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Abstract. We examine the relation between the size of the id space
and the number of rational agents in a network under which equilibrium
in distributed algorithms is possible. When the number of agents in the
network is not a-priori known, but the id space is limited, a single agent
may duplicate to gain an advantage but each duplication involves a risk
of being caught. Given an id space of size L, we provide a method of
calculating the threshold, the minimal value t such that agents know that
n ≥ t, such that the algorithm is in equilibrium. We apply the method
to Leader Election and Knowledge Sharing, and provide a constant-time
approximation t ≈ L

5
of the threshold for Leader Election.
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1 Introduction

We consider the model of distributed game theory [2, 1, 3, 5, 8, 4, 9], in which the
participants are rational agents, and may deviate from the algorithm when it
increases their personal gain. The goal is to design distributed algorithms that
are in equilibrium, that is, where no agent has an incentive to cheat.

Previous works [3, 5, 8, 4, 9] assumed that n, the number of agents in the
network, is a-priori known to all agents. When n is not a-priori known, in some
distributed algorithms an agent may cheat by duplicating itself (perform a Sybil
Attack [7]) in order to gain an advantage. We consider the case where the id
space is limited and any duplication involves a risk of detection, i.e., guessing an
id that might already be taken by some other agent.

For the id-space ID = {1, 2, ..., L}, and when all agents a-priori know that
n, the true number of agents in the network, distributes uniformly n ∼ U [t, L],
what is the minimal threshold t we must provide the agents for the algorithm
to reach equilibrium?

2 Model

The model is a standard synchronous message-passing model of a 2-vertex con-
nected network of n ≥ 3 nodes, each node representing an agent.
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Each agent a-priori know its input (if any), its id, the id-space {1, 2, ..., L}
and the threshold t ∈ N s.t 3 ≤ t ≤ n ≤ L. We assume the prior over any
unknown information is uniformly distributed over all possible values. We assume
all agents start the protocol together. If not, we can use the Wake-Up building
block [5] to relax this assumption.

Each rational agent A wants to maximize its utility function uA : O → R
where O is the set of all possible outputs to the algorithm. A rational agent
participates in the algorithm but may deviate from it if a deviation increases its
expected utility, while assuming all other agents follow the protocol.

To differentiate from Byzantine faults, all utility functions must satisfy the
Solution Preference [5] property, which ensures agents never prefer an outcome in
which the algorithm fails over one in which it terminates correctly. An algorithm
is said to be in equilibrium if no agent, at any point in the algorithm execution,
can unilaterally increase its utility by deviating from the algorithm.

2.1 Duplication

Since n is not a-priori known to agents, an agent A can deviate by simulating m
imaginary agents. Each duplicated agent must be assigned an id and duplication
involves a risk of choosing an id that already exists, rendering it non-unique,
and causing the algorithm failure. We assume m and the ids of all m duplicated
agents must be chosen at round 0, before the algorithm starts.

2.2 Leader Election

Each agent A outputs oA ∈ {0, 1}, oA = 1 if A was elected leader, and oA = 0
otherwise. The set of legal output vectors is defined as: OL = {o | ∃A : oA =
1, ∀A′ 6= A : oA′ = 0}

We assume a fair leader election[3] where, at the beginning of the algorithm,
each agent has an equal chance to be elected leader, and assume agents prefer
to be elected leader.

2.3 Knowledge Sharing

In the problem (from [4], adapted from [5]), each agent A has a private input
iA and a function q, where q is identical at all agents. An output is legal if all
agents output the same value. An output is correct if all agents output q(I)
where I = {i1, . . . , in}. The function q satisfies the Full Knowledge property[5,
4], which states that when one or more input values are not known, any output
in the range of q is equally possible. We assume that each agent A prefers a
certain output value pA. Following [4], in this paper we only discuss Knowledge
Sharing in ring graphs.
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3 Solution Basis

Equation 1 defines the necessary condition for equilibrium in the distributed
problem in the presence of rational agents:

L∑
k=t

e0(k) ≥ max
m

L−m∑
k=t

pm(k)em(k) (1)

Where em(k) is the expected utility of an agent simulating m false dupli-
cates, when k true agents participate in the network; pm(k) is the probability of

successfully choosing m ids that are not yet taken, generally pm(k) =
(L−k

m )
(L−1

m )
. We

are interested in the minimal threshold t that satisfies Equation 1, and it can be
calculated in O(L3) running time, by trying all values for t.

3.1 Enhancements

Linear Threshold For most algorithms there exists L0 such that for any L >
L0, there exists a pivot value t0 such that for any t ≥ t0 the algorithm is in
equilibrium, and for any t < t0 it is not in equilibrium. In such cases we can use
binary search to improve the running time to O(L2 logL).

Limited Duplications For some algorithms there exists a specific duplication
number m′, such that if there exists m for which agent has an incentive to
deviate, then it also has an incentive to deviate with m′ duplications. For such
algorithms we only need to examine a single duplication value, improving the
running time to O(L2).

For algorithms that satisfy both enhancements, the running time is improved
to O(L logL).

4 Contributions

Here we summarize our contributions. Details and full proofs are provided in the
full paper [6].

4.1 Leader Election

The Leader Election algorithm [3, 5] satisfies both enhancements. Thus, the min-
imal threshold can be found in O(L logL) time.

Particularly, whenever an agent has an incentive to deviate by duplicating m
agents, it also has an incentive to deviate by duplicating 1 agent. Thus, to check
for equilibrium it suffices to check the case m = 1.

Furthermore, we prove a constant-time approximation of the Leader Election
threshold that shows the minimal threshold t for equilibrium is in the range
0.2L < t < 0.21L.
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4.2 Knowledge Sharing

The Knowledge Sharing algorithm [5, 4] (in a ring) satisfies only the ”Lin-
ear Threshold” enhancement. Thus, the minimal threshold can be found in
O(L2 logL) time.
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