0; 1; : : :).Note that �Pi behaves as expe
ted w.r.t.negation: sin
e :(x � y) = :x � :y for ev-ery x; y 2 FOUR, we have that:�Pi (l) = :(valPi (l)� :valPi (l)) == :valPi (l)� valPi (l) = �Pi (l).Proposition 8 Let P be a general logi
 pro-gram. Then the sequen
e �P0 ; �P1 ; : : : is �k-monotoni
 in V4.7Note that �Pj (Body) = Vli2L(Body) �Pj (li), thus�Pj (Body) 2 D i� 8li2L(Body) �Pj (li)2D.



By Knaster-Tarski theorem [23℄, it followsfrom Proposition 8 that the sequen
e f�Pi g hasa �k-least �xpoint. Denote this �xpoint by �P .An indu
ed 
onsequen
e relation j�� may nowbe de�ned as follows: P j��  i� �P( ) 2 D(Thus, a formula  follows from a logi
 pro-gram P, if �P( ) is designated).Proposition 9 Let P be a general logi
 pro-gram. Then �P is the k-minimal four-valuedmodel of P. Moreover, it is at least as 
on-sistent as any other model of P, and the 
on-sequen
e relation j�� that is indu
ed by it isnon-monotoni
 and para
onsistent.Corollary 10 Let P be a general logi
 pro-gram. Then:a) �P is the k-least model of P,b) �P is a most 
onsistent model of P,
) �P is the k-minimal element among themost 
onsistent models of P.Corollary 10 implies that �P minimizes theamount of knowledge that is pre-supposed, i.e.it does not assume anything that is not re-ally known. The same 
orollary also showsthat �P is a most 
onsistent model of P. Assu
h, it minimizes the amount of in
onsistentbelief in the set of 
lauses. This is in a

or-dan
e with the intuition that while one has todeal with 
on
i
ts in a nontrivial way, 
ontra-di
tory data 
orresponds to inadequate infor-mation about the real world, and therefore itshould be minimized.83.2 Extended logi
 programsIn this se
tion we extend the �xpoint semanti
sfor general logi
 programs, 
onsidered in theprevious se
tion, to extended logi
 programs.So now, in addition to the expli
it negation :,the negation-as-failure operator (not) may alsoappear in the 
lauses bodies.One way of understanding not in the four-valued setting is the following: If we don'tknow anything about p, i.e. we 
annot proveeither p or :p, then we 
annot say anything8See also [3℄.

about not p as well. Otherwise, if p has a des-ignated value in the intended semanti
s (i.e., pis provable), then not p does not hold, and if pdoes not have a designated value (i.e., it is notprovable), then not p holds. It follows, then,that not t = f , not > = f , not f = t, andnot ? = ?.In what follows we use a transformation,similar to that of the well-founded semanti
s[25℄, for redu
ing extended logi
 programs togeneral logi
 programs. Then we use the for-malism of the previous se
tion for giving se-manti
s to the general logi
 programs that areobtained.De�nition 11 Let � be a four-valued valua-tion. The set S� that is asso
iated with � isthe smallest set of literals that satis�es the fol-lowing 
onditions: 9if �(l) = t then l 2 S� ,if �(l) = f then l2S� ,if �(l) = > then fl; lg � S� .De�nition 12 Let P be an extended programand let S be a set of literals. The redu
tion ofP w.r.t. S is the general logi
 program P #S,obtained from P as follows:1. Ea
h 
lause that has a 
ondition of theform not l, where l2S, is deleted from P.2. Every o

urren
e of not l, where l 2 S,is eliminated from the (bodies of the) re-maining 
lauses.103. Every o

urren
e of not l in the remain-ing 
lauses is repla
ed by the propositional
onstant u.Now we are ready to de�ne our �xpoint se-manti
s for extended logi
 programs. Re
allthat �P denotes the �xpoint semanti
s for ageneral logi
 program P.9Su
h sets are sometimes 
alled answer sets (for �).We shall not use this terminology here, sin
e in
onsis-tent answer sets 
ontain every literal, and this is notthe 
ase here.10If a 
lause body be
omes empty by this transfor-mation, it is treated as 
onsisting of the propositional
onstant t.



De�nition 13 A valuation �2 V 4 is an ade-quate solution for an extended logi
 programP, if it 
oin
ides with the �xpoint semanti
s ofthe general logi
 program obtained by redu
-ing P w.r.t. the set that is asso
iated with �.In other words, � is an adequate solution forP i� the following equation holds:� = �P#S�Note 14 If the only negation operator thatappears in P is :, then P is a general logi
program, and so its unique adequate solution is�P . It follows, in parti
ular, that the notion ofadequate solutions of extended logi
 programsis a generalization of the �xpoint semanti
s forgeneral logi
 programs.Proposition 15 Any adequate solution for Pis a model of P, and the 
onsequen
e rela-tion that is indu
ed by it is non-monotoni
 andpara
onsistent.As it is shown in Example 17 below, an ex-tended logi
 program may have more than oneadequate solution, and so one may use di�erentpreferen
e 
riteria for 
hoosing the best solu-tions among the adequate ones. In the 
aseof general logi
 programs we have 
hosen �k-minimization as the 
riterion for preferring the\best" model among the �xpoint valuations.This was justi�ed by the fa
t that general logi
programs may 
ontain 
ontradi
tory data, andso we want to minimize the redundant informa-tion as mu
h as possible. In the present 
ase werather use the opposite methodology: sin
e thenegation-as-failure operator 
orresponds to in-
omplete information, we are dealing here witha la
k of data, so this time we should try to re-stri
t the e�e
t of the negation-as-failure oper-ator only to those 
ases in whi
h indeed thereis not enough data available. It follows, there-fore, that now we should seek for a maximalknowledge (among the adequate solutions). 1111Informally, we use here a \min/max strategy":knowledge minimization of the 
ontradi
tory 
ompo-nents of the program, and knowledge maximization ofits in
omplete 
omponents.

De�nition 16 � is a most adequate model ofP if it is a �k-maximal adequate solution forP. 12Example 17 Below we 
onsider our seman-ti
s for some in
onsistent and/or in
ompletelogi
 programs.1. P = f:p not pg.Intuitively, P represents a 
losed word as-sumption (CWA, [22℄) regarding p: In theabsen
e of any eviden
e for p, assume that:p holds. P has two adequate solutions�1=fp :?g and �2=fp :fg. But �2>k�1,so �2 is the most adequate model of P.2. P = fp not p; q tg.The most adequate model here is fp :?; q :tg. This indeed seems to be the only rea-sonable interpretation in this 
ase, sin
eit distinguishes between the meaningfuldata in P (fq  tg), and the meaning-less data (fp not pg). Note also thatthe most adequate solution here 
oin
ideswith the well-founded model [25℄ (for stan-dard logi
 programs) of P. Two-valuedsemanti
s, su
h as Gelfond-Lifs
hitz sta-ble model semanti
s [14℄, do not provideany model for P.3. (Examples 1 and 2, revisited)P = fq t; p t; p r; :p not :qg.The most adequate model here is fp :>; q : t; r :?g. It re
e
ts our expe
tationthat no information about r is available,and sin
e :q does not follow from P, theknowledge about p is 
ontradi
tory. Notethat a

ording to the semanti
s given in[15, 19℄, P does not have any model, sin
eit is not 
lassi
ally 
onsistent.P 0 = P [ f:q pg.As noted in Example 2 above, the new in-formation that is added to P should 
ausea 
omplete revision in the reasoner's beliefabout p and q. The most adequate modelof P 0, fp : t; q :>; r :?g, indeed re
e
tsthe expe
ted result of su
h a revision.12Note that by Proposition 15, � is indeed a modelof P.



4 Con
luding remarksOne of the main drawba
ks of some related �x-point semanti
s (su
h as those introdu
ed in[15℄ and [19℄) is that they be
ome trivial inthe presen
e of 
ontradi
tions, and so these for-malisms are not para
onsistent. We do believethat sin
e in
onsistent knowledge 
an and maybe represented in extended logi
 programs, aplausible semanti
s for su
h programs shouldbe able to draw meaningful 
on
lusions (andreje
t others) despite the in
onsisten
y. The�xpoint semanti
s 
onsidered here has su
h 
a-pabilities: it pinpoints the in
onsistent and thein
omplete parts of the data, and regards therest of the information as 
lassi
ally 
onsistent.Another major di�eren
e between the se-manti
s introdu
ed here and some other se-manti
s for extended logi
 programs (e.g, [13,15, 17, 21℄) 
on
erns with the way negativedata is related to its positive 
ounterpart.While the formalisms of [13, 15, 17, 21℄ treatp and :p as two di�erent atomi
 formulae, wepreserve the relation between an atomi
 for-mula and its negated atom. To see the impor-tan
e of this, 
onsider the following program(also 
onsidered in [5, Example 3.3.6℄ and [19,Example 1℄):P = fp not q; q  not p; :p tgA

ording to the approa
hes that treat :p as(a strange way of writing) an atomi
 formula,the well-founded semanti
s would assign here tto :p, ? to p, and ? to q. So even though P is
lassi
ally 
onsistent, the distin
tion between pand :p 
auses a 
ounter-intuitive result here:sin
e there is no way to refute p without re-lating it to :p, it is not possible to 
on
ludeq. In 
ontrast, our semanti
s re
e
ts the intu-itive expe
tations in this 
ase, and the uniqueadequate solution for P is fp :f; q : tg.For another example, 
onsider the followinglogi
 program [19, Example 6℄:P = fr  not q; q  not p; p not p;:q tgIf :q is 
onsidered as an atomi
 formula, thisprogram has a single extended stable model,

in whi
h :q is true and all the other atomi
formulae (p; q; r) are unknown. This seems tobe a 
ounter-intuitive result, sin
e in this 
aseone expe
ts that r would follow from P. Theunique adequate solution for P (and so its mostadequate model) is fp :?; q :f; r : tg. A

ord-ing to this semanti
s r indeed follows from P,as expe
ted.13Finally, we note that our approa
h may bein
orporated with other te
hniques for improv-ing the way knowledge is represented in the un-derlying program. For instan
e, by using themethodology proposed by Pereira et al. in [20℄,it is possible to represent preferen
es amongdi�erent program rules by asso
iating a dif-ferent 'label' to ea
h program rule, and thenadding these labels as new 
onditions to thebodies of the rules. This enables an easy wayto represent a hierar
hy of rules in the lan-guage itself. For instan
e, the fa
t that un-der the 
onditions spe
i�ed in Body one shouldapply a rule labeled by l1 instead of a rule la-beled by l2, is en
oded by a preferen
e rule like:l2  Body; l1.The same paper also suggests a method forex
eption handling that may also be en
odedin our framework. For instan
e, a rule likefly(x) bird(x)that states that every bird 
an 
y, may be re-pla
ed by more 
autious rules, su
h asfly(x) bird(x); not abnormal bird(x),abnormal bird(x) bird(x);:fly(x),whi
h imply that 
ying ability is only a defaultproperty of birds.Referen
es[1℄ O.Arieli. Para
onsistent Semanti
s for Ex-tended Logi
 Programs. Te
hni
al Report No.CW299, Department of Computer S
ien
e,University of Leuven, 2000.13Indeed, our results in the last two examples arein a

ordan
e with those of [19℄, and follow the sameintuition.
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