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Abstract In many scenarios, a database instance violates a given set of in-
tegrity constraints. In such cases, it is often required to repair the database,
that is, to restore its consistency. A primary motif behind the repairing
approaches is the principle of minimal change, which is the aspiration to
keep the recovered data as faithful as possible to the original (inconsistent)
database. In this paper, we represent this qualitative principle quantitatively,
in terms of distance functions and some underlying metrics, and so introduce
a general framework for repairing inconsistent databases by distance-based
considerations. The uniform way of representing repairs and their semantics
clarifies the essence behind several approaches to consistency restoration in
database systems, helps to compare the underlying formalisms, and relates
them to existing methods of defining belief revision operators, merging data
sets, and integrating information systems.

1 Introduction

Inconsistency of constraint data-sources is a widespread phenomenon. There
are many reasons for that, among which are human errors in information
handling or understanding, conflicts between the actual data and external in-
tegrity constraints, integration of contradicting data-sources, new constraints
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that are enforced on pre-existing data, and so forth. In such cases it is usually
required to ‘repair’ the information, that is, restore its consistency. This task
is usually closely related to the principle of minimal change, which is the
aspiration to reach consistency by a minimal amount of modifications in the
‘spoiled’ data. To illustrate this, consider the following simple example:

Example 1 Consider a database with two data facts D = {p, r}, and an
integrity constraint IC = p → q. Under the closed world assumption [42,
43], stating that each atomic formula that does not appear in D is false,
this database is clearly inconsistent, as IC is violated. Two ways of restoring
consistency in this case are by inserting q to D or deleting p from D. Moreover,
assuming that integrity constraints cannot be altered, these are the most
compact ways of repairing this database, in the sense that any other solution
requires a larger amount of changes (i.e., insertions or retractions) in D.

Consistency restoration by minimal change may be traced back to [16]
and [49]. In the context of database systems, this notion was introduced
by [1], and then considered by many others, including [2,4,5,9,10,12,18,26,
27,35,37,46,47]. Some implementations of these methods are reported in [4,
23,25,33]. Despite their syntactic and semantic differences, as well as the dif-
ferent notions of repair used by different consistency maintenance formalisms,
the rationality behind all these methods is of keeping the ‘recovered’ data ‘as
faithful as possible’ to the original (inconsistent) data.

A common way of deriving minimal change is by distance considerations.
This approach is very common, for instance, in belief revision [19,28,31,
39,44], where the belief states of the reasoner before and after the revision
are kept as close to each other as possible. Closeness is specified in terms
of distance semantics, using appropriate metrics. In this paper, following
the same idea, we identify distance-based semantics at the heart of several
repairing methods, and introduce a corresponding framework for data repair.
In this respect, we follow Bertossi’s remark in [7], that

Identifying general properties of the reasonable repair semantics [. . .]
is a very important research direction. Unifying principles seem to
be necessary at this stage in order to have a better understanding of
consistent query answering.

Although there are several approaches to database repair that do not involve
distance considerations (most notably, those that are based on set inclusion,
e.g. [1,14,26,47]), our framework does capture all the known quantitative
methods for database repair, including those that are based on minimal car-
dinality and similarity measures induced by tableaux homomorphism. More-
over, as the same distance-based considerations are also the nucleus of many
approaches for belief revision and data integration, this work is not restricted
to databases only, and can be easily generalized to other paradigms in which
reasoning with inconsistency is involved.

The rest of this paper, which is a revised and extended version of the
paper in [3], is organized as follows: In Section 2 we give a general represen-
tation of consistency restoration in database systems as a distance minimiza-
tion problem. In Section 3 we consider different distance-based approaches to
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database repairing, and incorporate the notion of optimal matching (between
the spoiled and the recovered data) for generalizing some existing repairing
methods and defining several new ones. In Section 4 we show how our frame-
work can be used also for merging independent data-sources. In Section 5
we consider some related works on database repairing and in Section 6 we
conclude.

2 Database Repair as a Distance Minimization Problem

2.1 Motivation

We begin with an informal description of the problem at hand and how to
handle it. For this, consider the following set of ground facts:

{

employee(Alice), salary(Alice, 1000), director(Alice)
employee(Bob), salary(Bob, 1000),

}

,

and two integrity constraints: One says that every employee has a salary,
and the other constraint specifies that a director should earn more money
than any other employee. Now, applying here the closed world assumption,
we conclude that Bob is not a director. On the other hand, Bob earns the
same amount of money as Alice, who is a director, so the second integrity
constraint is violated.

One way of restoring the database consistency is by changing Alice’s
salary. A compact way of doing so, assuming that the new salary is unknown,
is by updating the set of facts above, so that salary(Alice, x) will replace
salary(Alice, 1000). Implicitly, the variable of this update is existentially
quantified, as it represents a particular but unknown constant in the language
of the problem domain. Note, however, that updates in which the value of x
is less than or equal to 1000 are not useful, as they still violate one of the
integrity constraints. To properly repair the database in this case one has
to impose the restriction that x> 1000. This characterization of one way of
restoring the database consistency is called a potential repair of the database.

Yet, not every potential repair necessarily describes an optimal way of
repairing the database. For instance, another way of repairing the database
above is by increasing the salary of Alice and decreasing the salary of Bob at
the same time. Clearly, this potential repair is inferior to the previous one, as
it requires additional modifications. Preference among the potential repairs
is performed by a distance semantics that captures the intuition that the
repaired database should be ‘as close as possible’ to the original, inconsistent
database.

In what follows, we formalize this process and consider some useful metrics
for making plausible choices among the potential repairs of a given database.

2.2 Repairing inconsistent databases

In the sequel, we denote by L a first-order language consisting of a finite set P
of predicate symbols and a (possibly infinite) set C of constants. P includes
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the constants t and f, the binary predicates = and 6=, and the arithmetic
predicates <, >, ≤ and ≥. The atomic formulas in L are constructed from
the predicates in P over tuples of variables and constants from C. We denote
this set by Atoms(L), or just Atoms. A formula without variables is called
ground. A ground atomic formula is sometimes called a fact. We denote the
set of ground atoms by GAtoms(L), or just GAtoms. Compound formulas in L
are constructed from the atomic formulas using the standard recursive rules
for ¬,∧,∨,∀ and ∃. An L-structure (interpretation) ν consists of a domain
Dom(ν), a domain element for every constant in C, and an n-ary relation on
Dom(ν) for every n-ary predicate symbol in P. The logical symbols t and f are
interpreted, respectively, by true and false; = and 6= by the identity relation
and its negation; and the arithmetic predicates <, >, ≤ and ≥ by their
standard arithmetic meaning. Herbrand interpretations for L are a particular
kind of L-structures, where the domain is equal to C and the interpretation
of the elements of C is given by the identity function. Herbrand models of a
set S of formulas in L are Herbrand interpretations for L that satisfy each
formula in S.

Definition 1 (databases) A database DB is a pair (D, IC), where D is
a finite set of ground atomic facts, and IC is a finite and consistent set of
formulas in L.

The set D in the definition above is called the database instance of DB.
Its meaning is determined by the least Herbrand model of the conjunction
of the facts in D. The formulas in IC are called integrity constraints. These
formulas specify conditions that should be satisfied by the (least Herbrand
model of the) database instance. We denote this by D |= IC. The set C(DB)
of the constants that appear in D and in IC is called the active domain of
DB. Note that as both D and IC are finite sets, C(DB) is a finite subset of
C. In what follows we denote by Atoms(DB) the atomic formulas that are
constructed from the predicates in P over tuples of variables and constants
from C(DB). The subset of ground atoms is denoted GAtoms(DB).

Definition 2 (consistency) A database (D, IC) is consistent if D |= IC.

When a database is not consistent, one or more integrity constraints are
violated, and so it is usually required to ‘repair’ the database, i.e., restore its
consistency. We require that the repaired information would be ‘as close as
possible’ to the original one. Implicitly, then, this criterion involves distance-
based considerations and a corresponding metric. Below, we recall the rele-
vant definition.

Definition 3 (distance functions) A total function d : U ×U → R
+ is

called a pseudo distance on U if it is symmetric (∀u, v∈U d(u, v) = d(v, u))
and preserves identity (∀u, v∈U d(u, v) = 0 iff u = v). A distance function on
U is a pseudo distance on U that satisfies the triangular inequality (∀u, v, w∈
U d(u, v) ≤ d(u,w) + d(w, v)).

As we have noted in Section 2.1, a description of database repair can
include non-ground atoms. The intuitive meaning of variables in a tuple is a



Distance Semantics for Database Repair 5

substitution of faulty values in the original tuple by correct but unknown new
values. The set of valid substitutions is represented by constraints. This allows
us to modify only erroneous fragments of tuples instead of whole tuples. A
constraint is defined as follows:

Definition 4 (constraints) A constraint C (for a database DB) is a finite
set of formulas of the form x Θ c or x Θ y, where x, y are variables, c is a
constant in C(DB), and Θ is a (‘built-in’) predicate in {<,>,=, 6=,≤,≥} such
that for some set of values c̄ of C, all constraint atoms in C[c̄/x̄] are satisfied.
We denote by

∧

C the conjunction of constraints in C.1

Definition 5 (updates) Let d be a pseudo distance function on 2GAtoms. An
update of a database DB = (D, IC) (w.r.t. d) is a pair 〈U [x], C[x]〉, where U [x]
is a subset of Atoms(DB) containing the variables x, and C[x] is a consistent
set of constraints over the variables x, such that for every solution c of C[x],
the distance between the original database instance D and U [c/x] is the same.

In what follows, when we refer to the distance d(D,U [x]) between an
original database D and an update component U [x] of an update 〈U [x], C[x]〉,
we mean d(D,U [c/x]), where c is a solution of C[x].

An update represents a number of possible ways to modify a database
(all of which are equally distant from the original database instance). A
particular (ground) update is obtained by substituting the variables x in
U [x] by a solution of C[x] (that is, a substitution for x that makes

∧

C true).

Note 1 Assuming that there is a global upper bound on the number of vari-
ables that may appear in an update, the number of possible updates is finite.
This is so, since the number of atomic formulas in Atoms(DB) is finite (mod-
ulo equivalence), and as the number of variables in x is globally bounded,
both the set of the possible U [x], and the number of the possible constraints
C[x] that can be imposed on the same U [x], are finite.

Note 2 As usual, there is a trade-off between the expressivity of database up-
dates and their computability. Thus, while one may consider more expressive
forms of representing constraints on updates in a more general or compact
way, this may increase the computational complexity. For instance, by intro-
ducing disjunctions and representing constraints in, e.g., conjunctive normal
form, the updates

{

〈

{P (a, c), P (a, d)}, ∅
〉

,
〈

{P (a, c), P (b, c)}, ∅
〉

,
〈

{P (a, d), P (b, c)}, ∅
〉

}

may be also represented, e.g., in either of the following ways, in which dis-
junctions are used for expressing constraints:

{

〈

{P (a, x), P (b, c)}, {x = c ∨ x = d}
〉

,
〈

{P (a, c), P (a, d)}, ∅
〉

}

,

{

〈

{P (x, c), P (a, d)}, {x = a ∨ x = b}
〉

,
〈

{P (a, c), P (b, c)}, ∅
〉

}

,

1 Note that
∧

∅ = t.
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{

〈

{P (a, x), P (b, c)}, {x = c∨x = d}
〉

,
〈

{P (x, c), P (a, d)}, {x = a∨x = b}
〉

}

.

Thus, superfluous (i.e., equivalent) representations of the same update should
be identified and ruled out to avoid duplicate database repairs (see below).

Note that the notion of an update is only loosely related to the specific
database DB = (D, IC) at hand. A more robust link will be obtained through
the following two definitions:

– Definition 6 (potential repairs) makes sure that the relevant updates will
be only those in which IC is satisfiable in every solution, and

– Definition 7 (pre-repairs) assures that the potential repairs will be ‘as
close as possible’ (in terms of distance functions) to D.

Definition 6 (potential repairs) A potential repair of DB = (D, IC) is
an update R = 〈U [x], C[x]〉 of DB such that for every solution c of C[x], it
holds that U [c/x] |= IC (in the sense of Definition 2). The set of all the
potential repairs of DB is denoted Potential(DB).

Example 2 Consider again the database DB of Section 2.1. Using abbrevia-
tions with the obvious meanings, the following sets are examples of potential
repairs for DB:

R1 = 〈{emp(A), emp(B), sal(A, 1000), sal(B, 1000)}, ∅〉,

R2 = 〈{emp(A), emp(B), dir(A), dir(B), sal(A, 1000), sal(B, 1000)}, ∅〉,

R3 = 〈{emp(A), emp(B), dir(A), sal(A, 1100), sal(B, 1000)}, ∅〉,

R4 = 〈{emp(A), emp(B), dir(A), sal(A, x), sal(B, 1000)}, {x>1000}〉,

R5 = 〈{emp(A), emp(B), dir(A), sal(A, 1000), sal(B, x)}, {x<1000}〉.

These potential repairs represent different kinds of updates: R1 is obtained
by retracting the fact that Alice is a director, R2 is obtained by inserting
the fact that Bob is also a director, and R3 – R5 are obtained by modifying
particular parts of tuples (namely, the salaries of Alice and Bob).

For selecting the best potential repairs we require that the repaired in-
formation would be as close as possible to the original one. Thus, given a
distance function d on 2GAtoms, the pre-repairs of a database DB = (D, IC)
are the potential repairs of DB that are d-closest to D:

Definition 7 (pre-repairs) A potential repair 〈U , C〉 of a database DB =
(D, IC) is a pre-repair of DB with respect to a pseudo distance d on 2GAtoms,
if for every 〈U ′, C′〉 ∈ Potential(DB) it holds that d(U ,D) ≤ d(U ′,D). The set
of all pre-repairs of DB with respect to d is denoted by Repd(DB).

Pre-repairs describe plausible ways of repairing a given database. Yet,
some of the pre-repairs provide a more faithful representation of a repair of
the database. To see this, consider the following two potential repairs given
in Example 2 for the database in Section 2.1:

R3 = 〈{emp(A), emp(B), dir(A), sal(A, 1100), sal(B, 1000)}, ∅〉,

R4 = 〈{emp(A), emp(B), dir(A), sal(A, x), sal(B, 1000)}, {x>1000}〉.
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Suppose now that both U3 and U4 (the update components of R3 and R4,
respectively) are equally distant from D (this is the case, e.g., when the
underlying distance function is either d1

Σ or d2
Σ , considered in Section 3.4 be-

low). Yet, it is obvious that R4 should be preferred over R3, since it does not
guess the exact salary of Alice, but instead only states that this value should
be bigger than 1000. To make this distinction among pre-repairs explicit, as
well as to considerably reduce the amount of database repairs that should
be taken into consideration, we make further preferences among pre-repairs
according to Definition 9.

Definition 8 (models of an update) The models of an update U =
〈U [x], C[x]〉 is a set mod(U) of the least Herbrand models of the database
instances U [c/x] for each solution c of C[x].

Definition 9 (redundancy) An update U = 〈U , C〉 is redundant with re-
spect to a set S of updates, if there is an update U′ = 〈U ′, C′〉 in S such
that mod(U) ⊆ mod(U′). A set S of updates is non-redundant if each of its
elements is not redundant with respect to the rest of the set.

Definition 10 (repairs and repairing sets) A repairing set of a database
DB with respect to a pseudo distance d is a subset ∆d(DB) of Repd(DB) (the
pre-repairs of DB) such that:

– ∆d(DB) is non-redundant, and

– for every R ∈ Repd(DB) \ ∆d(DB) there is an R′ ∈ ∆d(DB), such that
mod(R) ⊆ mod(R′).

An update is called a repair of DB if it is an element of some repairing set
∆d(DB).

Example 3 Later in this paper (see Section 3.4), we shall consider the pseudo
distances d1

Σ and d2
Σ on 2GAtoms, according to which the potential repairs

R3 −R5 in Example 2 are minimally distant from the database instance of
DB. It will follow, then, that these potential repairs are also pre-repairs of
DB. Yet, only R4 and R5 are repairs of DB, while R3 is not a repair, since
the latter is strictly redundant with respect to {R4}.

Given a database DB and a distance function d, its repairing set is not nec-
essarily unique, since different sets may have interchangeable elements (that
is, elements that may replace each other in the sets). For instance, a pre-
repair of the form 〈{P (x)}, {x = c}〉 for some constant c, is interchangeable
with 〈{P (c)}, ∅〉. Note, however, that interchangeable pre-repairs are equiv-
alent, and so they have the same models. Moreover, modulo interchangeable
pre-repairs, the repairing set ∆d(DB) of DB is uniquely determined.

Proposition 1 Let ∆1
d(DB) and ∆2

d(DB) be two repairing sets of the same
database (with respect to the same distance). Then there is a one-to-one
correspondence between repairs R1∈∆1

d(DB) and repairs R2∈∆2
d(DB) such

that R1 and R2 have the same models.
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Proof For a repair R1 ∈ ∆1
d(DB), there is a repair R2 ∈ ∆2

d(DB) such that
mod(R1) ⊆ mod(R2), and, in turn, there is a repair R3∈∆1

d(DB) such that
mod(R2) ⊆ mod(R3). It follows immediately that mod(R1) ⊆ mod(R2) ⊆
mod(R3), and hence R1 = R3 and mod(R1) = mod(R2). Since a repairing
set does not contain two repairs with the same models, this must be a one-
to-one correspondence. �

This leads us to the following notions of query answering:

Definition 11 (query answering) A query Q(x1, . . . , xn) is a first-order
formula with free variables x1, . . . , xn. Denote by Q[c1/x1, . . . , cn/xn] the
simultaneous substitution in Q of the variables xi by the constants ci (i =
1, . . . , n), respectively. Now, let d be a pseudo distance on 2GAtoms and let
Q(x1, . . . , xn) be a query on DB.

– A tuple 〈c1, . . . , cn〉 is a credulous answer for Q, if there exists an element
R ∈ ∆d(DB) such that R |= Q[c1/x1, . . . , cn/xn] (i.e., each model of R
satisfies Q[c1/x1, . . . , cn/xn]).

– A tuple 〈c1, . . . , cn〉 is a conservative answer (alternatively, a consistent
query answer) for Q, if R |= Q[c1/x1, . . . , cn/xn] for every R ∈ ∆d(DB).

Example 4 Consider again Example 1. Here there are eight possible up-
dates for D, six of which are potential repairs: Potential(DB) = {{}, {q},
{r}, {p, q}, {q, r}, {p, q, r}}. Note that we identify (potential and pre-) re-
pairs with their update components, as in the propositional case the con-
straint components are always empty. For choosing the repairs (which are
also the pre-repairs in this case), let’s have the cardinality of the sym-
metric difference between sets as the distance function d at hand (that is,
d(A,B) = |A \ B| + |B \ A|). This leaves us with two (optimal) repairs:
∆d(DB) = Repd(DB) = {{p, q, r}, {r}}. It follows that, in this case, r is the
only atomic formula that conservatively follows from DB.

3 Distance Semantics for Database Repair

3.1 Distance functions

The choice of the distance function (and so the metric at hand) plays a
crucial role in the repairing process. There are many possibilities to measure
distances between the spoiled database instance and its potential repairs.
Below, we recall two common definitions of such distances. An exposition of
distance functions for simple expressions can be found in [40, Section 3.5].

Example 5 Let d be a distance function on a finite set S. For A,B ∈ 2S ,
define:

– The Hausdorff distance [20]:

d(A,B) = max
(

max
a∈A

min
b∈B

d(a, b), max
b∈B

min
a∈A

d(a, b)
)

.
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– Eiter and Mannila’s distance [22]:

d(A,B) =
1

2

(

∑

a∈A

min
b∈B

d(a, b) +
∑

b∈B

min
a∈A

d(a, b)
)

.

It is known that the Hausdorff distance is a distance function on 2S and
Eiter–Mannila’s distance is a pseudo distance on 2S .

In what follows, we consider pseudo distances that are defined by match-
ing functions (between the elements of the original database instance and the
elements of a potential repair) and by aggregation functions that evaluate the
quality of those matchings.

Definition 12 (aggregation functions) Let f be a total function that
accepts a multiset of real numbers and returns a real number.

– f is called a numeric aggregation function if it is non-decreasing in the
values of its argument,2 f({x1, . . . , xn}) = 0 if x1 = . . . xn = 0, and
∀x ∈ R f({x}) = x.

– A numeric aggregation function f such that f({x1, . . . , xn}) = 0 only if
x1 = . . . xn = 0 is called strict .

Aggregation functions are, e.g., a summation or the average of the dis-
tances, the maximum value among those distances (which yields a worst case
analysis), a median value (for mean case analysis), and so forth. Such func-
tions are common in data integration systems (see also Section 4 below).
Note, also, that with the exception of the median value, all the functions
mentioned above are strict.

Definition 13 (optimal matchings and df) Let A,B ⊆ GAtoms, d a
pseudo distance on GAtoms, and f a numeric aggregation function.

a) A matching m between A and B is a subset of A×B such that for every
(a1, b1), (a2, b2) ∈ m, a1 = a2 iff b1 = b2.

b) For a matching m between A and B, let m(A) = {b | ∃(a, b) ∈ m} and
m−1(B) = {a | ∃(a, b) ∈ m}. Denote:

df (m,A,B) = f

(

{

d(a, b) | (a, b) ∈ m
}

⋃

{

d(a,B) | a ∈ A \ m−1(B)
}

⋃

{

d(b, A) | b ∈ B \ m(A)
}

)

,

where, for each element e and a set S, we let d(e,S) = 1
2 max{d(p, q) |

p, q ∈ GAtoms}. 3

2 That is, the function value is non-decreasing when an element in the multiset
is replaced by a larger element.

3 Alternatively, one could define, for a nonempty set S, d(e, S) = 1

2
max{d(e, s) |

s ∈ S}. We shall use the former definition, which is independent of x and S, as
a uniform handling of the unmatched elements will simplify the computations in
what follows.
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That is, df is obtained by applying f on the distances among matched
elements and on the distances among non-matched elements and the other
set.

c) A matching m between sets A and B is called {d, f}-optimal if for every
matching m′ between A and B, df (m,A,B) ≤ df (m′, A,B).

d) Denote df (A,B) = df (m,A,B), where m is a {d, f}-optimal matching
between A and B.4

Example 6 Consider again the database of Example 1, together with the
summation function f and the drastic distance du, defined as follows:

du(x, y) = 0 if x = y and du(x, y) = 1 otherwise.

It is easy to verify that du is indeed a distance function on GAtoms. Now,
as noted in Example 4, both P = {p, q, r} and P ′ = {p, q} are (among
others) potential repairs of D = {p, r}. An optimal matching between D and
P relates p and r in D to the same atoms in P and leaves q unmatched.
Thus, du

f (D,P) = 0 + 0 + 1
2 = 1

2 . Similarly, du
f (D,P ′) = 1, as an optimal

matching between D and P ′ either leaves q and r unmatched (in which case
the distance is 0 + 1

2 + 1
2 ) or connects both of them (and so the distance is

equal to du(p, p) + du(r, q) = 0 + 1). The fact that du
f (D,P) < du

f (D,P ′) is
explained by the need to make only one modification for repairing D by P,
while P ′ requires two modifications in D (see also Example 7 below).

Proposition 2 Let d be a pseudo distance on GAtoms and f a strict ag-
gregation function. Then the function df introduced in Definition 13(d) is a
pseudo distance on 2GAtoms.

Proof Since d is symmetric, m is a {d, f}-optimal matching between A and
B iff m−1 is a {d, f}-optimal matching between B and A. In this case,
df (m,A,B) = df (m−1, B,A), and so df (A,B) = df (B,A). For identity
preservation, note that the optimal matching between a set A and itself
is the identity function I on A, and so df (A,A) = df (I,A,A) = f({d(a, a) |
a ∈ A}) = 0. In case that A 6= B, for every matching m between A and B
we have that df (m,A,B) > 0 (this is so since at least one distance between
matched elements is strictly positive, and as f is strict, its value in this case
must be strictly positive as well). Thus, df (A,B) > 0 whenever A 6= B, and
so df (A,B) = 0 iff A = B. �

3.2 Aggregation-based repairs

Proposition 2 induces a particular yet useful way to obtain database repairs.
Distance functions on 2GAtoms can be defined by a combination of aggregation
functions and distance functions on GAtoms.

Definition 14 The pre-repairs of a database DB = (D, IC) with respect to
a pseudo distance d on GAtoms and a numeric aggregation function f , are

4 As all the optimal matchings have the same df -value, df (A, B) is well-defined.
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the elements of the set

Repd,f (DB) = Repdf
(DB) =

{

R = 〈U , C〉 ∈ Potential(DB) |

∀〈U ′, C′〉 ∈ Potential(DB) df (U ,D) ≤ df (U ′,D)
}

.

Accordingly, the repairing set of DB with respect to d and f is the maxi-
mal subset ∆d,f (DB) of Repd,f (DB) that is non-redundant with respect to
Repd,f (DB); that is: ∆d,f (DB) = ∆df

(DB).

Clearly, Definition 14 is a particular case of Definition 7, since df , obtained
from d and f by Definition 13(d), is a pseudo distance (Proposition 2).

The advantage of the aggregation-based presentation of repairs is that
it allows to express, in a natural way, distances between sets in terms of
distances between the elements of those sets. As we shall see, this allows
to encode within the distance function many practical considerations in the
context of database systems (e.g., whether the matched elements are parts
of a primary key, etc.).

Example 7 Consider again the database DB = ({p, r}, {p → q}) of Exam-
ple 1 together with the drastic distance (d = du; see Example 6) and the
summation aggregation (f = Σ). The (updates of the) six potential repairs
of DB and their distances from D = {p, r} are given in the table below (the
optimal matchings are computed just as illustrated in Example 6).

No. Potential Repair du
Σ(·,D) Actions

1 {p, q, r} 1
2 insert q

2 {p, q} 1 insert q, delete r

3 {q, r} 1 insert q, delete p

4 {q} 1 1
2 insert q, delete p and r

5 {r} 1
2 delete p

6 {} 1 delete p and r

It follows, then, that the repairs in this case are R1 = 〈{p, q, r}, ∅〉 and
R5 = 〈{r}, ∅〉. Among the potential repairs, these repairs require a minimal
amount of modifications in D. As Proposition 4 below shows, this is not a
coincidence. Note also that du

Σ is in fact the symmetric distance between
sets, so there is no wonder that R1 and R5 are exactly the same repairs as
those obtained in Example 4. Again, we have that, e.g., r conservatively (and
so credulously) follows from DB, while p as well as q credulously (but not
conservatively) follow from DB.

The next proposition shows that, as expected, there is nothing to repair
in consistent databases.

Proposition 3 If DB = (D, IC) is a consistent database and f is a strict
aggregation function, then for every pseudo distance d, ∆d,f (DB) = {〈D, ∅〉}.

Proof If DB is consistent, then 〈D, ∅〉 is obviously a potential repair. More-
over, for every distance function d and aggregation function f , the identity
function I on D is a {d, f}-optimal matching, as df (I,D,D) = 0 (by the
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identity preservation of pseudo distance functions and the second condition
in Definition 12), and so df (D,D) = 0. For every other set A ∈ 2GAtoms, it
clearly holds that, for each matching m between D and A, df (m,D, A) > 0,
and hence, for each pre-repair 〈U , C〉 not equivalent to 〈D, ∅〉, d(D,U) > 0.
It follows that {〈D, ∅〉} is a repairing set. �

3.3 Repairs independent of the domain of discourse

The distance-aggregation function du
Σ , obtained by a summation of the dras-

tic distances du between matched elements, is frequently used for repairing
databases (see also Example 7). These functions are ‘blind’ to the domain of
discourse at hand, in the sense that both du and du

Σ refer, respectively, to the
elements of GAtoms and of 2GAtoms in a uniform way. Indeed, as it is shown
below (Proposition 4), du

Σ(A,B) is determined only by the cardinality of the
symmetric distance between A and B rather by the particular meaning or
the properties of the elements in those sets. We call such distances (and the
repairs that are obtained by them) domain independent . In this section we
consider such distances and repairs.

First, we show that the metric that is obtained by du
Σ corresponds to the

Hamming distance between sets of formulae (also known as the symmetric
distance, or the Dalal distance [16]).

Proposition 4 Let |S| be the size of S. Then du
Σ(A,B) = 1

2 (|A\B|+|B\A|).

Proof Note first that, as already noted, the summation Σ is an aggregation
function and du is a distance function on GAtoms. Now, let x∈(A∪B)\ (A∩
B). If x is linked to another element y, then as du(x, y) = 1, the ‘contribution’
of x to du

Σ(A,B) is 1
2 (y contributes the other half). Otherwise, x is not linked

to any element of the other set S ∈ {A,B}, and so d(x, S) = 1
2 . In any case,

every element outside the intersection of A and B contributes 1
2 to du

Σ(A,B).
Also, for any matching m that maps the elements in A ∩ B to themselves,
du

Σ(m,A,B) = du
Σ(m,A\B,B\A), since du(x, x) = 0. It follows, then, that

a matching m of A and B that is the identity on A ∩ B, is optimal in this
case, and df (m,A,B) = 1

2 |{x | x ∈ (A ∪ B) \ A ∩ B}|. For such an m,
df (A,B) = df (m,A,B), and so we are done. �

The distance function du
Σ corresponds to the following cardinality-based

repair, considered e.g. in [2,4,6,37]

Definition 15 A pairwise5 repair of DB = (D, IC) is a pair (Insert,Retract)
of two sets of ground atomic facts, such that: 1. Insert∩D=∅, 2. Retract ⊆ D,
3. (D ∪ Insert \ Retract, IC) is a consistent database, 4. (Insert,Retract) is
minimal in its cardinality: there is no pair (Insert′,Retract′) that satisfies
conditions 1–3 and for which |Insert′ ∪ Retract′| < |Insert ∪ Retract|.

5 This adjective is added to distinguish this kind of repairs from repairs in our
sense.
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Note 3 A different way of repairing databases is obtained by exchanging the
cardinality-based requirement in item 4 by a set inclusion criterion. This is
the basic idea behind the method introduced in [1], which inspires many
other works on (domain independent) database repair and consistent query
answering (see, e.g., [2,5,9,10,27,26,33]). Clearly, every pairwise repair that
is obtained by Definition 15 is also a repair according to the set inclusion
approach, but the converse is not necessarily true. Comparative studies of
the two repair methods appear in [6,37].

Proposition 5 Consider a database DB = (D, IC) together with the dras-
tic distance function du and the summation aggregation function Σ. Then
(Insert,Retract) is a pairwise repair of DB iff there is a pre-repair R = 〈U , ∅〉 ∈
Repdu

Σ
(DB), such that Insert = U \ D and Retract = D \ U .

Proof Given a pairwise repair (Insert,Retract) of (D, IC), let R = 〈U , ∅〉,
where U = (D ∪ Insert) \ Retract. By condition (3) of Definition 15 it is clear
that R is a potential repair, and by condition (4) of the same definition it
follows that the Hamming distance between U and D is minimal among the
distances between the other updates of the potential repairs of DB and D
(otherwise, if there is a potential repair R′ = 〈U ′, C′〉 with a smaller Ham-
ming distance to D, the pair (Insert′,Retract′) = (U ′ \ D,D \ U ′) satisfies
conditions (1)–(3) of Definition 15 and |Insert′ ∪Retract′| < |Insert∪Retract|,
which is a contradiction to the assumption that (Insert,Retract) is a pair-
wise repair of DB). By Proposition 4, du

Σ(U ,D) is minimal in {du
Σ(U ′,D) |

〈U ′, C′〉 is a potential repair of DB}, thus R is a pre-repair of DB.
Conversely, for a pre-repair R = 〈U , ∅〉 ∈ Repdu

Σ
(DB) such that U ⊆

Atoms(DB), let (Insert,Retract) = (U \ D,D \ U). This pair clearly satisfy
conditions (1) and (2) of Definition 15. Condition (3) is met as well because
in our case, (D ∪ Insert \ Retract, IC) = (U , IC), and this is a consistent
database since R is a potential repair of DB (and so it satisfies IC). Finally,
similar considerations as above show that the pair (Insert,Retract) is minimal
in the sense of condition (4). Thus, (Insert,Retract) is a pairwise repair of DB.
�

Note 4 As Proposition 5 shows, pairwise repairs correspond to pre-repairs
rather than to repairs. The reason for this is that in our framework repairs
are represented by arbitrary (i.e, not necessarily ground) atomic formulas.
This induces a compact way of representing database modifications, in which
several pre-repairs can be captured simultaneously, and so particular pairwise
repairs may be redundant. To see this, consider the following database:

DB =
(

{

mother(Jane)
}

,
{

∀x
(

mother(x) → ∃n(num childs(x, n) ∧ 1≤n≤20)
)}

)

.

Here, for every constant 1≤ i≤ 20, 〈{num childs(Jane, i)}, ∅〉 is a pairwise
repair of DB, and so, by Proposition 5, it is also a pre-repair of DB (with
respect to du

Σ). Yet, each one of those 20 pre-repairs is redundant with respect
to (the repair) 〈{mother(Jane), num childs(Jane, x)}, {x≥1, x≤20}〉.
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Note 5 From Proposition 5 and the fact that the unique pairwise repair of
a consistent database is (∅, ∅), it follows that for a consistent database DB,
∆du,Σ(DB) = {〈D, ∅〉} (which is a particular case of Proposition 3).

It is also interesting to check the distance-based functions of Example 5
when the domain independent distance du is taken as the basic distance
function. In this case the Hausdorff distance is reduced to 0 if A=B and 1
otherwise. While this is still a distance function, it is clearly useless for making
subtle preferences among potential repairs. The Eiter–Mannila distance, on
the other hand, is more appropriate in this case and, as in Proposition 5, it
is related to pairwise repairing. Indeed, for du, the Eiter–Mannila distance
between the original database D and its repair 〈D ∪ Insert \ Retract, C〉 is
1
2 (|Insert|+ |Retract|). In this case we get the Ramon–Bruynooghe matching-
based distance [41], which is a distance function (and not only a pseudo
distance, cf. Example 5).

3.4 Repairs dependent on the domain of discourse

Consider again the potential repairs considered in Example 2 (regarding the
database of Section 2.1). If we repair the database using e.g. du

Σ as the un-
derlying distance function, we get that R1 and R2 are strictly preferred over
the other three potential repairs. Indeed, du

Σ(U1,D) = du
Σ(U2,D) = 1

2 , since
the cost of the optimal matching between the original database instance D
and the repaired database that is obtained by R1 (respectively, by R2) is the
cost of the retracted (respectively, inserted) fact dir(Alice) (respectively,
dir(Bob)) that cannot be matched to any element in the original database.
On the other hand, the optimal matching between the original database and
the repaired database that is obtained by R5 for instance, links each one of
emp(Alice), emp(Bob), sal(Alice, 1000) and dir(Alice) to the same facts in
the repaired database, and relates sal(Bob, 1000) to sal(Bob, x) (for some
x < 1000). The resulting distance is therefore du

Σ(U5,D) = 0+0+0+0+1 = 1,
and similarly du

Σ(U3,D) = du
Σ(U4,D) = 1. However, in this case, the potential

repairs R3, R4, and R5, that require salary changes, seem more plausible than
the potential repairs R1 and R2 that require removal or insertion of database
facts, as it is more realistic here to assume that the problem is due to a ty-
pographic error in the salary information. Moreover, R1 and R2 are more
drastic then the other potential repairs, as they either cause information loss
(there is no data about the directors of the company, in the case of R1) or
reduce the information reliability (due to the introduction of unfaithful facts,
in the case of R2). It is clear, then, that simple cardinality considerations
are not useful here, and more delicate considerations are required, in which
each one of R3, R4, and R5 will be preferred over R1 and R2.

This simple example demonstrates a common phenomenon in many in-
consistent first-order databases: A specific tuple may contain both correct
and erroneous components. In such cases, deleting or inserting entire tuples
would not properly solve the problem. Indeed, the need to rectify an er-
ror within a tuple without deleting the whole tuple has been acknowledged
in [5] (see Example 6.2 of that paper), and is also the main motivation behind
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the work in [8] on fixing (numerical) attributes and in [46,47] on database
repairing by updates; See also Section 5 below.

A more subtle preference criterion is obtained by the distance function,
defined in [38]:

d1
(

P (t1, . . . , tm), Q(s1, . . . , sn)
)

=











1 if P 6= Q,

1

2m

m
∑

i=1

du(ti, si) otherwise.

Here, for different predicate symbols the distance d1 is maximal. However,
when the predicate symbols are the same, the distance linearly increases with
the number of arguments that have different values, and is at most 1

2 . The
intuition behind this is that longer tuples are more error-prone and that
multiple errors in the same tuple are less likely.

Proposition 6 d1 is a distance function (in the sense of Definition 3), which
is bounded by 1.

Proof Easily verified (see also [38, Theorem 5]). �

According to d1 together with a summation as the distance aggregation
function, the distance between the database instance D of Example 2 and
(the update component of) R1 is still 1

2 , and so is the distance between D
and (the update component of) R2. On the other hand, the distance between
D and U5 (the update component of R5) is the same as the distance between
salary(Bob, 1000) and salary(Bob, x), which is 1

4 (0 + 1) = 1
4 . Similarly,

d1
Σ(U3,D) = d1

Σ(U4,D) = 1
4 . It follows, then, that now the potential repairs

that modify information within tuples are preferred over potential repairs
that remove or insert complete tuples, as intuitively expected.

Nienhuys-Cheng’s distance d1 can be further refined to reveal other con-
siderations. For instance, under the assumption that primary keys are less
error-prone, one may consider the following variation of d1:

Definition 16 Below we denote primary key values by underscores, and
assume, without loss of generality, that they precede the non-key values.
Define:

d2
(

P (t1, . . . , tk, tk+1, . . . , tm), Q(s1, . . . , sl, tl+1, . . . , tn)
)

=










1 if P 6= Q or ∃1 ≤ i ≤ k s.t. ti 6= si,

1

2m

m
∑

i=k+1

du(ti, si) otherwise.

Example 8 Consider again the database DB of Section 2.1. There are five op-
tions regarding the fact salary(Alice, 1000): Keeping it unchanged, changing
the first argument (employee-name), changing the second argument (salary),
changing the whole tuple, or deleting it altogether. Assuming that employee-
name is the primary key for the salary relation, we have that according to
d2, the costs of these options are 0, 1, 1

4 , 1, and 1
2 , respectively. Note, also,
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that in this case, according to the aggregation-based repair with d2 and Σ,
the two repairs of the database are the following:

〈{

emp(A), emp(B), dir(A), sal(A, v1), sal(B, 1000)
}

, {v1 > 1000}
〉

,
〈{

emp(A), emp(B), dir(A), sal(A, 1000), sal(B, v2)
}

, {v2 < 1000}
〉

.

That is, consistency restoration is obtained here by salary corrections.

3.5 Linking instead of matching

The notion of (optimal) matching between the elements of a database in-
stance and the elements of its repair may be weakened. Instead of relating
each database fact with at most one atomic formula of a repair and vice versa,
it is possible to associate a database fact with several atoms of a repair. This
is called linking . Optimal linking and the induced distance between sets are
defined just as in Definition 13.

Example 9 Consider a database instance D={teaches(John,DB)} and in-
tegrity constraints that no-one teaches DB (since, e.g., this course is can-
celled), and that a lecturer must give at least two courses. Here, a repair
with respect to d1

Σ could be the following:

R =
〈

U , C〉 = 〈{teaches(John, x1), teaches(John, x2)},

{x1 6= x2, x1 6= DB,x2 6= DB}
〉

.

Each one of the two optimal matchings in this case relates the database fact
to one of the two elements in U , leaving the other one unmatched. In the
notations of the previous section, then, d1

Σ(D,U) = 1
2 + 1

4 . If linking is used
instead of matching, there is only one optimal linking between D and U ,
which associates the two new facts in U with the old one in D, hence in this
case d1

Σ(D,U) = 1
4 + 1

4 .

3.6 Complexity

Computing all the repairs of a given database is not tractable, as even for
propositional databases the number of repairs of a database could be ex-
ponential in the database’s size. Indeed, the database ({p1, . . . , pn}, {pi →
qi}

n
i=1) has 2n repairs when d = du and f = Σ. These repairs correspond

to all the combinations of inserting qi or removing pi, for i = 1, . . . , n. In
an attempt to overcome this problem, most of the existing algorithms for
query answering do not compute the repairs themselves, but make inferences
using rewriting techniques [1], logic programming paradigms [2,21,25–27],
(hyper-)graph computations [14,15], and proof theoretic methods, such as
analytic tableaux [10]. In the general case, however, these techniques are not
tractable. For instance, the approach in [2,26] of specifying database repairs
as stable models of disjunctive logic programs is ΠP

2 -complete (see [17]). This
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is also the case for the query answering computations with (signed) quan-
tified Boolean formulas, considered in [5]. Tractability of query evaluation
for inconsistent databases is usually reached only for restricted syntactical
forms of the integrity constraints. For instance, the rewriting process in [1],
which is a tractable way of evaluating queries with respect to the set-inclusion
semantics (see Note 3), is limited to binary universal constraints.

The next proposition shows that intractability retains in our case as well:

Proposition 7 [37] Let DB = (D, IC) be a database with denial constraints,6

and let Q be a query that is a conjunction of ground literals. Then conser-
vative query answering for Q with respect to the du

Σ-distance semantics is

PNP(log(n))-complete.7

Proof By [37, Theorem 4] and the fact that du
Σ-semantics corresponds to

pairwise repairs (Proposition 5). �

Another interesting property of the du
Σ-distance semantics explored in [37]

is that for databases with denial constraints, conservative query answering
and credulous query answering (Definition 11) are polynomially reducible.8

As in the case of inclusion-based semantics, also in the cardinality-based
semantics obtained by the du

Σ-distance, conservative query answering may
be undecidable unless restrictions are imposed on the syntactical form of
the integrity constraints. This can be shown in a similar way as that of [11]
(in which decidability is considered with respect to set inclusion semantics),
where, intuitively, undecidability stems from the possible presence of cycles
among inclusion dependencies of the form ∀x∃y(P (x) → Q(x′, y)) for x′ ⊆ x,
and from the possibility of using arbitrary elements from the (infinite) set C,
as constants in the repaired database.

Undecidability results for domain dependent repairs are also easily ob-
tained for sufficiently expressible integrity constraints. See, for instance, [8,
Theorem 1] for one example in the context of database repair by fixing nu-
merical attributes (see also Section 5 below).

We note, finally, that in general, the distance functions themselves do not
add extra computational complexity to the problem. This is demonstrated,
for instance, by the following results:

Proposition 8 [41] Computing du
Σ(A,B) is polynomial in the size of A and

B.

Proposition 9 Computing d1
Σ(A,B) and d2

Σ(A,B) is polynomial in the sizes
of A, B, and the maximal arity of the predicates in A and B.

6 That is, the integrity constraints in the set IC are closed formulae of the form

∀x1 . . . xn ¬
(

R1(x1)∧ . . .∧Rn(xn)∧φ(x1 . . . xn)
)

, where φ is a Boolean expression

consisting of atomic formulas and built-in predicates.
7 I.e., the decision problem can be solved by a polynomial-time algorithm that

makes O(log(n)) calls to an NP-oracle, where n is the size of D.
8 This is not the case when repair by set-inclusion is involved, as in that case

conservative answering with denial constraints is NP-complete, while credulous an-
swering is in P; see [15].
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Proof Follows from the fact that if the time to compute d(x, y) is bounded
by T for every x∈A, y∈B, then the time to compute dΣ(A,B) is bounded
by a polynom in |A|, |B|, and T (see [41]). �

The main computational difficulty of database repairs remains, therefore,
the large amount of potential repairs at hand. Extensive surveys on the com-
putational complexity of existing approaches to database repair and consis-
tent query answering appear in [6,11,13,14,37] (see also [47] for complexity
results regarding update-based repairing).

4 Integration of Constraint Data-Sources

Integration of autonomous data-sources under global integrity constraints
(see [30]) is closely related to database repair. The main differences between
the two problems is that, in contrast to database instances, data-sources
may contain negative facts and not only positive ones. Also, the closed world
assumption is no longer assumed. In this section we show how our framework
may be used for defining operators for the merging problem as well.

Example 10 [30] Four flat co-owners discuss the construction of a swimming
pool (s), a tennis-court (t) and a private car-park (p). Building two or more
items will increase the rent (r), otherwise the rent will not be changed.

The owners’ opinions are represented by the following four data-sources:
D1 = D2 = {s, t, p}, D3 = {¬s,¬t,¬p,¬r}, D4 = {t, p,¬r}. The impact
on the rent may be represented by the constraint IC = {r ↔

(

(s ∧ t) ∨ (s ∧

p) ∨ (t ∧ p)
)

}. Here, q ∈ Di denotes that owner i supports q, and ¬q ∈ Di

denotes that owner i is against q. If q,¬q 6∈ Di, i does not have an opinion
about q. Note that although the opinion of owner 4 violates the integrity
constraint (while the solution must preserve the constraint), it is still taken
into account.

In situations such as that of Example 10 it is often required to find a
solution that will satisfy the global integrity constraints and will be as close
as possible to each data source. This implies that, under the following obser-
vations, our framework is adequate for the merging problem as well. Denote
by D the set of the sources to be merged. Then:

– Instead of database instances, which are sets of atomic facts, data sources
are sets of literals (that is, atomic formulas or their negation). So, instead
of Atoms we refer now to LIT = {P (t) | P (t) ∈ Atoms} ∪ {¬P (t) | P (t) ∈
Atoms}. As before, an update is a pair 〈U , C〉, where U is a consistent set
of elements in LIT (i.e., U is a set without complementary literals), and C
is a set of constraints. The set Merge(D, IC) of the potential merging of D

under IC consists of the updates that satisfy all the integrity constraints
in IC.

– A merging of data-sources D = {D1, . . . ,Dn} with respect to the in-
tegrity constraints IC is a straightforward generalization of the notion of
database repair (cf. Definitions 13 and 14):
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– A merging context is a triple M = 〈d, f, g〉, where d is a pseudo dis-
tance function, and f, g are aggregation functions (referring, respec-
tively, to the distances inside a source and among the sources).

– For a merging context M = 〈d, f, g〉, a set D = {D1, . . . ,Dn} of data-
sources, and a potential merging M ∈ Merge(D, IC), let

dg,f (M,D) = g
(

{df (M,D1), . . . , df (M,Dn)}
)

.

– The pre-mergings of the data-sources in D under the integrity con-
straints in IC, and with respect to the merging context M = 〈d, f, g〉,
are the elements of the following set

{

M∈Merge(D, IC) | ∀M′∈Merge(D, IC) dg,f (M,D) ≤ dg,f (M′,D)
}

.

– The merging of the data-sources in D under the integrity constraints
in IC, and with respect to the merging context M = 〈d, f, g〉, are the
maximal non-redundant pre-mergings of D. This set is denoted by
∆M(DB).

Example 11 Consider again Example 10 and two merging contexts: M1 =
〈du, Σ,Σ〉, M2 = 〈du, Σ,max〉. According to M1 the summation of the dis-
tances to the source is minimized, and in M2 minimization of maximal dis-
tances is used for choosing optimal solutions. The potential mergings in this
case are listed in the table below.

No. Potential merge du
Σ(·,D1) du

Σ(·,D2) du
Σ(·,D3) du

Σ(·,D4) du
Σ,Σ(·, D) du

max,Σ(·, D)

M1 {s, t, p, r} 1
2

1
2 4 1 1

2 6 1
2 4

M2 {s, t,¬p, r} 1 1
2 1 1

2 3 2 1
2 8 1

2 3

M3 {s,¬t, p, r} 1 1
2 1 1

2 3 2 1
2 8 1

2 3

M4 {s,¬t,¬p,¬r} 2 1
2 2 1

2 1 2 1
2 8 1

2 2 1
2

M5 {¬s, t, p, r} 1 1
2 1 1

2 3 1 1
2 7 1

2 3

M6 {¬s, t,¬p,¬r} 2 1
2 2 1

2 1 1 1
2 7 1

2 2 1
2

M7 {¬s,¬t, p,¬r} 2 1
2 2 1

2 1 1 1
2 7 1

2 2 1
2

M8 {¬s,¬t,¬p,¬r} 3 1
2 3 1

2 0 2 1
2 9 1

2 3 1
2

The optimal merging in each context is determined by the minimal values
in the two right-most columns. According to M1, M1 is the best potential
merging, and so the owners decide to build all the three facilities. As a result,
the rent increases. According to M2, however, M4, M6 and M7 are the
optimal mergings, which implies that only one out of the three facilities will
be built, and so the rent will remain the same.9 Thus, e.g., r is a consistent
query answer with respect to M1 while ¬r is a consistent answer with respect
to M2.

9 The decision which facility to choose requires further preference criteria. Sum-
mation of distances, e.g., prefers M6 and M7 over M4, thus t and p are preferred
over s.
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The last example demonstrates the application of merging strategies among
equally important sources. However, there are situations in which certain
sources are preferred over other sources (for instance, because of differences
in reliability of the sources). Our framework supports such cases as well by
a proper choice of the components of the merging context. We demonstrate
this in the next example.

Example 12 Consider the distributed system described in Examples 10 and 11,
but this time in the context of speculations on the stock exchange. An in-
vestor (represented by the mediator system) consults four financial experts
about their opinion regarding four different shares, denoted t, p, s, r. The
opinion of expert i is represented by Di (see Example 10). For instance, in
our case expert 4 suggests to buy shares t and p, doesn’t recommend to buy
share r, and doesn’t have a particular opinion about share s. The integrity
constraint in our case may be interpreted as the investor’s own policy of
buying shares. (For instance, the integrity constraint in Example 10 may be
intuitively understood by the risk of buying share r that should be ‘balanced’
by purchasing at least two out of the three shares t, p, s). Clearly, the experts
could have different reputations, and this may affect the investor’s decision,
which is embodied in the distance function. This is expressible by a weighted
average distance function, in which the distance to each source is multiplied
by a different certainty factor (smaller factors are attached to more reliable
sources). This yields distance functions such as

d
(

M, {D1, . . . ,D4}
)

=
4

∑

i=1

ci · d
u
Σ(M,Di).

Now, the investment policy among the eight possible policies that are shown
in the table of Example 11 is determined by the minimal value of the distance
function, and this depends on the actual values of the preference factors ci.

Note 6 (Schema integration of multiple sources) In the context of integration
systems of multiple sources, inconsistencies may occur not only because of
contradictory information among the sources, but also by the need to relate
different terminologies and concepts used by the sources. This is done by
mediator-based systems [32] that integrate independent sources containing
information about a common domain using different schemas. Such mediators
consist of an alphabet, called the global schema (representing the global
information), and a set of rules that link the information of the sources with
the global schema. This frequently requires appropriate definitions, in which
the relations of one schema are expressed in terms of another schema. There
are two common methods to define these relations: One, called global-as-
view [45], expresses the relations of the global schema in terms of those of
the sources. The other method, called local-as-view [34], defines each source
relation in terms of the relations of the global schema. This process of schema
integration (or ontology integration) is also vital for data exchange, where
data is shipped from a source database in order to populate a target schema.

A great deal of work is done in the context of schema integration (see [32]).
As the next example shows, distance-based considerations may be incorpo-
rated for this purpose as well.
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Example 13 Suppose that the database considered in Section 2.1 is distributed
over two sites that store data about employees in different locations (say,
New-York and New-Jersey). In this case, the information may be divided as
follows:

source1 : empNY(Alice), sal(Alice, 1000), director(Alice)

source2 : empNJ(Bob), sal(Bob, 1000)

Also, using a global-as-view approach, we have a rule for relating the local
vocabularies:

∀x (empNY(x) ∨ empNJ(x) → emp(x))

and the same integrity constraint as before (specified in the global language):

∀x∀y∀z1∀z2

(

sal(x, z1)∧sal(y, z2)∧director(x)∧¬director(y)
)

→ z1 > z2

Taking the last two rules as the set of global integrity constraints (IC) to-
gether with d2 as the distance function and Σ as the aggregation function,
we get – in terms of the global language – the same optimal repairs as those
in Example 8. Thus, for instance, conservative answers to the queries emp(x)
and sal(Alice, 1000) are {Alice,Bob} and ’no’, respectively.

Merging strategies of constraint belief-bases like those mentioned in this
section, as well as some related complexity results, are discussed in detail
in [29,30].

5 Related Works

Distance minimization is a primary principle behind many systems for in-
formation handling. Back in the 1980’s distance-based approaches have been
considered e.g., by Dalal [16], Winslett [49], and others, in the context of be-
lief revision. In the database systems point of view, a notion coinciding with
Winslett’s revision model was first introduced in the seminal paper of Are-
nas, Bertossi, and Chomicki [1], who presented a model theoretic definition
of consistent answers to a query posed to an inconsistent database. Follow-
ing this work, many other proposals for database repair and consistent query
answering have emerged. Most of the proposals are based on the idea that
the set of database tuples either inserted to- or deleted from the database
instance in order to restore its consistency has to be made minimal un-
der set inclusion [1,2,9,10,14,18,27] or cardinality [2,4,5,35]. Clearly, these
are domain independent considerations, in the sense that they are applied
to every database regardless of the nature of its information. Representing
cardinality-based considerations in our framework is discussed in Section 3.3.
Corresponding computations by disjunctive logic programs and stable model
semantics are reported in [2,5].

In contrast to cardinality-based distance semantics, the following defini-
tion and proposition show that even in the propositional case, set inclusion
considerations deviate from our framework:
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Definition 17 Let DB = (D, IC) be a propositional database, and let
A,B ∈ Potential(DB). As DB is propositional, the constraint components
of A and B are empty, so we identify A and B with their (variable-free)
update components.

– A is inclusion-preferred over B (A ≺D B), if
(

(A \ D) ∪ (D \ A)
)

⊂
(

(B \ D) ∪ (D \ B)
)

.

– The ≺D-minimal elements of Potential(DB) are called inclusion-optimal .

As a distance function d induces a total order on Potential(DB) (deter-
mined for each A ∈ Potential(DB) by d(A,D)), while ≺D is only a partial
order on Potential(DB), it is quite obvious that preferences based on set in-
clusion cannot be simulated by distance functions. Moreover,

Proposition 10 There is no distance function of the form df , obtained by a
pseudo distance d and an aggregation function f as in Definition 13(d), such
that the inclusion-optimal solutions of a propositional database DB = (D, IC)
are those that are df -closest to D.

Proof Consider the database DB = ({p, q, r}, {p → ¬q, p → ¬r}). Here,
Potential(DB) = {{p}, {q}, {r}, {q, r}}, and so the inclusion-optimal poten-
tial repairs of DB are {p} and {q, r}. Let m = max{d(p, q) | p, q ∈ GAtoms}.
Then: df ({p}, {p, q, r}) = df ({r}, {p, q, r}) = f({ 1

2m, 1
2m}), thus {p} and {r}

are equally distant from the original database D = {p, q, r}. It follows that
either both {p} and {r} are df -closest to D (in which case they are repairs of
DB) or neither of them is df -closest to D. But {r} is not inclusion-optimal
while {p} is. �

Domain independent repairs may be extended in various ways to make
them domain dependent. For instance, the distance function du

Σ , considered
in Section 3.3 in the context of pairwise (cardinality-based) repairs, may by
generalized by attaching different weights to different predicates, expressing
the idea that for restoring consistency it may be more costly to insert or
remove tuples of a certain predicate than to change tuples of other predi-
cates. This yields a generalized Hamming distance, defined by the sum of the
weights of the elements in the symmetric difference of the relevant sets. This
kind of distance-based repairing is considered, e.g., in [36].

As noted in Section 3.4, our framework can also capture other domain
dependent techniques for database repair, recently considered, e.g., in [8,
24,46,47]. Below, we describe the relations to some of these methods in
greater details. For this, we briefly recall the basic definitions behind Wi-
jsen’s approach [46,47] of repairing by value modifications. For simplicity,
assume that the language L consists of one predicate with arity n, i.e., a
fixed schema 〈A1, . . . , An〉 of distinct attributes. A tableaux is a finite set T
of tuples 〈t1, . . . , tm〉, where each ti is a term.10 A tableau is called linear if
no variable occurs in it more than once; it is called a relation if all its terms
are ground (i.e., without variables). Wijsen’s approach is based on tableaux

10 As the language is function-free, these terms must be atomic, i.e., constants or
variables.
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homomorphisms. Given two tableaux T1 and T2, a homomorphism from T1

to T2 is a variable substitution θ on the variables of T1, such that θ(T1) ⊆ T2.
Such a homomorphism is called one-to-one if it does not identify distinct tu-
ples of T1. Now, given a relation P and a set IC of integrity constraints, a
fix of P under IC is a maximal tableaux P ′ for which (1) there is a one-
to-one homomorphism to P , and (2) there is a (not necessarily one-to-one)
homomorphism to some relation R that satisfies IC. If such a relation R is
minimal under set inclusion, it is a repair of P in the sense of Wijsen (an
uprepair, in his terms).

The correspondence between Wijsen’s approach and ours is straightfor-
ward: In our sense, a tableau T is the first component of a database update
(referring to a single relation), and the second component of an update,
namely the constraint set, represents tableau homomorphisms on T . If a
tableau is homomorphic to a consistent relation then, in our terminology, it
is a potential repair. In this respect, Wijsen’s fixes may be viewed as compact
representations of potential repairs.

The main difference between the two methods is that Wijsen uses set
inclusion as the underlying preference criterion, while in our framework dis-
tance functions are used for choosing the optimal repairs. A variant of Wi-
jsen’s approach, which defines uprepairs by cardinality minimization rather
than by set inclusion minimization, is easily simulated in our framework by
taking, e.g., d1 and Σ as the underlying distance and aggregation functions,
respectively.

Incidentally, domain-dependent repairs with minimal cardinality and set-
minimal repairs have also been considered in the closely related construct
introduced in [24] (see [48] for a discussion on the similarities and differences
between the repair methods). In this case as well, our methods offer a con-
siderable flexibility in the determination of the repair strategy, by allowing
to incorporate domain-specific considerations (such as those in the definition
of d2 above).

Another domain dependent approach for restoring database consistency,
based on tuple updates, is presented in [8]. This time, the tableaux homo-
morphisms approach is traded by a quantitative attitude that is based on
the values of the attributes. We demonstrate this by the following example:

Example 14 [8, Examples 1,4] Consider the following database of traffic net-
work.

Traffic

Time LinkName Type Flow

9:00am a 0 1100
9:00am b 1 900
9:30am b 1 850

Suppose that the maximum capacities of links of type 0 and 1 are 1000 and
1500, respectively. The database above is not consistent with respect to these
constraints, as they are not obeyed by the first tuple.
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According to [8], the distance between two tuples is determined by the
(weighted sum of the squares of the) differences between their numerical
values. Thus, e.g., the difference between the tuples (9:00am,a,0,1100) and
(9:00am,a,1,1000) is c1 · 12 + c2 · 1002 for some fixed coefficients c1 and c2.
Using our terminology, the distance between the original database instance
and a potential repair of it is equal to the weighted sum of the differences
between the tuples in those sets, having the same key values. Now, repairs
are the potential repairs with minimal distance to the original database. In
Example 14, then, two potential repairs are:

Traffic′

Time LinkName Type Flow

9:00am a 1 1100
9:00am b 1 900
9:30am b 1 850

Traffic′′

Time LinkName Type Flow

9:00am a 0 1000
9:00am b 1 900
9:30am b 1 850

where Traffic′ changes the type of link ’a’ to 1, and Traffic′′ reduces its
flow capacity to 1000. For c1 = 1 and c2 = 10−5 the distances from Traffic

are 1 · 12 and 10−5 · 1002, respectively, so in this case Traffic′′ is preferred
over Traffic′.

Clearly, the approach of [8] is represented in our framework, where mini-
mal distances correspond to least square values. The tuple matching accord-
ing to [8] is done by key values, and this is a plausible matching criterion, as
in [8] key attributes are not updateable. Note, however, that in our frame-
work updates are not limited to numerical values only. More substantially,
our framework permits more general repairs. In Example 14, for instance, the
d2

Σ-semantics (in which changes of key attributes are more expensive than
other changes) will change (9:00am,a,0,1100) to either (9:00am,a,x,1100) for
some x 6= 0 (which corresponds to Traffic′ above), or to (9:00am,a,0,y) for
some y ≤ 1000. The latter is clearly a more general repair than Traffic′′,
as it is not committed to a specific flow capacity of link ’a’ (i.e., 1000 in case
of Traffic′′). 11

6 Conclusion and Future Work

Data processing by distance considerations is not a new idea, and it has been
used mainly in the context of query answering [2,6,37] integration of con-
straint belief-sets [29,30] and operators for belief revision [19,31,39,44]. In
this paper, we introduced a uniform framework for representing, comparing
and implementing different approaches for these contexts. Another advan-
tage of our approach is that it opens the door to many new methods that
are induced by known distance definitions. This is particularly useful in the
context of database repairing, where so far most of the formalisms in the lit-
erature that involve distance-based semantics are domain independent, while
in many practical cases domain dependent repairs are more adequate. Typ-
ical cases for this are census, demographic, and experimental data, where

11 See also the discussion in the paragraph below Definition 7.
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faulty information need to be altered (rather than removed altogether) in
order to meet certain integrity constraints. The new forms of repairs offered
by our framework provide a step forward towards more intuitive solutions to
such cases, mainly as the notion of closeness can be captured in more subtle
ways, and erroneous components of the data can be detected and updated
without violating the valid fragment of the information.

The message of this paper is, therefore, that it is useful to think in terms
of distances to express preferences among repairs and that different choices
of distances lead to different preferences that can be applied in different
scenarios. Having this said, it seems that distance semantics per-se is not
strong enough for handling many practical cases. This is so not only because
of the considerable amount of repairs that are usually induced by it, but also
due to the fact that, in many cases, distance considerations cannot completely
capture every aspect of the underlying database information, and so different
repairs may have different likelihood. To see this, suppose that the following
information is part of a household data, associated to a census:

Person

Name Age Marital Status

David 71 Married
Ann 6 Married
Tom 20 Bachelor

Here, the second tuple violates a constraint that people under 16 cannot be
married. The common domain independent repairs, applying set inclusion
or minimal cardinality of insertions/retractions, will remove the problematic
tuple. However, this does not seem to be an appropriate solution in this case,
as all the information about Ann will be lost. By using the distance-based
techniques for repairing by attribute modifications, we will get, according to
d1

Σ (as well as by d2
Σ), the following two repairs:

Person′

Name Age Marital Status

David 71 Married
Ann x Married
Tom 20 Bachelor

Person′′

Name Age Marital Status

David 71 Married
Ann 6 y
Tom 20 Bachelor

In the repair on the left-hand side the problem is fixed by changing the age
of Ann to some x ≥ 16, and according to the repair in the right-hand side,
Ann’s marital status is changed to some y other than ‘Married’ (or any other
status that requires marriage, such as ‘Divorced’ or ‘Widower’).

While the distance functions considered above imply that Person′ and
Person′′ are equally good repairs, additional information may help to con-
clude that one repair is more plausible than the other. For instance, infor-
mation about assets or hobbies usually provides some indication whether
the underlying person is an adult or a child. As this kind of information
cannot make an exclusive discrimination between the two options, integrity
constraints are not useful here. Extending the distance functions by prob-
ability factors looks somewhat ‘ad-hoc’ and cumbersome. More promising
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approaches for resolving this problem are to adopt learning techniques for
‘pulling out’ the most plausible repairs, or to incorporate declarative theories
that give further indications on ‘how to repair’. Using such methods in our
framework is a subject for a future research.
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