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Abstract. We introduce a general framework for reasoning with priori-
tized data by aggregation of distance functions, study some basic prop-
erties of the entailment relations that are obtained, and relate them to
other approaches for maintaining uncertain information.

1. Introduction

Reasoning with prioritized data is at the heart of many information systems.
Eminent examples for this are, e.g., database systems, where integrity constraints
are superior to raw data [1,2,3], ranked knowledge-bases, where information is
graded according to its reliability or accuracy [4,5,6], and (iterated) belief revision,
where more recent data gets higher precedence than older one [7,8,9,10]. There is
no wonder, therefore, that reasoning with prioritized information is a cornerstone
of many formalisms for maintaining uncertainty, such as annotated logic [11],
possibilistic logic [12], and System Z [13].

In this paper we handle prioritized data by a possible-world semantics, derived
by distance considerations. To illustrate this, consider the following example:

Example 1 Let Γ be a set of formulas, consisting of the following subtheories:

Γ1 = { bird(x) → fly(x), color of(Tweety, Red) },
Γ2 = { bird(Tweety), penguin(Tweety) },
Γ3 = { penguin(x) → ¬fly(x) }.

Intuitively, Γ is a theory with three priority levels, where precedence is given to
formulas that belong to subtheories with higher indices, that is, for 1≤ i<j≤3,
each formula in Γj is considered more important (or more reliable) than the
formulas in Γi.

A justification for the representation above may be the following: the highest
level (Γ3) consists of integrity constraints that should not be violated. In our case,
the single rule in this level specifies that a characteristic property of penguins is
that they cannot fly, and there are no exceptions for that. The intermediate level
(Γ2) contains some known facts about the domain of discourse, and the lowest
level (Γ1) consists of default assumptions about this domain (in our case, a bird
can fly unless otherwise stated), and facts with lower certainty.



Note that as a ‘flat’ set of assertions (i.e., when all the assertions in Γ have the
same priority), this theory is classically inconsistent, therefore everything follows
from it, and so the theory is useless. However, as Γ is prioritized, one would like
to draw the following conclusions from it:

1. Conclude bird(Tweety) and penguin(Tweety) (but not their negations),
as these facts are explicitly stated in a level that is consistent with the
higher priority levels.

2. Conclude ¬fly(Tweety) (and do not conclude fly(Tweety)), as this fact
follows from the two top priority levels, while its complement is inferrable
by a lower level (which, moreover, is inconsistent with the higher levels).

3. Conclude color of(Tweety, Red) (but not its negation), since although
this fact appears in the lowest level of Γ, and that level is inconsistent with
the other levels, it is not contradicted by any consistent fragment of Γ, so
there is no reason to believe that color of(Tweety, Red) does not hold.

The kind of reasoning described above is obtained in our framework by the
following two principles:

• A distance-based preference relation is defined on the space of interpre-
tations, so that inferences are drawn according to the most preferred in-
terpretations. In the example above, for instance, interpretations in which
fly(Tweety) is false will be ‘closer’ to Γ, and so more plausible, than inter-
pretations in which fly(Tweety) is true, (thus item (2) above is obtained).

• Priorities are considered as extra-logical data that is exploited by an iter-
ative process that first computes interpretations that are as close as possi-
ble to higher-levelled subtheories, and then makes preference among those
interpretations according to their closeness to lower-levelled subtheories.

The goal of our work is to examine these principles and to show that they
reflect a variety of methods for maintaining imprecise information. 1

2. Distance-based Entailments for Prioritized Theories

Let L be a propositional language with a finite set Atoms of atomic formulas.
The space of all the two-valued interpretations on Atoms is denoted by ΛAtoms. A
theory Γ in L is a (possibly empty) finite multiset of formulas in L. The set of
atomic formulas that occur in the formulas of Γ is denoted Atoms(Γ) and the set
of models of Γ (that is, the interpretations on Atoms(Γ) in which every formula
in Γ is true) is denoted mod(Γ).

Definition 2 An n-prioritized theory is a theory Γ〈n〉 in L, partitioned into n ≥ 1
pairwise disjoint sub-theories Γi (1 ≤ i ≤ n). Notation: Γ〈n〉 = Γ1⊕Γ2⊕ . . .⊕Γn.

In what follows we shall usually write Γ instead of Γ〈n〉. Intuitively, formulas
in higher levels are preferred over those in lower levels, so if 1≤ i < j ≤ n then
a formula ψ ∈ Γj overtakes any formula φ ∈ Γi. Note that in this writing the
precedence is righthand increasing .

1Due to a lack of space some proofs are reduced or omitted.



Definition 3 Let Γ = Γ1 ⊕ . . .⊕ Γn be an n-prioritized theory.

• For any 1≤ i≤n, denote the n − i + 1 highest levels of Γ by Γ≥i, that is,
Γ≥i = Γi ⊕ . . .⊕ Γn.

• Denote by Γ≥i the ‘flat’ (1-prioritized) theory, obtained by taking the union
of the priority levels in Γ≥i, that is, Γ≥i = Γi ∪ . . . ∪ Γn. Also, Γ = Γ≥1.

• The consistency level con of Γ is the minimal value i≤n such that Γ≥i is
consistent. If there is no such value, let con = n + 1 (and then Γ≥con = ∅).

Definition 4 A total function d :U× U→R+ is called pseudo distance on U if it
satisfies the following two properties:

Symmetry: ∀u, v∈U d(u, v) = d(v, u).

Identity Preservation: ∀u, v∈U d(u, v) = 0 iff u = v.

A distance function on U is a pseudo distance on U with the following property:

Triangulation: ∀u, v, w∈U d(u, v) ≤ d(u,w) + d(w, v).

Example 5 The following two functions are distances on ΛAtoms.

• The drastic distance: dU (ν, µ) = 0 if ν = µ and dU (ν, µ) = 1 otherwise.

• The Hamming distance: dH(ν, µ) = |{p ∈ Atoms | ν(p) 6= µ(p)} |. 2

Definition 6 A numeric aggregation function f is a total function that accepts
a multiset of real numbers and returns a real number. In addition, f is non-
decreasing in the values of its argument3, f({x1, . . . , xn}) = 0 iff x1 = . . . = xn =
0, and ∀x∈R f({x}) = x.

Definition 7 An aggregation function is called hereditary , if f({x1, ..., xn}) <
f({y1, ..., yn}) implies that f({x1, ..., xn, z1, ..., zm}) < f({y1, ..., yn, z1, ..., zm}).

In the sequel, we shall apply aggregation functions to distance values. As
distances are non-negative, summation, average, and maximum are all aggregation
functions. Note, however, that while summation and average are hereditary, the
maximum function is not.

Definition 8 A pair P = 〈d, f〉, where d is a pseudo distance and f is an aggre-
gation function, is called a (distance-based) preferential setting . Given a theory
Γ = {ψ1, . . . , ψn}, an interpretation ν, and a preferential setting 〈d, f〉, define:

• d(ν, ψi) = min{d(ν, µ) | µ ∈ mod(ψi)}, 4

• δd,f (ν, Γ) = f({d(ν, ψ1), . . . , d(ν, ψn)}).
2That is, dH(ν, µ) is the number of atoms p such that ν(p) 6= µ(p). This function is also

known as the Dalal distance [14].
3I.e., the function does not decrease when a multiset element is replaced by a bigger one.
4Below, we exclude classical contradictions from a theory. Alternatively, if ψ is not satisfiable,

one may let d(ν, ψ) = 1 + max{d(ν, µ) | ν, µ ∈ ΛAtoms}.



Definition 9 A (pseudo) distance d is unbiased , if for every formula ψ and inter-
pretations ν1, ν2, if ν1(p) = ν2(p) for every p ∈ Atoms(ψ), then d(ν1, ψ) = d(ν2, ψ).

The last property assures that the ‘distance’ between an interpretation and
a formula is independent of irrelevant atoms (those that do not appear in the
formula). Note, e.g., that the distances in Example 5 are unbiased.

For a preferential setting P = 〈d, f〉 we now define an operator ∆P that
introduces, for every n-prioritized theory Γ, its ‘most plausible’ interpretations,
namely: the interpretations that are δd,f -closest to Γ.

Definition 10 Let P = 〈d, f〉 be a preferential setting. For an n-prioritized theory
Γ = Γ1 ⊕ Γ2 ⊕ . . .⊕ Γn consider the following n sets of interpretations:

• ∆n
P(Γ) =

{
ν ∈ ΛAtoms | ∀µ ∈ ΛAtoms δd,f (ν, Γn) ≤ δd,f (µ, Γn)

}
,

• ∆n−i
P (Γ) =

{
ν∈∆n−i+1

P (Γ) | ∀µ∈∆n−i+1
P (Γ) δd,f (ν, Γn−i) ≤ δd,f (µ, Γn−i)

}
for every 1 ≤ i < n.

The sequence ∆n
P(Γ), . . . , ∆1

P(Γ) is clearly non-increasing, as sets with smaller
indices are subsets of those with bigger indices. This reflects the intuitive idea
that higher-levelled formulas are preferred over lower-levelled formulas, thus the
interpretations of the latter are determined by the interpretations of the former.
Since the relevant interpretations are derived by distance considerations, each set
in the sequence above contains the interpretations that are δd,f -closest to the
corresponding subtheory among the elements of the preceding set in the sequence.

Denote by ∆P(Γ) the last set obtained by this sequence (that is, ∆P(Γ) =
∆1
P(Γ)). The elements of ∆P(Γ) are the most plausible interpretations of Γ. These

are the interpretations according to which the Γ-conclusions are drawn:

Definition 11 Let P = 〈d, f〉 be a preferential setting. A formula ψ follows from
an (n-prioritized) theory Γ, if every interpretation in ∆P(Γ) satisfies ψ (That is,
if ∆P(Γ) ⊆ mod(ψ)). We denote this by Γ |=P ψ.

Example 12 Consider again Example 1, and let P = 〈dH , Σ〉. Then:

Γ |=P bird(Tweety), Γ |=P penguin(Tweety),
Γ |=P color of(Tweety, Red), Γ |=P ¬fly(Tweety),
Γ 6|=P ¬bird(Tweety), Γ 6|=P ¬penguin(Tweety),
Γ 6|=P ¬color of(Tweety, Red), Γ 6|=P fly(Tweety),

as intuitively expected. In fact, using the results in the next section, one can show
that the conclusions regarding bird(Tweety), penguin(Tweety), and fly(Tweety)
hold in every setting (Proposition 19); The conclusions about the color of Tweety
hold whenever d is unbiased and f is hereditary (see Proposition 24 and Note 25).

Note 13 The entailment relations in Proposition 11 generalize some other settings
considered in the literature. For instance, |=〈dU,Σ〉 corresponds to the merging op-
erator in [15] (see also [8]). Also, if every Γi in Γ is a singleton, the iterated pro-
cess of computing distances with respect to the prioritized subtheories is actually
a linear revision in the sense of [16]. Other related formalisms are considered in
Section 4.



3. Reasoning with |=P

In this section, we consider some basic properties of |=P . First, we examine ‘flat’
theories, that is: multisets in which all the assertions have the same priority.
Proposition 16 recalls the main characteristics of reasoning with such theories.

Definition 14 Denote by |= the standard classical entailment, that is: Γ |= ψ if
every model of Γ is a model of ψ.

Definition 15 Two sets of formulas Γ1 and Γ2 are called independent (or disjoint),
if Atoms(Γ′)∩Atoms(Γ′′) = ∅. Two independent theories Γ1 and Γ2 are a partition
of a theory Γ, if Γ = Γ1 ∪ Γ2.

Proposition 16 [17] Let P = 〈d, f〉 be a preferential setting and Γ a 1-prioritized
theory. Then:

• |=P is the same as the classical entailment with respect to consistent
premises: if Γ is consistent, then for every ψ, Γ |=P ψ iff Γ |= ψ.

• |=P is weakly paraconsistent: inconsistent premises do not entail every for-
mula (alternatively, for every Γ there is a formula ψ such that Γ 6|=P ψ).

• |=P is non-monotonic: the set of the |=P -conclusions does not monotoni-
cally grow in the size of the premises.

If d is unbiased, then

• |=P is paraconsistent: if ψ is independent of Γ then Γ 6|=P ψ.

If, in addition, f is hereditary, then

• |=P is rationally monotonic [18]: if Γ |=P ψ and φ is independent of Γ∪{ψ},
then Γ, φ |=P ψ.

• |=P is adaptive [19,20]: if {Γ1, Γ2} is a partition of Γ, and Γ1 is classically
consistent, then for every formula ψ that is independent of Γ2, if Γ1 |= ψ
then Γ |=P ψ.

The arrangement of the premises in a stratified structure of priority levels
allows to refine and generalize the results above. As a trivial example, it is clear
that the 1-prioritized theory {p,¬p} is totally different than the 2-prioritized
theory {p} ⊕ {¬p}, as in the latter the symmetry between p and ¬p breaks up.

In the rest of this section we examine how preferences determine the set of
conclusions. The first, trivial observation, is that even if the set of premises is not
consistent, the set of its |=P -conclusions remains classically consistent:

Proposition 17 For every setting P, prioritized theory Γ, and formula ψ, if Γ |=P
ψ then Γ 6|=P ¬ψ.

Proof. Otherwise, ∆P(Γ) ⊆ mod(ψ) and ∆P(Γ) ⊆ mod(¬ψ). Since mod(ψ) ∩
mod(¬ψ) = ∅, we get a contradiction to the fact that ∆P(Γ) 6= ∅ (as ΛAtoms is
finite, there are always interpretations that are minimally δd,f -distant from Γ). ¤



Another clear characteristic of |=P is that priorities do have a primary role
in the reasoning process; conclusions of higher levelled observations remain valid
when the theory is augmented with lower-levelled observations.5

Proposition 18 Let Γ be an n-prioritized theory. Then for every 1 ≤ i < j ≤ n, if
Γ≥j |=P ψ then Γ≥i |=P ψ.

Proof. If Γ≥j |=P ψ then ∆j
P(Γ)⊆mod(ψ). But ∆i

P(Γ)⊆∆j
P(Γ), and so ∆i

P(Γ) ⊆
mod(ψ) as well. Thus, Γ≥i |=P ψ. ¤

Proposition 18 implies, in particular, that anything that follows from a sub-
theory that consists of the higher levels of a prioritized theory, also follows from
the whole theory. Next we show that when the subtheory of the higher levels
is classically consistent, we can say more than that: anything that can be clas-
sically inferred from the highest consistent levels of a prioritized theory is also
deducible from the whole theory (even when lower-levelled subtheories imply the
converse). To see this we suppose, then, that at least the most preferred level of
Γ is classically consistent (that is, con ≤ n).

Proposition 19 For every setting P = 〈d, f〉 and for every n-prioritized theory Γ
with a consistency level con ≤ n, if Γ≥con |=ψ then Γ |=P ψ.

Proof (outline). Note, first, that for every preferential setting P = 〈d, f〉 and n-
prioritized theory Γ with con ≤ n, ∆P(Γ≥con) = mod(Γ≥con). By the definition of
∆P , then, ∆P(Γ)⊆∆P(Γ≥con) = mod(Γ≥con). Now, if Γ≥con |= ψ, then ψ is true
in every element of mod(Γ≥con), and so ψ holds in every element of ∆P(Γ). Thus
Γ |=P ψ. ¤

Note 20 Consider again the three-levelled theory of Example 1. Proposition 19
guarantees the satisfaction of the first two items discussed in that example (the
third item is considered in Note 25 below).

Proposition 21 For every setting P = 〈d, f〉 and n-prioritized theory Γ with con ≤
n, we have that Γ≥con |=P ψ iff Γ≥con |= ψ.

Proof (outline). Follows from the fact that for every n-prioritized theory Γ with
con ≤ n it holds that ∆P(Γ≥con) = mod(Γ≥con). ¤

In particular, then, |=P coincides with the classical entailment with respect
to consistent sets of premises:

Corollary 22 If Γ is consistent, then Γ |=P ψ iff Γ |= ψ.

Proof. By Proposition 21, since if Γ is consistent then con=1, and so Γ≥con =Γ
and Γ≥con =Γ. ¤

In the general case, we have the following relation between |=P and |=:

5In [8] this is called ‘the principle of prioritized monotonicity’.



Corollary 23 If Γ |=P ψ then Γ |= ψ.

Proof. If Γ is consistent then by Corollary 22 Γ |=P ψ iff Γ |=ψ. If Γ is not classi-
cally consistent, then for every formula ψ, Γ |= ψ. ¤

Next we show that in many cases we can go beyond the result of Proposi-
tions 18 and 19: Not only that one may deduce from the whole theory every-
thing that is included in its highest levels, but also lower-levelled assertions are
deducible from the whole theory, provided that no higher-levelled information
contradicts them. This shows that our formalism avoids the so called drowning
effect , that is: formulas with low priority are not inhibited just due to the fact
that the information at higher levels is contradictory. Prevention of the grounding
effect is very important, e.g., in the context of belief revision, as it implies that
anything that has no relation to the new information need not be revised.

Proposition 24 Let P = 〈d, f〉 be a setting where d is non-biased and f is hered-
itary. If a prioritized theory Γ can be partitioned to a consistent theory Γ′ and a
(possible inconsistent) theory Γ′′, then Γ |=P ψ for every ψ ∈ Γ′.

Note 25 If Γ′ ⊆ Γ≥con, then Proposition 24 is a straightforward consequence of
Proposition 19. Yet, Proposition 24 is useful in cases where Γ′ contains ele-
ments that are below the inconsistency level of Γ, and then the claim assures
that the drowning effect is not imposed on these elements. Tweety dilemma Γ,
considered in Example 1, is a good example for this. It can be partitioned to
Γ′ = {color of(Tweety, Red)} and Γ′′ = Γ \ Γ′. In this representation the condi-
tions of Proposition 24 are satisfied for every preferential setting P = 〈d, f〉 where
d is unbiased and f is hereditary. In this case, then, Γ |=P color of(Tweety, Red),
as indeed suggested in the third item of Example 1. Note, however, that Γ 6|=dU,max

color of(Tweety, Red), which shows that the condition in Proposition 24, that
the aggregation function should be hereditary, is indeed necessary.

Example 26 According to the possibilitic revision operator introduced in [5,6], a
formula ψ is a consequence of a prioritized (possibilistic) theory Γ if it follows
from all the formulas above the consistency level of Γ. In our notations, then, ψ
follows from Γ iff Γ≥con |= ψ,6 and so this formalism has the drowning effect, which
prevents the drawing of any conclusion that resides below the consistency level. In
other formalisms for handling prioritized theories, such as those in [4,21,22], the
drowning effect is avoided by using a similar policy as ours, namely: the elements
of the revised theory are constructed in a stepwise manner, starting with the
highest priority level and selecting from each level as many formulas as possible
without violating consistency (see also [8]).

4. Related Areas and Applications

In this section we consider in greater detail two paradigms in which priorities are
exploited to determine consequences.

6Note that by Proposition 19 this implies that every possiblistic conclusion of Γ may be
inferred also by our formalisms.



4.1. Iterated Belief Revision

Belief revision, the process of changing beliefs in order to take into account new
pieces of information, is perhaps closest in spirit to the basic ideas behind our
framework. A widely accepted rationality criterion in this context is the success
postulate that asserts that a new item of information is always accepted. In our
case, this means that new data should have a higher priority over older one. Thus,
assuming that Γ represents the reasoner’s belief, the revised belief state in light
of new information ψ may be represented by Γ ⊕ {ψ}. Consequently, a revision
by a sequence of (possibly conflicting) observations ψ1, . . . , ψm may be expressed
by Γ⊕ {ψ1} ⊕ . . .⊕ {ψm}.

The well-known set of rationality postulates, introduced in [23] by Alchourrón,
Gärdenfors, and Makinson (AGM) for belief revision in the non-prioritized case, is
often considered as the starting point in this area. These postulates were rephrased
by Katsuno and Mendelzon [24] in terms of order relations as follows:

Proposition 27 Let Γ be a set of formulas in a propositional language L. A revision
operator ◦ satisfies the AGM postulates if and only if there is a faithful order ≤Γ,
such that mod(Γ ◦ ψ) = min(mod(ψ),≤Γ).7

In light of this result, one may represent revision in our framework in terms of
minimization of a preferential (ranking) order. For this, we consider the following
adjustment, to the context of prioritized theories, of faithful orders.

Definition 28 Let P be a preferential setting and Γ a prioritized theory. A total
preorder ≤PΓ on ΛAtoms is called (preferentially) faithful , if the following conditions
are satisfied:

1. If ν, µ ∈ ∆P(Γ) then ν <PΓ µ does not hold.

2. If ν ∈ ∆P(Γ) and µ /∈ ∆P(Γ) then ν <PΓ µ.

Proposition 29 A preferential setting P is characterized by faithful orders: For
every prioritized theory Γ there is a faithful order ≤PΓ (depending on P and Γ),
such that ∆P(Γ) = {ν ∈ ΛAtoms | ∀µ ∈ ΛAtoms ν ≤PΓ µ}.

Proposition 30 Let P be a preferential setting and Γ a prioritized theory on L.
Then there is a faithful order ≤PΓ (depending on P and Γ), such that, for every
non-contradictory formula ψ in L, ∆P(Γ⊕ ψ) = min

(
mod(ψ),≤PΓ

)
.

In terms of entailments, the last two propositions may be rewritten as follows:

Corollary 31 Let P be a preferential setting, Γ a prioritized theory, and ψ a non-
contradictory formula in L. Then there is a faithful order ≤PΓ , such that, for every
formula φ in L,

1. Γ |=P φ iff φ is satisfied by every ≤PΓ -minimal element of ΛAtoms.

2. Γ⊕ ψ |=P φ iff φ is satisfied by every ≤PΓ -minimal element of mod(ψ).

7The reader is referred, e.g., to [7,9] for detailed discussions on this result and its notions.



Note 32 In [24] a belief base Γ is represented by a single formula which is the
conjunction of the elements in Γ. In the prioritized setting this is, of-course,
not possible, as different formulas in Γ have different priorities. Also, in [24]
the faithful property is defined in terms of mod(Γ) rather than ∆P(Γ). This
distinction follows again from the fact that in the non-prioritized case the formula
that represents a belief set Γ is consistent and as such it always has models, while
in our case a prioritized theory Γ =

⊕
i Γi is different than the ‘flat’ theory

⋃
i Γi

that may not even be consistent.

Proposition 30 refers to a single revision. For successive revisions one may
follow Darwiche and Pearl’s approach [7], extending the AGM postulates with
four additional ones. As it turns out, three of these postulates hold in our context:

Definition 33 Denote by Γ≡P Γ′ that Γ and Γ′ have the same |=P -conclusions.

Proposition 34 For every preferential setting P=〈d, f〉, prioritized theory Γ, and
satisfiable formulas ψ, φ,

C1: If ψ |= φ then Γ⊕ {φ} ⊕ {ψ} ≡P Γ⊕ {ψ}.
C3: If Γ⊕ {ψ} |=P φ then Γ⊕ {φ} ⊕ {ψ} |=P φ.

C4: If Γ⊕ {ψ} 6|=P ¬φ then Γ⊕ {φ} ⊕ {ψ} 6|=P ¬φ.

Proof. We show C1; the proof of C3 and C4 is similar. If ψ |= φ then mod(ψ) ⊆
mod(φ), which implies that ∀ν∈mod(ψ) d(ν, φ)=0. Thus, ∀ν∈∆P({ψ}) d(ν, φ)=
0, and so ∆P({ψ}) = ∆P({φ} ⊕ {ψ}) = mod(ψ). It follows that ∆P(Γ⊕ {ψ}) =
∆P(Γ⊕ {φ} ⊕ {ψ}), and therefore Γ⊕ {φ} ⊕ {ψ} ≡P Γ⊕ {ψ}. ¤

The forth postulate in [7], namely

C2: If ψ |=¬φ then Γ⊕ {φ} ⊕ {ψ} ≡P Γ⊕ {ψ}
is the most controversial one (see, e.g., [3,9]) and indeed in our framework it
is falsified. To see this, let Γ = ∅, ψ = p, φ = ¬p ∧ ¬q, and P = 〈dH, f〉 for
arbitrary aggregation function f .8 Clearly, ψ |=¬φ. However, as ∆P({ψ}) consists
of interpretations that assign t to p regardless of their assignments to q, while the
interpretations in ∆P({φ}⊕{ψ}) assign t to p and f to q, it follows that {φ}⊕{ψ}
and {ψ} are not |=P -equivalent.

4.2. Prioritized Integration of Independent Data Sources

Information systems often have to incorporate several sources with possibly dif-
ferent preferences. In this section we show how this can be done in our framework.
For this, we use two types of distance aggregations: internal aggregations, for
prioritizing different formulas in the same theory, and external aggregations, for
prioritizing different theories. As internal and external aggregations may reflect
different kinds of considerations, they are represented by two different aggrega-

8f is irrelevant here since each priority level is a singleton.



tion functions, denoted f and g, respectively. Now, using the terminology and the
notations of the previous sections, we can think of the underlying n-prioritized
theory as follows:

Γ = {Γ1
1, . . . , Γ

1
k1
} ⊕ . . .⊕ {Γn

1 , . . . , Γn
kn
}, (1)

where now each Γi
j is a different theory, theories with the same superscript have

the same precedence, and Γi is preferred over Γj iff i > j. This can be formalized
by the following generalizations of Definitions 8 and 10:

Definition 35 An extended preferential setting is a triple E = 〈d, f, g〉, where d is a
pseudo distance and f, g are aggregation functions. Given an n-prioritized theory
Γ = {Γ1

1, . . . , Γ
1
k1
} ⊕ . . .⊕ {Γn

1 , . . . , Γn
kn
} and an interpretation ν, define for every

1 ≤ i ≤ n and 1 ≤ j ≤ ki the value of δd,f (ν, Γi
j) just as in Definitions 8. Also, let

δE(ν, Γi) = δd,f,g(ν, Γi) = g
({δd,f (ν, Γi

1), . . . , δd,f (ν, Γi
ki

)}).

Definition 36 Let E = 〈d, f, g〉 be an extended preferential setting. Given an n-
prioritized theory Γ = {Γ1

1, . . . , Γ
1
k1
}⊕ . . .⊕{Γn

1 , . . . , Γn
kn
}, consider the following

n sets of interpretations:

• ∆n
E(Γ) =

{
ν | ∀µ δE(ν, Γn) ≤ δE(µ, Γn)

}
,

• ∆n−i
E (Γ) =

{
ν ∈ ∆n−i+1

E (Γ) | ∀µ∈∆n−i+1
E (Γ) δE(ν, Γn−i) ≤ δE(µ, Γn−i)

}
for every 1 ≤ i < n.

The most plausible interpretations of Γ (with respect to d, f, g) are the interpre-
tations in ∆1

E(Γ) (henceforth denoted by ∆E(Γ)).

The corresponding consequence relations are now defined as follows:

Definition 37 Let E = 〈d, f, g〉 be an extended preferential setting. A formula ψ
follows from an an n-prioritized theory Γ if every interpretation in ∆E(Γ) satisfies
ψ. We denote this by Γ |=E ψ.

Clearly, Definition 37 generalizes Definition 11 in the sense that if in (1) above
ki = 1 for every 1 ≤ i ≤ n, then for every g, |=E (in the sense of Definition 37) is
the same as |=P (in the sense of Definition 11).9

Example: Constraint-Based Merging of Prioritized Data-Sources

Consider the following scenario regarding speculations on the stock exchange (see
also [3]). An investor consults with four financial experts about their opinions
regarding four different shares, denoted s1, s2, s3 and s4. The opinion of expert i
is represented by a theory (data-source) Γi. Suppose that Γ1 = Γ2 = {s1, s2, s3},
Γ3 = {¬s1,¬s2,¬s3,¬s4}, and Γ4 = {s1, s2,¬s4}. Thus, for instance, expert 4
suggests to buy shares s1 and s2, doesn’t recommend to buy share s4, and doesn’t
have an opinion about s3.

9Alternatively, |=E coincides with |=P if in (1) each T i
j is a singleton and g = f .



Suppose, in addition, that the investor has his own restrictions about the
investment policy. For instance, if some share, say s4, is considered risky, buying
it may be balanced by purchasing at least two out of the three other shares,
and vice-versa. This may be represented by the following integrity constraint:
IC = {s4 ←→

(
(s1 ∧ s2) ∨ (s2 ∧ s3) ∨ (s1 ∧ s3)

)}. Assuming that all the expert
are equally faithful, their suggestions may be represented by the 2-prioritized
theory Γ = {Γ1, Γ2, Γ3, Γ4} ⊕ {IC}, in which the investor’s constraint about the
purchasing policy is of higher precedence than the experts’ opinions. For the
extended setting 〈dU , Σ, Σ〉 we get that the most plausible interpretations of Γ
are the elements of the following set:

∆dU,Σ,Σ(Γ) = {ν ∈ mod(IC) | ∀µ ∈ mod(IC)
δdU ,Σ,Σ(ν, {Γi | 1 ≤ i ≤ 4}) ≤ δdU ,Σ,Σ(µ, {Γi | 1 ≤ i ≤ 4})}.

The models of IC and their distances to Γ = {Γ1, . . . , Γ4} are given below.

s1 s2 s3 s4 δdU ,Σ,Σ(νi, Γ)
ν1 t t t t 5

ν2 t t f t 7
ν3 t f t t 7
ν4 t f f f 7

s1 s2 s3 s4 δdU ,Σ,Σ(νi, Γ)
ν5 f t t t 7
ν6 f t f f 6
ν7 f f t f 6
ν8 f f f f 8

Thus, ∆dU ,Σ,Σ(Γ) = {ν1}, and so the investor will purchase all the four shares.

Clearly, the experts could have different reputations, and this may affect the
investor’s decision. For instance, assuming that expert 4 has a better reputation
than the other experts, his or her opinion may get a higher precedence, yielding the
following 3-prioritized theory: Γ′ = {Γ1, Γ2, Γ3)⊕{Γ4}⊕{IC}. It is interesting to
note that in this case the recommendation of the most significant expert (number
4) does not comply with the investor’s restriction.

By using the same setting as before (d = dU , f = g = Σ), the investor ends
up with a different investment policy, according to the following table:

s1 s2 s3 s4 δdU ,Σ,Σ(νi, Γ4) δdU ,Σ,Σ(νi, {Γ1,Γ2,Γ3})
ν1 t t t t 1 0+0+4 = 4
ν2 t t f t 1 1+1+3 = 5
ν3 t f t t 2 N.A.
ν4 t f f f 1 1+1+1 = 3

ν5 f t t t 2 N.A.
ν6 f t f f 1 1+1+1 = 3

ν7 f f t f 2 N.A.
ν8 f f f f 2 N.A.

Here, ∆dU ,Σ,Σ(Γ′) = {ν4, ν6}, and the decision would be to purchase either s1 or
s2, but not both, which seems as a ‘fair balance’ between the investor’s restriction
and the recommendation of the most significant expert (taking into account also
the other recommendations).
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