
Computational Methods for Database Repair

by Signed Formulae †

Ofer Arieli (oarieli@mta.ac.il)
Department of Computer Science, The Academic College of Tel-Aviv, 4 Antokolski

street, Tel-Aviv 61161, Israel.

Marc Denecker, Bert Van Nuffelen and Maurice Bruynooghe
({marcd,bertv,maurice}@cs.kuleuven.ac.be)
Department of Computer Science, Katholieke Universiteit Leuven, Celestijnenlaan

200A, B-3001 Heverlee, Belgium.

Abstract. We introduce a simple and practical method for repairing inconsistent
databases. Given a possibly inconsistent database, the idea is to properly represent

the underlying problem, i.e., to describe the possible ways of restoring its consistency.
We do so by what we call signed formulae, and show how the ‘signed theory’ that
is obtained can be used by a variety of off-the-shelf computational models in order
to compute the corresponding solutions, i.e., consistent repairs of the database.

1. Introduction

Reasoning with inconsistent databases has been extensively studied in
the last few years, especially in the context of integration of (possibly
contradicting) independent data sources. The ability to synthesize dis-
tributed data sources into a single coherent set of information is a major
challenge in the construction of knowledge systems for data sharing,
and in many cases this property enables inference of information that
cannot be drawn otherwise. If, for instance, one source ‘knows’ that
either a or b must hold (but it doesn’t know which one is true), and
another source ‘knows’ ¬a (i.e., that a cannot be true), then a mediator
system may learn a new fact, b, that is not ‘known’ to either sources.
There is another scenario, however, in which one of the sources also
‘knows’ ¬b. In this case, not only that the mediator system cannot
consistently conclude b, but moreover, in order to maintain consistency
it cannot accept the collective information of the sources! In particular,
the consistency of each data source is not a sufficient condition for the
consistency of their collective information, which again implies that
maintaining consistency is a fundamental ability of database merging

† This paper is a revised and extended version of [9].

c© 2005 Kluwer Academic Publishers. Printed in the Netherlands.

f_amai04.tex; 10/01/2005; 15:11; p.1



2 O. Arieli, M. Denecker, B. Van Nuffelen and M. Bruynooghe

systems.1

The management of inconsistency in database systems requires deal-
ing with many aspects. At the representation level, for instance, systems
that keep their data consistent (in contrast to systems that are para-
consistent, that is: preserve the inconsistency and yet draw consistent
conclusions out of it) should be able to express how to keep the data
coherent. This, of course, carries on to the reasoning level and to the im-
plementation level, where algorithms for consistency restoration should
be developed and supported by corresponding computational models.

In this paper we introduce a novel approach to database repair that
touches upon all the aspects mentioned above: we consider a uniform
representation of repairs of inconsistent relational databases, that is,
a general description of how to restore the consistency of database
instances that do not satisfy a given set of integrity constraints. In our
approach, a given repair problem is defined by a theory that consists
of what we call signed formulae. This is a very simple but nevertheless
general way of representing the underlying problem, which can be used
by a variety of off-the-shelf computational systems. We show that out
of the signed theories, these systems efficiently solve the problem by
computing database repairs, i.e., new consistent database instances
that differ from the original database instance by a minimal set of
changes (with respect to set inclusion or set cardinality). Here we apply
two types of tools for repairing a database:

• We show that the problem of finding repairs with minimal car-
dinality for a given database can be converted to the problem of
finding minimal Herbrand models for the corresponding ‘signed
theory’. Thus, once the process for consistency restoration of the
database has been represented by a signed theory (using a polyno-
mial transformation), tools for minimal model computations (such
as the Sicstus Prolog constraint solver [23], the satisfiability solver
zChaff [50], and the answer set programming solver DLV [31]) can
be used to efficiently find the required repairs.

• For finding repairs that are minimal with respect to set inclusion,
satisfiability solvers of appropriate quantified Boolean formulae
(QBF) can be utilized. Again, we provide a polynomial-time trans-
formation to (signed) QBF theories, and show how QBF solvers
(e.g., those of [12, 22, 30, 32, 35, 41, 54]) can be used to restore
the database consistency.

1 See., e.g., [4, 10, 11, 17, 18, 25, 27, 37, 36, 45] for more details on reasoning
with inconsistent databases and further references to related works.
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The rest of the paper is organized as follows: In Section 2 we discuss
various representation issues that are related to database repair. We
formally define the underlying problem in the context of propositional
logic (Section 2.1), show how to represent it by signed formulae (Sec-
tion 2.2), and then consider an extended framework based on first-order
logic (Section 2.3). Section 3 is related to the corresponding compu-
tational and reasoning aspects. We show how constraint solvers for
logic programs (Section 3.1) and quantified Boolean formulae solvers
(Section 3.2) can be utilized for computing database repairs, based on
the signed theories. At the end of this section we also give some relevant
complexity results (Section 3.3). Section 4 is related to implementation
issues. Some experimental results of several benchmarks are given and
the suitability of the underlying computational models to the database
repair problem is analyzed in light of the results. In Section 5 we link
our approach to some related areas, such as belief revision and data
merging, showing that some basic postulates of these areas are satisfied
in our case as well. Finally, in Section 6 we conclude with some further
remarks and observations.

2. Database repair and its representation

2.1. Preliminaries

In this section we set-up the framework and define the database repair
problem with respect to this framework. To simplify the readings we
start with the propositional case, leaving the first-order case to Sec-
tion 2.3. This two-phase approach may also be justified by the fact
that the main contribution of this paper can be expressed already at
the propositional level.

Let L be a propositional language with P its underlying set of atomic
propositions. A (propositional) database instance D is a finite subset
of P. The semantics of a database instance is given by the conjunction
of the atoms in D, augmented with the Closed World Assumption [53]
(CWA(D)), stating that each atom in P that does not appear in D is
false. We shall denote the (unique) model of D and CWA(D) by HD.
Now, a formula ψ follows from D (or is satisfied in D; notation: D |= ψ)
if HD satisfies ψ. Otherwise we say that ψ is violated in D.

DEFINITION 2.1. A database is a pair (D, IC), where D is a database
instance, and IC — the set of integrity constraints — is a finite and
consistent set of formulae in L. A database DB=(D, IC) is consistent
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if every formula in IC follows from D (notation: D |= IC), that is, there
is no integrity constraint that is violated in D.

Given an inconsistent database, our goal is to restore its consistency,
i.e., to ‘repair’ the database:

DEFINITION 2.2. An update of a database DB = (D, IC) is a pair
(Insert,Retract), where Insert,Retract ⊆ P are sets of atoms such that
Insert ∩ D = ∅ and Retract ⊆ D.2 A repair of a database DB is an
update (Insert,Retract) of DB, for which ((D ∪ Insert) \ Retract, IC) is
a consistent database.

DEFINITION 2.3. The database ((D ∪ Insert) \ Retract, IC) is called
the updated database of DB=(D, IC) with update (Insert,Retract).

Intuitively, a database is updated by inserting the elements of Insert

and removing the elements of Retract. An update is a repair when its
updated database is consistent. Note that if DB is consistent, then
(∅, ∅) is a repair of DB.

Definition 2.2 can easily be generalized by allowing repairs only to
insert atoms belonging to some set E I, and similarly to delete only atoms
of a set ER. Thus, for instance, it would be possible to forbid deletions
by letting ER = ∅. In the sequel, however, we shall always assume that
any element in P may be inserted or deleted. This assumption can
easily be lifted (see also footnote 3 below).

EXAMPLE 2.4. Let P = {p, q} and DB = ({p}, {p→ q}). Clearly, this
database is not consistent. It has three repairs: R1 = ({}, {p}), R2 =
({q}, {}), and R3 = ({q}, {p}). These repairs correspond, respectively,
to removing p from the database, inserting q to the database, and
performing both actions simultaneously.

As the example above shows, there are usually many ways to repair
a given database, some of them may not be very natural or sensible. It
is common, therefore, to specify some preference criterion on the pos-
sible repairs, and to apply only those repairs that are (most) preferred
with respect to the underlying criterion. The most common criteria for
preferring a repair (Insert,Retract) over a repair (Insert′,Retract′) are
set inclusion [4, 5, 10, 11, 17, 18, 27, 37, 36], i.e.,

(Insert,Retract) ≤i (Insert′,Retract′)

if Insert ∪ Retract ⊆ Insert′ ∪ Retract′,

2 Note that these conditions imply that Insert and Retract must be disjoint.
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or minimal cardinality [10, 11, 25, 45], i.e.,

(Insert,Retract) ≤c (Insert′,Retract′)

if |Insert| + |Retract| ≤ |Insert′| + |Retract′|

(where |S| denotes the cardinality of the set S).

Both criteria above reflect the intuitive feeling that a ‘natural’ way
to repair an inconsistent database should require a minimal change,
therefore the repaired database is kept ‘as close as possible’ to the
original one. According to this view, for instance, each one of the repairs
R1 and R2 in Example 2.4 is strictly better than R3. Note also that
(∅, ∅) is the only ≤i-preferred and ≤c-preferred repair of consistent
databases, as expected.

2.2. Representation of repairs by signed formulae

Let DB = (D, IC) be a fixed database that should be repaired. The
goal of this section is to characterize the repair process of DB by a
logical theory. A key observation in this respect is that a repair of DB
boils down to ‘switching’ some atoms of P from false to true or from
true to false. Therefore, to encode a repair, we introduce a switching
atom sp for every atom p in P.3 A switching atom sp expresses whether
the status of p switches in the repaired database with respect to the
original database: sp is true when p is involved in the repair, either by
removing it or inserting it, and is false otherwise (that is, sp holds iff
p ∈ Insert∪Retract). We denote by switch(P) the set of switching atoms
corresponding to the elements of P. I.e., switch(P) = {sp | p ∈ P}.

The truth of an atom p ∈ P in the repaired database can be easily
expressed in terms of the switching atom sp of p. We define the signed
literal τp of p with respect to D as follows:

τp =

{

¬sp if p ∈ D,

sp otherwise.

An atom p is true in the repaired database if and only if its signed
literal τp is true.

Now, as the repaired database can be expressed in terms of the
switching atoms, we can also formalize the consistency of the repaired

3 In general, one can impose the requirement that inserted atoms belong to E I

and deleted atoms belong to ER, by introducing switching atoms only for the atoms
in (E I \D)∪ (ER ∩D). An atom of this set with a truth value true encodes either an
insertion of an element in E I \ D or a deletion of an element in ER ∩ D.
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database with respect to IC in terms of the switching atoms. This con-
dition is expressed by the theory obtained from IC by simultaneously
substituting signed literals τp for all atoms p occurring in IC. Formally,
for every formula ψ of L, its signed formula with respect to D is defined
as follows:

ψ = ψ [ τp1
/p1 , . . . , τpm

/pm ].

As we shall show below (Theorem 2.6), repairs of DB correspond to
models of IC = {ψ | ψ ∈ IC}.

EXAMPLE 2.5. Consider again the database DB = ({p}, {p → q})
of Example 2.4. In this case τp = ¬sp and τq = sq, hence the signed
formula of ψ = p → q is ψ = ¬sp → sq, or, equivalently, sp ∨ sq. Intu-
itively, this formula indicates that in order to restore the consistency of
DB, at least one of p or q should be ‘switched’, i.e., either p should be
removed from the database or q should be inserted to it. Indeed, the
three classical models of ψ are exactly the three valuations on {sp, sq}
that are associated with the three repairs of DB (see Example 2.4). As
Theorem 2.6 below shows, this is not a coincidence.

Next we formulate the main correctness theorems of our approach.
First we express the correspondences between updates and valuations
of the switching atoms. Given an update R = (Insert,Retract) of a
database DB, define a valuation νR on switch(P) as follows:

νR(sp) = t iff p ∈ Insert ∪ Retract.

νR is called the valuation that is associated with R. Conversely, a valu-
ation ν of switch(P) induces a database update Rν = (Insert,Retract),
where Insert = {p 6∈ D | ν(sp) = t} and Retract = {p ∈ D | ν(sp) = t}.
Obviously, these mappings are the inverse of each other.

THEOREM 2.6. For a database DB = (D, IC), let IC = {ψ | ψ ∈ IC}.

a) if R is a repair of DB then νR is a model of IC,

b) if ν is a model of IC then Rν is a repair of DB.

Proof. For (a), suppose that R is a repair of DB = (D, IC). Then, in
particular, DR |= IC, where DR = (D∪Insert)\Retract. Let ψ ∈ IC and

let HDR
be the (unique) model of DR and CWA(DR). Then HDR

(ψ) =

t, and so it remains to show that νR(ψ) = HDR
(ψ). The proof of this

is by induction on the structure of ψ, and we show only the base step

(the rest is trivial), i.e., for every atom p ∈ Dom, νR(p) = HDR
(p).

Note that νR(p) = νR(τp), hence:
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if p ∈ D\Retract, then p ∈ DR, and so νR(p) = νR(¬sp) = ¬νR(sp) =

¬f = t = HDR
(p).

if p ∈ Retract, then p ∈ D \ DR, thus νR(p) = νR(¬sp) = ¬νR(sp) =

¬t = f = HDR
(p).

if p ∈ Insert, then p ∈ DR \ D, hence νR(p) = νR(sp) = t = HDR
(p).

if p 6∈ D ∪ Insert, then p 6∈ DR, and so νR(p) = νR(sp) = f = HDR
(p).

For part (b), suppose that ν is a model of IC. Let

Rν = (Insert,Retract) = ({p 6∈ D | ν(sp) = t}, {p ∈ D | ν(sp) = t}).

We shall show that Rν is a repair of DB. According to Definition 2.2,
it is obviously an update of DB. It remains to show that every ψ ∈ IC

follows from DR = (D ∪ Insert) \ Retract, i.e., that HDR
(ψ) = t, where

HDR
is the model of DR and CWA(DR). Since ν is a model of IC,

ν(ψ) = t, and so it remains to show that HDR
(ψ) = ν(ψ). Again, the

proof is by induction on the structure of ψ, and we show here only the

base step, that is: for every atom p ∈ Dom, HDR
(p) = ν(p). Again,

νR(p) = νR(τp), hence

if p ∈ D \ Retract, then p ∈ DR and ν(sp) = f , thus HDR
(p) = t =

¬ν(sp) = ν(¬sp) = ν(p).

if p ∈ Retract, then p ∈ D \ DR and ν(sp) = t, hence HDR
(p) = f =

¬ν(sp) = ν(¬sp) = ν(p).

if p ∈ Insert, then p ∈ DR \ D and ν(sp) = t, therefore HDR
(p) = t =

ν(sp) = ν(p).

if p 6∈ D ∪ Insert, then p 6∈ DR and ν(sp) = f , and so HDR
(p) = f =

ν(sp) = ν(p). 2

The second part of the above theorem implies, in particular, that
in order to compute repairs for a given database DB, it is sufficient to
find the models of the signed formulae that are induced by the integrity
constraints of DB; the pairs that are induced by these models are the
repairs of DB.

We have now established a correspondence between arbitrary repairs
of a database and models of the signed theory IC. It remains to show
how preferred repairs according to some preference relation correspond
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to a specific class of models of IC. We do this for the minimal cardinality
preference relation ≤c and the set inclusion preference relation ≤i.

For any two valuations ν1, ν2 of switch(P), denote ν1 �c ν2 if the
number of switching atoms that are assigned the value true by ν1 is less
than those that are assigned true by ν2. Similarly, denote ν1 �i ν2 if the
set of the true switching atoms of ν1 is a subset of the set of the true
switching atoms of ν2. Now, the following property is straightforward:

LEMMA 2.7. Let R1, R2 be two updates of a database (D, IC) and let
ν1, ν2 be two models of IC = {ψ | ψ ∈ IC}. Then:

a) if R1 ≤c R2 then νR1 �c ν
R2 and if R1 ≤i R2 then νR1 �i ν

R2.

b) if ν1 �c ν2 then Rν1 ≤c R
ν2 and if ν1 �i ν2 then Rν1 ≤i R

ν2.

This lemma leads to the following simple characterizations of ≤c-
preferred and ≤i-preferred models in terms of the models of IC.

THEOREM 2.8. For a database DB = (D, IC) let IC = {ψ | ψ ∈ IC}.
Then:

a) if R is a ≤c-preferred repair of DB, then νR is a ≤c-minimal
model of IC.

b) if ν is a ≤c-minimal model of IC, then Rν is a ≤c-preferred
repair of DB.

Proof. By Theorem 2.6, the repairs of a database correspond exactly
to the models of the signed theory IC. By Lemma 2.7, ≤c-preferred
repairs of DB (i.e., those with minimal cardinality) correspond to ≤c-
minimal models of IC. 2

It follows that ≤c-preferred repairs of a database can be computed
by searching for models of IC with minimal cardinality (called ≤c-
minimal models). We shall use this fact in Section 3, where we consider
computations of preferred repairs.

A similar theorem holds also for ≤i-preferred repairs:

THEOREM 2.9. For a database DB = (D, IC) let IC = {ψ | ψ ∈ IC}.
Then:

a) if R is an ≤i-preferred repair of DB, then νR is an ≤i-minimal
model of IC.
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b) if ν is an ≤i-minimal model of IC, then Rν is an ≤i-preferred
repair of DB.

Proof. Similar to that of Theorem 2.8, replacing ≤c by ≤i. 2

2.3. First-order databases

We now turn to the first-order case. As we show below, using the
standard technique of grounding, our method of database repairs by
signed formulae may be applied in this case as well.

Let L be a language of first-order formulas based on a vocabulary
consisting of the predicate symbols in a fixed database schema S and a
finite set Dom of constants representing the elements of some domain
of discourse. In a similar way to that considered in Section 2.1, it is
possible to define a database instance D as a finite set of ground atoms
in L. The meaning of D is given by the conjunction of the atoms in D
augmented with following three assumptions:

− the Domain Closure Assumption (DCA(Dom)) states that all el-
ements of the domain of discourse are named by constants in
Dom,

− the Unique Name Assumption (UNA(Dom)) states that different
constants represent different objects, and

− the Closed World Assumption (CWA(D)) states that each atom
which is not explicitly mentioned in D is false.

These three assumptions are hard-wired in the inference mechanisms
of the database and therefore are not made explicit in the integrity
constraints. The meaning of a database instance under these three
assumptions is formalized in a model theoretical way by the least Her-
brand model semantics. The unique model of a database instance D
is the least Herbrand model HD, i.e., an interpretation in which the
domain is Dom, each constant symbol c ∈ Dom is interpreted by itself,
each predicate symbol p ∈ S is interpreted by the set {(x1, . . . , xn) |
p(x1, . . . , xn) ∈ D}, and the interpretation of the equality predicate is
the identity relation on Dom. As Dom may change during the lifetime of
the database, it is sometimes called the active domain of the database.
Again, we say that a first-order sentence ψ follows from D if the least
Herbrand model of D satisfies ψ.
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Now, a (first-order) database is a pair (D, IC), where D is a database
instance, and the set IC of integrity constraints is a finite, consistent
set of first-order sentences in L. Consistency of databases is defined
just as before.

As in the propositional case, an inconsistent first-order database
(D, IC) can be repaired by inserting or deleting atoms about elements
of Dom. However, there may be also other ways of repairing a database
that do not have an equivalent in the propositional case:

− a database may be updated by adding new elements to Dom and
inserting facts about them, or deleting elements from Dom and
removing from the database instance all atoms in which they occur;

− a database may also be updated by equalizing different elements
from Dom.

The following example illustrates these methods:

EXAMPLE 2.10.

a) Let DB = ({P (a)} , {∀x(P (x) → Q(x))}). Clearly, this database
is not consistent. When Dom = {a} the actual meaning of this
database is given by ({P (a)}, {P (a) → Q(a)}) and it is equivalent
to the database considered in Examples 2.4 and 2.5 above. As
noted in those examples, the repairs in this case, R1 = ({}, {P (a)}),
R2 = ({Q(a)}, {}), and R3 = ({Q(a)}, {P (a)}), correspond, re-
spectively, to removing P (a) from the database, inserting Q(a) to
the database, and performing both actions simultaneously.

Suppose now that the database instance is {P (a), Q(b)} and the
domain of discourse is Dom = {a, b}. Then the update ({a = b}, {})
would restore consistency by equalizing a and b. Notice that this
solution violates the implicit constraint UNA(Dom).

b) Let DB = ( {P (a)} , {∀x(P (x) → ∃y(y 6= x ∧ Q(x, y)))} ),
and Dom = {a}. Again, this database is not consistent. One of
the repairs of this database is R = ({Q(a, b)}, {}). It adds an
element b to the domain Dom and restores the consistency of the
integrity constraint, but this repair violates the implicit constraint
DCA(Dom).

In the context of database updating , we need the ability to change the
database domain and to merge and equalize two different objects of the
database. However, this paper is about repairing database inconsisten-
cies. In this context, it is much less clear whether database repairs that
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revise the database domain (and hence violate DCA(Dom)) or revise
the identity of objects (and hence violate UNA(Dom)) can be viewed as
acceptable repairs. In what follows we shall not consider such repairs as
legitimate ones. From now on, we assume that a repair does not contain
equality atoms and consists only of atoms in L, and hence, does not
force a revision of Dom. This boils down to the fact that DCA(Dom) and
UNA(Dom) are considered as axioms of IC which must be preserved in
all repairs. Under this assumption, it turns out to be easy to apply the
propositional methods described in Section 2 on first-order databases.
To do this, we use the standard process of grounding . We denote by
ground(ψ) the grounding of a sentence ψ with respect to a finite domain
Dom. That is,

− ground(ψ) = ψ if ψ is a ground atom,

− ground(¬ψ) = ¬ground(ψ),
ground(ψ1 ∧ ψ2) = ground(ψ1) ∧ ground(ψ2),
ground(ψ1 ∨ ψ2) = ground(ψ1) ∨ ground(ψ2),

− ground(∃x ψ(x)) = ∨a∈Dom ψ[a/x],
ground(∀x ψ(x)) = ∧a∈Dom ψ[a/x].
(where ψ[a/x] denotes the substitution in ψ of x by a).

Since Dom is finite, ground(ψ) is also finite. The resulting formula is
further simplified as follows:

− substitution of true for equality s = s and substitution of false for
equality s = t where s 6≡ t,4

− elimination of truth values by the following rewriting rules:

false ∧ ϕ −→ false true ∨ ϕ −→ true ¬true −→ false

true ∧ ϕ −→ ϕ false ∨ ϕ −→ ϕ ¬false −→ true

Clearly, a sentence ψ is satisfied in D if and only if ground(ψ) is sat-
isfied in D. Now, the Herbrand expansion of a database DB = (D, IC)
is the pair (D, ground(IC)), where ground(IC) = {ground(ψ) | ψ ∈ IC}.
As a Herbrand expansion of a given (first-order) database DB can be
considered as a propositional database, we can apply Definition 2.2 on
it for defining repairs of DB.

PROPOSITION 2.11. The database (D, IC∪{DCA(Dom),UNA(Dom)})
and the propositional database (D, ground(IC)) have the same repairs.

4 In general, when a set E I of insertable atoms and a set ER of retractable atoms
are specified, we substitute false for every atom A ∈ P \ (D∪E I), and true for every
atom A ∈ D \ ER.
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3. Computing preferred database repairs

In this section we show that various constraint solvers for logic pro-
grams (Section 3.1) and quantified Boolean formulae (Section 3.2) can
be utilized for computing database repairs based on the signed theories.
The complexity of these computations is also considered (Section 3.3).

3.1. Computing preferred repairs by model generation

First we show how solvers for constraint logic programs (CLPs), answer-
set programming (ASP), and SAT solvers, can be used for comput-
ing ≤c-preferred repairs (Section 3.1.1) and ≤i-preferred repairs (Sec-
tion 3.1.2). The experimental results are presented in Section 4.

3.1.1. Computing ≤c-preferred repairs
In what follows we discuss two techniques to compute ≤c-minimal Her-
brand models. The first approach is based on using finite domain CLP
solvers. Encoding the computation of ≤c-preferred repairs using a finite
domain constraint solver is a straightforward process. The switching
atoms sp are encoded as finite domain variables with domain {0, 1}. A
typical encoding specifies the relevant constraints (i.e., the encoding of
IC), assigns a special variable, Sum, for summing-up the values of the
finite domain variables associated with the switching atoms (the sum
corresponds to the number of true switching atoms), and searches for
a solution with a minimal value for Sum.

EXAMPLE 3.1. Below is a code for repairing the database of Exam-
ple 2.5 with the Sicstus Prolog finite domain constraint solver CLP(FD)
[23]5.

domain([Sp,Sq],0,1), %domain of the atoms

Sp #\/ Sq, %the signed theory

sum([Sp,Sq],#=,Sum), %Sum: num of true atoms

minimize(labeling([],[Sp,Sq]),Sum). %resolve with min. sum

The solutions computed here are [1, 0] and [0, 1], and the value of Sum
is 1. This means that the cardinality of the ≤c-preferred repairs of
DB should be 1, and that these repairs are induced by the valuations
ν1 = {sp : t, sq : f} and ν2 = {sp : f, sq : t}.6 Thus, the two ≤c-minimal

5 A Boolean constraint solver would also be appropriate here. As the Sicstus
Prolog Boolean constraint solver has no minimization capabilities, we prefer to use
here the finite domain constraint solver.

6 Here and in what follows we write ν = {x1 : a1, . . . , xn : an} to denote that
ν(xi) = ai for i = 1, . . . , n.
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repairs here are ({}, {p}) and ({q}, {}), which indeed insert or retract
exactly one atomic formula.

A second approach is based on using the disjunctive logic program-
ming system DLV [31]. To compute ≤c-minimal repairs using DLV, the
signed theory IC is transformed into a propositional clausal form. A
clausal theory is a special case of a disjunctive logic program without
negation in the body of the clauses. The stable models of a disjunctive
logic program without negation as failure in the body of rules coincide
exactly with the ≤i-minimal models of such a program. Hence, by
transforming the signed theory IC to clausal form, DLV can be used to
compute ≤i-minimal Herbrand models. To eliminate models with non-
minimal cardinality, weak constraints are used. A weak constraint is a
formula for which a cost value is defined. With each model computed
by DLV, a cost is defined as the sum of the cost values of all weak
constraints satisfied in the model. The DLV system can be asked to
generate models with minimal total cost. The set of weak constraints
used to compute ≤c-minimal repairs is exactly the set of all atoms sp;
each atom has cost 1. Clearly, ≤i-minimal models of a theory with
minimal total cost are exactly the models with least cardinality.

EXAMPLE 3.2. Below is a code for repairing the database of Exam-
ple 2.5 with DLV.

Sp v Sq. %the clause

:~ Sp. %the weak constraints

:~ Sq. %(their cost is 1 by default)

Clearly, the solutions here are {sp : t, sq : f} and {sp : f, sq : t}. These
valuations induce the two ≤c-minimal repairs of DB, R1 = ({}, {p})
and R2 = ({q}, {}).

3.1.2. Computing ≤i-preferred repairs
The ≤i-preferred repairs of a database (D, IC) correspond to the ≤i-
minimal Herbrand models of the signed theory IC. Below we use this
fact for introducing some simple techniques to compute an ≤i-preferred
repair by model generators; in Section 3.2 we consider another method
that is based on reasoning with quantified Boolean formulae.

A. A naive algorithm
First, we consider a straightforward iterative algorithm for computing
all the ≤i-preferred repairs of the input database. The idea behind the
following algorithm is to compute, at each iteration, one ≤i-minimal
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14 O. Arieli, M. Denecker, B. Van Nuffelen and M. Bruynooghe

model of the union of the signed theory IC and the exclusion of all
the repairs that have been constructed in previous iterations. By The-
orem 2.9, then, this model induces an ≤i-preferred repair of the input
database. A pseudo-code of the algorithm is shown in Figure 1.

input: a database DB = (D, IC).

1. T = IC; Exclude-Previous-Repairs = ∅;

2. do {

3. T = T ∪ Exclude-Previous-Repairs;

4. compute one ≤i-minimal Herbrand model of T ,

denote it by M;

5. if {sp |M(sp) = t} = ∅ then

6. return (∅, ∅) and exit;

% this is the only preferred repair

7. else {

8. return the update that is associated with M;

9. ψM = ¬
∧

{sp | M(sp)=t} sp;

10. Exclude-Previous-Repairs =

Exclude-Previous-Repairs ∪ {ψM};

11. }

12. } until there are no ≤i-minimal models for T ;

% no more repairs

Figure 1. ≤i-preferred repairs computation by minimal models.

EXAMPLE 3.3. Consider the database of Examples 2.4 and 2.5. At
the first iteration, one of the two ≤i-minimal Herbrand models of T =
ψ = sp ∨ sq is computed. Suppose, without a loss of generality, that
it is {sp : t, sq : f}. The algorithm thus constructs the corresponding
(≤i-preferred) repair, which is ({}, {p}). At the next iteration ¬sp is
added to T and the only ≤i-minimal Herbrand model of the extended
theory is {sp : f, sq : t}. This model is associated with another ≤i-
preferred repair of the input database, which is ({q}, {}), and this is
the output of the second iteration. At the third iteration ¬sq is added,
and the resulting theory is not consistent anymore. Thus, this theory
has no ≤i-minimal models, and the algorithm terminates. In particular,
therefore, the third repair of the database (which is not an ≤i-preferred
one) is not produced by the algorithm.

In the last example the algorithm produces exactly the set of the
≤i-preferred repairs of the input database. It is not difficult to see that
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this is the case for any input database. First, by Theorem 2.6, every
database update that is produced by the algorithm (in line 8) is a repair,
since it is associated with a valuation (M) that is a model of IC (as M
is an ≤i-minimal model of T ). Moreover, by the next proposition, the
output of the algorithm is exactly the set of the ≤i-preferred repairs of
the input database.

PROPOSITION 3.4. A database update is produced by the algorithm
of Figure 1 for input DB iff it is an ≤i-preferred repair of DB.

Proof. One direction of the proposition immediately follows from the
definition of the algorithm (see lines 4 and 8 in Figure 1). The converse
follows from Theorem 2.9 and the fact that Exclude-Previous-Repairs
blocks the possibility that the same repair will be computed more than
once. 2

Observe that Proposition 3.4 also implies the termination of the
algorithm of Figure 1.

B. Some more robust methods
The algorithm described above implements a direct and simple method
of computing all the ≤i-preferred repairs, but it assumes the existence
of an (external) procedure that computes one ≤i-minimal Herbrand
model of the underlying theory. In what follows we describe three
techniques of using ASP/CLP/SAT-solvers for efficiently computing
the desired repairs, without relying on any external process.

I. One possible technique is based on SAT-solvers. These solvers,
e.g. zChaff [50], do not directly compute minimal models, but
can be easily extended to do so. The algorithm uses the SAT-
solver to generate models of the theory T , until it finds a minimal
model. Minimality of a model M of T can be verified by checking
the unsatisfiability of T , augmented with the axioms

∨

p∈M ¬p
and

∧

p 6∈M ¬p. The model M is minimal exactly when these ax-
ioms are inconsistent with T . A pseudo-code of an algorithm that
implements this approach is shown below.

if T is not satisfiable then halt;

while sat(T ) { % as long as T is satisfiable

M := solve(T ); % find a model of T

T := T ∪
{

∨

p∈M ¬p ,
∧

p 6∈M ¬p
}

;

}

return M % this is an ≤i-minimal model of T
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16 O. Arieli, M. Denecker, B. Van Nuffelen and M. Bruynooghe

We have tested this approach using the SAT solver zChaff [50]; the
results are discussed in Section 4.

II. Another possibility is to adapt CLP-techniques to compute ≤i-
minimal models of Boolean constraints. The idea is simply to make
sure that whenever a Boolean variable (or a finite domain variable
with domain {0, 1}) is selected for being assigned a value, one first
assigns the value 0 before trying to assign the value 1.

PROPOSITION 3.5. If the above strategy for value selection is
used, then the first computed model is an ≤i-minimal model.

Proof. Consider the search tree of the CLP-problem. Each path
in this tree represents a value assignment to a subset of the con-
straint variables. Internal nodes, correspond to partial solutions,
are labeled with the variable selected by the labeling function of
the solver and have two children: the left child assigns value 0 to
the selected variable and the right child assigns value 1. We say
that node n2 is on the right of a node n1 in this tree if n2 appears in
the right subtree, and n1 appears in the left subtree of the deepest
common ancestor node of n1 and n2. It is then easy to see that
in such a tree, each node n2 to the right of a node n1 assigns the
value 1 to the variable selected in this ancestor node, whereas n1

assigns value 0 to this variable. Consequently, the left-most node
in the search tree which is a model of the Boolean constraints, is
≤i-minimal. 2

In CLP-systems such as Sicstus Prolog, one can control the order
in which values are assigned to variables. We have implemented
the above strategy and discuss the results in Section 4.

EXAMPLE 3.6. Below is a code for computing an ≤i-preferred
repair of the database of Example 2.5, using CLP(FD).

domain([Sp,Sq],0,1), % domain of the atoms

Sp #\/ Sq, % the signed theory

labeling([up,leftmost],[Sp,Sq]). % find min. solution

For computing all the ≤i-minimal repairs, a call to a procedure,
compute minimal([Sp,Sq]), should replace the last line of the
code above. This procedure is defined as follows:
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compute_minimal(Vars):- % find one minimal solution

once(labeling([up,leftmost],Vars)),

bb_put(min_repair,Vars).

compute_minimal(Vars):- % find another solution

bb_get(min_repair,Solution),

exclude_repair(Solution,Vars),

compute_minimal(Vars).

exclude_repair(Sol,Vars):- % exclude previous solutions

exclude_repair(Sol,Vars,Constraint),

call(#\ Constraint).

exclude_repair([],[],1).

exclude_repair([1|Ss],[V|Vs],V#=1 #/\ C):-

exclude_repair(Ss,Vs,C).

exclude_repair([0|Ss],[V|Vs],C):-

exclude_repair(Ss,Vs,C).

Note that the code above is the exact encoding for the Sicstus
Prolog solver of the algorithm in Figure 1.

III. A third option, mentioned already in Section 3.1.1, is to transform
IC to clausal form and use the DLV system. In this case the weak
constraints are not needed.

3.2. Computing ≤i-preferred repairs by QBF solvers

Quantified Boolean formulae (QBFs) are propositional formulae ex-
tended with quantifiers ∀,∃ over propositional variables. It has been
shown that this language is useful for expressing a variety of com-
putational paradigms, such as default reasoning [20], circumscribing
inconsistent theories [21], paraconsistent preferential reasoning [6], and
computations of belief revision operators (see [29], as well as Section 5
below). In this section we show how QBF solvers can be used for com-
puting the ≤i-preferred repairs of a given database. In this case it is
necessary to add to the signed formulae of IC an axiom (represented by
a quantified Boolean formula) that expresses ≤i-minimality, i.e., that
an ≤i-preferred repair is not included in any other database repair.
Then, QBF solvers such as QUBOS [12], EVALUATE [22], QUIP [30],
QSOLVE [32], QuBE [35], QKN [41], SEMPROP [43], and DECIDE [54],
can be applied to the signed quantified Boolean theory that is obtained,
in order to compute the ≤i-preferred repairs of the database. Below we
give a formal description of this process.
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3.2.1. Quantified Boolean formulae
In what follows we shall denote propositional formulae by Greek lower-
case letters (usually ψ, φ) and QBFs by Greek upper-case letters (e.g.,
Ψ,Φ). Intuitively, the meaning of a QBF of the form ∃p ∀q ψ is that
there exists a truth assignment of p such that ψ is true for every truth
assignment of q. Next we formalize this intuition.

As usual, we say that an occurrence of an atomic formula p is free
if it is not in the scope of a quantifier Qp, for Q ∈ {∀,∃}, and we
denote by Ψ[φ1/p1, . . . , φm/pm] the uniform substitution of each free
occurrence of a variable pi in Ψ by a formula φi, for i=1, . . . ,m. The
notion of a valuation is extended to QBFs as follows: Given a function
νat : Dom ∪ {t, f} → {t, f} s.t. ν(t) = t and ν(f) = f , a valuation ν on
QBFs is recursively defined as follows:

ν(p) = νat(p) for every atom p ∈ Dom ∪ {t, f},

ν(¬ψ) = ¬ν(ψ),

ν(ψ ◦ φ) = ν(ψ) ◦ ν(φ), where ◦ ∈ {∧,∨,→,↔},

ν(∀p ψ) = ν(ψ[t/p]) ∧ ν(ψ[f/p]),

ν(∃p ψ) = ν(ψ[t/p]) ∨ ν(ψ[f/p]).

A valuation ν satisfies a QBF Ψ if ν(Ψ) = t; ν is a model of a set Γ
of QBFs if it satisfies every element of Γ. A QBF Ψ is entailed by a
set Γ of QBFs (notation: Γ |= Ψ) if every model of Γ is also a model
of Ψ. In what follows we shall use the following notations: for two
valuations ν1 and ν2 we denote by ν1≤ν2 that for every atomic formula
p, ν1(p) → ν2(p) is true. We shall also write ν1 < ν2 to denote that
ν1 ≤ ν2 and ν2 6≤ ν1.

3.2.2. Representing ≤i-preferred repairs by signed QBFs
It is well-known that quantified Boolean formulae can be used for
representing circumscription [49], thus they properly express logical
minimization [20, 21]. In our case we use this property for expressing
minimization of repairs w.r.t. set inclusion.

Given a database DB = (D, IC), denote by IC∧ the conjunction of
all the elements in IC (i.e., the conjunction of all the signed formulae
that are obtained from the integrity constraints of DB). Consider the
following QBF, denoted by ΨDB:

∀s′p1, . . . , s
′
pn

(

IC∧ [ s′p1
/sp1

, . . . , s′pn
/spn

] →

(
∧n

i=1(s
′
pi

→ spi
) →

∧n
i=1(spi

→ s′pi
) )

)

.
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Consider a model ν of IC∧, i.e., a valuation for sp1
, . . . , spn

that makes
IC∧ true. The QBF ΨDB expresses that every interpretation µ (valu-
ation for s′p1

, . . . , s′pn
) that is a model of IC∧, has the property that

µ ≤ ν implies ν ≤ µ, i.e., there is no model µ of IC∧, s.t. the set
{sp | ν(sp) = t} properly contains the set {sp | µ(sp) = t}. In terms of
database repairs, this means that if Rν = (Insert,Retract) and Rµ =
(Insert′,Retract′) are the database repairs that are associated, respec-
tively, with ν and µ, then Insert′∪Retract′ 6⊂ Insert∪Retract. It follows,
therefore, that in this case Rν is an ≤i-preferred repair of DB, and in
general ΨDB represents ≤i-minimality.

EXAMPLE 3.7. For the database DB of Examples 2.4 and 2.5, IC ∪
ΨDB is the following theory Γ:
{

sp ∨ sq ,

∀s′p∀s
′
q

(

(s′p ∨ s
′
q) → ((s′p → sp) ∧ (s′q → sq) → (sp → s′p) ∧ (sq → s′q))

)

}

.

The models of Γ are those that assign t either to sp or to sq, but not
to both of them, i.e., ν1 = (sp : t, sq : f) and ν2 = (sp : f, sq : t). The
database updates that are induced by these valuations are, respectively,
Rν1 = ({}, {p}) and Rν2 = ({q}, {}). By Theorem 3.8 below, these are
the only ≤i-preferred repairs of DB.

THEOREM 3.8. Let DB = (D, IC) be a database and IC = {ψ | ψ ∈
IC}. Then:

a) if R is an ≤i-preferred repair of DB then νR is a model of IC ∪
ΨDB,

b) if ν is a model of IC ∪ΨDB then Rν is an ≤i-preferred repair of
DB.

Proof. Suppose that R = (Insert,Retract) is an ≤i-preferred repair
of DB. In particular, it is a repair of DB and so, by Theorem 2.6, νR is
a model of IC. Since Theorem 2.6 also assures that a database update
that is induced by a model of IC is a repair of DB, in order to prove
both parts of the theorem, it remains to show that the fact that νR

satisfies ΨDB is a necessary and sufficient condition for assuring that
R is ≤i-minimal among the repairs of DB. Indeed, νR satisfies ΨDB

iff for every valuation µ that satisfies IC∧ and for which µ ≤ νR, it
is also true that νR ≤ µ. Thus, νR satisfies ΨDB iff there is no model
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µ of IC s.t. µ < νR, iff (by Theorem 2.6 again) there is no repair R′

of DB s.t. νR
′
< νR, iff there is no repair R′ = (Insert′,Retract′) s.t.

Insert′ ∪ Retract′ ⊂ Insert ∪ Retract, iff R is an ≤i-minimal repairs of
DB. 2

DEFINITION 3.9. [4, 5] Q is a consistent query answer of a database
DB = (D, IC) if it holds in (the databases that are obtained from) all
the ≤i-preferred repairs of DB.

An immediate consequence of Theorem 3.8 is that consistent query
answering [4, 5, 37] may be represented in our context in terms of a
consequence relation as follows:

COROLLARY 3.10. Q is a consistent query answer of a database
DB = (D, IC) iff IC ∪ ΨDB |= Q.

The last corollary and Section 3.1.2 provide, therefore, some addi-
tional methods for consistent query answering, all of them are based
on signed theories.

3.3. Complexity

We conclude this section by an analysis of the computational com-
plexity of the underlying problem. As we show below, Theorem 3.8
allows us to draw upper complexity bounds for the following two main
approaches to database integration.

a) A skeptical (conservative) approach to query answering (consid-
ered, e.g., in [4, 5, 37]), in which an answer to a query Q and a
database DB is evaluated with respect to (the databases that are
obtained from) all the ≤i-preferred repairs of DB (i.e., computa-
tions of consistent query answers; see Definition 3.9 above).

a) A credulous approach to the same problem, according to which
queries are evaluated with respect to some ≤i-preferred repair of
DB.

COROLLARY 3.11. Credulous query answering lies in ΣP
2 , and skep-

tical query answering is in ΠP
2 .

Proof. By Theorem 3.8, credulous query answering is equivalent to
satisfiability checking for IC ∪ ΨDB, and skeptical query answering is
equivalent to entailment checking for the same theory (see also Corol-
lary 3.10 above). Thus, these decision problems can be encoded by
QBFs in prenex normal form with exactly one quantifier alternation.
The corollary is obtained, now, by the following well-known result:
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PROPOSITION 3.12. [60] Given a propositional formula ψ, whose
atoms are partitioned into i ≥ 1 sets {p1

1, . . . , p
1
m1

}, . . . , {pi
1, . . . , p

i
mi

},
deciding whether

∃p1
1, . . . ,∃p

1
m1
,∀p2

1, . . . ,∀p
2
m2
, . . . ,Qpi

1, . . . ,Qp
i
mi
ψ

is true, is ΣP
i -complete (where Q = ∃ if i is odd and Q = ∀ if i is even).

Also, deciding if

∀p1
1, . . . ,∀p

1
m1
,∃p2

1, . . . ,∃p
2
m2
, . . . ,Qpi

1, . . . ,Qp
i
mi
ψ

is true, is ΠP
i -complete (where Q = ∀ if i is odd and Q = ∃ if i is even).

2

As shown, e.g., in [37], the complexity bounds specified in the last corol-
lary are strict, i.e., these decision problems are hard for the respective
complexity classes.

4. Experiments and comparative study

The idea of using formulae that introduce new (‘signed’) variables
aimed at designating the truth assignments of other related variables
is used, for different purposes, e.g. in [7, 8, 19, 20]. In the area of
database integration, signed variables are used in [37], and have a
similar intended meaning as in our case. In [37], however, only ≤i-
preferred repairs are considered, and a rewriting process for converting
relational queries over a database with constraints to extended dis-
junctive queries (with two kinds of negations) over a database without
constraints, must be employed. As a result, only solvers that are able to
process disjunctive Datalog programs and compute their stable models
(e.g., DLV), can be applied. In contrast, as we have already noted
above, motivated by the need to find practical and effective methods
for repairing inconsistent databases, signed formulae serve here as a
representative platform that can be directly used by a variety of off-the-
shelf applications for computing (either ≤i-preferred or ≤c-preferred)
repairs. In what follows we examine some of these applications and
compare their appropriateness to the kind of problems that we are
dealing with.

We have randomly generated instances of a database, consisting of
three relations: teacher of schema (teacher name), course of schema
(course name), and teaches of schema (teacher name, course name).
Also, the following two integrity constraints were specified:
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ic1: A course is given by one teacher:

∀X ∀Y ∀Z
(

(teacher(X) ∧ teacher(Y ) ∧ course(Z) ∧

teaches(X,Z) ∧ teaches(Y,Z)) → X = Y
)

ic2: Each teacher gives at least one course:

∀X
(

teacher(X) → ∃Y (course(Y ) ∧ teaches(X,Y ))
)

The next four test cases (identified by the enumeration below) were
considered:

1. Small database instances with ic1 as the only constraint.

2. Larger database instances with ic1 as the only constraint.

3. Databases with IC = {ic1, ic2}, where the number of courses is
the same as the number of teachers.

4. Databases with IC = {ic1, ic2} and fewer courses than teachers.

Note that in the first two test cases, only retractions of database
facts are needed in order to restore consistency, in the third test case
both insertion and retractions may be needed, and the last test case is
unsolvable, as the theory is not satisfiable.

For each benchmark we generated a sequence of instances with an in-
creasing number of database facts, and tested them w.r.t. the following
applications:

− ASP/CLP-solvers: DLV [31] (release 2003-05-16), CLP(FD) [23]
(version 3.10.1).

− QBF-solvers: SEMPROP [43] (release 24.02.02), QuBE-BJ [35]
(release number 1.3).

− SAT-solvers: A minimal-model generator based on zChaff [50].

The goal was to construct ≤i-preferred repairs within a time limit
of five minutes. The systems DLV and CLP(FD) were tested also for
constructing ≤c-preferred repairs. All the experiments were done on a
Linux machine, 800MHz, with 512MB memory. Tables I–IV show the
results for providing the first answer.7

7 Times are given in seconds, empty cells mean that timeout is reached without
an answer, vars is the number of variables, IC is the number of grounded integrity
constraints, and size is the size of the repairs. We focus on the computation of
one minimal model. The reason is simply that in most sizable applications, the
computation of all minimal models is not feasible (there are too many of them).
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Table I. Results for test case 1.

Test info. ≤i-repairs ≤c-repairs
No. vars IC size DLV CLP zChaff SEMPROP QuBE DLV CLP

1 20 12 8 0.005 0.010 0.024 0.088 14.857 0.011 0.020
2 25 16 7 0.013 0.010 0.018 0.015 0.038 0.020
3 30 28 12 0.009 0.020 0.039 0.100 0.611 0.300
4 35 40 15 0.023 0.020 0.008 0.510 2.490 1.270
5 40 48 16 0.016 0.020 0.012 0.208 3.588 3.220
6 45 42 17 0.021 0.030 0.008 0.673 12.460 10.350
7 50 38 15 0.013 0.020 0.009 0.216 23.146 20.760
8 55 50 20 0.008 0.030 0.018 1.521 29.573 65.530
9 60 58 21 0.014 0.030 0.036 3.412 92.187 136.590

10 65 64 22 0.023 0.030 0.009 10.460 122.399 171.390
11 70 50 22 0.014 0.030 0.019 69.925
12 75 76 27 0.021 0.030 0.010 75.671
13 80 86 29 0.021 0.030 0.009 270.180
14 85 76 30 0.022 0.030 0.010
15 90 78 32 0.024 0.040 0.020
16 95 98 35 0.027 0.040 0.047
17 100 102 40 0.017 0.040 0.016
18 105 102 37 0.018 0.040 0.033
19 110 124 43 0.030 0.040 0.022
20 115 116 44 0.027 0.040 0.041

Table II. Results for test case 2.

Test info. ≤i-repairs
No. vars IC size DLV CLP zChaff

1 480 470 171 0.232 0.330 0.155
2 580 544 214 0.366 0.440 0.051
3 690 750 265 0.422 0.610 0.062
4 810 796 300 0.639 0.860 0.079
5 940 946 349 0.815 1.190 0.094
6 1080 1108 410 1.107 1.560 0.123
7 1230 1112 428 1.334 2.220 0.107
8 1390 1362 509 1.742 2.580 0.135
9 1560 1562 575 2.254 3.400 0.194

10 1740 1782 675 2.901 4.140 0.182
11 1930 2042 719 3.592 5.260 0.253
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Table III. Results for test case 3.

Test info. ≤i-repairs ≤c-repairs
No. vars size DLV CLP zChaff DLV CLP

1 25 4 0.008 0.030 0.066 0.010 0.05
2 36 9 0.008 0.030 0.087 0.070 0.42
3 49 15 0.027 0.250 0.050 0.347 9.48
4 64 23 0.019 0.770 0.013 2.942 58.09
5 81 30 0.012 4.660 0.102 26.884
6 100 34 0.021 0.058 244.910
7 121 38 0.626 1.561
8 144 47 0.907 2.192
9 169 51 0.161 0.349

10 196 68 1.877 4.204
11 225 70 8.496 16.941

Table IV. Results for test case 4.

Test info. ≤i-repairs ≤c-repairs
No. teachers courses DLV CLP zChaff DLV CLP

1 5 4 0.001 0.01 0.001 0.001 0.001
2 7 5 0.005 0.13 0.010 0.005 0.120
3 9 6 0.040 1.41 0.020 0.042 1.400
4 11 7 0.396 17.18 0.120 3.785 17.170
5 13 8 3.789 1.050 44.605
6 15 9 44.573 13.370
7 17 10

The results of the first benchmark (Table I) already indicate that
DLV, CLP, and zChaff perform much better than the QBF-solvers. In
fact, among the QBF-solvers that were tested, only SEMPROP could
repair within the time limit most of the database instances of bench-
mark 1, and none of them could successfully repair (within the time
restriction) the larger database instances, tested in benchmark 2.

Another observation from Tables I–IV is that DLV, CLP, and the
zChaff-based system, perform very good for minimal inclusion greedy
algorithms. However, when using DLV and CLP for cardinality mini-
mization, their performance is much worse. This is due to an exhaustive
search for a ≤c-minimal solution.

While in benchmark 1 the time differences among DLV, CLP, and
zChaff, for computing ≤i-repairs are marginal, in the other benchmarks
the differences become more evident. Thus, for instance, zChaff per-
forms better than the other solvers w.r.t. bigger database instances with
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many simple constraints (see benchmark 2), while DLV performs better
when the problem has bigger and more complicated sets of constraints
(see benchmark 3). The SAT approach with zChaff was the fastest
in detecting unsatisfiable situations (see benchmark 4). As shown in
Table IV, detecting unsatisfiability requires a considerable amount of
time, even for small instances.

Some of the conclusions from the experiments may be summarized
as follows:

1. In principle, QBF-solvers, CLP-solvers, ASP-solvers, and SAT-
solvers are all adequate tools for computing database repairs.

2. All the QBF-solvers, as well as DLV and zChaff, are ‘black-boxes’
that accept the problem specification in a certain format. In
contrast, CLP(FD) provides a more ‘open’ environment, in which
it is possible to incorporate problem-specific search algorithms,
such as the greedy algorithm for finding ≤i-minimal repairs (see
Section 3.1.2).

3. Currently, the performance of the QBF-solvers is considerably
below that of the other solvers. Moreover, most of the QBF-
solvers require that the formulae are represented in prenex CNF,
and specified in Dimacs or Rintanen format. These requirements
are usually space-demanding. In our context, the fact that many
QBF-solvers (e.g., SEMPROP and QuBE-BJ) return only yes/no
answers (according to the satisfiability of the input theory), is
another problem, since it is impossible to construct repairs only
by these answers. One needs to be able to extract the assign-
ments to the outmost existentially quantified variables (as done,
e.g., by DECIDE [54]).

Despite these drawbacks of QBF-solvers, reasoning with QBFs
seems to be particularly suitable for our needs, since this frame-
work provides a natural way to express minimization (in our
case, representations of optimal repairs). It is most likely, there-
fore, that future versions of QBF-solvers will be the basis of
powerful mechanisms for handling consistency in databases.

5. Relations to merging and revision operators

In this section we link our approach to two related areas, namely belief
revision and data merging. The general purpose in both areas is to de-
termine what kind of information is rational to support in the context of
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dynamically evolving systems. It is common to describe ideal properties
of the merging and/or revision process by a list of general postulates,
reflecting some desiderata of the underlying operator. The idea is to
describe the change in the data at an abstract level , independent on
how the information is represented or manipulated.8 In what follows
we show that some basic postulates of the merging/revision operators
are satisfied in our case, which implies that our framework may also be
useful for purposes other than consistency restoration.

5.1. Data merging

The goal of a merging system is to synthesize a coherent belief from
distributed data sources. This goal has attracted many studies with
different methods for this task. Each method may be associated with
a merging operator that formally describes the integration process
under consideration. Among the merging operators that have been
proposed are that of Baral et al. [13, 14], which is based on computa-
tions of maximal consistent subsets of the global information, Lin and
Mendelzon’s theory of merging by majority operators [47] that resolve
contradictions among different sources by ‘majority votes’, Liberatore
and Schaerf’s merging operator [44] that in case of conflicts selects the
most ‘plausible’ source(s) and ignores the others, and the operators in
[16] that merge prioritized data sources in the context of possibilistic
logic. Recently, Delgrande and Schaub [28] introduced two other types
of merging operators, one of which produces a belief-set retaining as
much as possible of the contents of the distributed sources, and the
other one produces a new (possibly empty) belief-set to which the
original sources are ’projected’.9 In [42], Konieczny and Pino-Pérez
take a more abstract view and study postulates for so-called IC merging
operators, i.e. operators that merge a multi-set of belief bases and a set
of integrity constraints into a consistent belief base that satisfies the
integrity constraints.

In this section, we illustrate how our database repair methods can be
viewed as an application of an operator for merging different databases
into a database which satisfies a given set of integrity constraints. This
operator takes a set of database instances D = {D1, . . . ,Dk} and a
set IC of integrity constraints, and returns a formula ∆IC(D) that

8 See the seminal paper of Alchourrón, Gärdenfors and Makinson (AGM) [1], as
well as, e.g., [26, 34, 39, 40, 42, 44].

9 Thus, for instance, the common information (p ∧ q) ∨ (¬p ∧ ¬q) of the belief
sets (p ∧ q) and (¬p ∧ ¬q) must be included in the belief-set of the former merging
operator, while this formula may not be part of the merged belief set of the latter
one. See [28] for more information.
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characterizes all the repairs of DB = (D, IC), where D = ∪Di∈DDi.
In our context, we assume that the elements in D share the same
domain Dom. Consequently, the domain closure axiom DCA(Dom) and
the unique name axioms UNA(Dom) hold. In addition, we assume that
although each database might have incomplete knowledge, together
all databases in D have complete knowledge, and so we can apply the
closed world assumption CWA on D=∪Di∈DDi. It may happen that this
database instance does not satisfy the integrity constraints IC. In that
case, every repair of D is a possible solution for the integration problem.
Rather than returning the set of all repaired databases, our merging
operator returns a formula that characterizes all repaired databases at
once. This formula is a QBF expressing that the repaired databases
satisfy the integrity constraints and have minimal Hamming distance
with respect to the united database instance D. Now, according to
Theorem 3.8, this formula is represented by IC∧ ∧ ΨDB, where ΨDB is
the formula

∀s′p1, . . . , s
′
pn

(

IC∧ [ s′p1
/sp1

, . . . , s′pn
/spn

] →

(
∧n

i=1(s
′
pi

→ spi
) →

∧n
i=1(spi

→ s′pi
) )

)

.

Accordingly, we define

∆IC(D) := IC∧ ∧ ΨDB.

By Theorem 3.8, the databases that are obtained from the models of
this QBF are indeed the closest consistent databases to (∪Di∈DDi, IC).
As such, ∆IC(D) characterizes a class of possible worlds that cor-
respond to the set of the ≤i-preferred repaired databases. Each one
of these worlds satisfies DCA(Dom) and UNA(Dom) and consequently,
DCA(Dom) and UNA(Dom) should be considered as implicit integrity
constraints of IC. Below we formalize these considerations.

DEFINITION 5.1. A database merging context is a pair U = (D, IC),
where D = {D1, . . . ,Dk} is a set of database instances, all of them
having the same domain of discourse Dom, and IC is a set of first-order
formulae (the ‘global integrity constraints’).

Given a merging context U , the united database of U is a database
DBU whose database instance consists of the union of all the elements
in D. The QBF ∆IC(D) defined above is called the merging theory of
U (or the repair characterization of DBU ).

The next proposition immediately follows from Theorem 3.8:

PROPOSITION 5.2. Let U be a database merging context. A pair R =
(Insert,Retract) is an ≤i-preferred repair of the united database DBU iff
νR is a model of the merging theory ∆IC(D).
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Next we evaluate our merging operator by checking to what extent it
satisfies the postulates of [42] (cf. [42, Definition 3.1]). Since the formula
∆IC(D) is defined in terms of switch(L) while in [42] the merged belief
base is expressed in terms of the original language L, we shall use signed
versions of the postulates.

The first postulate makes sure that the merging result preserves all
the integrity constraints.

M0 ∆IC(D) |= ψ for every signed integrity constraint ψ ∈ IC.

Another basic property of data merging is its consistency.

M1 ∆IC(D) is consistent.

The next postulate refers to situations in which the distributed
databases are consistent with the integrity constraints.

M2 If DBU is a consistent database, then ∆IC(D) is logically equivalent
to

∧

sp ∈ switch(L) ¬sp.

In other words, [M2] states that if DBU is a consistent database,
then DBU itself should be the unique repaired database. It follows,
then, that nothing should be modified in case that the union of the
distributed data is consistent with respect to the set of integrity con-
straints.

M3 If IC1 is logically equivalent to IC2 and ∪Di∈D1
Di = ∪Di∈D2

Di,
then ∆IC1

(D1) is logically equivalent to ∆IC2
(D2).

This postulate states the principle of irrelevancy of syntax , that is,
if the unions of database instances in D1 and in D2 are identical, and
if IC1 is logically equivalent to IC2, then the result of merging with
respect to IC1 will be the same as the merging with respect to IC2.

M4 ∆IC1
(D) ∧ ∆IC2

(D) |= ∆IC1∪IC2
(D).

The last postulate is a weaker version of a postulate adapted from
[38] (see also [42]), which corresponds to the extended AGM postulate
(K+̇7) for revision, but with respect to integrity constraints.

The next proposition vindicates our claim that the repair method-
ology induces a merging operator.

PROPOSITION 5.3. Let U = (D, IC) be a database merging context.
Then postulates [M0] — [M4] are valid for ∆IC(D).
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Proof. Indeed, [M0] follows from the definition of ∆IC(D) which
contains IC∧; [M1] follows from the assumption that IC is consistent,
which implies that IC is consistent as well and has a minimal model
(also, by part (a) of Theorem 3.8, ∆IC(D) always has a classical model).
For [M2], we observed earlier that if DBU is consistent then the empty
update (∅, ∅) is the only ≤i-minimal repair and ∆IC(D) has only one
model, which assigns false to all switching atoms sp. Thus, this QBF
is equivalent to

∧n
i=1 ¬spi

. [M3] is clearly satisfied since if ∪Di∈D1
Di =

∪Di∈D2
Di and if IC1 ↔ IC2 then IC1 ↔ IC2 as well. In this case it is

evident that ∆IC1
(D1) and ∆IC2

(D2) are logically equivalent. Finally,
[M4] immediately follows from the fact that a minimal model of IC1

which is also a minimal model of IC2, is a minimal model of IC1 ∧ IC2.
2

Postulates [M0] — [M4] above correspond to postulates that are
also satisfied by Konieczny and Pino-Pérez’s IC merging operator [42]
(denoted in [42] by [IC0], [IC1], [IC2], [IC3] and [IC7]; see Theo-
rem 3.7 in that paper).10 There are, however, a number of important
differences between the present operator and IC merging operators of
[42]. Some differences are due to the fact that our operator merges
databases under explicit constraints together with implicit constraints
DCA(Dom), UNA(Dom) and CWA. These constraints are absent in the
framework of [42], where the underlying operators merge belief bases
rather than databases. Another difference is that the present operator
∆IC , unlike IC merging operators and unlike other operators that merge
by ‘majority votes’ [46, 47], is majority independent, i.e., if Dn denotes
the multiset that consists of n copies of D, then ∆IC(D1 ∪ Dn

2 ) =
∆IC(D1 ∪ D2). Intuitively, this means that a repair of a database that
is obtained by merging two different database instances, is independent
of the ‘popularity’ of those instances. In particular, merging (and then
repairing) multi-sets of database instances is the same as merging sets
of database instances. In contrast, every IC merging operator in the
sense of [42] is majority dependent (see [42, Theorem 3.3]).

By the above discussion, it is not surprising that there are some
postulates of IC merging operators that ∆IC does not satisfy. Below
we consider two of them:

10 In fact, [M3] is a stronger version of [IC3], as the latter postulate uses bijections
for defining equivalence between two sets of integrity constraints. Also, [M4] is a
weaker version of [IC7].
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PROPOSITION 5.4. There exist two database merging contexts U1 =
(D1, IC) and U2 = (D2, IC), with the same domain11, such that

a) ∆IC(D1) ∧ ∆IC(D2) 6|= ∆IC(D1 ∪ D2).

b) ∆IC(D1 ∪ D2) 6|= ∆IC(D1) ∧ ∆IC(D2).

Proof. Consider D1 = {p}, D2 = {q}, and IC = {(p∧q)∨r}. Then the
models of ∆IC({D1}) are the minimal valuations satisfying the formula
(¬sp ∧ sq) ∨ sr, the models of ∆IC({D2}) are the minimal valuations
satisfying (sp ∧ ¬sq) ∨ sr, and the models of ∆IC({D1,D2}) are the
minimal valuations that satisfy the formula (¬sp ∧¬sq)∨ sr. It follows,
then, that {sp :f, sq :f, sr : t} is a model of ∆IC({D1})∧∆IC({D2}) that
does not satisfy ∆IC({D1,D2}) (as it is not a minimal model of (¬sp ∧
¬sq) ∨ sr). This shows one part of the proposition. For the other part,
consider the same example. Then ∆IC({D1})∧∆IC({D2}) is consistent
(we have shown that it has a model), yet {sp :f, sq :f, sr :f} is a model
of ∆IC({D1,D2}) that is not a model of ∆IC({D1}) ∧ ∆IC({D2}). 2

The positive counterparts of the two properties mentioned in the
last proposition (that is, where 6|= is replaced by |=) are denoted in [42]
by [IC5] and [IC6], respectively. We note that [IC6] is falsified also
by the merging operators of [28], mentioned before.

5.2. Belief revision

The purpose of a belief revision theory is to describe how a ‘belief-base’
is obtained by the revision of a belief set D by some new informa-
tion, µ. A belief revision operator ◦ therefore describes the kind of
information change that should be made in face of new (possibly con-
tradicting) information. Often, the underlying operator forces only a
minimal amount of data modifications, keeping the revised information
‘as close as possible’ to the ground information (D) on one hand, and
maintaining consistency with the new information (µ), on the other
hand. This criterion, often called the principle of minimal change, is
one of the most widely advocated postulates of belief revision theory.

Identically, ∆IC({D}) may be viewed as representing the (construc-
tion of) databases that are as close as possible to D, and do not
contradict IC. It follows, then, that a belief revision operator ◦ may be
defined in our case as follows:

D ◦ µ = ∆µ({D}).

11 This assumption is needed for assuring that (D1 ∪ D2, IC) would also be a
database merging context.
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The intended meaning in our context of this operator is to describe
‘how to revise D in order to be compatible with µ’.

Once again, the fact that here we consider databases rather than
belief bases (and hence the constraints DCA, UNA and CWA are im-
plicitly enforced in our case) implies some obvious differences between
the present approach and those of, e.g., [38, 42, 44]. Still, it is possible
to show that the revision operator that our formalism induces, satisfies
some well-known postulates in the literature of belief revision. Indeed,
by postulates [M0] – [M4] it is obvious that the following properties
are satisfied by ◦:

R0 D ◦ µ implies µ.

R1 D ◦ µ is consistent.

R2 If D ∪ µ is consistent, then D ◦ µ should be logically equivalent to
∧

sp ∈ switch(L) ¬sp.
12

R3 If µ1 is logically equivalent to µ2, then (D◦µ1) is logically equivalent
to (D ◦ µ2).

R4 (D ◦ µ1) ∧ (D ◦ µ2) |= D ◦ (µ1 ∪ µ2).

We note, finally, that these postulates resemble those of Katsuno
and Mendelzon [38]. See [38, 42] for a more detailed discussion on the
postulates of [38] and their relations to the IC merging postulates [42]
and the AGM postulates of belief revision operators [1].

6. Summary and concluding remarks

This work provides further evidence for the well-known fact that in
many cases a proper representation of a given problem is a major step
in finding robust solutions to it. In our case, a uniform method for
encoding the restoration of database consistency by signed formulae
allows us to use off-the-shelf solvers for efficiently computing the desired
repairs.

As shown in Corollary 3.11, the task of repairing a database is on
the second level of the polynomial hierarchy, hence it is not tractable.
However, despite the high computational complexity of the problem,
the experimental results of Section 4 show that our method of repairing

12 Thus, D should not be revised in this case.
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databases by signed theories is practically appealing , as it allows a rapid
construction of repairs for large problem instances.

There are several other existing implementations of database in-
tegration, among which are the Asystem [10, 11] that is based on
abductive logic programming, Subrahmanian’s amalgamating system
[57] that is based on multiple-valued (annotated) logic, Liberatore and
Schaerf’s BReLS system [45] that integrates propositional (possibly
prioritized) sources without integrity constraints by a preference se-
mantics on database interpretations, and the system for data repair of
Franconi et al. [33] that is based on the language DLPω for disjunctive
logic programming with constraints, supported by DLV [31]. As noted
above, the main advantages of our approach in comparison to those
implementations is its simplicity, generality, and the fact that it can
be easily implemented by a diversity of off-the-shelf solvers. However,
in its current form, this approach has some substantial drawbacks as
well. One of which is that repair computation is restricted only to the
Herbrand universe, while quite interesting repairs may exist outside
this universe. To see this, consider the following example:

EXAMPLE 6.1. Suppose that there are two courses that cannot be
taught by the available lecturers, e.g., because they do not have the
necessary expertise. There are two possibilities to meet the demand
that every course has a lecturer: one solution is to insert a new person
with the necessary expertise for both courses; the other possibility is to
insert two different persons, each one with expertise for one course.13

Either solution lies outside the corresponding Herbrand universe, as it
requires the introduction of new objects. In contrast to the abductive
system presented in [10, 11] (which can compute both solutions), the
solvers considered here cannot find these solutions, because grounding
is inherent by the Domain Closure Assumption. Computing repairs
outside the Herbrand universe is a subject for future work.

Another interesting topic for future exploration is related to defini-
tions of domain dependent preference criteria among repairs (note that
the preference criteria considered here, namely set inclusion ≤i and
minimal cardinality ≤c, are domain independent). To see the usefulness
of this, consider the following example:

13 An interesting question that arises here is which one of these solutions should
be preferred. The first one involves a smaller amount of objects to be introduced,
while the other solution makes less commitments, as it does not require that the
same person must have expertise on two different courses.
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EXAMPLE 6.2. Consider a database with the following instance
{

employee(Alice), salary(Alice, 1000),
employee(Bob), salary(Bob, 1000), director(Bob)

}

and two integrity constraints: one specifies that every employee has a
salary, and the other (violated) one says that the director should earn
more money than the other employees. Now, consider two repairs of
this database:

R1 = ({salary(Bob, 1100)}, {salary(Bob, 1000)}),

R2 = ({}, {employee(Alice), salary(Alice, 1000)}).

R1, which updates the salary of Bob, has the same cardinality as R2,
which removes Alice from the database. However, in this case one would
usually prefer the former repair over the latter one.

It is quite evident that in the last example a domain dependent crite-
rion should be incorporated for preferring R1 over R2. Such a criterion
can be based on the polynomial-time computable distance function
between sets of elements introduced in [52]. This distance is based on a
notion of matching: each element of each set is linked with at most one
element of the other set and the distance is defined as the cost of an opti-
mal matching, that is: the sum of the distances of the matched elements
that results in a minimal value (where elements that are not linked
account for half of the maximal distance)14. Consider, for instance, a
distance function d, defined by d(x, y) = 0 if x = y and d(x, y) = 1
otherwise. In Example 6.2, then, the optimal matchings between the
original database and the repaired database that is obtained by R1 links
each one of employee(Alice), employee(Bob), salary(Alice, 1000) and
director(Bob) to the same fact in the repaired database, and matches
salary(Bob, 1000) to salary(Bob, 1100). The resulting distance is there-
fore 0 + 0 + 0 + 0 + 1 = 1 (which is identical to the distance between
Insert = {salary(Bob, 1100)} and Retract = {salary(Bob, 1000)}). The
cost of the optimal matching between the original database and the
repaired database that is obtained by R2, is the cost of the two retracted
elements that cannot be linked to an element in the repaired database,
which is 1

2 + 1
2 = 1 (again, this is also the distance between Insert = {}

and Retract = {employee(Alice), salary(Alice, 1000)}). In other words,
the distance between the original and repaired database correspond to
half of the cardinality of the repair, hence the preferred repairs under
this distance function correspond to the ≤c-minimal repairs.

14 Note that in case that the distance between the elements is a metric (i.e., the
distance to oneself is zero, the distance is symmetric, and the triangular inequality
holds), the distance function between the corresponding sets is a metric as well.
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A more robust preference criterion is obtained by the distance func-
tion defined in [24]:

dist(P (t1, . . . , tm), Q(s1, . . . , sn)) =











1 if P 6= Q,

1
2n

n
∑

i=1

d(ti, si) otherwise.

The distance between the original database of Example 6.2 and the
database repaired by R1 in that example is therefore the same as
the distance between salary(Bob, 1000) and salary(Bob, 1100), which
is 1

4(0 + 1) = 1
4 . Note that according to this definition, the distance

between the original database and the database repaired by R2 is still
1. It follows, then, that now R1 becomes the preferred repair, as in-
tuitively expected. Computationally, the distance between a database
and its repair based on (Insert,Retract) corresponds to the distance
between Insert and Retract. Hence, we expect that it would be feasible to
adopt the methods described in this paper also for computing preferred
repairs when the preference criteria are domain dependent. This is,
however, outside the scope of the present paper, and remains a topic
for future work.

To conclude this section (as well as the whole paper), it is worth
putting the current work in a broader perspective. Often, a database
becomes inconsistent when it contains information that arrives from
different (distributed) data sources, so (as we hinted in Section 5)
the current work on restoration of database consistency is particularly
relevant in the context of data integration. However, a comprehensive
solution to this problem has to address some further issues that have
not been considered here. One important topic is, e.g., that of schema
integration, that is, the ability to uniformly represent and reason with
independent databases that contain information about a common do-
main, but may have different schemas. Detailed discussions on schema
matching and related aspects may be found, e.g., in [15, 17, 51, 58, 59].
Another issue that is often raised in the context of database integration
is related to the management of dynamically evolving data sources. This
task sometimes requires modifications of the domain of discourse and
revisions of integrity constraints. When the set of integrity constraints
is given in a clause form, methods of dynamic logic programming [2, 3]
may be useful for this purpose. When the types of changes are pre-
dictable, or can be characterized in some sense, abductive theories (in
the context of extended disjunctive logic programs) or temporal in-
tegrity constraints (in the context of temporal databases) can also be
used in order to specify how to treat new information. See, e.g., [10, 55]
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for a representation of knowledge base updates by abductive theories,
and [48, 56] for a discussion on temporal integrity constraints and
temporal databases in logic programming based formalisms.
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