
16

KiWi: A Key-value Map for Scalable Real-time Analytics

DMITRY BASIN, EDWARD BORTNIKOV, and ANASTASIA BRAGINSKY, Yahoo Research,

Haifa, Israel

GUY GOLAN-GUETA, VMWare Research Group, Tel Aviv, Israel

ESHCAR HILLEL, Yahoo Research, Haifa, Israel

IDIT KEIDAR, Technion and Yahoo Research, Haifa, Israel

MOSHE SULAMY, Tel Aviv University, Tel Aviv, Israel

We present KiWi, the first atomic KV-map to efficiently support simultaneous large scans and real-time access.

The key to achieving this is treating scans as first class citizens and organizing the data structure around

them. KiWi provides wait-free scans, whereas its put operations are lightweight and lock-free. It optimizes

memory management jointly with data structure access. We implement KiWi and compare it to state-of-

the-art solutions. Compared to other KV-maps providing atomic scans, KiWi performs either long scans or

concurrent puts an order of magnitude faster. Its scans are twice as fast as non-atomic ones implemented via

iterators in the Java skiplist.

CCS Concepts: • Theory of computation → Data structures design and analysis; Concurrent algo-

rithms;

Additional Key Words and Phrases: Concurrent data structures, key-value maps

ACM Reference format:

Dmitry Basin, Edward Bortnikov, Anastasia Braginsky, Guy Golan-gueta, Eshcar Hillel, Idit Keidar, and Moshe

Sulamy. 2020. KiWi: A Key-value Map for Scalable Real-time Analytics. ACM Trans. Parallel Comput. 7, 3,

Article 16 (June 2020), 28 pages.

https://doi.org/10.1145/3399718

1 INTRODUCTION

Motivation and goal. The ordered key-value (KV) map abstraction has been recognized as a
popular programming interface since the dawn of computer science, and it remains an essen-
tial component of virtually any computing system today. It is not surprising, therefore, that with
the advent of multi-core computing, many scalable concurrent implementations have emerged;
e.g., see References [3, 10, 11, 24, 30, 33].

Authors’ addresses: D. Basin, A. Braginsky, and E. Hillel, Yahoo Research,Yahoo, Matam 3rd Tower P.O.B 15120, Haifa,

Israel; emails: dbasin@verizonmedia.com, anastas@verizonmedia.com, eshcar@verizonmedia.com; E. Bortnikov, Pliops,

Pliops, Abba Hillel 12, Ramat Gan 5250606, Israel; email: ebortnik@Pliops.com; G. Golan- Gueta, VMWare Research Group,

VMware Israel, Ampa Building, 5 Sapir St., POB 12093, Herzliya 4685209, Israel; email: ggolangueta@vmware.com; I.

Keidar, Technion and Yahoo Research, Viterbi Faculty of Electrical Engineering, Technion, Haifa, 32000, Israel; email:

idish@ee.technion.ac.il; M. Sulamy, Tel-Aviv University School of Computer Science, Tel Aviv 69978, Israel; email:

moshe.sulamy@cs.tau.ac.il.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

2329-4949/2020/06-ART16 $15.00

https://doi.org/10.1145/3399718

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 16. Publication date: June 2020.

https://doi.org/10.1145/3399718
mailto:permissions@acm.org
https://doi.org/10.1145/3399718

16:2 D. Basin et al.

In recent years, KV-maps have become a centerpiece to real-time analytics applications that
require both (1) low latency ingestion of incoming data and (2) range queries involving (typically
large) scans. The consistency (atomicity) of scans is essential for query results to be correct. A
challenge that arises in this environment is allowing consistent scans to be obtained while the data

is being updated in real time.
We present KiWi, the first KV-map to efficiently support large atomic scans alongside real-time

updates. Most concurrent KV-maps today do not support atomic scans at all [3, 6, 10, 11, 24, 30, 31,
33]. A handful of recent works support atomic scans in KV-maps, but they either hamper updates
when scans are ongoing [13, 36] or fail to ensure progress to scans in the presence of updates [14].
See Section 2 for a discussion of related work.

The emphasis in KiWi’s design is on facilitating synchronization between scans and updates.
Since scans are typically long, our solution avoids livelock and wasted work by always allow-
ing them to complete (without ever needing to restart). However, updates are short (since only
single-key puts are supported); therefore, restarting them in cases of conflicts is practically “good
enough”—restarts are rare, and when they do occur, little work is wasted. Formally, KiWi provides
wait-free gets and scans and lock-free puts.

Design principles. To support atomic wait-free scans, KiWi employs multi-versioning [9]. But
in contrast to the standard approach [28], where each put creates a new version for the updated
key, KiWi only keeps old versions that are needed for ongoing scans, and otherwise overwrites the
existing version. Moreover, version numbers are managed by scans rather than updates, and put
operations may overwrite data without changing its version number. This unorthodox approach
offers significant performance gains given that scans typically retrieve large amounts of data and
hence take much longer than updates. It also necessitates a fresh approach to synchronizing up-
dates and scans, which is a staple of KiWi’s design.

A second important consideration is efficient memory access and management. Data in KiWi
is organized as a collection of chunks, which are large blocks of contiguous key ranges. Such data
layout is cache-friendly and suitable for non-uniform memory architectures (NUMA), as it allows
long scans to proceed with few fetches of new data to cache or to local memory. Chunks regularly
undergo maintenance to improve their internal organization and space utilization (via compaction),
and the distribution of key ranges into chunks (via splits and merges). KiWi’s rebalance abstrac-
tion performs batch processing of such maintenance operations. The synchronization of rebalance
operations with ongoing puts and scans is subtle, and much of the KiWi algorithm is dedicated to
handling possible races in this context.

Third, to facilitate concurrency control, we separate chunk management from indexing for fast
lookup: KiWi employs an index separately from the (chunk-based) data layer. The index is updated
lazily once rebalancing of the data layer completes.

Finally, KiWi is a balanced data structure, providing logarithmic access latency in the absence of
contention. This is achieved via a combination of (1) using a balanced index for fast chunk lookup
and (2) partially sorting keys in each chunk to allow for fast in-chunk binary search. The KiWi
algorithm is detailed in Section 3, and we prove its correctness in Section 4.

Evaluation results. KiWi’s Java implementation is available in github.1 In Section 5, we bench-
mark it under multiple representative workloads. In the vast majority of experiments, it signifi-
cantly outperforms existing concurrent KV-maps that support scans. KiWi’s advantages are par-
ticularly pronounced in our target scenario with long scans in the presence of concurrent puts,
where it not only performs all operations faster than the competitors [13, 14] but actually exe-
cutes either updates or scans an order of magnitude faster than every other solution supporting

1https://github.com/sdimbsn/KiWi.

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 16. Publication date: June 2020.

https://github.com/sdimbsn/KiWi

KiWi: A Key-value Map for Scalable Real-time Analytics 16:3

Table 1. Comparison of Concurrent Data Structures Implementing Scans

scans performance

atomic multiple partial wait-free balanced fast puts

Ctrie [36] � � ✗ ✗ � ✗
SnapTree [13] � � � ✗ � ✗
k-ary tree [14] � � � ✗ ✗ �
snapshot iterator [35] � ✗ ✗ � � �
Java skiplist [3] ✗ � � � � �
KiWi ✔ ✔ ✔ ✔ ✔ ✔

For range queries, support for multiple partial scans is necessary. Fast puts do not hamper updates (e.g., by cloning nodes)

when scans are ongoing.

atomic scans. Notably, KiWi’s atomic scans are also two times faster than the non-atomic ones
offered by the Java Skiplist [3].

2 RELATED WORK

Techniques. KiWi employs a host of techniques for efficient synchronization, many of which
have been used in similar contexts before. Multi-versioning [9] is a classical database approach
for allowing atomic scans in the presence of updates, and has also been used in the context of
transactional memory [28]. In contrast to standard multi-versioning, KiWi does not create a new
version for each update, and leaves version numbering to scans rather than updates.

Braginsky and Petrank used lock-free chunks for efficient memory management in the context
of non-blocking linked lists [10] and B+trees [11]. However, these data structures do not support
atomic scans as KiWi does.

KiWi separates index maintenance from the core data store, based on the observation that index
updates are only needed for efficiency and not for correctness, and hence can be done lazily. This
observation was previously leveraged, e.g., for a concurrent skip list, where only the underlying
linked list is updated as part of the atomic operation and other links are updated lazily [12, 25, 26,
38].

Concurrent maps supporting scans. Table 1 summarizes the properties of state-of-the-art con-
current data structures that support scans, and compares them to KiWi. SnapTree [13] and Ctrie
[36] use lazy copy-on-write for cloning the data structure to support snapshots. This approach
severely hampers put operations when scans are ongoing, as confirmed by our empirical results
for SnapTree, which was shown to outperform Ctrie. Moreover, in Ctrie, partial snapshots cannot
be obtained.

Brown and Avni [14] introduced range queries for the k-ary search tree [17]. Their scans are
atomic and lock-free, and outperform those of Ctrie and SnapTree in most scenarios. However,
each conflicting put restarts the scan, degrading performance as scan sizes increase. Additionally,
k-ary tree is unbalanced; its performance plunges when keys are inserted in sequential order (a
common practical case). Recent work by Fatourou et al. [20] also presented an unbalanced binary
search tree that supports wait-free range scans.

Some techniques offer generic add-ons to support atomic snapshot iterator in existing data struc-
tures [7, 19, 35]. Of these, Reference [35] supports only one scan at a time and Reference [19]’s
throughput is lower than k-ary tree’s under low contention; Reference [7] assumes epoch-based
memory reclamation and is intended for C++ programs rather than managed languages like Java.

Other works [8, 29, 34, 39] support wait-free read-only memory transactions via a functional
approach, where updates create new versions rather than over-write existing ones. More generally
than KiWi, they support full-fledged memory transactions [8, 29, 34] or aggregation functions over

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 16. Publication date: June 2020.

16:4 D. Basin et al.

sub-trees [39]. Some of these mitigate the overhead of version creation by batching updates and
performing them in bulk [8, 39].

Most concurrent key-value maps do not support atomic scans in any way [3, 10, 11, 24, 30, 31,
33]. Standard iterators implemented on such data structures provide non-atomic scans. Among
these, we compare KiWi to the standard Java concurrent skip-list [21].

Distributed KV-maps. Production systems often exploit persistent KV-stores like Apache
HBase [1], Google’s Bigtable [18], and others [4, 5]. These technologies combine on-disk indexes
for persistence with an in-memory KV-map for real-time data acquisition. They often support
atomic scans, which can be non-blocking as long as they can be served from RAM [22]. However,
storage access is a principal consideration in such systems, which makes their design different
from that of in-memory stores as discussed herein.

MassTree [32] is a persistent B+-tree designed for high concurrency on SMP machines. It is not
directly comparable to KiWi as it does not support atomic snapshots, which is our key emphasis.
Sowell et al. [37] presented Minuet—a distributed in-memory data store with snapshot support. In
that context, snapshot creation is relatively expensive, which Minuet mitigates by sharing snap-
shots across queries.

3 KIWI ALGORITHM

KiWi implements a concurrent ordered key-value map supporting atomic (linearizable) get(key),
put(key,value), and scan(fromKey,toKey) operations. Its put operations are lock-free, whereas get
and scan are wait-free. A put with a non-existent key creates a new KV-pair, and a put of the ⊥
value removes the pair if the key exists.

The philosophy behind KiWi is to serve client operations quickly, while deferring data structure
optimizations to a maintenance procedure that runs infrequently. The maintenance procedure,
rebalance, balances KiWi’s layout to ensure fast access, and also eliminates obsolete information.

In Section 3.1, we explain how data is organized in KiWi. Section 3.2 discusses how the different
operations are implemented atop this data structure in the common case, when no maintenance
is required. Section 3.3 focuses on rebalancing.

3.1 Data Organization

Chunk-based data structure. Similarly to a B+tree, the KiWi data structure is organized as a collec-
tion of large blocks of contiguous key ranges, called chunks. Organizing data in such chunks allows
memory allocation/deallocation to occur infrequently. It also makes the design cache-friendly and
appropriate for NUMA, where once a chunk is loaded to local memory, access time to additional
addresses within the chunk is much shorter. This is particularly important for scans, which KiWi
seeks to optimize, since they access contiguous key ranges, often residing in the same chunk.

The KiWi data layout is depicted in Figure 1, with one chunk zoomed in. The chunk data struc-
ture is described in Algorithm 1.

KiWi’s chunks are under constant renewal, as the rebalance process removes old chunks and
replaces them with new ones. It not only splits (over-utilized) and merges (under-utilized) chunks
as in a B+tree but also improves their internal organization, performs compaction by eliminating
obsolete data, and may involve any number of chunks.

To simplify concurrency control, however, we do not organize chunks in a B+tree, but rather
in a sorted linked list. This eliminates the synchronization complexity of multi-level splits and
merges. Yet, to allow fast access, we supplement the linked list with an auxiliary index that maps
keys to chunks; it may be organized in an arbitrary way (e.g., skip-list or search tree). Each chunk
is indexed according to the minimal key it holds, which is invariant throughout its lifespan. (The

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 16. Publication date: June 2020.

KiWi: A Key-value Map for Scalable Real-time Analytics 16:5

Fig. 1. KiWi data structure layout. In the zoomed in chunk (on the right), a pending put by the second thread

is attempting to add k[6] to the linked list with key 17 and version 4.

ALGORITHM 1: KiWi chunk data structure.

immutable minKey � minimal key in chunk
array k of 〈key, ver, valPtr, next〉 � in-chunk linked list, k .size > 2·num_threads
array v of values � values stored in the list, v .size > 2·num_threads
kCounter, vCounter � end of allocated (full) prefixes
batchedIndex � end of batched prefix in k
array ppa[num_threads] of 〈ver, idx〉 � pending put array allowing scans & gets to help puts
next � pointer to next chunk in chunk list
mark � indicates whether next is immutable
rebalance data 〈status, parent, ro〉 � rebalancing-related data

minimal key of the first chunk in the list is −∞.) The index supports a wait-free lookup method
that returns the indexed chunk mapped to the highest key that does not exceed a given key. It
further supports conditional updates, which are explained in Section 3.3, as they are done only
as part of the rebalance procedure. Such updates are lazy, and so the index may be inaccurate.
Therefore, the index-based search is supplemented by a traversal of the chunk linked list.

Intra-chunk organization. Each chunk is organized as an array-based linked list, sorted in in-
creasing key order. KiWi chunks hold two arrays—v with written values, and k with the linked
list. Each cell in k holds a key, a pointer valPtr to a value in v, and the index of the cell in k that
holds the next key in the linked list. It also has a version number, as we explain shortly. When a
chunk is created (as a result of rebalancing), some prefix (typically one half) of each array contains
data, and the suffix consists of empty entries for future allocation.

To ensure progress, we need to make sure that before rebalance happens, at least one thread
successfully completes a put to the chunk, even if threads invoke operations that take up slots in
the arrays and remain pending without ever completing. To this end, we set the number of entries
in the k and v arrays to be larger than twice the number of threads.

The chunk’s full prefix is initialized as sorted, that is, the linked-list successor of each cell is
the ensuing cell in k. The sorted prefix is called the chunk’s batched prefix, and it can be searched
efficiently using binary search. As keys are added, the order in the remainder of the chunk is not
preserved, i.e., the batched prefix usually does not grow. For example, when a key is inserted to
the first free cell, it creates a bypass in the sorted linked list, where some cell i in the batched prefix
points to the new cell, and the new cell points to cell i + 1. We note that in case the insertion order
is random, inserted cells are most likely to be distributed evenly in between the batched prefix cells,
thus creating fairly short bypasses. Given that the prefix and the remainder are of similar sizes, the
expected search time remains poly-logarithmic. Nevertheless, in the worst-case, the search time

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 16. Publication date: June 2020.

16:6 D. Basin et al.

is linear in the size of the remainder of the chunk. Empirically, we have found that the batched
prefix improves performance by an order of magnitude.

To support atomic scans, KiWi employs multi-versioning, i.e., sometimes keeps the old version
of a key instead of overwriting it. To this end, KiWi maintains a global version, GV, and tags each
key-value pair with a version, ver. Versions of a key are chained in the linked-list in descending
version order, so the most recent version is encountered first. The compaction process that occurs
as part of rebalancing eliminates obsolete versions. Unlike traditional multi-versioning, KiWi cre-
ates new versions only as needed for ongoing scans. This allows us to shift the overhead for version
management from updates, which are short and frequent, to scans, which are typically long and
therefore much less frequent. Specifically, put operations continue to use the same version (over-
writing previous values for written keys, if they exist) as long as no scan operation increases GV.

Coordination data structures. KiWi employs two data structures for coordinating different oper-
ations. A global pending scan array (PSA) tracks versions used by pending scans for compaction
purposes; each entry consists of a version ver and a sequence number seq, as well as the scan’s key
range. A per-chunk pending put array (PPA) maps each thread either to a cell in the chunk that the
thread is currently attempting to put into and a corresponding version, or 〈⊥,⊥〉, indicating that
the thread is currently not performing a put. The purpose of the PPA will become evident below.

Rebalance-related data. The structure of the linked list changes only during rebalances; rebalance
sometimes needs to mark a chunk’s next pointer as immutable, to avoid races around linked list
updates. To this end, it uses the mark field. Finally, the chunk holds a rebalance data structure
for managing rebalances. It includes a status field that indicates whether the chunk is undergoing
rebalancing: an infant status means that the chunk is still being initialized; a normal chart is part
of the data structure; and a frozen chunk is one that is undergoing rebalance. The parent and ro

fields are used internally by rebalance and are explained in Section 3.3 below.

3.2 KiWi Operations

Our algorithm makes use of atomic compare-and-swap—CAS(x,old,new), fetch-and-increment—
F&I(x), and fetch-and-add—F&A(x,a) instructions for synchronizing access to shared data; all im-
pose memory fences. A pseudocode of KiWi operations is given in Algorithms 2 and 3. We first
describe how scans interact with puts to implement atomic scans. We proceed to describe the
put operation and then gets and scans. Finally, we explain how the order (linearization) between
operations is determined.

3.2.1 Helping Puts. The interaction between put and scan operations is somewhat involved. In
a nutshell, a put uses the current value of GV, whereas a scan begins by atomically fetching-and-
incrementing GV into a local variable ver, causing all future puts to write larger versions than the
fetched one. The scan then uses ver as its scan time, i.e., it returns for each scanned key the latest
version that does not exceed ver.

However, a race may arise if put(key,val) reads a global version equal to ver for its data and then
stalls while a concurrent scan obtains ver as its scan time and continues to read key before the put
writes val for key with ver. In this example, val should be included in the scan (since its version
equals the scan time), but it is not (because it occurs late).

We overcome this scenario by having scans help pending puts assign versions to values they
write. To this end, puts publish their existence in the PPA of the chunk where they write, whereas
scans call helpPendingPuts in each chunk where they read, which checks the PPA and helps any
relevant pending put threads it encounters (lines 48–53). The helping here is minimal—it consists
of a single CAS that assigns a version to the pending put (line 53). For example, in Figure 2, the

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 16. Publication date: June 2020.

KiWi: A Key-value Map for Scalable Real-time Analytics 16:7

Fig. 2. Example of a scan operation enforcing an order between puts: The scan assigns put(k1,a) a new

version (8), whereas put(k2,b) later completes with an old version (7). We see that if get(k2) does not help

put(k2,b), the gets see puts in a different order than the scan.

scan helps put(k1,a) by setting its version to the current global version, namely, 8. This orders the
put after the scan, so the scan may return the old value.

Since scans use version numbers to decide which puts they take into account, the order of put
operations is determined by the order of their versions. For consistency, gets also need to rely
on version numbers. When a get(key) encounters a pending put(key,v) with no version, it cannot
simply ignore the written value, because the put might end up ordered earlier than the get. Gets
therefore call helpPendingPuts to help pending puts as scans do. This is depicted in Figure 2, where
the get must help put(k2,b) obtain a version, because ignoring it would order the gets inconsistently
with the version order that would later be observed by the scan.

3.2.2 Put Implementation. The put operation appears in Algorithm 2. It consists of three phases:
(1) locate the target chunk and prepare a cell to insert with the written value; (2) obtain a version
while synchronizing with concurrent scans, gets, and rebalances via the PPA; and (3) connect the
new cell to the linked list.

To locate the target chunk (lines 25–32), we first lookup the search key in the index. If the
returned chunk is frozen, then it is possible that it is no longer connected to the linked list, and
hence we re-search the index with a smaller key. Because the head of the linked list is never frozen,
and the number of keys is finite, this process eventually returns an unfrozen chunk. Locate then
traverses the linked list until the chunk the sought key belongs in.

The first phase of put (lines 2–9) locates the target chunkC and allocates space for the key and
the variable-length value by increasing C’s array counters to the next available indexes i and j

for k and v, respectively. This is done using atomic F&I and F&A, so in case of concurrent put
operations, each thread gets its own cells.

Before increasing i and j, put checks if rebalancing is needed, because the chunk is full, imbal-
anced, or immutable, as discussed in the next section. This is done by the procedure checkRebal-

ance given below, which returns false in case no rebalance is needed, and otherwise completes (or
restarts) the put. After increasing i and j, put verifies that they are not too large, and if so, proceeds
to write values into k[i] and v[j], without a version at this point; note that k[i] is not yet connected
to the linked list.

The second phase (lines 10–15) publishes i in the thread’s entry in C’s PPA, and then uses CAS
to set the version to the current value of GV. The CAS may fail in two possible ways. First, if
the chunk is undergoing rebalancing, then the reblanacing thread may have set the thread’s PPA
version to frozen. In this case, the put cannot proceed, since the chunk is deemed immutable.
Instead, it invokes rebalance, and if rebalance returns false indicating that it did not insert the

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 16. Publication date: June 2020.

16:8 D. Basin et al.

ALGORITHM 2: KiWi put operation—pseudocode for thread t.

1: procedure put(key, val)
� 1. prepare cell to insert

2: C ← locate(key)
3: if checkRebalance(C , key, val) then return � required rebalance completed the put

4: j← F&A(C .vCounter, val.size) � alF place for value
5: i← F&I(C .kCounter) � allocate cell in linked list
6: if j ≥ C .v.size ∨ i ≥ C .k.size then

7: if ¬rebalance(C , key, val) then put(key, val)

8: v[j]← val

9: k[i]← 〈key,⊥, j,⊥〉 � version and list connection not set yet
� 2. set PPA version

10: C .ppa[t].idx← i

11: gv← GV

12: CAS(C .ppa[t], 〈⊥, i 〉, 〈 gv, i 〉)
13: if C .ppa[t].ver = frozen then � C is being rebalanced
14: if ¬rebalance(C , key, val) then put(key, val)

15: C .k[i].ver← C .ppa[t].ver

� 3. add k[i] to linked list
16: repeat

17: c← find(key, k[i].ver, C) � search C .k (use binary search up to C .batchedIndex)
18: if c = ⊥ then � not found
19: link C .k[i] to the list using CAS
20: if CAS succeeded then break
21: else if c.valPtr = j′<j then � overwrite
22: CAS(c.valPtr, j′, j)

23: until c.valPtr ≥ j

24: C .ppa[t]← 〈⊥,⊥〉

25: procedure locate(key)
26: search_key← key
27: repeat � Find unfrozen chunk to begin traversal
28: C0 ← index.lookup(search_key) � C0.minKey ≤ search_key
29: search_key← C0.minKey−1 � if C0 is frozen, look for smaller key
30: until C0 is not frozen
31: traverse linked list from C0 until the last chunk C s.t. C .next = ⊥ or C .next.minKey < key
32: return C

put’s key and value, the put restarts (lines 13 and 14). (Invoking rebalance on a chunk that is
already being rebalanced is done for lock-freedom, given that the original rebalancing thread may
be stalled.) Second, a helping thread may have already set the version; to account both for this case
and for the case CAS succeeds, put uses the version from the PPA, and copies it to k[i] (line 15).

The third phase (lines 16–23) adds k[i] to the linked list. To find the insertion point, it first
uses binary search on the batched prefix and then traverses the remaining linked list. If the linked
list does not contain a cell with the same key and version, then k[i] is linked to the list (line 19).
Otherwise, ties between two puts with the same key and version are broken based on the indexes

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 16. Publication date: June 2020.

KiWi: A Key-value Map for Scalable Real-time Analytics 16:9

ALGORITHM 3: KiWi get and scan operations—pseudocode for thread t.

33: procedure get(key)
34: C ← locate(key)
35: helpPendingPuts(C , key, key)

36: return findLatest(key,∞, C)

37: procedure scan(fromKey, toKey)
� 1. obtain version - synchronize with rebalance via PSA

38: psa[t]← 〈?, seq, fromKey, toKey〉 � seq is thread-local
39: ver← F&I(GV)
40: CAS(psa[t], 〈?, seq, fromKey, toKey〉,〈ver, seq, fromKey, toKey〉)
41: ver← psa[t].ver

� 2. scan relevant keys
42: C ← locate(fromKey)
43: for each chunk C in query range do

44: helpPendingPuts(C , fromKey, toKey)

45: for each key in query range do

46: return findLatest(key, ver, C)

47: psa[t]← 〈⊥, seq++, ⊥,⊥〉

48: procedure helpPendingPuts(C , fromKey, toKey)
49: for each entry e in C .ppa do

50: idx← e .idx

51: if C .k[idx].key ∈ [fromKey, toKey] then

52: gv← GV

53: CAS(e , 〈⊥, idx 〉, 〈 gv, idx 〉)

54: procedure findLatest(key, ver, C)
55: search key in C .k and C .ppa

56: if found at least one cell with key and version ≤ver then

57: return one with highest version, break ties by valPtr

58: return ⊥

of their allocated cells in v. If the put that allocates cell j finds in the linked list a cell with index j′

with the same key and version such that j′<j, then it uses CAS to replace that cell’s valPtr to point
to v[j] (line 22). If j′>j, then the put does nothing, since its value has effectively been overwritten.
Note that in both cases some cell, either j or j′, remains allocated but is not connected to the
linked list. Unconnected cells are compacted by the rebalancing process. Finally, the PPA version
is cleared (line 24).

3.2.3 Gets and Scans. Gets and scans are presented in Algorithm 3. A get(key) begins by locat-
ing the chunk C where key belongs (line 34). If there is a pending put to key that does not have a
version yet (i.e., its version is ⊥), then get attempts to help it by setting its version to the current
value of GV using CAS (line 53). (CAS may fail in case the put sets its own version or is helped or
frozen by another thread). It then calls findLatest() to find the latest version of the searched key.

The findLatest() function (line 54) performs a binary search on the batched prefix, and continues
to traverse the in-chunk linked list until it either finds key or finds that it does not exist. In addition,

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 16. Publication date: June 2020.

16:10 D. Basin et al.

Table 2. Atomic Operations and Rendezvous Points Determining

Order between KiWi Procedures

scan put rebalance

scan F&I GV – –
put CAS by version, then –

ppa[t].ver F&A vCounter

rebalance CAS CAS to frozen CAS
psa[t].ver ppa[t].ver rebalanceObj

findLatest() checks the PPA for potential pending puts of the target key, ignoring entries with no
versions as these were added after the help. In case multiple versions of key exist, it returns the
one with the highest version. If a pending put has the same version for the sought key as an entry
in the linked list, then the one with the larger valPtr is returned.

A scan first determines its scan time (lines 38–41). It obtains a unique version via F&I of GV, and
attempts to set it as its scan time while synchronizing itself relative to helping rebalance operations
as described below.

It then reads all the keys in the relevant range (lines 42–46) by locating fromKey, and then
traversing the list of chunks until the next chunk’s minKey exceeds toKey. Within each chunk, it
proceeds as get does to help all pending puts and find the latest version of each key.

3.2.4 Ordering Operations. The order among concurrently executing KiWi procedures is deter-
mined by atomic hardware operations (F&I, F&A, or CAS) on pertinent memory locations. Table 2
summarizes the rendezvous points for different types of operations. For brevity, we omit gets from
the table.

Each scan has a unique version. The order between concurrent scans is determined by the order
in which they (or the rebalance threads that help them) perform F&I on GV. Scans (and gets) order
themselves relative to a put by thread t via ppa[t].ver in the chunk where the put occurs.

The order between puts that attempt to insert the same key is determined by their versions,
which reflects their order wrt ongoing scans. Puts that have the same version, (i.e., the order be-
tween them is not determined by scans), are ordered according to the order in which they succeed
to fetch-and-add vCounter. Rebalance operations are discussed below.

3.3 Rebalancing

Section 3.3.1 discusses the life-cycle of a KiWi chunk, and, in particular, when it is rebalanced.
Section 3.3.2 then walks through the stages of the rebalance process.

3.3.1 Triggering Rebalance and Chunk Life-cycle. We saw that put calls checkRebalance(C) in
line 3 before adding a new key to C . This procedure triggers rebalance(C) whenever C is full or
otherwise unbalanced, according to some specified rebalance policy; we refer to C as the trigger

chunk of the rebalance. To ensure liveness, it is essential to trigger rebalance only after at least
one put—and hopefully many puts—succeed in the chunk. We therefore assume that chunks are
created “in good standing,” i.e., sorted and no more than half full and the policy is not overly
aggressive in triggering rebalance.

To address the immediate problem for which rebalance is triggered, KiWi could, in principle,
restrict itself to the trigger chunk: It can free up space by compacting C , i.e., removing deleted
values, values that are no longer in the linked list, because their keys have been over-written, as
well as values that pertain to old versions that are not required by any active scan; if this does not

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 16. Publication date: June 2020.

KiWi: A Key-value Map for Scalable Real-time Analytics 16:11

ALGORITHM 4: The checkRebalance procedure.

59: procedure checkRebalance(C , key, val)
60: if C .status=infant then

61: normalize(C .parent)
62: put(key, val) s
63: return true
64: if C .vCounter ≥ C .v.size ∨ C .kCounter ≥ C .k.size ∨C .status = frozen ∨ policy(C) then

65: if ¬rebalance(C , key, val) then put(key, val)

66: return true
67: return false

suffice (because all the information inC is needed), KiWi may split the chunk. Furthermore, it can
address the imbalance by sorting the chunk.

The problem with this approach is that it may leave under-utilized chunks in the data structure
forever. KiWi improves space utilization by allowing chunks to merge, or more generally, engaging

a number of old chunks in the rebalance, and replacing all of them with any number of new ones.
The chunks to engage are determined by the rebalance policy.

Rebalance clones the relevant data from all engaged chunks into new chunks, and then replaces
the engaged chunks with the new ones in the data structure. Cloning creates a window when the
same data resides at two chunks—new and old. For get and scan to be wait-free, the chunks remain
accessible for reading during this period. But to avoid inconsistencies, both chunks (old and new)
are immutable throughout the window.

This defines a life cycle for chunks: they are created as immutable infants by some parent trigger
chunk C; they become normal mutable chunks at the end of the rebalance process; and finally,
they become frozen (and again immutable) when they are about to be replaced. (We assume that a
complementary garbage-collection mechanism eventually removes disconnected frozen chunks.)
The chunk’s status (infant, normal, or frozen), the pointer to its parent, and the pointer to the
appropriate rebalance object are part of the rebalance data stored in the chunk (see Algorithm 1).

The checkRebalance(C) procedure is given in Algorithm 4. It checks whether C is immutable,
and if so, helps complete the process that makes it immutable (C’s parent in caseC is an infant, and
C in case it is frozen). The rebalance procedure consists of two functions, rebalance and normalize;
in case the chunk’s parent is helped only the latter is performed as explained below. In addition,
rebalance on C may be triggered in case the chunk is full or if the rebalance policy chooses to
do so. Note that put calls checkRebalance before incrementing kCounter and vCounter to avoid
filling up infant chunks. The rebalance procedure takes the put’s key and value as parameters, and
attempts to piggyback the put on the rebalance, i.e., insert the key and value to the newly created
chunk. In case it fails, it returns false, in which case the put is restarted.

The policy will typically choose to rebalance C whenever C is full or under-utilized, as well as
when its batched prefix becomes too small relative to the number of keys in C’s linked list. To
stagger rebalance attempts in case of many insertions to the same chunk, the policy can make
probabilistic decisions: If a chunk is nearly full or somewhat under-utilized or unbalanced, then
the policy may flip a coin to decide whether to invoke rebalance or not.

3.3.2 Rebalance Stages. Rebalance proceeds in the following seven stages:

(1) Engage—agree on the list of chunks to engage.
(2) Freeze—make engaged chunks immutable.
(3) Pick minimal version—to keep in compaction.

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 16. Publication date: June 2020.

16:12 D. Basin et al.

(4) Build—create infant chunks to replace engaged ones.
(5) Replace—swap new chunks for old ones in list.
(6) Update index—un-index old chunks, index new ones.
(7) Normalize—make the new chunks mutable.

If the first check of checkRebalance() decides to help rebalance a chunk’s parent, then rebalance
starts in stage 6, since the chunk’s reachability implies that stage 5 is complete. In other cases,
(a frozen chunk or a new trigger chunk), rebalance cycles through all seven stages. This is safe,
because all stages are idempotent, and ensures lock-freedom, namely, progress in case the original
rebalance stalls. The first five stages are performed in the rebalance procedure, whereas the last
two are performed in normalize. Pseudocode for these operations is given in Algorithms 5– 7.

1. Engagement. Since multiple threads may simultaneously execute rebalance(C), they need to
reach consensus regarding the set of engaged chunks. The consensus is managed via pointers from
the chunks to a dedicated rebalance object ro. Once a chunk is engaged in a rebalance it cannot
be engaged with another rebalance. The engaged chunks in a particular rebalance always form a
contiguous sector of the chunks linked list. For simplicity, this sector always starts from the trigger
chunk forward, though in principle it is possible to grow the sector backwards from the trigger
chunk as well. A rebalance object holds pointers to two chunks, first (the trigger chunk) and next

(the next potential chunk to engage in the rebalance). The engagement preserves the following
invariant:

Invariant 1. Consider a rebalance object ro. If ro.next�⊥, then for every chunk C in the linked

list from ro.first to the chunk before ro.next, C .ro=ro.

Engagement begins by agreeing on the ro to use. This is done by creating a rebalance object
referring to the trigger chunk C (line 69), attempting to set C .ro to this rebalance object via CAS
(line 70), and (3) using the ro in C .ro (line 71). Note that the latter was set by a successful CAS
of some rebalance thread. Next, we try to engage ensuing chunks in the list one by one. In each
iteration, we consult the policy whether to engage the next chunk. We then use CAS to change
ro.next to either ro.next.next (in case we decide to engage another chunk), or ⊥ (indicating that it
is time to stop engaging chunks). We exit the loop when ro.next is⊥, and then set the local variable
last to the last engaged chunk.

2. Freezing. Once the list of engaged chunks is finalized, we freeze them so no data will be added
to them while they are being cloned. Recall that puts become visible to concurrent retrievals once
they publish themselves in the chunk’s PPA, and that before doing so, they check if the chunk is
frozen. However, we need to account for the scenario where a chunk becomes frozen after put
checks its status and before the put publishes itself in PPA. To this end, rebalance traverses all the
PPA entries and attempts to set their versions to frozen using CAS. If the CAS is successful, then
the put will fail to assign itself a version (Algorithm 2, line 13). Otherwise, the put has already
assigned its version, and rebalance can take it into account during cloning.

3. Determining the minimal read version and helping scans. We need to clone all data versions
that might still be needed by scans. To this end, we compute minVersion, the minimum read point
among all active and future scans—this is the smallest version among those published in PSA and
the current GV.

Since a scan cannot atomically obtain a scan time from GV and publish it in PSA, rebalance
cannot ignore scans that have started but did not publish a version yet. We therefore use a helping

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 16. Publication date: June 2020.

KiWi: A Key-value Map for Scalable Real-time Analytics 16:13

ALGORITHM 5: KiWi’s rebalance procedure—stages (1)–(3).

68: procedure rebalance(C , put_key, put_val)
� 1. engage

69: tmp← new rebalance object, with first=C , next=C .next

70: CAS(C .ro, ⊥, tmp)
71: ro← C .ro
72: last← C
73: while ro.next � ⊥ do

74: next← ro.next

75: if policy(next) then � try to engage next
76: CAS(next.ro, ⊥, ro)
77: if next.ro = ro then � engaged next
78: CAS(ro.next, next, next.next)
79: last← next

80: else

81: CAS(ro.next, next, ⊥)

82: else

83: CAS(ro.next, next, ⊥)

84: while last.next.ro = ro do � search for the last concurrently engaged chunk
85: last← last.next

� 2. freeze
86: for each chunk c from ro.first to last do

87: c .status← frozen

88: for each entry e in c .ppa do

89: idx← e .idx

90: CAS(e , 〈⊥, idx〉, 〈frozen, idx〉)
� 3. pick minimal version

91: minVersion← GV
92: for each psa[t] = 〈ver, seq, from, to〉 do

93: if ro.first.minKey ≤ to ∧last.next.minKey > from then

94: if ver=? then add 〈t, seq, from, to〉 to toHelp

95: else minVersion← min(minVersion, ver)

96: if toHelp � ∅ then

97: ver← F&I(GV)
98: for each 〈t, seq, from, to〉 ∈ toHelp do

99: CAS(psa[t], 〈?,seq,from,to〉, 〈ver,seq,from,to〉)
100: minVersion← min(minVersion, psa[t].ver)

101: return build(C, put_key, put_val, ro, last, minVersion) � Build new chunks, replace old
ones

mechanism: scan first publishes ? in PSA (Algorithm 3, line 38) indicating its intent to obtain a
version, then fetches-and-increments the global version and uses CAS to update the version from
? to the one it obtained.

Concurrent rebalance operations help scans install a version in started entries; monotonically
increasing counters are used to prevent ABA races where an old rebalance “helps” a new scan.
Specifically, rebalance does the following: it scans the PSA for entries with ? whose range overlaps

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 16. Publication date: June 2020.

16:14 D. Basin et al.

the range covered by the engaged chunks (line 94); if any are found, then it helps them (lines 96–
100) by fetching-and-incrementing GV and for every psa[t]= 〈?, . . . 〉 entry found, attempting to
CAS psa[t] to hold the new version. Note that scan’s CAS (Algorithm 3, line 40) might fail in case
it is helped, but either way, it uses the version written by some successful CAS (line 41).

ALGORITHM 6: KiWi’s rebalance operation—stages (4) build and (5) replace.

102: procedure build(C , put_key, put_val, ro, last, minVersion)
� 4. build

103: Cf ← Cn ← new chunk with minKey=C .minKey, parent=C , status=infant

104: for each chunk Co from ro.first to last do

105: if Co .minKey ≤ put_key < Co .next.minKey then

106: toPut← {〈put_key, GV, put_val〉}
107: else

108: toPut← ∅
109: for each k in Co .ppa ∪ Co .k ∪ toPut in ascending order do

110: if Cn is more than half full then

111: Cn .next← new chunk withminKey=k, parent=C , status=infant

112: Cn ← Cn .next

113: for each version 〈 ver, val 〉 of k, in descending order do

114: if val = ⊥ then break � eliminate tombstones

115: insert 〈 k, ver, val 〉 to Cn

116: if ver < minVersion then break
� 5. replace

117: repeat � set next pointer & mark bit of last old chunk to Cn ’s next pointer & true
118: Cn .next← last.next

119: CAS(last.next+mark, Cn .next+false, Cn .next+true)
120: until last.next+mark = Cn .next+true
121: do

122: pred← C’s predecessor
123: if CAS(pred.next+mark, C+false, Cf +false) then � success
124: normalize(C)
125: return true
126: if pred.next.parent = C then � someone else succeeded
127: normalize(C)
128: return false
129: rebalance(pred, ⊥,⊥) � insertion failed, help predecessor
130: while true � and retry

4. Creating new chunks and completing the put. The next stage creates new chunks to replace the
engaged ones. It uses thread-local variables Cf and Cn to hold pointers to the first and last new
chunks, respectively. It traverses the list of engaged chunks from ro.first to last. In each chunk,
it collects data both from the intra-chunk linked list and from the PPA. Additionally, the key and
value of the put that triggered the rebalance is included in the appropriate chunk. Versions asso-
ciated with deletions (tombstones) are discarded along with all older versions of the same key. All
versions of a key that are older than the last version that does not exceed minVersion can be safely
discarded, whereas newer versions are cloned into new chunks. New chunks are created one at a
time, as infants, with the trigger chunk as their parent. Keys are added, in sorted order, to a new

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 16. Publication date: June 2020.

KiWi: A Key-value Map for Scalable Real-time Analytics 16:15

chunk Cn until it is roughly half full, at which point a new chunk is created and Cn .next is set to
this new chunk. (In case the last chunk is too sparse, for example, only a quarter full, it is discarded
and its keys are moved to the penultimate chunk). We assume here that the number of versions is
much smaller than the chunk size.

5. Data structure update. Next, rebalance attempts to insert the new section into the linked list
instead of the engaged one. This involves two steps: First, the next pointer of the tail chunk in
the new section needs to take the value of the next pointer in last. Second, the next pointer of
the predecessor of ro.first needs to be set to the head of the new chunks’ list. To execute the two
steps atomically, we do the following: We first (lines 117–120) mark the next pointer in last as
immutable and set the tail of the new chunk sector to its value. We then use CAS to set the next

pointer of the predecessor of ro.first (line 123). If CAS succeeds, then we return true. If CAS fails
because another rebalance (using the same rebalance object) has successfully replaced the trigger
chunk with a new one, then we simply return false (indicating that the new key and value were
not added as part of the rebalance, and hence put should restart) without taking any additional
actions. But if CAS fails because some other rebalance had marked the next pointer as immutable
(line 120 above), then we recursively help that rebalance complete, and then re-attempt to insert
the new chunk sector to the list.

In the special case when the new list is empty (because no data is kept), line 123 CASes the next

pointer of the predecessor of ro.first to the next pointer of last.

ALGORITHM 7: KiWi’s rebalance operation—stages (6) update index and (7) normalize.

131: procedure normalize(C)
132: discover last by traversing chunks from C .ro
133: discover Cn , Cf by traversing from C’s predecessor

� 6. update index
134: for each chunk c from C .ro.first to last do

135: index.deleteConditional(c .minKey, c)

136: for each chunk c from Cf to Cn do

137: do

138: prev← index.loadPrev(c .minKey)

139: if c .frozen then break
140: while ¬index.putConditional(c .minKey, prev, c)

� 7. normalize
141: for each chunk c from Cf to Cn do

142: CAS(c .status, infant, normal)

6. Index update. The normalize procedure needs to know last, Cn , and Cf to delete old chunks
from the index and insert new ones. These may be stored in ro by rebalance for this purpose, or
may be discovered by traversals.

Since the new chunks are already accessible via the linked list and the old chunks are already
frozen, the index update can be lazy, and updates of different chunks can proceed without syn-
chronization. Nevertheless, we need to take into account races with old rebalance operations— a
thread that wakes up after being stalled must be prevented from indexing a chunk that had already
been supplanted.

To this end, we assume that the index supports a form of semantic load-linked and store-
conditional; specifically, it provides the following API: (1) loadPrev(k)—returns the indexed chunk

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 16. Publication date: June 2020.

16:16 D. Basin et al.

mapped to the highest key that does not exceed k; (2) deleteConditional(k,C)—removes key k only
if mapped to chunk C; and (3) putConditional(k,prev,C)—maps k to C provided that the highest
key in the index that does not exceed k is mapped to prev. We note that it is straightforward to
implement such a non-blocking index using the extended load-linked and store-conditional prim-
itives, LLX and SCX, due to Brown et al. [15]; a general approach for implementing non-blocking
search trees using these primitives is given in Reference [16]. In our implementation, we instead
use locks. This does not affect performance as index nodes are locked infrequently (only upon
rebalance), and only by background threads off the main execution path.

To index a new chunk C , we first call loadPrev(C .minKey), then verify that C is not frozen, and
if so, add it conditionally to the index. Since chunks are frozen before they are un-indexed, this
check ensures that we do not re-index an unindexed chunk. If the conditional put fails and yet the
chunk is not frozen, then the put is retried. Index removals call deleteConditional(C.minKey,C).

7. Normalization. Finally, the status of the new chunks is set to normal, and put operations may
begin to update them. Though it is possible that old (removed) chunks are still being accessed by
old get and scan operations at this point, these operations will be ordered before the new puts,
so it is acceptable for them to miss the added data. Once all such old operations complete, the old
chunks can be reclaimed.

4 CORRECTNESS

To lay out foundations for reasoning about correctness, we define in Section 4.1 the model and
correctness notions we seek to prove. We proceed to prove the algorithm’s safety in Section 4.2
and liveness in Section 4.3.

4.1 Model and Correctness Specification

We consider an asynchronous shared memory model [40] consisting of a collection of shared vari-
ables accessed by a finite number of threads, which also have local state. High-level objects, such
as a map, are implemented using low-level memory objects supporting atomic read, write, and
read-modify-write (e.g., CAS) primitives. Threads invoke high-level operations, which perform a
sequence of steps on low-level objects, and finally return.

An algorithm defines the behaviors of threads executing high-level operations as deterministic
state machines, where local state transitions are associated with shared low-level memory ac-
cesses (read, write, CAS, etc.) or high-level invocations/responses. A configuration describes the
local states of all threads and the contents of shared variables. An initial configuration is one where
all threads and variables are in their initial values. An execution of algorithm A is an alternating
sequence of configurations and steps, beginning with some initial configuration, such that config-
uration transitions occur according to A. Operation op1 precedes operation op2 in an execution if
op1’s return step precedes op2’s invoke step; two operations are concurrent in execution σ if neither
precedes the other, that is, both are invoked in σ before either returns. In a sequential execution,
there are no concurrent operations. We use the notion of time t during an execution σ to refer
to the configuration reached after the t th step in σ . An interval of execution σ is a sub-sequence
of σ . The interval of an operation op in σ starts with the invocation step of op and ends with the
configuration following the return from op or the end of σ , if there is no such return.

Our correctness notion is linearizability, which intuitively means that the object “appears to be”
executing sequentially. More formally, the history H (σ) of execution σ is the sequence of invoca-
tions and returns occurring in σ . In a sequential history, each invocation is immediately followed
by its return. An object is specified using a sequential specification, which is the set of its allowed
sequential histories.

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 16. Publication date: June 2020.

KiWi: A Key-value Map for Scalable Real-time Analytics 16:17

For a historyh, complete(h) is the sequence obtained by removing invocations with no responses
from h. We assume that histories are well-formed, meaning that the sub-sequence of each thread’s
steps in a history is sequential. An algorithm is linearizable [27] if each of its histories h = H (σ)
can be extended by adding zero or more response events to a history h′, so that complete(h′) has a
sequential permutation that preserves h’s precedence relation and satisfies the object’s sequential
specification. Thus, a linearizable algorithm provides the illusion that each invoked operation takes
effect instantaneously at some linearization point inside its interval.

For liveness, we consider two notions: wait-freedom requires that every operation return within
a finite number of its own steps, whereas lock-freedom requires only that some operation return
within a finite number of steps. The former is sometimes called starvation-freedom and the latter—
non-blocking.

KiWi implements a linearizable map offering lock-free put operations and wait-free get and scan
operations. In its sequential specification, get and scan return the latest value inserted by a put for
each key in their ranges.

4.2 KiWi’s Linearizability

In Section 4.2.1, we show that the rebalance process preserves the data structure’s integrity and
contents. We proceed to prove that KiWi is linearizable by identifying, for every operation in a
given execution, a linearization point between its invoke and return steps, so that the operation
“appears to” occur atomically at this point. We discuss put operations in Section 4.2.2 and gets and
scans in Section 4.2.3. The linearization point of operation op is denoted LP(op).

4.2.1 Rebalance. We first argue that rebalance operations preserve the integrity of the data
structure. To this end, we introduce some definitions. We say that a chunk C is accessible in KiWi
if C is connected to the linked list, that is, if traversing the linked list from its head to its tail goes
through C . While a chunk is accessible its key range is well-defined: We say that key k is in the
range of chunk C if k ≥ C .minKey and k < C .next.minKey.

When all the entries in a chunk’s PPA are frozen, we say that the chunk is frozen. Observe that
a put operation can successfully assign a PPA version (phase 2 of put) in chunk C at a time t only
if (1) C is accessible at some time t ′ < t , and (2) C is not frozen at time t . This is because once a
thread’s PPA entry is frozen, its attempt to CAS it inevitably fails and it triggers rebalance. We say
that a chunk is mutable if these two conditions are satisfied. Similarly, a chunk is immutable before
it first becomes accessible and again after the freezing stage of its rebalance is complete.

Rebalance preserves the following invariant:

Invariant 2. At any point in an execution of KiWi, for every key k ,

(1) the minKey values in the linked list are monotonically increasing (so k is in the range of

exactly one accessible chunk);

(2) k is in the range of at most one mutable chunk; and

(3) querying the index for k returns a chunk C s.t. C .minKey ≤ k and C is either accessible or

frozen.

Proof.

(1) Observe that when a segment of new chunks is connected instead of a sequence of old
ones,Cf .minKey is equal toC .minKey, and the next pointer inC’s predecessor is replaced
via CAS fromC toCf (line 123) hence the invariant is preserved on the left side of the new
segment. The invariant is also preserved on the right side of the new segment, because

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 16. Publication date: June 2020.

16:18 D. Basin et al.

each new chunk’s minKey is set to some key encountered in the old segment before last,
and Cn .next is guaranteed to be last.next (lines 117–120).

(2) The rebalance protocol does not link new chunks to the list (stage (5)) before freezing the
old chunks holding the same key range (stage (2)). Moreover, once a chunk is engaged
(stage (1)), it is associated with a unique rebalance object ro whose next pointer is set to
⊥, and hence the segment of chunks associated with ro cannot change. Using a CAS to
set C’s predecessor’s next pointer to Cf ensures that the old immutable chunk sequence
is replaced by at most one new accessible mutable chunk sequence.

(3) Chunks are indexed according to their minKey, and the rebalance protocol does not index
new chunks (stage (6)) before making them accessible (stage (5)). Before a chunk ceases
to be accessible, it must be frozen. �

From Invariant 2, we derive the correct execution of the locate function:

Corollary 4.1. The locate(key) function (lines 25–32) always returns a chunk C s.t. key is in C’s

range. Moreover, if key is in the range of some chunk C that is mutable throughout the execution of

locate, then locate returns C .

In addition to preserving the data structure’s integrity, rebalance ensures that no key-value
pairs disappear from the data structure due to rebalancing. We say that a key-value pair 〈key, val〉
is stored in KiWi at time t in execution σ if invoking get(key) at the end of σ and allowing it to
complete without interfering steps of other threads returns val. We show the following:

Proposition 4.2. If 〈key, val〉 is stored in KiWi at time t in execution σ and no subsequent

put(key,_) operations are invoked in σ , then 〈key, val〉 is stored in KiWi at all times t ′ > t in σ .

Proof. By Invariant 2(1), key is in the range of exactly one accessible chunkC at time t , which
get(key) locates, and the returned val is the one associated with key with the highest version
(with ties broken by valPtr). Observe that as long asC remains accessible at time t ′, its range does
not change, because minKey is invariant, and if C’s successor is replaced by rebalance, then it
is replaced with a chunk with the same minKey. Since no subsequent put(key,_) operations are
invoked in σ , val remains the highest-version value associated with key in C , and we are done.

It remains to show that a rebalance that removes C does not remove 〈key, val〉 from KiWi,
from which the proposition follows inductively. This follows from the facts that (1) the highest-
versioned value associated with each key in an old chunk C is cloned into a new chunk; and
(2) the entire chunk segment is replaced atomically by marking the next pointer of the last en-
gaged chunk to prevent it from changing, and then CASing the predecessor of the first engaged
chunk. �

4.2.2 Puts. Puts in a chunkC are ordered (lexicographically) according to their version-value-
index pairs 〈v, j〉, where 〈v, i〉 is published in the appropriate PPA entry in phase 2 of the put, and
C .k[i].valPtr= j; this pair is called the full version of the put. We note that in each chunk, the full
versions are unique, because threads obtain j using F&A (line 4). First, i is published in ppa[t].idx

(line 10) and then the pair gets its final value by a successful CAS of ppa[t].ver, either by the put
(line 12) or by a helping thread (line 53). We refer to a step publishing i in ppa[t].idx and to the
step executing the successful CAS as the put’s publish time and the full version assignment time,
respectively, and say that the put assigns full version 〈v, j〉 for its key in C .

We note that each put assigns a full version at most once. Furthermore, as noted above, a full
version can only be in a mutable chunk. Once a put operation po for key k assigns its full version
in chunk C at time t , we can define its linearization point. There are two options:

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 16. Publication date: June 2020.

KiWi: A Key-value Map for Scalable Real-time Analytics 16:19

(1) If at time t po’s full version 〈v, j〉 is the highest for k in C (among entries in C’s PPA and
linked list), then LP(po) is the last step (by any thread) that reads v from GV before t
(line 11 or 52).

(2) Otherwise, let po′ be the put(k, _) operation that assigns for k inC the smallest full version
exceeding po’s before time t . Then LP(po) is recursively defined to be at the same time as
LP(po′). Note that po’s full version assignment time exceeds that of po′, so the recursive
definition does not induce cycles. In case multiple puts are assigned linearization points
the same time, they are linearized in increasing full version order.

By Invariant 2, rebalance operations divide puts of key k into disjoint groups; one group per
mutable epoch of each chunk covering the key. The following lemma establishes the order among
linearization points of puts within one epoch.

Lemma 4.3. Consider chunkC , key k in the range ofC , and an operation po =put(k, _) that assigns

〈v, j〉 to C .ppa at time t . Then

(1) LP(po) is after po allocates location j for its value and before t .
(2) LP(po) is a read step of GV that occurs after GV is set to v .

(3) LP(po) is after some operation po′ (possibly po, but not necessarily) publishes a put of k inC ,

where later po′ assigns a full version equal to or greater than 〈v, j〉.
(4) The linearization points of all operations that publish puts of k inC preserve their full version

order.

Proof. We consider an execution interval π , which spans the execution intervals of all opera-
tions that publish k to C . Denote by t1, t2, . . . the finite sequence of times these operations assign
versionsv1,v2, . . . into entries in the ppa by their order in π , where ti is the assignment time of op-
eration opi ; denote the locations these operations allocate for their values as j1, j2, . . ., respectively
(see Figure 3).

The proof is by induction on i . For the base case, we consider op1. It is the first to publish its
version in the ppa (see Figure 3(a)). All entries of key k from previous epochs were written in C
during the rebalance operation that created C; their versions are smaller or equal to v1 and their
locations are smaller than j1. Therefore, the full versions of these entries are smaller than 〈v1, j1〉
and op1 is linearized in the last read step of the global version counter that returns v1 before t1.
Clearly this is after op1 is published (line 9), and specifically after j1 is allocated (line 4), and the
lemma holds.

For the induction step, assume the lemma holds for operationsop1, . . . opi−1. We prove the lemma
for operation opi by case analysis. If opi ’s full version 〈vi , ji 〉 is maximal in C (with respect to all
linked cells and published entries with the same key), then LP(opi) is the last read retrievingvi from
the global counter (see Figure 3(b)). This step is done after the put is published in the ppa (which
is after ji is allocated) and before ti , and Conditions 1–3 of the lemma hold. In addition, by the
induction hypothesis, linearization points of op1, . . . opi−1 preserve their full version order. They
are all linearized in read steps after the global version counter is set to their versions, specifically
not later than LP(opi)—the latest read step returning the maximal version, hence Condition 4 holds
as well.

Otherwise, another operation opl published 〈vl , jl 〉 in tl before ti , s.t. 〈vl , jl 〉 > 〈vi , ji 〉. By def-
inition, opi is linearized exactly at the point (LP(opl)), which preserves the full version order of
the operations, and Condition 4 holds. By Condition 3 of the induction hypothesis, LP(opl) is after
an operation publishes k to C (and later assigns a full version equal or greater than 〈vl , jl 〉). Since
〈vl , jl 〉 > 〈vi , ji 〉, Condition 3 also holds.

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 16. Publication date: June 2020.

16:20 D. Basin et al.

Fig. 3. Linearization points of put operations publishing key k in chunkC . t1, t2, . . . is the sequence of times

these operations assign versions into C’s ppa.

It is left to discuss Conditions 1 and 2. Consider first the case wherevl > vi (see Figure 3(c)). By
Condition 2 of the induction hypothesis, LP(opl) is in a read step of the global version counter that
occurs after it is set to vl . Eventually, opi assigns version vi , which is smaller than vl . This implies
that opi publishes the operation in the ppa before the version counter is set to vl , and LP(opi)
satisfies Conditions 1 and 2. If vl = vi and jl > ji (see Figure 3(d)), then opl allocates jl after opi

allocates ji . By Condition 1 of the induction hypothesis, LP(opl) is after opl allocates jl and before
tl , and LP(opi) satisfies Conditions 1 and 2. �

4.2.3 Gets and Scans. The most subtle linearization is of get operations. A get operation дo
may land in a mutable or immutable chunk. We need to linearize дo before all concurrent puts
that дo misses while seeking the value. For a get operation дo for a key k in the range of chunkC ,
we consider the time t when дo starts traversing C’s PPA (line 49 in helpPendingPuts). There are
three options:

(1) IfC is not accessible from the chunks list at time t , then LP(дo) is the last step in whichC
is still accessible from the chunks list.

(2) Else, if дo does not find k in C then LP(дo) is at time t .
(3) Else, let po be the put operation that inserts the value returned by дo. LP(дo) is the latest

between time t and immediately after LP(po).

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 16. Publication date: June 2020.

KiWi: A Key-value Map for Scalable Real-time Analytics 16:21

The next lemma shows that in the third case no other put writing to k is linearized after LP(po)
and before LP(дo).

Lemma 4.4. Consider a get operation дo retrieving the value of key k from chunk C . Let t be the

step in which дo starts traversing C’s PPA. Then:

(1) If дo does not find k in C , then for each operation po publishing k in C , LP(po) is after t .
(2) If дo returns the value written by operation po, then LP(дo) is after LP(po), and for each

po′ � po publishing k in C , LP(po′) is either before LP(po) or after t .

Proof. First, assume дo does not find the key in C . It can be inferred from findLatest that all
operations publishing k in C are published in the ppa after t . Otherwise, дo should have observed
one of them either in the ppa or in the linked list. By Condition 3 of Lemma 4.3, all operations
publishing k in C are linearized after t , and Condition 1 holds.

Next, assume дo returns the value written by operation pol , where the full version of pol is
〈vl , jl 〉.

If C is not accessible from the chunks list at time t , then LP(дo) is in the last step in which C is
accessible from the chunks list. Since chunks cease to be mutable before they cease to be accessible,
no put operation can publish inC after t , and by Condition 1 of Lemma 4.3 LP(дo) is after LP(pol).
Otherwise, by definition LP(дo) is (immediately) after LP(pol).

Consider an operation pom � pol publishing k toC with full version 〈vm , jm〉. By Condition 4 of
Lemma 4.3, if 〈vm , jm〉 < 〈vl , jl 〉, then LP(pom) is before LP(pol). It is left to show that if 〈vm , jm〉 >
〈vl , jl 〉, then LP(pom) is after t . It can be inferred from findLatest that all operations publishing k
inC with full version 〈vm , jm〉 > 〈vl , jl 〉 are published in the ppa after t . Otherwise, дo should have
observed one of them either in the ppa or in the linked list. Condition 3 of Lemma 4.3 implies that
these operations are linearized after at least one of them is published in the ppa, hence Condition 2
also holds. �

Scans are linearized when GV is increased beyond their read point, typically by their own F&I,
and sometimes by a helping rebalance. Lemma 4.3 is used to prove the following:

Lemma 4.5. Consider a scan operation so that acquires version v as its read point. For each key k
in the range of the scan, so returns the value of the put operation writing to k that is linearized last

before LP(so).

Proof. Consider a put operation po that writes to a key in the range of the scan but is not
observed by op. First, assume po acquires version that is less than v . Then it acquires a version
before the scan increases the global version counter. Since so does not observe po in the ppa, po
completes before so reads the entry in the ppa. Moreover, so does not observe po in the linked list.
It can be inferred from the code that another put operation po′ with a higher version than po’s full
version updates the same entry in k in-place. By Condition 4 of Lemma 4.3, po is linearized before
po′ writing the value returned by the scan.

Finally, by Condition 2 of Lemma 4.3 all put operations that are not observed by so and acquire
versions greater than v are linearized after LP(so). �

The definition of the linearization points of scans and get operations imply that these operations
are linearized between their invocation and return. Condition 1 of Lemma 4.3 implies the same
for puts. Corollary 4.1 shows that gets and scans land in chunks that contain the sought keys
in their ranges. Combined with the rebalancing invariants, Lemma 4.4 shows that get operations
satisfy their sequential specification, and Lemma 4.5 proves that scans satisfy their sequential
specification. Hence, we conclude that KiWi implements a linearziable map.

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 16. Publication date: June 2020.

16:22 D. Basin et al.

4.3 Liveness

We now prove KiWi’s liveness properties. We show that gets and scans are wait-free, namely, in
any execution, every operation completes within a finite number of steps by its invoking thread.
This is proven by showing that the number of iterations in the loops in these procedures is finite.
Put operations satisfy a weaker liveness property— lock-freedom, namely, in every execution, some

put operation completes. To prove this, we show that although a put operation can execute an
infinite number of rebalances, this can only occur because some other operation (and in fact many
operations) successfully complete a put.

We begin by showing that the locate function is wait-free.

Proposition 4.6. The locate function is wait-free.

Proof. The function consists of two loops. The first loop executes a finite number of iterations,
because index.lookup(key) always returns a chunk C0 with C0.minKey ≤ key, and so the searched
keys are monotonically decreasing. Since the number of keys is finite and the head of the list is
never frozen, the loop returns an unfrozen chunk after a finite number of iterations. The ensuing
traversal is also finite, because the linked list is finite. �

Lemma 4.7. The get and scan functions are wait-free.

Proof. By Proposition 4.6, the locate function is wait-free. To complete the proof, observe that
the loops performed in helpPendingPuts and findLatest iterate (or search) over finites sets—C .k
and C .ppa, and the scan loop (line 43) traverses chunks in the (finite) linked list. �

Lemma 4.8. The put function is lock-free.

Proof. We first show that as long as no rebalance occurs, put completes within a finite number
of steps. Beyond rebalance calls and recursive calls to put when it fails, put executes two loops—one
in the locate function and one in phase 3 (lines 16–23). The former is wait-free by Proposition 4.6.
Next, consider the loop in phase 3 of the put. Observe that the find function is wait-free, because
it searches a finite array (C .k). Moreover, the CAS in line 19 fails at most a finite number of times
(again, due to the finality of C .k), and because we break when it succeeds, it is attempted a finite
number of times. Additionally, every time the CAS in line 22 is attempted (and either succeeds or
fails), c.valPtr increases, implying that after a finite number of attempts, c.valPtr ≥ j, and the loops
completes.

Next, consider rebalance triggered by the put. This can occur in checkRebalance (called in line 3),
or when either C .k or C .v is full (line 6), or when the chunk is already frozen (line 14). To prove
lock-freedom, we will show that every time rebalance returns false (leading to a recursive call
to put) or iterates an additional time in an unbounded loop, or recursively calls rebalance, this
is because some new put returned successfully. Note, in particular, that if a rebalance operation
succeeds to replace the engaged sequence (and returns true), then it completes the put that invoked
it, and so we do not need to consider this case.

We first argue that with the exception of rebalance stage 5 (replace), all other rebalance stages
always complete within a finite number of steps. Because the chunks list is finite, the two loops
in stage 1 (engage) are finite. Similarly, the list of engaged chunks and the number of PPA entries
in each of them are finite, and so is the nested loop in stage 2 (freeze). In stage 3 (pick minimal
version), the loop over the PSA is finite, and it constructs a finite toHelp set, and so the loop over
toHelp is finite as well. Likewise, the loops in stage 4 iterate over finite sets, namely, engaged
chunks and keys in the data structures therein. In stage 6, the conditional insertion to the index
fails only if another thread succeeds to insert a chunk with the same minKey. Because the insertion
is retried only as long as the chunk is not frozen, interfering insertions to the index must be due

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 16. Publication date: June 2020.

KiWi: A Key-value Map for Scalable Real-time Analytics 16:23

older rebalances that began before the current rebalance, of which there is a finite number. Clearly,
stage 7, which performs a single CAS, is also wait-free. Hence, it remains to consider stage 5.

The first loop in stage 5 terminates once the CAS—either of the thread executing the loop or of
another thread—succeeds to mark last.next as immutable. The CAS fails if either last.next changes
or another thread marks it. But last.next only changes if some rebalance succceds to replace an
engaged chunk succeeding it, and this rebalance returns true upon completion, thus completing a
put when it returns.

The second loop returns whenever either the current thread or another thread successfully re-
places the next pointer at C’s predecessor to a node whose parent isC (Cf in case it is the current
thread). They fail to do so only in case the predecessor’s next pointer is marked, which in turn only
occurs if the predecessor itself is engaged in another rebalance. In this case, the current thread
makes a recursive call to rebalance to help the predecessor (line 129), and then executes another
iteration of the loop. Note that since the linked list is finite, the depth of the recursion is finite, so
eventually the inner-most nested recursive call succesfully returns. Once a nested call in line 129
returns after having replaced pred with a new chunk pred′, either some thread will succeed to CAS
the new predecessor’s next pointer causing the calling thread to exit the loop in the next iteration,
or the new chunk pred′ will undergo rebalance. However, for the latter to occur, it must be the
case that at least one new put has completed in pred′ following its rebalance. This is because when
rebalance completes, pred′.k is sorted and pred′.k and pred′.v are at most half full, and because
they hold more entries than twice the number of threads, it is impossible for either of them to fill
up due to pending put operations. Thus, rebalance can only be required after a successful put in
pred′. �

5 EVALUATION

5.1 Setup

Implementation. We implement KiWi in Java, using Doug Lea’s concurrent skip-list implemen-
tation [3] for the index with added locks to support conditional updates. The code makes exten-
sive use of efficient array copy methods [2]. KiWi’s chunk size is set to 1024. We have found this
chunk size to be big enough to offer good locality. Bigger chunks favor puts albeit with diminish-
ing returns, and mildly slow down gets and scans, because larger chunks allow more “imbalance”
(obsolete data to iterate through, long bypasses in the search) than smaller ones.

The rebalance policy is tuned as follows: checkRebalance invokes rebalance with probability
0.15 whenever the batched prefix consists of less than 0.625 of the linked list. Rebalance engages the
next chunk whenever doing so will reduce the number of chunks in the list. We did not implement
the piggybacking of puts on rebalance, and instead restart the put after every rebalance.

The probability for invoking rebalance and the threshold on the ratio of the batched prefix
control the aggressiveness of rebalancing. On the one hand, aggressive rebalancing reduces put
throughput, because put threads shoulder the burden of rebalancing. On the other hand, it favors
gets and scans, because it shortens search times and reduces iteration through deleted or over-
written items. We have chosen these parameters to strike a balance between the two.

Methodology. We leverage the popular synchrobench microbenchmark [23] to exercise a va-
riety of workloads. The hardware platform features four Intel Xeon E5-4650 8-core CPUs. Ev-
ery experiment starts with 20 seconds of warmup—inserts and deletes of random keys—to let the
HotSpot compiler optimizations take effect. It then runs 10 iterations, 5 seconds each, and av-
erages the results. An iteration fills the map with random (integer, integer) pairs, then exercises
some workload. Most experiments start from 1M pairs, except those focusing on high scalability
that start from 10M.

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 16. Publication date: June 2020.

16:24 D. Basin et al.

Fig. 4. Throughput scalability with uniform workloads, 1M dataset. (a) Get operations, (b) Put operations,

(c) Scan operations.

For the most part, we use the same methodology as previous works, which is the methodology
supported by synchrobench, where keys are selected uniformly at random. We additionally study
an ordered workload to illustrate the benefit of using a balanced data structure as opposed to an
unbalanced one. We also experimented with a skewed distribution, where after populating the data
structure with a uniform distribution over the full key range in the warmup phase, the measured
experiments exercise only 10% of the key range. The results were very similar (in absolute number
as well as in trends) to the uniform distribution. For example, in one set of experiments with 4
update threads and 4 threads running scans of different ranges (10 to 25K keys), the put throughput
in the skewed key distribution was within 2% of the put throughput in the uniform one across all
scan sizes. Scan times exhibited higher variability—up to 15%—but did not show a clear advantage
in one key distribution over the other. Rather, in some experiments the scan was faster over the
skewed distribution and vice versa.

Competition. We compare KiWi to Java implementations of three concurrent KV-maps: (1) the
traditional skip-list [3], which does not provide linearizable scan semantics, (2) SnapTree [13],2 and
(3) k-ary tree [14].3 For the latter, we use the optimal configuration described in Reference [14]
with k = 64.

5.2 Results

Basic scenarios: get, put, and scan. We first focus on three simple workloads: (1) get-only (ran-
dom reads), (2) put-only (random writes, half inserts/updates and half deletes), and (3) scan-only
(sequential reads of 32K keys, each starting from a random lower bound).

Figure 4 depicts throughput scalability with the number of worker threads. In get-only scenarios
(Figure 4(a)), KiWi outperforms the other algorithms by 1.25× to 2.5×. We explain this by the
NUMA- and cache-friendly locality of access in its intra-chunk binary search. Under put-only
workloads (Figure 4(b)), it also performs well, thanks to avoiding version manipulation. SnapTree,
which is optimized for random writes, is approximately 10% faster than KiWi with 32 threads.
Note that in general, KiWi’s gets are faster than its puts, because the latter occasionally incur
rebalancing.

2https://github.com/nbronson/snaptree.
3http://www.cs.toronto.edu/∼tabrown/kstrq/LockFreeKSTRQ.java.

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 16. Publication date: June 2020.

https://github.com/nbronson/snaptree
http://www.cs.toronto.edu/{char '176}tabrown/kstrq/LockFreeKSTRQ.java

KiWi: A Key-value Map for Scalable Real-time Analytics 16:25

Fig. 5. Throughput scalability with concurrent scans and puts. (a,b) Scan operations, 1M dataset. (c) Scan

operations, 10M dataset. (d,e) Put operations, 1M dataset. (f) Put operations, 10M dataset.

KiWi excels in scan performance (Figure 4(c)). For example, with 32 threads, it exceeds its closest
competitor, k-ary tree, by over 40%. Here too, KiWi’s advantage stems from high locality of access
while scanning big chunks.

Concurrent scans and puts. We now turn to the scenario that combines scan operations with
real-time updates (put operations). This is the primary use case that motivated the design principles
behind KiWi. Half of the threads perform scans, whereas the second half performs puts.

Figure 5(a) depicts scan throughput scalability with the number of threads while scanning ranges
of 32K keys. Figure 5(b) depicts the throughput for 16 scan threads with varying range sizes. Note
that for long scans, k-ary tree’s performance deteriorates under contention. This happens because
k-ary tree restarts the scan every time a put conflicts with it—i.e., puts make progress but scans
get starved. For large ranges, SnapTree has the second-fastest scans, because it shared-locks the
scanned ranges in advance and iterates unobstructed. Note that KiWi’s throughput slightly de-
creases when the range is particularly big, because it takes longer to collect redundant versions,
and therefore the scan has to sift through more data. Figure 5(c) depicts similar phenomena for a
10M-key dataset. SnapTree’s competitive scan performance comes at the expense of puts, since its
locking approach starves concurrent updates. Figures 5(d-f) illustrate this behavior—the latter for
a 10M-key dataset.

We study the memory footprints of the solutions in this scenario. We focus on 32-key scans—a
setting in which the throughput achieved by all the algorithms except SnapTree is similar. Figure 6
depicts the JVM memory-in-use metric immediately after a full garbage collection that cleans up
all the unused objects, averaged across 50 data points. KiWi is on par with k-ary tree and the Java

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 16. Publication date: June 2020.

16:26 D. Basin et al.

Fig. 6. RAM use with parallel scans and puts, 1M dataset.

skiplist except with maximal parallelism (16 put threads), in which it consumes 20% more RAM
due to intensive version management.

Ordered workload. As a balanced data structure, KiWi provides good performance on non-
random workloads. We experiment with a monotonically ordered stream of keys. KiWi achieves a
throughput similar to the previous experiments. In contrast, k-ary tree’s maximal put throughput
in this setting is 730 times slower—approximately 13.6K operations/s vs KiWi’s 9.98M.

6 DISCUSSION

We presented KiWi, a KV-map tailored for real-time analytics applications. KiWi is the first con-
current KV-map to support high-performance atomic scans simultaneously with real-time updates
of the data. In contrast to traditional approaches, KiWi shifts the synchronization overhead from
puts to scans, and offers lock-free puts and wait-free gets and scans. We demonstrated KiWi’s
significant performance gains over state-of-the-art KV-map implementations that support atomic
scans.

REFERENCES

[1] [n.d.]. Apache HBase—A Distributed Hadoop Database. Retrieved from https://hbase.apache.org/.

[2] [n.d.]. Java Array Copy. Retrieved from https://docs.oracle.com/javase/7/docs/api/java/lang/System.html.

[3] [n.d.]. Java Concurrent Skip List. Retrieved from https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/

ConcurrentSkipListMap.html.

[4] 2014. A fast and lightweight key/value database library by Google. Retrieved from http://code.google.com/p/leveldb.

[5] 2014. A persistent key-value store for fast storage environments. Retrieved from http://rocksdb.org/.

[6] Maya Arbel, Guy Golan-Gueta, Eshcar Hillel, and Idit Keidar. 2015. Towards automatic lock removal for scalable

synchronization. In Proceedings of the International Symposium on Distributed Computing (DISC’15). 170–184.

[7] Maya Arbel-Raviv and Trevor Brown. 2018. Harnessing epoch-based reclamation for efficient range queries. In Pro-

ceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP’18), Andreas

Krall and Thomas R. Gross (Eds.). ACM, 14–27. DOI:https://doi.org/10.1145/3178487.3178489

[8] Naama Ben-David, Guy E. Blelloch, Yihan Sun, and Yuanhao Wei. 2019. Multiversion concurrency with bounded

delay and precise garbage collection. In Proceedings of the 31st ACM on Symposium on Parallelism in Algorithms

and Architectures (SPAA’19), Christian Scheideler and Petra Berenbrink (Eds.). ACM, 241–252. DOI:https://doi.org/10.

1145/3323165.3323185

[9] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. 1987. Concurrency Control and Recovery in Database

Systems. Addison-Wesley.

[10] Anastasia Braginsky and Erez Petrank. 2011. Locality-conscious lock-free linked lists. In Proceedings of the Interna-

tional Conference on Distributed Computing and Networking (ICDCN’11). 107–118.

[11] Anastasia Braginsky and Erez Petrank. 2012. A lock-free b+tree. In Proceedings of the 31st ACM on Symposium on

Parallelism in Algorithms and Architectures (SPAA’12). 58–67.

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 16. Publication date: June 2020.

https://hbase.apache.org/
https://docs.oracle.com/javase/7/docs/api/java/lang/System.html
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ConcurrentSkipListMap.html
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ConcurrentSkipListMap.html
http://code.google.com/p/leveldb
http://rocksdb.org/
https://doi.org/10.1145/3178487.3178489
https://doi.org/10.1145/3323165.3323185
https://doi.org/10.1145/3323165.3323185

KiWi: A Key-value Map for Scalable Real-time Analytics 16:27

[12] Anastasia Braginsky, Erez Petrank, and Nachshon Cohen. 2016. CBPQ: High performance lock-free priority queue.

In Proceedings of the European Conference on Parallel and Distributed Computing (Euro-Par’16).

[13] Nathan Grasso Bronson, Jared Casper, Hassan Chafi, and Kunle Olukotun. 2010. A practical concurrent binary search

tree. In Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP’10).

257–268.

[14] Trevor Brown and Hillel Avni. 2012. Range queries in non-blocking k-ary search trees. In Proceedings of the Conference

on Principles of Distributed Systems (OPODIS’12). 31–45.

[15] Trevor Brown, Faith Ellen, and Eric Ruppert. 2013. Pragmatic primitives for non-blocking data structures. In Pro-

ceedings of the ACM Symposium on Principles of Distributed Computing (PODC’13), Panagiota Fatourou and Gadi

Taubenfeld (Eds.). ACM, 13–22. DOI:https://doi.org/10.1145/2484239.2484273

[16] Trevor Brown, Faith Ellen, and Eric Ruppert. 2014. A general technique for non-blocking trees. In Proceedings of the

ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP’14), José E. Moreira and James

R. Larus (Eds.). ACM, 329–342. DOI:https://doi.org/10.1145/2555243.2555267

[17] Trevor Brown and Joanna Helga. 2011. Non-blocking k-ary search trees. In Proceedings of the Conference on Principles

of Distributed Systems (OPODIS’11). 207–221.

[18] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike Burrows, Tushar Chandra,

Andrew Fikes, and Robert E. Gruber. 2008. Bigtable: A distributed storage system for structured data. ACM Trans.

Comput. Syst. 26, 2 (June 2008), 4:1–4:26.

[19] Bapi Chatterjee. 2016. Lock-free linearizable 1-dimensional range queries. In Proceedings of the Workshop on the The-

ory of Transactional Memory (WTTM’16).

[20] Panagiota Fatourou, Elias Papavasileiou, and Eric Ruppert. 2019. Persistent non-blocking binary search trees sup-

porting wait-free range queries. In Proceedings of the 31st ACM on Symposium on Parallelism in Algorithms and Ar-

chitectures (SPAA’19), Christian Scheideler and Petra Berenbrink (Eds.). ACM, 275–286. DOI:https://doi.org/10.1145/

3323165.3323197

[21] K. Fraser. 2004. Practical lock-freedom. In Ph.D. Dissertation, University of Cambridge.

[22] Guy Golan-Gueta, Edward Bortnikov, Eshcar Hillel, and Idit Keidar. 2015. Scaling concurrent log-structured data

stores. In Proceedings of the European Conference on Computer Systems (EuroSys’15). 32:1–32:14.

[23] Vincent Gramoli. 2015. More than you ever wanted to know about synchronization: Synchrobench, measuring the

impact of the synchronization on concurrent algorithms. In Proceedings of the ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming (PPoPP’15).

[24] Danny Hendler, Nir Shavit, and Lena Yerushalmi. 2004. A scalable lock-free stack algorithm. In Proceedings of the

ACM Symposium on Parallelism in Algorithms and Architectures (SPAA’04). 206–215.

[25] Maurice Herlihy, Yossi Lev, Victor Luchangco, and Nir Shavit. 2007. A simple optimistic skiplist algorithm. In Pro-

ceedings of the International Colloquium on Structural Information and Communication Complexity (SIROCCO’07). 124–

138.

[26] Maurice Herlihy and Nir Shavit. 2008. The Art of Multiprocessor Programming. Morgan Kaufmann Publishers.

[27] Maurice Herlihy and Jeannette M. Wing. 1990. Linearizability: A correctness condition for concurrent objects. ACM

Trans. Program. Lang. Syst. 12, 3 (1990), 463–492.

[28] Idit Keidar and Dmitri Perelman. 2015. Multi-versioning in transactional memory. In Transactional Memory; Founda-

tions, Algorithms, Tools, and Applications. Vol. 8913. Chapter 7, 150–165.

[29] Idit Keidar and Dmitri Perelman. 2015. Multi-versioning in transactional memory. In Proceedings of the European

Conference on Transactional Memory. Foundations, Algorithms, Tools, and Applications—COST Action (Euro-TM’15),

Rachid Guerraoui and Paolo Romano (Eds.). Lecture Notes in Computer Science, Vol. 8913. Springer, 150–165.

DOI:https://doi.org/10.1007/978-3-319-14720-8_7

[30] Alex Kogan and Erez Petrank. 2012. A methodology for creating fast wait-free data structures. In Proceedings of the

ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP’12). 141–150.

[31] David B. Lomet, Sudipta Sengupta, and Justin J. Levandoski. 2013. The bw-tree: A b-tree for new hardware platforms.

In Proceedings of the IEEE International Conference on Data Engineering (ICDE’13). 302–313.

[32] Yandong Mao, Eddie Kohler, and Robert Tappan Morris. 2012. Cache craftiness for fast multicore key-value storage.

In Proceedings of the 7th ACM European Conference on Computer Systems (EuroSys’12). 183–196.

[33] Aravind Natarajan and Neeraj Mittal. 2014. Fast concurrent lock-free binary search trees. In Proceedings of the ACM

SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP’14). 317–328.

[34] Dmitri Perelman, Anton Byshevsky, Oleg Litmanovich, and Idit Keidar. 2011. SMV: Selective multi-versioning STM.

In Proceedings of the International Symposium on Distributed Computing (DISC’11) (Lecture Notes in Computer Science),

David Peleg (Ed.), Vol. 6950. Springer, 125–140. DOI:https://doi.org/10.1007/978-3-642-24100-0_9

[35] Erez Petrank and Shahar Timnat. 2013. Lock-free data-structure iterators. In Proceedings of the International Sympo-

sium on Distributed Computing (DISC’13). 224–238.

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 16. Publication date: June 2020.

https://doi.org/10.1145/2484239.2484273
https://doi.org/10.1145/2555243.2555267
https://doi.org/10.1145/3323165.3323197
https://doi.org/10.1145/3323165.3323197
https://doi.org/10.1007/978-3-319-14720-8_7
https://doi.org/10.1007/978-3-642-24100-0_9

16:28 D. Basin et al.

[36] Aleksandar Prokopec, Nathan Grasso Bronson, Phil Bagwell, and Martin Odersky. 2012. Concurrent tries with effi-

cient non-blocking snapshots. In Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming (PPoPP’12). 151–160.

[37] Benjamin Sowell, Wojciech Golab, and Mehul A. Shah. 2012. Minuet: A scalable distributed multiversion b-tree. Proc.

VLDB Endow. 5, 9 (May 2012), 884–895.

[38] Alexander Spiegelman, Guy Golan-Gueta, and Idit Keidar. 2016. Transactional data structure libraries. In Proceedings

of the Conference on Programming Language Design and Implementation (PLDI’16). 682–696.

[39] Yihan Sun, Daniel Ferizovic, and Guy E. Blelloch. 2018. PAM: parallel augmented maps. In Proceedings of the 23rd

ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP’18), Andreas Krall and Thomas

R. Gross (Eds.). ACM, 290–304. DOI:https://doi.org/10.1145/3178487.3178509

[40] Jennifer L. Welch and Hagit Attiya. 2004. Distributed Computing: Fundamentals, Simulations and Advanced Topics (2nd

ed.). John Wiley Interscience.

Received June 2018; revised March 2020; accepted April 2020

ACM Transactions on Parallel Computing, Vol. 7, No. 3, Article 16. Publication date: June 2020.

https://doi.org/10.1145/3178487.3178509

