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Abstract. We introduce a general framework that is based on distance
semantics and investigate the main properties of the entailment relations
that it induces. It is shown that such entailments are particularly useful
for non-monotonic reasoning and for drawing rational conclusions from
incomplete and inconsistent information. Some applications are consid-
ered in the context of belief revision, information integration systems,
and consistent query answering for possibly inconsistent databases.

1 Introduction

Common-sense reasoning is frequently based on the ability to make plausible
decisions among different options. This is particularly notable in the presence
of inconsistency or incompleteness, where the reasoner’s epistemic state may
vary among different alternatives. Distance semantics is a subtle way of han-
dling such situations, as it provides quantitative means for evaluating those
epistemic states and for drawing rational conclusions form a given theory. There
is no wonder, therefore, that distance semantics has played a prominent role in
different paradigms for non-monotonic information processing and consistency
maintenance, such as formalisms for modelling belief revision (e.g., [9, 15, 18,
25]), preference representation [24], database integration systems [2, 3, 11, 26],
and operators for merging constraint data-sources [21, 22].

The goal of this paper is to introduce similar distance considerations in the
context of commonsense reasoning in general, and paraconsistent logics in par-
ticular. That is, formalisms that tolerate inconsistency and do not become trivial
in the presence of contradictions.1 Classical logic, the most advocated formal-
ism for reasoning with mathematical theories, is not useful for this task as, for
instance, any conclusion classically follows from an inconsistent set of assump-
tions. Additionally, by its definition, classical logic is monotonic, while human
thinking is non-monotonic in nature (that is, the set of conclusions is not nec-
essarily non-decreasing in the size of the premises). The underlying theme here
is that human knowledge and thinking necessarily requires inconsistency, and
so conflicting data is unavoidable in practice, but it corresponds to inadequate
information about the real world, and therefore it should be minimized. As we

1 See [12] and [30]. Some collections of papers on this topic appear, e.g., in [7, 10].
Distance-based semantics for paraconsistent reasoning is also considered in [4].



show below, this intuition is nicely and easily expressed in terms of distance
semantics.

The rest of this paper is organized as follows: in the next section we introduce
the framework and the family of distance-based entailments that it induces.
Then, in Section 3 we consider some basic properties of these entailments and
in Section 4 we discuss their applications in relevant areas, such as operators
for belief revision and consistent query answering in database systems. Finally,
in Section 5 we briefly discuss some extensions to multiple-valued structures. In
Section 6 we conclude.

2 Distance-based semantics and entailments

The intuition behind our approach is very simple. Suppose, for instance, that
a certain set of assumptions Γ consists only of two facts p and q. In this case
it seems reasonable to use the classical entailment for inferring the formulas
in the transitive closure of Γ . If we learn now that ¬p also holds, classical logic
become useless, as everything classically follows from Γ ′ = Γ∪{¬p}. The decision
how to maintain the inconsistent fragment of Γ ′ depends on the underlying
formalism. For example, most of the belief revision operators prefer more recent
information thus conclude ¬p and exclude p in this case. Alternatively, many
merging operators that view Γ and ¬p as belief bases of two different sources
will retract both p and ¬p, and so forth. It is evident, however, that ¬q should
not follow from Γ ′. In our context this is captured by the fact that valuations
in which q holds are ‘closer’ to Γ ′ (thus are more plausible) than valuations in
which q is falsified. In what follows we formalize this idea.

In the sequel, unless otherwise stated, we shall consider finite theories (i.e.,
sets of premises, denoted by Γ ) in a propositional language L with a finite
set Atoms of atomic formulas. The space of the two-valued interpretations on
Atoms is denoted by Λ. The set of atomic formulas that occur in the formulas
of Γ is denoted Atoms(Γ ) and the set of models of Γ (that is, the two-valued
interpretations ν∈Λ such that ν(ψ) = t for every ψ ∈ Γ ) is denoted mod(Γ ).

Definition 1. A total function d : U×U → R
+ is called pseudo distance on

U if it is symmetric (∀u, v∈U d(u, v) = d(v, u)) and preserves identity (∀u, v∈
U d(u, v) = 0 iff u = v). A distance function on U is a pseudo distance on U
that satisfies the triangular inequality (∀u, v, w∈U d(u, v) ≤ d(u,w) + d(w, v)).

Example 1. The the following two functions are distances on Λ.

– The Hamming distance: dH(ν, µ) = |{p ∈ Atoms | ν(p) 6= µ(p)} |. 2

– The drastic distance: dU (ν, µ) = 0 if ν = µ and dU (ν, µ) = 1 otherwise.

2 I.e., dH(ν, µ) is the number of atoms p s.t. ν(p) 6= µ(p). This function is also known
as the Dalal distance [13].



Definition 2. A numeric aggregation function f is a total function that accepts
a multiset of real numbers and returns a real number. In addition, f is non-
decreasing in the values of its argument,3 f({x1, . . . , xn}) = 0 iff x1 = . . . =
xn = 0, and ∀x ∈ R f({x}) = x.

The aggregation functions in Definition 2 may be, e.g., a summation or the
average of the distances, the maximum value among those distances (which yields
a worst case analysis), a median value (for mean case analysis), and so forth.
Such functions are common, for instance, in data integration systems (see, e.g.,
Example 5 in Section 4.3).

Definition 3. Given a theory Γ = {ψ1, . . . , ψn}, a two-valued interpretation ν,
a pseudo-distance d and an aggregation function f , define:

– d(ν, ψi) = min{d(ν, µ) | µ ∈ mod(ψi)},

– δd,f(ν, Γ ) = f({d(ν, ψ1), . . . , d(ν, ψn)}).

The next definition captures the intuition behind distance semantics that the
relevant interpretations of a theory Γ are those that are δd,f -closest to Γ .

Definition 4. The most plausible valuations of Γ (with respect to a pseudo
distance d and an aggregation function f) are the valuations ν that belong to
the following set:

∆d,f(Γ ) =
{

ν ∈ Λ | ∀µ ∈ Λ δd,f(ν, Γ ) ≤ δd,f(µ, Γ )
}

.

Corresponding consequence relations are now defined as follows.

Definition 5. For a pseudo distance d and an aggregation function f , define
Γ |=d,f ψ if ∆d,f (Γ )⊆mod(ψ). That is, conclusions should follow from all of the
most plausible valuations of the premises.

Example 2. Consider Γ = {p, q, r, ¬p∨¬q, r∧s}. This theory is not consistent,
and so everything classically follows from it, including, e.g., ¬r, which seems
to be a very strange conclusion in this case.4 Using distance-based semantics,
this anomaly can be lifted. The following table lists the distances between the
relevant valuations and Γ according to several common metrics:

p q r s δdU,Σ δdH,Σ δdH,max

ν1 t t t t 1 1 1

ν2 t t t f 2 2 1

ν3 t t f t 3 3 1

ν4 t t f f 3 4 2
ν5 t f t t 1 1 1

ν6 t f t f 2 2 1

ν7 t f f t 3 3 1

ν8 t f f f 3 4 2

p q r s δdU,Σ δdH,Σ δdH,max

ν9 f t t t 1 1 1

ν10 f t t f 2 2 1

ν11 f t f t 3 3 1

ν12 f t f f 3 4 2
ν13 f f t t 2 2 1

ν14 f f t f 3 3 1

ν15 f f f t 4 4 1

ν16 f f f f 4 5 2

3 That is, the function value is non-decreasing when an element in the multiset is
replaced by a larger element.

4 Indeed, r is not part of the inconsistent fragment of Γ , therefore it is not sensible in
this case to conclude its complement.



Here, ∆dU,Σ(Γ ) = ∆dH,Σ(Γ ) = {ν1, ν5, ν9}, thus Γ |=dU,Σ r and Γ |=dH,Σ r, while
Γ 6|=dU,Σ ¬r and Γ 6|=dH,Σ ¬r. The same thing happens with s, as intuitively
expected. Note also that the atoms p, q that are involved in the inconsistency
are not deducible from Γ , nor their complements. The entailment |=dH,max is
more cautious; it does not allow to infer neither ¬r (as expected) nor r, but the
weaker conclusion r ∨ s is deducible.

3 Reasoning with |=d,f

The principle of uncertainty minimization by distance semantics, depicted in
Definition 5, is in fact a preference criterion among different interpretations
of the premises. In this respect, the formalisms that are defined here may be
considered as a certain kind of preferential logics [27, 28, 32], as only ‘preferred’
valuations (those that are ‘as close as possible’ to the set of premises) are taken
into consideration for drawing conclusions from the premises. When the set of
premises is classically consistent, its set of models is not empty, so it is natural to
choose these valuations as the preferred (i.e., most plausible) ones. The following
proposition shows that the models of a theory Γ are indeed closest to Γ .5

Proposition 1. Let Γ be a consistent theory. For every pseudo distance d and

aggregation function f , ∆d,f(Γ ) = mod(Γ ).

Corollary 1. Let |= be the standard entailment of classical logic. For every

classically consistent set of formulas Γ and formula ψ, Γ |= ψ iff Γ |=d,f ψ.

A characteristic property of distance-based entailments is that contradictions
do not have an explosive character:

Proposition 2. For every pseudo distance d and aggregation function f , |=d,f

is paraconsistent.

Corollary 1 and Proposition 2 imply the following desirable property of |=d,f :

Corollary 2. For every pseudo distance d and aggregation function f , |=d,f is

the same as the classical entailment with respect to consistent premises, and is

non-trivial otherwise.

For the next propositions we concentrate on unbiased distances:

Definition 6. A (pseudo) distance d is unbiased , if for every formula ψ and
every two-valued interpretations ν1, ν2, if ν1(p) = ν2(p) for every p ∈ Atoms(ψ),
then d(ν1, ψ) = d(ν2, ψ).

The last property assures that a distance between an interpretation and
a formula depends only on the relevant atoms (i.e., those that appear in the
formula), so it is not ‘biased’ by irrelevant atoms. Note, e.g., that the distances
in Example 1 are unbiased.

Next we show that entailments that are defined by unbiased distances, are
non-monotonic, and so conclusions may be retracted in light of new information.

5 Due to space limitations proofs will appear in an extended version of this paper.



Proposition 3. For every unbiased pseudo distance d and aggregation function

f , |=d,f is non-monotonic.

It is important to note that often, non-monotonicity goes along with ratio-
nality, that is: previously drawn conclusions do not have to be revised in light
of new information that has no influence on the existing set of premises. This is
shown in Proposition 4 below:

Definition 7. An aggregation function f is hereditary, if f({x1, . . . , xn}) <
f({y1, . . . , yn}) implies f({x1, . . . , xn, z1, . . . , zm})<f({y1, . . . , yn, z1, . . . , zm}).6

Proposition 4. Let d be an unbiased pseudo distance and f a hereditary ag-

gregation function. If Γ |=d,f ψ then Γ, φ |=d,f ψ for every formula φ such that

Atoms(Γ ∪ {ψ}) ∩ Atoms({φ}) = ∅.

Intuitively, the condition on φ in Proposition 4 guarantees that φ is ‘irrele-
vant’ for Γ and ψ. The intuitive meaning of Proposition 4 is, therefore, that the
reasoner does not have to retract ψ when learning that φ holds.7

We conclude this section by observing that in general, a distance-based en-
tailment of the form |=d,f does not satisfy any of the three properties that a
Tarskian consequence relation [33] should have. Indeed, let d be an unbiased
pseudo distance and f a hereditary aggregation function. Then

1. Example 2 shows that |=d,f is not reflexive,

2. Proposition 3 shows that |=d,f is not monotonic, and

3. the cut rule is violated as well: by Corollary 1, p |=d,f ¬p → q and ¬p,¬p→
q |=d,f q, but, as it is easily verified, p,¬p 6|=d,f q.

Yet, for unbiased pseudo distances and hereditary functions, |=d,f does satisfy the
weaker conditions stated in Definition 9 below, guaranteeing a ‘proper behaviour’
of nonmonotonic entailments in the context of inconsistent information.

Definition 8. Denote by Γ = Γ ′ ⊕ Γ ′′ that Γ can be partitioned to two sub-
theories Γ ′ and Γ ′′ (i.e., Γ = Γ ′ ∪ Γ ′′ and Atoms(Γ ′) ∩ Atoms(Γ ′′) = ∅).

Definition 9. A cautious consequence relation is a relation |∼ between sets of
formulae and formulae, that satisfies the following conditions:

cautious reflexivity: if Γ = Γ ′⊕Γ ′′ and Γ ′ is consistent, then Γ |∼ ψ for ψ ∈ Γ ′.

cautious monotonicity [16]: if Γ |∼ ψ and Γ |∼ φ, then Γ, ψ |∼ φ.

cautious cut [23]: if Γ |∼ ψ and Γ, ψ |∼ φ, then Γ |∼ φ.

Proposition 5. For an unbiased pseudo distance d and a monotonic hereditary

aggregation function f , |=d,f is a cautious consequence relation.

6 Note that hereditary, unlike monotonicity, is defined by strict inequalities. Thus,
for instance, the summation is hereditary (as distances are non-negative), while the
maximum function is not hereditary.

7 To see that the condition on f in Proposition 4 is indeed necessary, consider again the
theory Γ in Example 2 and let Γ ′ = {r, r ∧ s}. Then Γ ′ |=dH,max r but Γ 6|=dH,max r.



4 Some Applications

The general form of distance-based reasoning allows us to apply it in several
areas. Below we show this in the context of three basic operations in information
systems: repair (Section 4.1), revision (Section 4.2) and merging (Section 4.3).

4.1 Database Repair

Definition 10. A database DB is a pair (D, IC), where D (the database in-

stance) is a finite set of atoms, and IC (the integrity constraints) is a finite and
consistent set of formulae.

The meaning of D is determined by the conjunction of its facts, augmented
with Reiter’s closed world assumption [31], stating that each atomic formula that
does not appear in D is false: CWA(D) = {¬p | p /∈D}. A database DB = (D, IC)
is thus associated with the following theory: ΓDB = D ∪ CWA(D) ∪ IC.

A database (D, IC) is consistent if all the integrity constraints are satisfied
by the database instance, that is: D ∪ CWA(D) |= ψ for every ψ ∈ IC. When a
database is not consistent, at least one integrity constraint is violated, and so it is
usually required to ‘repair’ the database, i.e., restore its consistency. Clearly, the
repaired database instance should be consistent and at the same time as close as
possible to D. This can be described in our framework as follows: given a pseudo
distance d and an aggregation function f , we consider for every database DB
the following set of (most plausible) interpretations (cf. Definition 4, where Λ is
replaced by mod(IC)):

∆d,f (ΓDB) =
{

ν ∈ mod(IC) | ∀µ ∈ mod(IC)

δd,f

(

ν,D ∪ CWA(D)
)

≤ δd,f

(

µ,D ∪ CWA(D)
)}

.

Again, we denote DB |=d,f ψ if ∆d,f(ΓDB) ⊆ mod(ψ).

Now we can represent consistent query answering [2, 3] in our framework:

Definition 11. Let DB be a (possibly inconsistent) database, and let ψ be a
formula in L.

– If ∆d,f(ΓDB)∩mod(ψ) 6= ∅ (i.e., ψ is satisfied by some most plausible inter-
pretation of ΓDB), we say that ψ credulously follows from DB.

– If DB |=d,f ψ (i.e., ψ is satisfied by every most plausible interpretation of
ΓDB), then ψ conservatively follows from DB.

Example 3. Let D = {p, r}, and IC = {p → q}. Here, ΓDB = {p, r,¬q, p → q}.
When d is the drastic distance and f is the summation function, ∆d,f (ΓDB) has
two elements: ν1(p) = t, ν1(q) = t, ν1(r) = t and ν2(p) = f, ν2(q) = f, ν2(r) =
t. In terms of distance entailment, then, ΓDB |=dU ,Σ r, while ΓDB 6|=dU ,Σ p and
ΓDB 6|=dU ,Σ q. This can be justified by the fact that there are two ways to restore
the consistency of DB by minimal changes in the database instance: either q



is inserted to the database instance or p is deleted from it. This leave r the
only element that is always in the ‘repaired’ database instance. Indeed, there
is no reason to remove r from D, as this will not contribute to the consistency
restoration of DB.

It follows, then, that r conservatively (and so credulously) follows from DB,
while p and q credulously (but not conservatively) follow from DB. The same
results are obtained by the query answering formalisms considered e.g. in [2, 3,
6, 17].

4.2 Belief Revision

A belief revision theory describes how a belief state is obtained by the revision of
a belief state B by some new information, ψ. The new belief state, denoted B◦ψ,
is usually characterized by the ‘closest’ worlds to B in which ψ holds. Clearly,
this principle of minimal change is derived by distance considerations, so it is
not surprising that it can be expressed in our framework. Indeed, given a pseudo
distance d and an aggregation function f , the most plausible representations of
the new belief state may be defined as follows:

∆d,f(B ◦ ψ) =
{

ν ∈ mod(ψ) | ∀µ ∈ mod(ψ) δd,f

(

ν,B) ≤ δd,f

(

µ,B)}.

The revised conclusions of the reasoner may now be represented, again, by a
distance-based entailment:

B ◦ ψ |=d,f φ iff ∆d,f(B ◦ ψ) ⊆ mod(φ).

Example 4. The revision operator ∆dH,Σ is the same as the one considered
in [13]. It is well-known that this operator satisfies the AGM postulates [1].

4.3 Information Integration

Integration of autonomous data-sources under global integrity constraints (see [22])
is also applicable in our framework. Given n independent data-sources Γ1, . . . , Γn

and a consistent set of global integrity constraints IC, the sources should be
merged to a theory Γ that reflects the collective information of the local sources
in a coherent way (that is, Γ |= ψ for every ψ ∈ IC). Clearly, the union of the
distributed information might not preserve IC, and in such cases the intuitive
idea is to minimize the overall distance between Γ and Γi (1≤ i≤n). This can
be done by the following straightforward extension of Definition 4:

Definition 12. Let Γ = {Γ1, . . . , Γn} be a set of n finite theories in L, d a
pseudo-distance function, and f, g two aggregation functions. For an interpreta-
tion ν ∈Λ and a theory Γ , let δd,f(ν, Γ ) be the same as in Definition 3. Now,
define:

δd,f,g(ν, Γ ) = g
(

{δd,f(ν, Γ1), . . . , δd,f(ν, Γn)}
)

.

The most plausible valuations for the integration of the elements in Γ (with
respect to d, f and g) are the valuations ν that belong to the following set:

∆d,f,g(Γ , IC) =
{

ν ∈ mod(IC) | ∀µ ∈ mod(IC) δd,f,g(ν, Γ ) ≤ δd,f,g(µ, Γ )
}

.



Information integration is now definable as a direct extension of Definition 5:

Definition 13. Γ , IC |=d,f,gψ iff ∆d,f,g(Γ , IC) ⊆ mod(ψ).

Example 5. [22] Four flat co-owners discuss the construction of a swimming
pool (s), a tennis-court (t) and a private car-park (p). It is also known that
an investment in two or more items will increase the rent (r), otherwise the
rent will not be changed. The opinions of the owners are represented by the
following four data-sources: Γ1 = Γ2 = {s, t, p}, Γ3 = {¬s,¬t,¬p,¬r}, and
Γ4 = {t, p,¬r}.8 The impact on the rent may be represented by the integrity
constraint IC = {r ↔

(

(s∧ t)∨(s∧p)∨(t∧p)
)

}. Note that although the opinion
of owner 4 violates the integrity constraint (while the solution must preserve the
constraint), it is still taken into account.

Consider now two merging contexts in which d is the drastic distance and
f is the summation function. The difference is that according to one merging
context the summation of the distances to the source is minimized (i.e., g = Σ),
and in the other context minimization of maximal distances is used for choosing
optimal solutions (that is, g = max). The models of IC and their distances to
Γ = {Γ1, . . . , Γ4} are listed below.

s t p r δdU,Σ,Σ δdU,Σ,max

ν1 t t t t 5 4

ν2 t t f t 7 3

ν3 t f t t 7 3

ν4 t f f f 7 2

s t p r δdU,Σ,Σ δdU,Σ,max

ν5 f t t t 7 3

ν6 f t f f 6 2

ν7 f f t f 6 2

ν8 f f f f 8 3

The most plausible interpretations in each merging context are determined by
the minimal values in the two right-most columns. It follows that according to
the first context ν1 is the (unique) most-plausible interpretation for the merging,
thus: Γ, IC |=dU ,Σ,Σ s ∧ t ∧ p, and so the owners decide to build all the three
facilities (and the rent increases). In the other context we have three optimal
interpretations, as ∆dU,Σ,max(Γ , IC) = {ν4, ν6, ν7}. This implies that only one
out of the three facilities will be built, and so the rent will remain the same.

See [21, 22] for detailed discussions on distance operators for merging con-
straint belief-bases and some corresponding complexity results.

5 Multiple-valued semantics

Our framework can be easily extended to multiple-valued semantics. In this case,
the underlying semantics is given by multiple-valued structures, which are triples
of the form S = 〈V ,O,D〉, where V is the set of the truth values, O is a set of
operations on V that correspond to the connectives in the language L, and D is a
nonempty proper subset of V , representing the designated values of V , i.e., those

8 Here, q∈Γi denotes that owner i supports q and ¬q∈Γi denotes that i is against q.



that correspond to true assertions. In this setting, V-interpretations are functions
from the atomic formulas to V , and their extensions to complex formulas are as
usual. A V-valuation ν is an S-model of Γ if ν(ψ) ∈ D for every ψ ∈ Γ . The set
of S-models of Γ is denoted by modS(Γ ).

The notions of basic S-entailments and distance-based entailments are the
obvious generalizations to the multiple-valued case of the corresponding defini-
tions for the two-valued case: Γ |=S ψ iff every S-model of Γ is an S-model of
ψ. For a pseudo distance function d and an aggregation function f , Γ |=S

d,f ψ

iff ∆d,f (Γ ) ⊆ modS(ψ). The only difference from the two-valued case is that
now ∆d,f (Γ ) is defined with respect to V-valued interpretations rather than
two-valued ones.

Multiple-valued settings, such as the three-valued frameworks of Kleene [20]
and Priest [29], Belnap’s four-valued structure [8], (bi)lattice-valued logics [5],
fuzzy logics [19], and so forth, open the door to the introduction of many new
distance functions. For instance, in the three-valued case, where a middle element
m is added to the classical values t and f, a natural generalization of the Hamming
distance dH (Definition 1) may be defined by associating the values 1,1

2
, and 0

with t, m, and f (respectively), and letting dH
3 (ν, µ) =

∑

p∈Atoms
|ν(p) − µ(p)|.

This function is used, e.g., in [14] for defining (three-valued) integration systems.

6 Conclusion

The principle of minimal change is a primary motif in commonsense reasoning,
and it is often implicitly derived by distance considerations. In this paper we
introduced a simple and natural framework for representing this principle in
an explicit way, and explored the main logical properties of the corresponding
consequence relations. It is shown that such entailments sustain different aspects
of human thinking, such as non-monotonicity, paraconsistency, and rationality.
A number of applications are also considered.
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22. S. Konieczny and R. Pino Pérez. Merging information under constraints: a logical

framework. Logic and Computation, 12(5):773–808, 2002.
23. S. Kraus, D. Lehmann, and M. Magidor. Nonmonotonic reasoning, preferential

models and cumulative logics. Artificial Intelligence, 44(1–2):167–207, 1990.
24. C. Lafage and J. Lang. Propositional distances and preference representation. In

Proc. ECSQARU-2001, LNAI 2143, pages 48–59. Springer, 2001.
25. D. Lehmann, M. Magidor, and K. Schlechta. Distance semantics for belief revision.

Journal of Symbolic Logic, 66(1):295–317, 2001.
26. J. Lin and A. O. Mendelzon. Knowledge base merging by majority. In Dynamic

Worlds: From the Frame Problem to Knowledge Management. Kluwer, 1999.
27. D. Makinson. General patterns in nonmonotonic reasoning. In D. Gabbay, C. Hog-

ger, and J. Robinson, editors, Handbook of Logic in Artificial Intelligence and Logic

Programming, volume 3, pages 35–110. 1994.
28. J. McCarthy. Circumscription – A form of non monotonic reasoning. Artificial

Intelligence, 13(1–2):27–39, 1980.
29. G. Priest. Reasoning about truth. Artificial Intelligence, 39:231–244, 1989.
30. G. Priest. Paraconsistent logic. In D. Gabbay and F. Guenthner, editors, Handbook

of Philosophical Logic, volume 6, pages 287–393. Kluwer, 2002.
31. R. Reiter. On closed world databases. In Logic and Databases, pages 55–76. 1978.
32. Y. Shoham. Reasoning About Change. MIT Press, 1988.
33. A. Tarski. Introduction to Logic. Oxford University Press, 1941.


