
Brief Announcement: A Key-Value Map for Massive
Real-Time Analytics

Dmitry Basin
Yahoo Research

Haifa, Israel
dbasin@yahoo-inc.com

Edward Bortnikov
Yahoo Research

Haifa, Israel
ebortnik@yahoo-inc.com

Anastasia Braginsky
Yahoo Research

Haifa, Israel
anastas@yahoo-inc.com

Guy Golan Gueta
Yahoo Research

Haifa, Israel
ggolan@yahoo-inc.com

Eshcar Hillel
Yahoo Research

Haifa, Israel
eshcar@yahoo-inc.com

Idit Keidar
Technion and Yahoo Research

Haifa, Israel
idish@ee.technion.ac.il

Moshe Sulamy
∗

Tel-Aviv University
Tel-Aviv, Israel

msulamy@gmail.com

ABSTRACT
Modern big data processing platforms employ huge in-memory
key-value (KV-) maps. Their applications simultaneously
drive high-rate data ingestion and large-scale analytics. These
two scenarios expect KV-map implementations that scale
well with both real-time updates and massive atomic scans
triggered by range queries. However, today’s state-of-the
art concurrent KV-maps fall short of satisfying these re-
quirements – they either provide only limited or non-atomic
scans, or severely hamper updates when scans are ongoing.

We present KiWi, the first atomic KV-map to efficiently
support simultaneous massive data retrieval and real-time
access. The key to achieving this is treating scans as first
class citizens, whereas most existing concurrent KV-maps
do not provide atomic scans, and some others add them to
existing maps without rethinking the design anew.

1. INTRODUCTION
The ordered key-value (KV) map abstraction has been

recognized as a popular programming interface since the
dawn of computer science, and remains an essential com-
ponent of virtually any computing system today. It is not
surprising, therefore, that with the advent of multi-core com-
puting, many scalable concurrent implementations have eme-
rged, e.g., [2, 3, 4, 9, 10, 12].

Today, KV-maps have become centerpiece to web-scale
data processing systems, e.g., Google’s F1 [15], which powers

∗This work was done in part while interning with Yahoo
Research, Haifa.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PODC’16 July 25-28, 2016, Chicago, IL, USA
c© 2016 ACM. ISBN 978-1-4503-3964-3/16/07.

DOI: http://dx.doi.org/10.1145/2933057.2933061

its AdWords1 business, and Yahoo’s Flurry2, the technology
behind its Mobile Developer Analytics business. These ap-
plications raise novel use cases and push scalability require-
ments to new levels. Namely, they require real-time perfor-
mance for both (1) ingestion of the incoming data streams,
and (2) analytics of the resulting dataset. For example, as
of early 2016, the Flurry platform systematically collected
data of 830,000 mobile apps3 running on 1.6 billion user de-
vices4. Flurry streams this data into a massive index, and
provides application developers with tools that produce a
wealth of reports over the collected data.

Analytics platforms exploit KV-stores like Google’s Bigta-
ble [7] and Apache HBase [1]. These technologies combine
on-disk indices for persistence with an in-memory KV-map
for real-time data acquisition [7]. The latter’s scalability has
a major impact on overall system performance, (as shown
in [8]). The stream scenario requires the KV-map to sup-
port fast put operations, whereas the analytics aspect relies
on (typically large) scans (i.e., range queries). The consis-
tency (atomicity) of scans is essential for correct analytics.
The new challenge that arises in this environment is allow-
ing consistent scans to be obtained while the data is being
updated in real-time.

In this brief announcement we present KiWi, the first KV
map to efficiently support large atomic scans as required
for data analytics, alongside real-time updates. Most ex-
isting concurrent KV-maps do not support atomic scans at
all [2, 11, 3, 4, 9, 12, 10]. Others support a single scan at
a time [13], do not ensure progress for scans [5, 14, 6, 11],
or severely hamper updates when scans are ongoing [5, 14].
Table 1 summarizes the properties of state-of-the-art con-
current data structures that support scans, and compares
them to KiWi.

1https://www.google.com/adwords/
2https://developer.yahoo.com/flurry/docs/analytics/
3http://flurrymobile.tumblr.com/post/144245637325/
appmatrix
4http://flurrymobile.tumblr.com/post/117769261810/
the-phablet-revolution

Permission to make digital or hard copies of part or all of this work 
for personal or classroom use is granted without fee provided that 
copies are not made or distributed for profit or commercial 
advantage and that copies bear this notice and the full citation on the 
first page. Copyrights for third-party components of this work must 
be honored. For all other uses, contact the Owner/Author. 
Copyright is held by the owner/author(s). 
PODC'16, July 25-28, 2016, Chicago, IL, USA 
ACM 978-1-4503-3964-3/16/07. 
http://dx.doi.org/10.1145/2933057.2933061 

487



atomic scans balanced multi-scan wait-free scans fast puts
snapshot iterator [13] X X 7 X X
SnapTree [5] X X X 7 7
Ctrie [14] X X X 7 7
k-ary tree [6] X 7 X 7 X
BW-Tree [11] 7 X X 7 X
Java-Skiplist [2] 7 X X X X
KiWi 4 4 4 4 4

Table 1: Comparison of concurrent data structures that support scans. Fast puts means not hampering
updates (e.g., by cloning nodes) when scans are ongoing.

An important emphasis in KiWi’s design is on facilitating
synchronization between scans and updates. Since scans are
typically long, our solution avoids livelock and wasted work
by always allowing them to complete (without ever needing
to restart). On the other hand, updates are short (since only
single-key puts are supported), therefore restarting them in
cases of conflicts is practically “good enough” – restarts are
rare and when they do occur, little work is wasted. For-
mally, KiWi opts to provide wait-free scans and lock-free
put operations.

2. DESIGN PRINCIPLES
To support atomic wait-free scans, KiWi employs multi-

versioning. But in contrast to the standard approach where
each put creates a new version for the updated key, KiWi
only keeps old versions that are needed for ongoing scans,
and otherwise over-writes the existing version. Moreover,
version numbers are managed by scans rather than updates,
and thus put operations may over-write data without chang-
ing its version number. This unorthodox approach offers sig-
nificant performance gains given that scans typically retrieve
large amounts of data and hence take much longer than up-
dates. It also necessitates a fresh approach to synchronizing
updates an scans, which is a staple of KiWi’s design.

A second important feature of KiWi’s design is its effi-
cient memory management. Data in KiWi is organized as
a collection of chunks, which are large blocks of contiguous
key ranges. Such data layout is cache-friendly and suitable
for non-uniform memory architectures (NUMA), as it allows
long scans to proceed with few fetches of new data to cache
or local memory. Chunks regularly undergo maintenance
to improve their space utilization (via compaction) and in-
ternal organization, as well as the distribution of key ranges
into chunks (via splits and merges). All these issues are han-
dled by KiWi’s rebalance abstraction, which performs batch
processing of multiple maintenance operations that are vi-
tal for the data structure’s health. The synchronization of
rebalance operations with ongoing puts and scans is subtle,
and much of the KiWi algorithm is dedicated to handling
possible races in this context.

KiWi is a balanced data structure, providing logarithmic
access latency in the absence of contention. This is achieved
via a combination of (1) indexing chunks for fast lookup and
(2) partially sorting keys in each chunk to allow for fast in-
chunk binary search. To facilitate concurrency control, we
separate chunk management from indexing: KiWi employs a
search index separately from the (chunk-based) data storage
layer. The index is updated lazily after rebalancing of the
data storage layer completes.

3. RESULTS
KiWi is a practical algorithm, with multiple optimiza-

tions implemented on top of the theoretical underpinnings.
We benchmark its Java implementation extensively under
multiple representative workloads. In the vast majority of
experiments, KiWi significantly surpasses the best-in-class
concurrent algorithms. KiWi’s advantages are particularly
pronounced in our target scenario with long scans in the
presence of concurrent puts, where KiWi’s atomic scans are
twice as fast as the non-atomic scans offered by the Java
Skiplist [2], and compared to existing atomic solutions [6,
5], KiWi not only performs all operations faster, but actu-
ally executes either updates or scans an order of magnitude
faster than every other solution.

Figure 1 presents evaluation results for a mixed workload
– half the threads perform scans, whereas the second half
perform puts. Each scan picks the range’s lower bound uni-
formly at random, and iterates through S keys for a pa-
rameter S. We compare KiWi with other state-of-the art
KV-maps supporting scans.. Figure 1(a) shows the through-
put scalability with scan size, with maximal parallelism (32
threads). KiWi dominates universally except for very short
scans, for which k-ary tree [6] is 10% faster. For long scans,
the latter deteriorates fast (Figure 1 (b)). This happens
because k-ary tree restarts iterating every time a put falls
within the scanned range – i.e., puts make progress but scans
get starved. For large values of S, SnapTree [5] is the second-
fastest because it shared-locks the scanned ranges in advance
and scans unobstructed. From the puts perspective (Fig-
ure 1 (c)-(d)), KiWi is the fastest again, whereas SnapTree
is the slowest since its locking starves concurrent updates.
In contrast to its competitors, KiWi serves both scans and
puts well.

Finally, KiWi implements a balanced data structure, which
allows operations to run orders of magnitude faster than un-
balanced ones in case insertion order is not random. For ex-
ample, if we build the map from an ordered stream of keys,
KiWi’s throughput is close to that obtained in experiments
with a random insertion order. In contrast, implementations
that do not address balancing directly fail to provide ade-
quate performance – e.g., k-ary tree’s get/put throughput is
700 times slower than KiWi’s in this scenario.

4. REFERENCES
[1] Apache HBase – a Distributed Hadoop Database.

https://hbase.apache.org/.

[2] Java Concurrent Skip List.
https://docs.oracle.com/javase/7/docs/api/java/util/
concurrent/ConcurrentSkipListMap.html.

488



2 8 32 128 512 2K 8K 32K

0

50

100

150

(a)

S
ca

n
th

ro
u
g
h
p
u
t
u
n
d
er

p
u
t
co

n
te
n
ti
o
n
,
M

k
ey

s/
se
c

16 threads, scan size scaling

1 2 4 8 16

0

50

100

150

(b)

scan size=32K, threads scaling

2 8 32 128 512 2K 8K 32K

0

2

4

(c)

P
u
t
th

ro
u
g
h
p
u
t
u
n
d
er

sc
a
n
co

n
te
n
ti
o
n
,
M

o
p
s/
se
c

16 threads, scan size scaling

1 2 4 8 16

0

2

4

(d)

scan size=32K, threads scaling

KiWi k-ary tree Java-Skiplist SnapTree

Figure 1: KiWi’s throughput: (a-b) Scans with background put contention, (c-d) Puts with background scan
contention.

[3] A. Braginsky and E. Petrank. Locality-conscious
lock-free linked lists. In ICDCN, pages 107–118, 2011.

[4] A. Braginsky and E. Petrank. A lock-free B+tree. In
SPAA, pages 58–67, 2012.

[5] N. G. Bronson, J. Casper, H. Chafi, and K. Olukotun.
A practical concurrent binary search tree. In PPOPP,
pages 257–268, 2010.

[6] T. Brown and H. Avni. Range queries in non-blocking
k-ary search trees. In OPODIS, pages 31–45, 2012.

[7] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber. Bigtable: A distributed storage system for
structured data. ACM Trans. Comput. Syst.,
26(2):4:1–4:26, June 2008.

[8] G. Golan-Gueta, E. Bortnikov, E. Hillel, and
I. Keidar. Scaling concurrent log-structured data
stores. In EuroSys, pages 32:1–32:14, 2015.

[9] D. Hendler, N. Shavit, and L. Yerushalmi. A scalable
lock-free stack algorithm. In SPAA, pages 206–215,
2004.

[10] A. Kogan and E. Petrank. A methodology for creating
fast wait-free data structures. In PPoPP, pages
141–150, 2012.

[11] D. B. Lomet, S. Sengupta, and J. J. Levandoski. The

bw-tree: A b-tree for new hardware platforms. In
ICDE, pages 302–313, 2013.

[12] A. Natarajan and N. Mittal. Fast concurrent lock-free
binary search trees. In PPoPP, pages 317–328, 2014.

[13] E. Petrank and S. Timnat. Lock-free data-structure
iterators. In DISC, pages 224–238, 2013.

[14] A. Prokopec, N. G. Bronson, P. Bagwell, and
M. Odersky. Concurrent tries with efficient
non-blocking snapshots. In PPoPP, pages 151–160,
2012.

[15] J. Shute, R. Vingralek, B. Samwel, B. Handy,
C. Whipkey, E. Rollins, M. Oancea, K. Littlefield,
D. Menestrina, S. Ellner, J. Cieslewicz, I. Rae,
T. Stancescu, and H. Apte. F1: A distributed sql
database that scales. In VLDB, 2013.

489




