
 MTASet: A Tree-based Set for Efficient Range Queries in Update-heavy Workloads
Daniel Manor, Mor Perry, Moshe Sulamy

The Academic College of Tel Aviv–Yaffo

● A concurrent set data structure
specifically optimized for
environments characterized by high
update throughput and frequent
range queries

● Based on an (a, b)-tree

● Relaxed balancing

● Lock based

● Optimistic concurrency control

● Leveraging a tailored
multi-versioning

● Supports find(k), insert(k, v),
delete(k) and scan(fromKey, toKey)

● Range queries are wait-free

● Linearizable
Figure 2. A snapshot of MTASet, a=2, b=4. An internal node pointing to a tagged internal node
and a leaf node. The tagged internal node points to two leaf nodes. No locks are acquired.

Leaf nodes are the
only nodes that
store values

Three types of
nodes: leaf nodes,
internal nodes and
tagged internal
nodes.

Internal nodes are
used for routing

Tagged internal nodes
indicate a temporary
height imbalance in
the tree, resulting
from relaxed
balancing.

Figure 3. a=2,b=4. An underfull leaf node is being merged with its sibling.

MTASet maintains a GLOBAL_VERSION integer variable, which is atomically
read and incremented (F&I) by the Scan operation. This version number is
used by the scan to determine which values to collect and is read by
update operations to assign to the updated values.

Figure 1. a=2, b=4. A thread scans a leaf node from
left to right, gathering values with the most recent
version that is less than or equal to 7. In this
scenario, it will collect the values 22 and 903.

GLOBAL_VERSION = 8

