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Abstract—In concurrent data structures, the efficiency of set
operations can vary significantly depending on the workload
characteristics. Numerous concurrent set implementations are
optimized and fine-tuned to excel in scenarios characterized
by predominant read operations. However, they often perform
poorly when confronted with workloads that heavily prioritize
updates. Additionally, current leading-edge concurrent sets opti-
mized for update-heavy tasks typically lack efficiency in handling
atomic range queries. This study introduces the MTASet, which
leverages a concurrent (a,b)-tree implementation. Engineered
to accommodate update-heavy workloads and facilitate atomic
range queries, MTASet surpasses existing counterparts optimized
for tasks in range query operations by up to 2x. Notably, MTASet
ensures linearizability.

Index Terms—Concurrent data structure, key-value map, set,
dictionary, a-b tree, update-heavy, range query

I. INTRODUCTION

Given the inherent challenges of concurrent programming,
developers often use various concurrent data structures to build
applications and complex systems, such as modern database
engines designed for multicore hardware. These structures
enable safe utilization in multithreaded environments through
sophisticated synchronization algorithms optimized for perfor-
mance.

The rise of multicore hardware has spurred the development
of numerous new concurrent data structure designs, includ-
ing dictionaries [1]–[8] and sets [9]–[11]. These innovations
consistently enhance performance over existing solutions and
introduce features like atomic range scan operations (i.e., range
queries).

Existing concurrent set or dictionary implementations typi-
cally excel in scenarios with low contention and predominantly
read-oriented workloads, often neglecting the demands of
update-intensive environments. Conversely, implementations
optimized for update-heavy workloads frequently struggle with
efficient range queries. For example, in experiments by Kobus
et al. [8], SnapTree [3] performs relatively well on update
operations but exhibits poor performance on scan operations.
Our research aims to address this issue by enhancing the scal-
ability of range queries within a concurrent set optimized for
update-heavy workloads, ensuring robust performance across
diverse workload types.

Scaling range queries in concurrent data structures is in-
herently challenging due to the extensive coordination needed
across elements. Unlike single-key operations, atomic range
queries must traverse multiple nodes, risking inconsistent

results if other threads update the data during the query,
thus adding further complexity to manage manage concurrent
updates. While locking or snapshotting methods can help
maintain consistency, they impose synchronization overhead
and lead to contention, especially in update-heavy environ-
ments. These issues make it difficult to efficiently support
range queries at scale without compromising performance or
data accuracy.

In response, we introduce MTASet, a concurrent set and
dictionary with high update throughput that stores keys and
their associated values and supports essential operations such
as insertion, deletion, and lookup. In addition to high update
throughput, MTASet is optimized for atomic range queries,
which retrieve values for a specified range of keys.

MTASet uses a tailored multi-versioning approach [12]
for atomic range queries, maintaining only the versions re-
quired for ongoing scans and managing version numbers
through scans rather than updates. This significantly enhances
the throughput of range query operations, especially under
concurrent update-heavy workloads. Inspired by KiWi [2],
MTASet’s range query demonstrates substantial performance
gains in experimental evaluations, outperforming many state-
of-the-art data structures in both read-mostly and update-heavy
workloads.

MTASet is an (a,b)-tree, a variant of B-trees that allows
between a and b keys per node, where a ≤ b

2 . It is based on
a concurrent version of Larsen and Fagerberg’s relaxed (a,b)-
tree [13], specifically the OCC-ABtree [14]. MTASet employs
fine-grained versioned locks to ensure atomic sub-operations
and uses version-based validation in leaf nodes to guarantee
correct searches. To manage overhead, MTASet incorporates
established techniques, such as avoiding key sorting in leaves
and minimizing unnecessary node copying.

The core philosophy of MTASet is to promptly handle client
operations while deferring data structure optimizations to an
occasional maintenance procedure. This procedure, called re-
balance, aims to balance MTASet’s (a,b)-tree for faster access
and to eliminate obsolete keys through compaction.

A. Background

A set data structure stores unique elements without any
particular order. It supports three operations: Insert adds an
element to the set if it is not already in the set, delete removes
an element from the set if it exists, and contains tests whether
an element is in the set.



An (a, b)-tree [15] is a balanced leaf-oriented search tree
where each node can have between a and b children, and
2 ≤ a ≤ b

2 . This tree structure optimizes operations by main-
taining logarithmic height with respect to the number of ele-
ments, ensuring efficient data retrieval, insertion, and deletion.

The balanced structure of the (a, b)-tree ensures logarithmic
time complexity for all operations, making it suitable for appli-
cations requiring frequent insertions, deletions, and lookups,
such as database indexing.

MTASet utilizes a concurrent (a, b)-tree data structure,
based on OCC-ABtree [14], which includes optimizations
tailored for update-heavy workloads. OCC-ABtree does not
include a range query operation. However, it was noted in [14]
that a range query capability could be implemented for the
OCC-ABtree using the following technique detailed in [16]:

In OCC-ABtree, leaf nodes are interconnected in a linked
list, with each leaf node storing keys along with insertionTime
and deletionTime fields indicating when keys were added and
removed, respectively. A global variable TS is incremented
atomically by a range query from time t to t′. During insertion,
TS is read and written to the insertionTime field of the new
key atomically. During deletion TS is read and written to the
deletionTime field of the deleted key, and stored in the thread
that executes the deletion in a list of deleted keys accessible
for other threads to read. Special precautions are taken during
deletion to prevent race conditions. A range query traverses
leaf node lists, collecting keys with insertionTime less than or
equal to t. It subsequently checks thread-specific lists for keys
deleted after time t, using each key’s deletionTime to identify
missed deletions during traversal.

MTASet’s range query introduces significant improvements,
detailed in Section IV, that enhance the range query opera-
tion throughput beyond this technique, while maintaining the
performance advantages of the OCC-ABtree on update-heavy
workloads.

Our correctness notion is linearizability, which intuitively
means that the object ”appears to be” executing sequentially.
It is defined for a history, which is a sequence of operation
invoke and return steps, possibly by multiple threads. A history
partially orders operations: operation op1 precedes operation
op2 in a history if op1’s return precedes op2’s invoke; two
operations that do not precede each other are concurrent. An
object is specified using a sequential specification, which is
the set of its allowed sequential histories. Roughly speaking, a
history σ is linearizable [17] if it has a sequential permutation
that preserves σ’s precedence relation and satisfies the object’s
sequential specification.

B. Contributions

The primary contribution of this paper is the development
and analysis of MTASet, a concurrent set specifically opti-
mized for high update throughput and frequent range queries.
MTASet enhances performance by leveraging a tailored multi-
versioning approach, which maintains only the necessary ver-
sions of keys for ongoing scans, thus minimizing overhead and
optimizing range query efficiency. Notably, MTASet supports

wait-free atomic range queries, ensuring that range query
operations complete in a bounded number of steps regardless
of the workload. By adapting concepts from OCC-ABtree and
incorporating other techniques to manage versioning effec-
tively, MTASet significantly improves atomic range queries
while sustaining high performance in update-heavy workloads.
Experimental results demonstrate that MTASet surpasses many
existing concurrent data structures in both read-mostly and
update-intensive scenarios. This work addresses a critical gap
in concurrent data structures, and can also be used as a robust
framework for balancing update and range query operations,
making MTASet a valuable addition to the toolkit of multicore
developers.

MTASet supports the following operations:
• find(k): Checks if a key-value pair with the key k exists.

If it does, the associated value is returned; otherwise, it
returns ⊥.

• insert(k, v): Verifies if a key-value pair with the key k
exists. If it does, it returns the associated value; otherwise,
it inserts the key-value pair and returns ⊥.

• delete(k): Deletes the key-value pair with the key k if
it exists and returns the associated value. Otherwise, it
returns ⊥.

• scan(fromKey, toKey): Returns the values of all keys
within the range [fromKey, toKey].
Evaluation results: The MTASet Java implementation

can be found on GitHub [18]. In Section IV, we benchmark its
performance under various workloads. In most experiments,
it significantly surpasses OCC-ABtree*, a variant of OCC-
ABtree [14] tailored for update-heavy workloads with atomic
range query capabilities [16]. This positions MTASet as a
concurrent set optimized for update-heavy tasks, offering
efficient, atomic, and wait-free range queries.

The benefits of MTASet are evident in our primary scenario,
which includes long scans amid concurrent update operations.
MTASet did not outperform competitors [2] optimized solely
for range scans but not for updates. However, in updates,
MTASet significantly outperformed them, up to three times.
In scenarios involving long scans with concurrent updates,
MTASet exceeded the performance of the OCC-ABtree* [14],
[16] by up to three times while maintaining comparable
performance in update operations, thus preserving its update-
heavy nature. Notably, MTASet’s atomic scans are 1.6 times
faster than the non-atomic scans offered by the Java Skiplist
written by Doug Lea [19] based on work by Fraser and Harris
[20], and MTASet’s updates are up to 3.6 times faster than
those of the Java Skiplist.

C. Related Work

Various data structure designs and techniques have been de-
veloped to optimize performance in concurrent environments,
focusing on skip lists, trees, and range query methods.

In the category of skip lists, KiWi [2] is a Key-Value Map
that supports linearizable, wait-free range scans via a multi-
versioned architecture similar to MTASet, and its operations
utilize the Compare-and-swap (CAS) atomic instruction for



lock-free functionality. While KiWi achieves high throughput
in range scans, it is not optimized for updates as MTASet
is. LeapList [1] also supports linearizable range scans, em-
ploying fine-grained locks for concurrency control, similar
to MTASet. Another related structure, Jiffy [8], is a linked-
list data structure that offers arbitrary snapshots and atomic
batch updates. Nitro [21] leverages multiversioning to create
snapshots, though these snapshots are not thread-safe during
concurrent insert/remove operations.

In the category of tree-based structures, OCC-ABtree [14]
is a concurrent (a,b)-tree tailored for update-heavy workloads
but lacks native range scan support. However, a general
method for range queries is proposed [16], demonstrating
lower throughput than MTASet. SnapTree [3] is a lock-based,
relaxed-balance AVL tree that provides atomic snapshots and
range scans through a linearizable clone operation. Minuet [22]
is a distributed, in-memory B-tree that enables linearizable
snapshots using a costly copy-on-write approach, which allows
snapshot sharing across multiple range scans. BCCO10 [3]
introduces a Binary Search Tree with optimistic concurrency
control, similar to MTASet, utilizing version-based validation
for efficient search operations. Additionally, LF-ABtree [23] is
a lock-free (a,b)-tree structure similar to the relaxed (a,b)-tree
[13] employed in MTASet.

For range query techniques, Arbel-Raviv and Brown [16]
discuss implementing range queries in concurrent set data
structures using epoch-based memory reclamation, proposing
a traversal algorithm to ensure that all items within a range
are accessed during the traversal’s lifetime. Nelson et al. [24]
present a technique for achieving linearizable range queries on
lock-based linked data structures.

II. MTASET ALGORITHM

In this section, we discuss the MTASet algorithm, exploring
its core data structures, node types, and coordination mech-
anisms that support concurrent operations. We examine the
specific roles of different node types, including leaf, internal,
and tagged nodes, and the functionality of the linked-list
structure of the leaf nodes. Furthermore, we discuss MTASet’s
operations, highlighting mechanisms such as versioning, lock-
ing, and the ongoing scans array (OSA).

MTASet contains a permanent entry pointer to a sentinel
node, a reliable starting point for all operations. This guar-
antees that every thread starts traversal from a well-defined,
stable location. The sentinel node contains no keys and a single
child, the root node.

A node is underfull if it contains fewer keys than the
minimum a, and it is full when its number of keys equals
the maximum b.

An example of the MTASet tree is shown in Fig. 1.

A. Data structures

MTASet has three types of nodes: leaf nodes, internal nodes
and tagged internal nodes.

Each node contains a lock field, using MCS locks [25]
where threads awaiting the lock spin on a local bit, efficiently

scaling across multiple NUMA nodes. A thread modifies a
node only if it holds the corresponding lock. Leaf nodes
include a version field which tracks the number of modifica-
tions made to the leaf and indicates whether it is currently
changing. Upon acquiring a lock, a thread increments the
version before initiating modifications, and increments it again
once it completed its changes before releasing the lock. Thus,
the version is even when the leaf is not being modified and odd
when it is. Searches utilize the version to ascertain whether
any modifications occurred while reading the keys of a leaf.
Furthermore, nodes contain a marked bit, toggled when a
node is unlinked from the tree, allowing updates to determine
whether a node is present in the tree. Once marked, nodes are
never unmarked.

MTASet’s operations use a helper search operation which
returns a PathInfo structure. It provides information about
the node at which the search terminated, its parent and
grandparent, the index of the node in the parent’s pointers
array, and the parent index in the grandparent’s pointers array.

1) Leaf Nodes: Leaf nodes consist of arrays for keys and
values. A keys entry is considered empty when represented
as ⊥ and does not have a corresponding value, as shown
in Fig. 1. The keys array is unordered, allowing for empty
slots, supporting faster updates by eliminating the need to
rearrange keys during insertions and deletions. The latest value
and version of each key are kept in the corresponding cell in
the values array, while older values are organized in a binary
search tree.

Values are versioned, meaning they retain both the value
for the latest version and values for past versions. A value
could be ⊥, indicating a logical deletion in the corresponding
version, or a non-⊥ value.

Neighboring leaf nodes are linked through left and right
pointers. This setup forms a linked list of leaf nodes with the
property: for each leaf l, the keys in l.right are strictly greater
than those in l. Rebalancing procedures, which involve linking
and unlinking leaf nodes due to occasional underfull or full
conditions, ensure that at any given time it is possible to reach
the right-most leaf node from the left-most leaf node. This list
aims to facilitate scan operations, enabling it to traverse leaf
nodes directly without traversing the entire tree, as these are
the only ones containing values.

2) Internal Nodes: An internal node is a non-leaf node
that serves as a routing point to direct searches through the
structure towards the appropriate leaf nodes where data is
stored. Internal nodes have two sorted arrays: one holding k
child pointers and the other holding k−1 routing keys, which
direct searches to the correct leaf. These routing keys remain
constant. Adding or removing a key necessitates replacing
the entire internal node, which occurs relatively infrequently.
On the other hand, child pointers are mutable and subject to
change.

A tagged internal node is a non-leaf node that represents a
height imbalance within the tree. It exists when a key/value
insertion is required into a full node. Upon splitting the
node, the two resulting halves are connected by a tagged



node. Tagged nodes stand alone and are not involved in any
other operations, consistently having precisely two children.
They are eventually eliminated from the tree by invoking the
fixTagged rebalancing step.

3) Coordination data structure: To coordinate scan and
rebalancing operations, MTASet utilizes a Global Version field
(GV) and ongoing scans array (OSA), which keeps track of
the versions of ongoing scans and is used by rebalancing for
compaction purposes. The OSA and GV are updated by the
scan operation, and emplyed by other operations and internal
functions. Their usage is described in the description of each
operation in Section II-B. The full descriptions and algorithms
of all operations are provided in the full paper [26] and the
source code [18].

Fig. 1. A snapshot of MTASet: An internal node pointing to a tagged internal
node and a leaf node. The tagged internal node points to two leaf nodes. The
locks are MCS, no locks are acquired

B. Operations

Each operation invokes the Search function, which takes a
key k and traverses the tree from the root to locate the leaf
node where k resides. This function is identical to the one
used in OCC-ABtree [14]. The function searchLeaf locates a

specified key k within a leaf node l and attempts to retrieve
the corresponding value if k exists in l. Drawing inspiration
from the classic double-collect snapshot algorithm [27], it
executes as follows: Initially, it reads the version of the leaf
l. Then, it scans through l’s keys array to locate k. Afterward,
it re-reads the version of l to verify that no modifications
occurred while retrieving the key and its associated value.
If concurrent updates are detected, a retry is initiated. If no
concurrent updates are detected and k is found, searchLeaf
returns (SUCCESS, value). If k is not found, it returns
(FAILURE,⊥).

Notably, both the search and searchLeaf functions are
designed to run lock-free. This enhances concurrency by
allowing updates to internal nodes to occur simultaneously
with searches, boosting performance in environments with
frequent reads and writes.

The find(k) operation is used by MTASet to locate the
relevant leaf node and retrieve the value associated with k
in the tree. It simply calls the search and searchLeaf functions
and returns the corresponding value.

1) Insert and Delete: During the insert(key, value) oper-
ation, a thread starts by executing a search(key, target) and
searchLeaf(key,leaf) functions. The operation returns the asso-
ciated value if the key is found during this search. Otherwise, it
proceeds to lock the leaf and tries to insert the key (along with
its corresponding value) into an available empty slot within
the keys and values array. This process is known as a simple
insert. However, if no empty slot is found, and considering that
keys may become obsolete due to logical removals, the insert
operation then checks for keys that can be physically removed
(by invoking the cleanObsoleteKeys function, described in the
full paper [26]). If obsolete keys are removed, the new key is
inserted, and the fixUnderfull function is called to ensure the
node meets the minimum size requirement. If the node’s size
falls below this minimum, it will either merge the underfilled
node with a sibling or redistribute keys between them (using
the fixUnderfull helper function).

If no obsolete keys are removed, the insert operation locks
the leaf’s parent and replaces the pointer to the leaf with a
pointer to a newly created tagged node. This tagged node
points to two new children: one containing the contents of
the original leaf and the other containing the newly inserted
key-value pair. This scenario is termed a splitting insert. The
modification of the pointer, and thus the insertion of the key,
occurs atomically. Following this, the insert operation invokes
fixTagged [14] to eliminate the tagged node from the tree.

Deleting a key involves writing (key, ⊥) by calling the Insert
function. If a key is not found or has already been logically
deleted, ⊥ is returned. If the key exists, the thread duplicates
the current latest value into the key’s version history data
structure, sets the latest value with ⊥, and then updates its
version using CAS.

2) Scan: In the scan(lowKey, highKey) operation, a thread
initially performs an atomic fetch-and-add operation on the
GV (Global Version) global variable to increment its value.
The obtained version is then published by writing it to the



global, ongoing scan array (OSA). The thread also synchro-
nizes with the rebalancing operation by atomically attempting
to write the value read from GV using CAS. Upon invoking
the search operation, the thread identifies the node intended to
contain lowKey. From this node, using the scanLeaf function,
it traverses the leaf nodes, reading the values corresponding to
keys within the [lowKey, highKey] range. These values meet
the criteria of having a version equal to or less than the version
in the OSA and are not ⊥. Throughout this traversal, the
thread ensures that the collected values are sorted by their
keys in ascending order before being copied to the result
array. The scan terminates by not proceeding to the next node
upon encountering a key whose value exceeds highKey or
upon reaching the end of the traversal path. Finally, the scan
information is removed from the OSA by writing ⊥ to the
appropriate cell. The operation then returns an array containing
the scanned values along with its size.

3) Helping updates: The update operations (insert and
delete) rely on the current value of GV, whereas a scan
operation begins by atomically fetching and incrementing GV.
This action ensures that all subsequent updates write versions
greater than the fetched one. The scan then utilizes the fetched
version, ver, as its reference time, guaranteeing that it returns
the latest version for each scanned key that does not surpass
ver. However, a potential race condition might arise if an
update operation reads GV equal to ver for its data and then
pauses momentarily. Simultaneously, a concurrent scan fetches
GV, equal to ver, as its reference time. The scan may overlook
or read the key before it is inserted or logically deleted with
the version ver. In this situation, the key should be included
if inserted or excluded if it is deleted in the scan since its
version equals the reference time, but it may not be due to its
delayed occurrence. To tackle this issue, scans are designed
to help updates by assigning versions to the keys they write.
Concerning the update operations, they will write the key in
the target node keys array without a version, read GV, and
then attempt to set the version to the key’s value using CAS.
If a scan encounters a key without a version, it will attempt
to help the update thread by setting the GV to the key version
using CAS.

4) Helping scans: The cleanObsoleteKeys function, dis-
cussed in detail in the full paper [26], is responsible for
managing obsolete keys to support efficient memory use and
consistency during compaction processes.

A potential race condition may occur when a scan publishes
its version on the OSA, and the cleanObsoleteKeys function
requires a scan version for compaction purposes. This situation
arises if a scan operation fetches (and increments) GV as
its version and then pauses momentarily. Concurrently, the
cleanObsoleteKeys function reads all current scan versions
from the OSA and may overlook the scan version. Although
the scan operation version should be utilized in this scenario,
its delayed occurrence could prevent its consideration. Like
scan operations helping updates (insert and delete), cleanOb-
soleteKeys is designed to help scans by assigning versions
to them. Concerning the scan operation, it first publishes its

data to the OSA without a version, fetches and increments
GV, and then attempts to set the version to its published
data using CAS. Suppose cleanObsoleteKeys encounters a
published scan without a version. In that case, it will try
to assist by fetching and incrementing GV and subsequently
setting the fetched version to the published scan data using
CAS. cleanObsoleteKeys will reread the scan’s version for its
needs.

III. CORRECTNESS

This section proves that MTASet is linearizable. To clarify,
an algorithm achieves linearizability when, during any con-
current execution, each operation seems to occur atomically
at a certain point between its invocation and its response. The
linearizability of MTASet involves establishing a connection
between the tangible representation of MTASet, the data stored
in the system’s memory, and its conceptual set form. It
involves demonstrating that the operations effectively modify
the physical structure of the tree in a manner consistent with
the abstract principles outlined at the end of Section I.

A. Definitions

Definition 1 (Reachable Node). A node is considered reach-
able if it can be accessed by traversing child pointers starting
from the entry node.

Definition 2 (Key in MTASet). A key k is in the tree if the
following conditions are all met:

1) It is in some reachable leaf l’s keys array.
2) The version of k’s value in l is set.
3) The latest value of k in l is not ⊥.

Definition 3 (Key range). The key range of a node is a half-
open subset (e.g., [1,900)) of the set of all keys that can appear
in the subtree rooted at that node.

Definition 4 (Node key range). The key range of the entry
node is the range of all keys present within the tree. Let n
be an internal node reachable with a key range of [L, R). If
n contains no keys, its child’s key range remains as [L, R).
However, if n does contain keys k1 through km, then the key
range of n’s leftmost child (referred to by n.ptrs[0]) is [L, k1),
the key range of n’s rightmost child (referred to by n.ptrs[m])
is [km, R). For any middle child referred by n.ptrs[i], the key
range is [ki, ki+1). Intuitively, a node’s key range represents
the collection of keys permitted to exist within the subtree
originating from that node.

Definition 5 (Search Tree). Let n be an internal node within
a tree, and let k be a key within n. A tree is a search tree
when the following conditions are met:

1) All keys within the subtrees to the left of k in n are
strictly less than k.

2) All keys within the subtrees to the right of k in n are
either greater than or equal to k.



1) Invariants: We establish a set of invariants regarding the
tree’s structure. These invariants remain valid for the tree’s
initial state, and any alteration to the tree upholds all of these
invariants. These established invariants are a foundation for
proving the data structure’s linearizability.

Theorem 1. MTASet Invariants: The following invariants are
true at every configuration in any execution of MTASet:

1) All reachable nodes (Definition 1) form a relaxed (a,b)-
tree.

2) The key range (Definition 3) of a reachable node that
was removed remains constant.

3) An unreachable node (which does not satisfy Definition
1) retains the same keys and values it held when it was
last reachable and unlocked, meaning updates do not
simultaneously detach and alter a node.

4) Each key appears only once in a leaf node among all
leaf nodes.

5) If a node was once reachable and is presently unmarked,
it remains reachable.

6) Let l1 be a full or underfull leaf node that is part of
a merge or split operation, and let l2 be a new node
created by the split or merge. The leaf node l1 can not
reach l2 using l1.right pointer.

7) Let l be a linked node that is about to be unlinked, then
l.right and l.left are constant (may never change once
it is unlinked)

8) In the search operation on a node with key k and target
t, the key range of n contains k.

Intuitively, invariants 1 through 4 stem from the sequential
accuracy of the updates, alongside the assurance that any node
subject to replacement or modification remains locked and
accessible until the update takes effect. The correctness of
the updates in a single-threaded execution can be discerned
through examination of the pseudocode, thus we refrain from
a detailed proof. A brief clarification of invariants 1 through
4 regarding concurrent correctness can be found in [14].
Invariants 5, 6, and 7 can be straightforwardly deduced from
the pseudocode. Invariant 8 differs slightly as it focuses
on verifying the correctness of an operation rather than a
structural property. A detailed proof can be found in [14].

2) Linearizability of Find: The linearizability of the find
operation is established by ensuring that the result accurately
reflects the tree’s state at a specific moment during the search
interval. During a find operation, if the target key k is found,
or if its absence is confirmed by either reading a placeholder
value ⊥ or by scanning the entire key array within a leaf
node l that was unlocked during the search interval, then the
result represents an accurate and stable view of l’s state at that
moment.

If l was part of the tree at any point during the unlocked
interval of the search, then the result of the find operation can
be linearized to any instant within this interval when l was
verified as part of the tree. However, if l was not part of the tree
during the unlocked interval, then its absence implies that it
was unlinked from the tree concurrently with the search. In this

case, the find operation is linearized to the instant just before
l was unlinked, ensuring that each node visited in the traversal
was part of the tree at some point during the operation.

Therefore, whether the leaf l was present or unlinked, the
result of find accurately reflects the tree’s state in real time
at one distinct instant during the search interval, meeting the
requirements for linearizability.

3) Linearizability of Insert and Delete: The linearizability
of the insert operation in MTASet involves four potential
linearization points. First, if the insert operation i finds its
target key k during the search, it linearizes similarly to the
find operation, returning the value corresponding to the located
key. Second, if the insert operation i finds the target key k
after acquiring the lock on leaf l, it can linearize at any point
while holding l’s lock. During this time, the key k and value
cannot change, and the leaf l cannot be unlinked, ensuring the
correctness of the returned value. Third, when i inserts into a
non-full leaf l or modifies a logically deleted key, the operation
linearizes at the moment the key k and value are written to
their respective arrays with a version. Before this point, the
key k did not exist in MTASet, afterward, it is part of MTASet
with a non-⊥ value. For splitting inserts, linearization occurs
when the new subtree pointer is written to the parent node.
Before this, the key k is not in MTASet, afterward, it is in
one of the newly created leaf nodes, with other keys correctly
assigned to new nodes.

For a full explanation, refer to the full paper [26]. The
linearization of the delete operation and the justification of
return values follow a similar rationale as the first three cases
of insert linearizability.

B. Linearizability of Scan
The linearizability of a scan operation s is established

by the moment when the global version GV surpasses the
version vs used by s to collect values, ensuring that any key
inserted or deleted after this point is excluded from s’s result.
Despite ongoing rebalancing operations that dynamically link
and unlink leaf nodes, these changes do not compromise the
correctness of s.

Specifically, when s, linearized at time t, initiates from
the designated leaf node containing the smallest key in its
specified range, it maintains correctness through several cases:
if s encounters a node n that is concurrently unlinked, it
proceeds directly to the next node, avoiding revisits and
thereby preserving a consistent snapshot. In cases where s
visits new nodes that replaced underfull nodes, any missing
keys in n were removed prior to time t and thus are not
included in s. Similarly, if s encounters nodes created by a
split of a full node, the key that triggered the split was inserted
after t and therefore will not be collected by s.

For a full explanation, refer to the full paper [26].

IV. EVALUATION

In this section, we compare MTASet with the OCC-ABtree*
[14] implemented with range scan [16], OCC-ABtree without
a range query implementation, KiWi [2], and Java’s Concur-
rentSkipList (non-atomic) [19].



A. System and setup

In our experiments, we utilized a virtual machine on Azure
(Standard D96ads v5) with the following specifications: an
AMD EPYC 7763 64-Core Processor with 96 vCPUs and 384
GB of RAM. All data structures were implemented in Java.
Both MTASet and the OCC-ABtree were configured with a=2
and b=256. The machine was running Ubuntu 20.04.2 LTS.

B. Methodology

Each experiment begins with a seeding phase, where a
random subset of integer keys and values are inserted into
the data structure until its size reaches half of the key range.
Following this, 80 threads are created and started simultane-
ously, consisting of k threads designated for scans and 80−k
threads for other operations, marking the start of the measured
phase of the experiment. During this phase, each of the 80−k
threads repeatedly selects an operation (insert, delete, find)
based on the desired frequency of each operation. This phase
lasts 10 seconds, recording the total throughput (operations
completed per experiment). Threads designated for the scan
operation repeatedly perform scans, recording the total number
of collected keys. Each experiment is conducted 10 times, and
our graphs display the averages of these runs.

C. Experiments

We present six experiments (a)-(f), with results shown in
Fig. 2. In the 100% scan experiment (a), all threads perform
only range queries. KiWi achieves the highest throughput,
which is expected as it is optimized for range scans, whereas
MTASet is designed for intensive updates. However, the
gap narrows in the scan-with-parallel-updates experiment (b),
where threads perform range queries in parallel with updates.
Here, MTASet’s scan throughput significantly surpasses OCC-
ABtree* by nearly fivefold, highlighting the impact of this
comparison.

In the get experiment (c), where all threads only perform
find operations, OCC-ABtree takes the lead, and MTASet
performs slightly better than OCC-ABtree*. In experiment (d),
with 80% inserts alongside deletes, MTASet and OCC-ABtree
(without range query support) achieve the highest throughput,
with MTASet’s throughput nearly four times that of KiWi. In
the 100% inserts experiment (e), OCC-ABtree leads, showing
the best performance, with OCC-ABtree* slightly outperform-
ing MTASet.

In the 90% get, 9% insert, and 1% delete experiment (f),
where threads perform 90% Get in parallel with 9% Insert and
1% Delete, MTASet performs comparably to OCC-ABtree*
and far exceeds both KiWi and the non-atomic JavaConcur-
rentSkipList.

Overall, MTASet significantly outperforms OCC-ABtree*
in range scan workloads while maintaining competitive update
performance. This balance makes MTASet a strong candidate
for workloads that require efficient range queries without
sacrificing significant update efficiency.

Fig. 2. Experiments (a) and (b) measure Scan throughput, (c) and (f) measure
Get throughput, and (d) and (e) measure Insert throughput. (*) OCC-ABtree
implemented with scan support.

V. DISCUSSION

In this study, we introduced MTASet, a concurrent set data
structure designed to excel in both high update throughput
and efficient, wait-free atomic range queries. MTASet com-
bines a multi-versioning approach to optimize range query
performance while preserving exceptional efficiency in envi-
ronments with intensive updates. Notably, MTASet demon-
strates a significant advantage over the OCC-ABtree* in range
query operations, while maintaining competitive performance
in update-heavy workloads. The results from our experiments
show that MTASet strikes a remarkable balance between these
two operations, making it a versatile solution for modern
applications requiring both fast updates and efficient range
scans.

Looking ahead, an exciting avenue for future work is the
potential integration of elimination [28]–[30] into MTASet.
This enhancement could further improve its range query per-
formance, offering additional optimizations for diverse work-
load types and solidifying MTASet as a robust, balanced data
structure for concurrent applications.
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