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Abstract

Machine-based systems, especially those based on deep neural networks, have become an integral part of
our everyday life. The performance in many fields, including translations, voice recognition, spam
detection, and image processing, has surpassed that of humans. Their impact will even increase soon

with the release of various autonomous systems, led by the autonomous vehicle.

With the improved capabilities we get by using neural networks come new vulnerabilities as well. An
industry of attacks on these networks called adversarial learning has been developed. In these attacks, the
input data is altered slightly, in a way a human eye or ear cannot detect, causing the networks to change
their behavior dramatically. Several methods have been presented over the years to deal with this
phenomenon, some diagnoses the sensitivity of the network to minor changes, some add the perturbed
examples to the training stage (this is called adversarial training). But, as far as we know, no generic

defense system has been found for all types of attacks and domains.

In this paper, we examine the vulnerability to adversarial attacks in one of the core parameters - the
multiplicity of the input dimension. We explain why the high dimension of the input domain increases
the vulnerability to an adversarial attack and we examine the effect of several reduction-based protection
methods on diverse datasets, including those with multiple color channels (CIFAR10), and high
dimension (INTEL). Our conclusion is that dimension reduction can improve the resilience of a network
against adversarial attacks. But, it is difficult to find one method which fits all cases. Therefore our
recommendation is an ensemble approach that combines several methods in order to obtain an optimal

result.
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1. Introduction
In recent years we witness increased use of products and technologies based on machine learning and
artificial intelligence. This phenomenon covers almost every aspect of our daily lives: web search, online
translation, phone’s voice personal assistant and fingerprint locking, target advertising and much more.
In the coming years, we expect even more advanced technologies that until recently were considered
fiction rather than science. This includes autonomous vehicle and IoT products, which will make a

significant change in our lives.

Like the revolution of the personal computer, which became common in every home during the 1980s
and the 1990s, the endless race to upgrade and progress has sometimes resulted in security neglect.
Machine learning algorithms have always been tested for how much the model was right: accuracy,
FP/FN, precision/recall and so on. There has never been a criterion for examining the durability of a
model against intentional malformed input. Just imagine the impact of a cyber-attack adding minor
changes to the sensors of the autonomous vehicle, causing it to be confused between a stopover sign and

a highway sign.

In this research, we explore a new field that emerged only in 2014 and focuses on methods of deliberate
deception of learning models. This field is named Adversarial Learning. In their article, Szegedy etal. [1]
were the first to discover a disturbing phenomenon in neural networks, which until then were
considered to be incredibly accurate for many tasks. It turned out that small perturbations to an image,
such that in many cases may not be distinguished by the human eye, can cause the network’s

classification to change dramatically, and with high confidence.
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Figure I: An adversarial image generated by the FGSM algorithm.
l.gﬁ - the original panda image; Middle - small perturbation added to the image; Right - an adversarial image, c/asxjfied as a gibbon (Source:
Explaining and harnessing adversarial examples, Goodfellow et al [16])

Figure 1 illustrates the problematic nature of this phenomenon. In this case, a small perturbation was
added to the original panda image. This small noise was calculated using the Fast Gradient Sign Method
suggested by [16]. Although the change is negligible and we can clearly see that the output is a panda

image, the neural network identified it as gibbon with high confidence.

The FGSM was the first algorithm to propose a scheme to produce adversarial images. It uses the sign
clements of the cost function gradient with respect to the input image to calculate a small noise vector to
be added. The magnitude of the change can be controlled by multiplying the noise vector with the
epsilon parameter. A large value of epsilon increases the likelihood of being mistaken on the network,
but, of course, also detract from image quality and make it easier to recognize that manipulation has
been performed. Figure 2 shows the effect of different epsilon values on the test accuracy in the case of
CIFAR10 and INTEL datasets.
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Figure 2: FGSM a/gorithm‘ﬂ)r creating adversarial images. Thisfi’gure shows how the epsilon parameter, controlling the magnitude qf‘thc noise

vector, aﬁrecrs the accuracy achieved by the neural network model in two diﬁérent datasets.

We focused on the effect of the input dimension on the attacker’s ability to mislead the network,
examining several different dimensionality reduction approaches on the classification accuracy in the

case of both standards and manipulated input data.

1.1. Contributions
We studied a large number of dimensionality reduction defense strategies to combat adversarial machine
learning attacks: PCA, KMeans, image rescaling, LPF, edge detection and other types of filtering
including Gaussian, median, gradient and bilateral. Most of the prior work that took an approach of
dimensionality reduction [30,31,32,33,35,36,40] deal with certain methods and hence the difficulty in
making a qualitative comparison. Here we tried to perform an overview of as many methods as possible

on the same architecture and data set.

For cach of these methods, we show a significant accuracy improvement compared to the original
model. The models for which we got the best results were KMeans and PCA. KMeans with k =20 for
example shows an improvement from 25.4% accuracy to 60.5% when & = 0.07 on the INTEL dataset
while PCA with variance percent preserve equals 99.9% got an accuracy of 53.9%. CIFAR-10 dataset
showed the same trend where KMeans and PCA presented the best improvement on small epsilon
values where KMeans with K = 20 improved the accuracy of 28.3% in the original model to 58% when

£ =0.04 . We witnessed a dramatic improvements in classification accuracy for most of the
dimensionality reduction methods, mostly in the low range of epsilon values. Note that small values for

epsilon are the more likely scenario for an attack, considering the attacker’s desire not to be detected.

Our work as well as other recent work suggest that there is no magic solution that is suitable for all
problems or all network architectures and data types. Therefore we suggest three novel defense
ensemble strategies for adversarial learning defense. Given a large number of models that have been
trained on data that has been downgraded with different processes of dimensionality reduction, if by a
variety of methods or by using a different set of parameters, we would like to train a meta-learner that
will take the advantage of an ensemble approach to make a more accurate result based on the original

results.

We suggest to use three main methods. The first method is a simple voting among all the results for

decision—making. A more sophisticated method is to use a stacking approach in which we give a new



meta-learner the dimension reduction predictions to perform training and testing. One option we tried
is to give the model the predicted classes and perform one-hot encoding. Another is to be trained on all
the probability vectors of all the models combined. Every model produced a distribution vector on

every prediction that can be an indication of the confidence level of the model.

For small epsilon value in the range of [0,0.07] these 3 methods got a higher score than the best
dimension reduction method at each point. For example, on the CIFAR-10 dataset and adversarial rate
of €=0.03 the original model got an accuracy of 41.2% while the best dimension reduction method

got a score of 58.5%. We were able to achieve an accuracy of 63% on both stacking approaches.

We consider this a general approach for solving the problem of adversarial learning. This approach can
be extended at any time by further models of different dimensionality reduction methods. Proper
training of the meta-learner can take the best of all models to give the optimum result. To the best of
our knowledge, there was no previous attempt of dealing with the adversarial learning problem with a

stacking ensemble approach.

1.2. Paper Outline
The outline of this writeup is as follow. We first briefly provide the background required in chapter 2.
We describe the problem of classification and then focus on neural networks and different relevant

architectures.

In Chapter 3 we elaborate on the problem domain. A full description of the adversarial learning
phenomenon is given as well as several common attack methods from recent years. This chapter ends

with a presentation of several common approaches for both detection and prevention.

Chapter 4 will focus on the properties of multi-dimensional input. First, we describe a general
phenomenon that makes it difficult for machine learning models to solve high-dimensional problems and
has received the ominous term "the curse of dimensionality". Then we will see how high dimensionality

is much more problematic when considering deliberate attacks on the model.

Chapter 5 describes several dimension reduction methods that have been tested. We describe each of

the methods in detail, define the experimental conditions and the measured metrics.
Chapter 6 presents the results concentrate on the conclusions that follow.

Chapter 7 summerises the contribution of this study as well as options for future research.



2. Background
Machine Learning is the science of getting computers to act without being explicitly programmed. In the
past decade, machine learning has given us self-driving cars, practical speech and image recognition,

effective web search, and a vastly improved understanding of the human genome.

Machine Learning was first mentioned in 1959 by Arthur Samuel [2] while trying to solve the game of
checkers. As an interdisciplinary field, ML shares common properties with other fields such as Artificial
Intelligence, statistics, information theory, game theory, and optimization. Evolved from data mining
and pattern recognition, ML explores the study of algorithms that can learn from examples and make
predictions and decisions based on a given data [3].

The ability to 'learn' is defined by progressively improve performance on a specific task. According to
Tom M. Mitchell [4] ‘A computer program is said to learn from experience E with respect to some class
of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with

. )
experience E’.

Machine learning is divided into three main different classes: supervised learning, unsupervised learning
and reinforcement learning. In supervised learning, the learning process is guided. That is, the algorithm
trains the model with a labeled set of samples (the data), each of them is labeled by a ‘teacher’.
Unsupervised learning is a subfield in ML that helps find previously unknown patterns in a dataset
without pre-existing labels. This includes tasks such as clustering, dimension reduction, and outlier
detection. In the more sophisticated problem of reinforcement learning, the user gives the algorithm

feedback on its decisions, in order to improve performance over time.

2.1. The Classification Problem

We focus on supervised learning, and more specifically classification problems. In the basic statistical

supervised learning model, the model has a set of N labeled points which will be our training set.

\N .
Meaning, the training process includes N input vectors {X' } L X' € R" and N class labels
i=

N ) N :
{yI }izl , yI S {O,l} for the discrete classification problem and {yl }izl , yI e R for the continuous

regression problem. The training model will give a prediction for every new data point. Testing the
model with a new labeled dataset, called the test set, can give us a measure of how good our model is. If
we define our hypothesis output for new data point x as h(x) and the real known output as f(x), then the
accuracy of our model can be defined as
n
@) L(®)=>D_1(f(x).h(x,0))

i=1

where ® is the learning parameters of the model and ! is a loss function measuring the error of the
prediction with respect to the real value. Some examples of such loss functions can be the square loss

function and the logistic loss function. The total L function is referred to as the Training Loss Function.

In order to avoid overfitting and keeping the model as simple as possible, we also define the

regularization function Q ( h(@)) which measures the complexity of the model.
So, the objective function we wish to minimize in this optimization problem should be
(2) Obj(©) =L(6)+Q(h(0))

The machine learnjng process illustrated in Figure 3 shows the main stages during a supervised learning

experiment [5]. The labeled data is divided into training and test sets. After Exploratory Data Analysis,
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which includes cleaning, transforming and visualization of the input data, a feature extraction stage gives
us input X. This input will be inserted into a machine learning model resulted in a predicted value. The

model includes some learned parameters. The actual value and the metric value can be used to define
the accuracy of our model.

specific properities
(height, eye color. skin, etc)

\:]O

Y &
Training Feature y > QR
extraction

— ® Qe
L 4 Predicted
T A7 weights on features Phenotypes
Q y (regression coefficients)

=
=

® (2(’ Genomes (can happen
Phenotypes many times)
Evaluation

Testing Data

Figure 3: The Supervised Learning Process
(Source: Coursera, Machine Learning Foundations: A Case Study Approach [5])

2.2. Deep Neural Network
In recent years we witness large domains where the ML technologies based on deep learning lead to
breakthroughs that was not seen before. These domains include tasks that not so long ago seemed very

difficult, such as voice recognition (like Google assistance, Siri and Alexa [6]), natural language tasks
(speech recognition[7][8][9] and translation [10][11], auto complete [12], machine summarization [13])

and real-time computer vision classifiers (the autonomous vehicle for example [14]).

F. Rosenblatt [17] introduced the perceptron in 1957 as an algorithm for supervised learning of binary

N
classifiers. As shown in figure 4, all inputs {XI }

yN
_are multiplied with their weights {WI } and then

i=1
summed up.

— output

Net input Activation
function function

Figure 4: The perceptron (source: mlxtend)

The next stage is to apply a nonlinear activation function O (X) . In more general cases, the sigmoid or
the RELU function will be used.

@) a(x) =

—— sigmoid
— Rel U

1+e7™*
% 0 for x<O
0. = "
? x for x>0 | _

Figure 5: The Sigmoid and RELU Activation Function



The artificial neural network uses the repeated application of the perceptron model called neurons. The
network applies layers of neurons. In each layer, every neuron output a signal real number, which is
passed to every neuron in the next layer. At the next layer, each neuron forms its own weighted
combination of these values, adds its own bias, and applied the activation function. The real numbers
produced by the neurons on one layer are collected into a vector a, and then the vector of the outputs
from the next layer has the form

(4) o(Wa+b)

where W is the weights matrix and b is the bias vector. The number of columns in W will be the number
of neurons at the previous layer that made the vector a. The number of rows in W and the size of vector
b will be the number of neurons at the current layer.

hidden layer 1 hidden layer 2  hidden layer 3

input layer
Y

output layer

A e

p—

Figure 6: Full-Connected Neural Network

We can now introduce the general form of an artificial neural network called the Fully Connected

Neural Network. Assume our network has L layers, where layer 1 is the input layer, L is the output

. . . n
layer, and layer I contains N; neurons. Notice that our network will map from R™ space to R™

(1

XNy

space. We use w 8 € Rnl € Rn' for the vector of biases in

layer 1.

to note the Weights at layer I and b

We will assign an input data point x to the first layer as:
(5) a =xeR"™

The recursive flow of the network will be as follow

6) a" =c(W"a" T +b")eRY, for1=23,..,L

where Y = a[L] is the output of the model.

2.3. Convolutional Neural Network
Another form of a common ANN architecture is the Convolutional Neural Network (known as CNN).
These networks were used constantly to obtain some remarkable results in object recognition for the

ImageNet challenge (see [15] and Figure 7).
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Figure 7: Results Qf‘the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) over the years

Instead of connecting each neuron to all other neurons as it was defined in the Fully Connected Neural
Network architecture, we will try to capture more local phenomena by connecting it to its neighbors
only. In the image domain where our input neurons are pixels, we will connect each one of them to
pixels in its local area. As a result, CNNs have much fewer connections and learning parameters and so
they are easier to train, while their theoretical performance is likely to be only slightly worse.

A convolutional neural network has four main building blocks:

- Convolution layer

- Activation (ReLu)

- Pooling layer

- Fully Connected layer

Convolutional is a linear operation for feature extraction where an element-wise product is applied
between a small window of the input and a small array of numbers vector called a kernel. The output is
called a feature map. This procedure is repeated multiple times in different locations and neighborhoods

(Figure 8).

Kemel

Feature map

Input tensor

Kemel

Feature map

Input tensor ~~L.°

Figure §: Convolutional Layer (Source: Convolutional neural networks: an overview

and application in radiology [18])

Different kernels may be applied to capture different characteristics of the input image. Two main
hyperparameters that define the convolution operation are the size of the window and the number of
kernels (meaning, the numbers of neurons in the convolutional layer). Typical size for the kernel will be
a3 X3,5X50r7Xx7window. Other parameters may be the Strides and Padding. Strides are the
number of pixels shifts of the window when going over the input matrix. A typical value will be 1 or 2.
Padding is used when the filter does not fit the input image. We can then decide to drop this part or pad

the pictures with zeroes.
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Figure 9: Common convolutional kernels and their output

The outputs of the linear operation of convolutional are then passed through a non-linear activation
function such as sigmoid, hyperbolic, ReLu or tangent (ReLu and tangent are common choices). We are
applying these activation function on the feature maps to increase the non-linearity of our model, as the

image themselves are non-linear.

The pooling layer is a subsampling of the previous layer. It reduces the spatial size of the input, and
therefore the number of computation and learnable parameters. The pooling layer selects a pooling
operation to apply on each feature map separately and creates a new set with the same number of
features maps. Typical types of pooling operators are average pooling and max pooling. There are non-

learnable parameters for the pooling layer as filter size, stride and padding are predefined.

The last phase is the classification where the feature learning layers output is usually flattened to a one-
dimensional vector and then passed through several fully connected layers, also called dense layers. The
activation layer for this phase is usually different from other activation function, where the softmax or
sigmoid are the proper choices, and the numbers of output neurons are usually as the number of classes

where each output represent the probability for the matching class.

The step where the input data is transformed into output through these layers is called forward

propagation. A typical schema for CNN architecture using these building blocks are shown in Figure 10.
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Figure 10: A typical CNN architecture consists of several repetitions of a stack of convolutional layers and a pooling layer followed by one or
more fully connected layers.



3. Problem Description - Adversarial Learning
Adversarial examples are deliberately manipulated inputs created with the purpose of confusing a neural
network and decreasing its performance. Adversarial examples are similar to regular example, differing
only by a small perturbation. Even though these pertrubations are usually indistinguishable to the human
eye, they cause the network to misclassify with high confidence.

In 2014, a group of researchers from Google and NYU were the first to discover this intriguing
weakness of deep neural networks in the image classification domain [1]. In their paper, the researchers
found some disturbing properties among neural networks that one of them was that the smoothness
assumption that is typically valid for computer vision problems and kernel method does not hold. One

would expect that given a small radius & > 0 and an input image X, a X+ I satistying ||r|| < & will be
classified with high probability to the same class as X . But, Szegedy et al. [1] showed that a simple

optimization process breaks this assumption. It turns out that deliberate changes to some specific image
could cause the network to identify it as another targeted class and with high probability. To make
matter even worse it was found that the adversarial examples were relatively robust and shared by
different models. Meaning, the same adversarial images were found to be hard for a family of networks

that were trained with different hyperparameters or set of examples.

This sparked a new ficled, the adversarial field, with intensive research. Many and varied methods have
been suggested since then to deceive neural networks. In 2017, Moosavi-Dezfooli et al. [19] showed the
existence of a universal and very small perturbation vector that causes state-of-the-art deep neural

networks to be misclassified with high probability.

Facepoter, @) Chihyahua

Joystick 0 Chihuahua

Grille ) Jay

Thresher 0 Labrador

Flagpole Labrador
Tibetan mastiff 0 Tibetan mastiff
Lycaenid e Brabancon griffon
Balloon e Labrador 2

Whiptslfizard 9 Border terriec

Figure 11: Universal perturbation. Left - original images with the true label. Middle - small universal perturbation to be added. Right -
Adversarial examples and their estimated label. (Source: [19])
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In the same year, some studies demonstrated the existence of adversarial learning in the real physical

world. Kurakin et al. [20] showed that adversarial images that were printed and recapture using a cell

phone camera, were still misclassified by the network (Figure 12). Another research introduced some

methods for road sign attacks were stickers on a stop sign were managed to fool the network [21].

(a) Image from dataset (b) Clean image (c) Adv. image, € = 4 (d) Adv. image, ¢ = 8

Figure 12: Black box attack on a phone image classification application. On the left is the original image. This image was printed after adding

3.1.

small perturbations defining by the epsilon parameter. The model failed to classify it correctly (Source: [20])

Definitions of Terms

In this section we describe common technical concepts and terms used in the world of adversarial

learning. The focus is on the image processing domain.

o

Adversarial example X4, - A malformed version of an original input image that was deliberately

altered to deceive a learning model.

Adversarial training - A defense strategy against adversarial learning where adversarial examples
are intentionally added to the training process of the model.

Black-box attack vs White box attack - In the black-box scenario, the attacker doesn’t have any
prior knowledge about the model, its parameters, loss function, architecture or algorithm in
contrast to the white-box case.

Clean image X - The original input image.

Fooling ratio - Refer to the percentage of test images that changed their true label after been
perturbed.

Image-specific vs universal attack - Whether the perturbation vector is calculated for each image
separately or there is a universal perturbation vector for all test images.

One-shot vs iterative method - One-shot method is when the calculation process is in a single step
compared to an iterative process that in most cases will be computationally expensive.
Perturbation - A small noise vector that was added to a clean image making it an adversarial
example.

Targeted vs non-targeted attack - In a targeted attack, the model was fool to believe the adversarial
example belonged to a specific label wherein non-targeted any label different from the true
label is valid.

Transferability - The ability of an adversarial example to mislead other models as well.

11



3.2. Adversarial Classification Attacks
In this section, we review some popular methods for adversarial classification attacks in the image
processing domain. There are many other attack methods on different architectures and domains such as
attacks on Recurrent Neural Networks, Autoencoders and Reinforcement Learning tasks, etc’, but we focus on
the common case of classification problems. Of course, there are many different approaches, where
some of them are the evolution of each other, and we cannot mention all of them. Therefore we give a
review of only the more common methods or those that have formed a milestone in adversarial history
while trying to give a varied list that presents the nature and properties of different attacks. The
interested reader can see the surveys [22],[23],[24] for further reading.

3.2.1.  First Discovery - Box constrained L-BFGS
Properties: White-box, Non-targeted, Image-specific, One-shot.

Szegedy et al. [1] first introduced the term of adversarial learning by finding what they called blind spots
in neural networks. They formalize the following minimization problem as the search for adversarial

examples:

Let T:R™ > {1, e k} be a deep neural network classifier mapping images to a discrete set of

classes with a continuous loss function |OSSf R™x {1, el k} — R" . Then for an input image

XeR"and a target label le {1, ceey k} we wish to solve the following optimization problem
(7) argmin||p|,
p
st. f(x+p)=1, x+pe[01]

where [ is the perturbation vector. This problem has a nontrivial solution in case of f (X) #| . The

original problem is hard, so the authors suggest approximating it by using a box-constrained L-BFGS.
They look for the minimum C > 0 for which the minimizer P of the following problem satisfies

f(x+p)=I:
(8)min c-|p|+loss, (x+p,1)
p
st. x+pe[0,1]"

This will result in the exact solution in the case of a convex loss function, but this is not the general case

in neural networks.

As mention, this was the first suggested algorithm for finding adversarial examples, which cause a wide

interest of researches in the adversarial attacks field.
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3.2.2. Linear and Gradient-based - Fast Gradient Sign Method (FGSM)
Properties: White-box, Non-targeted, Image-specific, One-shot.

Goodfellow et al. [16] tried to explain the adversarial examples transferability across architectures and
training sets with the linear nature of deep neural networks. They suggested having a linear process for

creating perturbations. The adversarial examples were generated in the following way:

(9) Xadv = Xc teé- Sign (VJ (9' Xc' ytrue ))

where 0 are the model parameters, X is the input image, Y, is the true label of X , and VJ is the

gradient of the cost function. & is a small scalar number controlling the amplitude of the perturbation
vector. They name it Fast Gradient Sign Method (FGSM).

Figure 13 illustrates some visual results for the FGSM algorithm on the CIFAR 10 dataset. It can be seen
that for small values, it is difficult to discern that the image has been manipulated but still in many cases
the network will be surprisingly wrong. For example, in the case of the bird, the deer, the dog, the
frog, the ship and the truck even for epsilon of 0.01, the classification was wrong, although it is clearly
seen that the nature of the image has not changed. A large value of epsilon increase the likelihood of
being mistaken on the network, but, of course, also detract from image quality and make it easier to

recognize that the input has been manipulated.

eps=0.01 eps=0.02 eps=0.03 eps=0.04 eps=0.05 eps=0.06 eps=0.07 eps=0.08 eps=0.09 eps=0.1 eps=0.15 eps=0.2 eps=0.25 eps=0.3 eps=04 eps=0.5
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Figure 13: A demonstration of the Fast Gradient Sign Method (FGSM) on the CIFARIO dataset. The leftmost image is the original file and its
category while moving right express different values of epsilon during the adversarial attack and the prediction of the network. Green color

means correct dassgﬂcation, while red color indicates an error.

FGSM is one of the most used adversarial techniques and will be our main algorithm in this paper. Other

variations of FGSM were published during the years.
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3.2.2.1. One-step target class method
Properties: White-box, Targeted, Image-specific, One-shot.

Kurakin et al. [25] propose an alternative approach to maximizes the probability of a specific label differs
from the true label. The new formula will be as followed:

(10) X4, =X, —&- sign(VJ (9, Xes Yiarget ))

3.2.2.2. Basic Iterative Method (BIM)
Properties: White-box, Non-targeted, Image-specific, Iterative.

Till now we saw only one-shot methods taking a single large step in the direction of increasing the loss
function. Another approach is taking some small steps to get a better result. This extension [25] got the
name Basic Iterative Method (BIM):

an X, =x, xit= Clip{x‘;‘jv +a-sign(VJ (6, %, ytrue))}

adv
where ¢ is the step size (the authors chose @ =1, meaning they change the pixel by 1 at each step) and
Clip {-} clips the values of the values to fit the interval [XCI & X, J + &] . The authors determined

the number of iterations as MIN (6‘ +4,1.25- 8) .

3.2.2.3. Iterative Least-likely Class Method (ILCM)
Properties: White-box, Non-targeted, Image-specific, Iterative.

By combining (10) and (11) we can get an iterative method of choosing the least likely class:

(12) ngv = Xc’ Xe’:l:l = C“p {Xa,\ijv -a Sign (v‘] (91 Xc’ yleast—likely ))}

This extension got the name Iterative Least-likely Class Method (ILCM) [25] and produce adversarial

examples that shown some serious effect on the classification accuracy.

3.2.3. [, norm based - JSMA and One Pixel Attack
Properties: White-box (JSMA) / Black-box (One Pixel), Non-targeted, Image-specific, Iterative.

Most methods are using (, and { norms when minimizing the perturbation vector. Different

approaches suggest looking at ( o norm, meaning the number of pixels that were changed during the

adversarial process. Papernot et al. [26] created a saliency map using the gradient of the network layers
output to monitor how the change of each pixel affects the probability of misclassification. Once the
map is ready it is easy to choose the most effective pixel. The algorithm restricts the number of pixels
that can be altered. This method got the name Jacobian-based Saliency Map Attack (JSMA).

Taking it to the extreme, Su et al. [27] demonstrated how a single pixel change can mislead the

network.
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3.2.4. Universal based Attack

Properties: White-box, Non-targeted, Universal, Iterative.

Moosavi-Dezfooli et al. [19] described the first method defining a general perturbation for a network

that is not image-specific. Meaning, by adding the perturbation to any image the network will misclassify
on it with high probability. Let g denote a distribution of clean images in R™. Their goal is to find a
perturbation P that will be as small as possible and that will cause the network to be wrong in “most”

cases. To formalize it the following 2 conditions should be applied:

13) |p|<¢
P(f(x+p)=f(x)21-5

X~p

where § controls the fooling ratio and the paramctcré: limits the magnitude of the perturbation vector.
To solve this the authors used an iterative approach going through each image input adding to the
current universal perturbation the smallest possible vector that will make him the network to

misclassified the current image.

(14) Ap' «argmin|r|, st.f (xg + p+r)¢ f(x)

3.2.5. Neural Network-based - Adversarial Transformation Network (ATN)
Properties: White-box, Non-targeted, Image-specific, Iterative

Up to this point, most of the methods have focused on the direct calculation of the gradient or solving an
optimization problem. Baluja and Fischer [28] idea was to train a feed-forward neural network
generating adversarial examples that are misclassified by a target network. They call it the Adversarial
Transformation Network (ATN). They did it by minimizing a loss function combining the task of
similarity between the original image and the adversarial version while having a misclassification by the

target network.
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3.3. Adversarial Defense Strategies
In this section, we provide an overview of some of the main paradigms to defend against an adversarial
attack. It is important to mention that there is currently no general method that provides a proper
solution to all types of adversarial attacks and this is an ongoing resecarch field. The main difficulty is due
to the lack of theoretical tools to deal with the inputs that were deliberately crafted while dealing with
non-linear and non-convex environment and hard optimization problems to solve. In addition, adding
mechanisms for protecting the models may affect the model accuracy on clean images as well as running

time (training or testing) and resource consumption.
Current approaches can be devided into the following families:

O Training Modification - like adversarial training

O Data modification - may be on the training phase, test phase or both

O Network modification - make it more robust to small changes (fix the gradient, change the loss
function or make the network deeper)

O External models - like detection systems

Here are some of the most popular methods to defend against adversarial attacks.

3.3.1. Training Modification - Adversarial Learning
One of the most popular methods in research today is adversarial learning. In this approach, the
objective is to increase the robustness of the model by injecting random adversarial examples into the
training phase alongside the original images. This method differs from the classical augmentation which
includes image transformation such as rotation and results in a true input image. Adversarial training

enriches the data with images that are unlikely to receive as input.

Szegedy et al [1], who were the first to point out the existence of blind spots in neural networks, were
also the first to examine the effect of adding these examples to the training set. Many studies suggesting
new attack methods have at the same time introduced adversarial learning as the main defensive
approach. Goodfellow et al [16] offered an alternative objective function combining both the original

and the adversarial example generated by the Fast Gradient Sign Method:
(15) J(0,%:, Vyue ) = @I (6, %, Ve ) +(1—x) J (6?, X, +£-5ign (VI (6, X, Ve ). ytme)

where | is the original loss function and @ € (0,1) .

A mentionable drawback of adversarial learning is that it tends to overfit to the specific attack method

used while training. Moreover, the defense is not robust to black-box attacks.

3.3.2. Data Modification
Many attack methods create a high—frequency noise that is not distinguished by the human eye. This
phenomenon led to several studies focusing on the preprocessing of the image data as a defense strategy.

Several main approaches can be identified:

e Image compression
e Image denoising
e  Feature squeezing

e Randomization
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Image compression is probably the most common method, and especially the lossy compression of
JPEG. One of the main features of JPEG compression making it relevant as an adversarial defense
approach is the ability to remove high-frequency signals. Dziugaite et al [30] were the first to examine
the effect of JPEG compression on adversarial samples calculated by FGSM [16]. Their research showed
that JPEG compression is effective for large scale perturbations while small interferences may survive
the process. Das et al [31] took a similar approach and extend the experiment to DeepFool method [32]
as well. Their main focus was on the trade-off between image quality and accuracy improvement. They
suggested taking an ensemble approach running several different compressions with different qualities
while having a vote between all of the results. Shin et al [34] showed how to generate an adversarial

sample that will survive JPEG compression.

Further research by Cornell and Facebook [33] reached similar conclusions where other methods for
feature squeezing and image denoising were tested such as image cropping and rescaling, bit depth-
reduction and Variance minimization. An ensemble approach has also been tested while averaging the
results. Shaham et al [35] have also experimented the effectiveness of low pass filtering, PCA, JPEG
compression, soft thresholding and low-resolution wavelet approximation as defense approaches against
adversarial attacks. Sahay et al [40] on the other hand used autoencoder to denoise the input image and

then used another autoencoder last hidden layer to apply a dimensionality reduction.

A slightly different approach was taken by Xie et al [36] who offered to combine random elements (see
Figure 14) and came second in the NIPS 2017 adversarial defense challenge.
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Xn X DU -
i S I, _ N

<, ______

— - —
3 CNN

CNN
Classification

e -

\

_____________ —

Random Random Randomly

Resizing Padding Select One
Layer Layer Pattern

Figure 14: In this research Xie et al [36] used two randomization layers as a defense against adversarial examples: random image resizing and

random zero paddings around the image.

3.3.3. Network Modification
Several methods have tried to address the phenomenon of adversarial learning by modifying the network

and making it more robust to small changes.

One of these methods is gradient masking or gradient hiding, which tries to hide information about the
gradient from the adversary. Many white-box attacks use the gradient of the model to calculate the
perturbation vector, meaning that turning it to non-differentiable or close to zero makes it totally
useless. Ross and Doshi-Velez [42] suggested a defense process that penalizes the degree to which small
changes in inputs can alter model predictions. This method may be useful to gradient-based attacks but

double the complexity of the training process.
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3.3.4. External Models
Another defensive option may include add-on detectors to find out whether or not the image has been
poisoned. An example of this approach can be found in the papers of [37] and [38] similar approach was
proposed where different methods of feature squeezing have been used and all of the predictions were
examined alongside the original image prediction. A large difference will be an indicator of an

adversarial image in most cases.

Methods based on external detectors require a large number of adversarial examples and tend to suffer

from overfitting on the adversarial algorithm that generated the attack.
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Figure 15: Detectorfor adversarial examples. In this architecture, the model gets both the original image and the trangformed samples. All the

predictions are been sent to a judge module where large different is an indicator for an adversarial example (source: Gu et al [37])

Another approach that uses Generative Adversarial Network (GAN) was introduced by Lee et al [41]. In
their research, they train simultaneously a network whose goal was to correctly classify clean and
adversarial images and a network that tries to produce images that would fool the network. As in any
GAN based architecture, the two networks compete with each other. This can be seen as a combination
of adversarial training and an external model. Using the GAN-based defense method may be effective on

gradient-based attacks but requires longer training time and resources.
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Figure 16: The classifier F is trained on both clean and adversarial images. A generative network G is training to generate adversarial examples

using the clean image and its gradient (source Lee et al [41])

18



4. The Dimension Effect

Goodfellow et al. [16] were the first to point on the high dimension as one of the main factors that
increase the probability of adversarial example to deceive the network, because the same amount of
noise in each dimension will result in larger Euclidian distance from the original instance. This assumes a
linearity behavior of NN which is known as the linearity hypothesis.

4.1.  Linearity Hypothesis
Szegedy et al. [1] first discovered the existence of adversarial examples, but could not explain the cause.
At first, it was widely assumed that this was due to the complexity and the nonlinearity nature of neural

networks. It was also thought that it was just an example of overfitting.

The leading hypothesis today, although not a consensus, is the linearity hypothesis suggested by
Goodfellow et al. [16]. They claimed that the original hypothesis could not explain why simple and
shallow models suffer from adversarial examples as much as deep models. Meaning the complexity and
overfitting were failed to explain this phenomenon. Adversarial examples are able to fool models
different from those thcy were originally derived from and with the same prcdiction. If adversarial is a

form of overfitting, each network should react differently to these examples.

Goodfellow et al. [16] presented the linear hypothesis which argued that the source of adversarial
examples is that the model behaves extremely linearly as a function of its inputs. They claim that neural
networks are too linear to resist linear adversarial perturbation. For easier optimization process, most of
the NN architecture such as LSTM, ReLUs and maxout were intentionally designed to behave in a linear
manner. As a result, they suggested a linear method for generating adversarial examples - the FGSM
algorithm [16]. Their main hypothesis was that the neural network is too linear to resist linear

adversarial.

4.2, The Curse of Dimensionality
Real-life datasets typically come with high dimensions, like the number of pixels in an image or the
number of different words in a text document. The true dimension is often much lower. For example, if

we are looking at a 28x28 handwritten digits image like in the MNIST dataset, the input dimension is

28x28 . . . . . . . .
[0,2]"°" which is the total possible for input images. If we choose a random image from this domain,
most chances it will not be a handwritten digit, but some random black and white image. In fact,
handwritten is only a tiny fraction of events in this large input space. So, why high dimension input space

could be a problem?

The Curse of Dimensionality describes a phenomenon in which when the input dimension increases, the
volume of the space increases exponentially, making it sparse. If for example, 10 data points seem
reasonable for 1-dimensional space, in 2-dimensional space we’ll need 100 points for the same density of
points and 1000 points for the 3-dimensional case. Most machine learning algorithms are statistical by
nature, using counting of observations in various regions of some space and distance measures. Those

two fails when the dimension is increasing.

4.3.  The Adversarial Curse of Dimensionality for Linear Models
Goodfellow et al. [16] tried to explain how a combination of high dimension along with the linearity

hypothesis of neural network models can lead to adversarial examples.

In many cases, each feature has a precision limit. This could be a digital image that is stored as 8-bit so

that any color channel in a pixel cannot measure any change lower than 1/255, or an accuracy limitation
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of any of the sensors. For input X, adversarial image X =X+ ] and an activation function f (X) itis

reasonable to think that the model will respond the same for both if every element of the vector p is

smaller than the precision of the features. Meaning, we expect f (X) ~ f (X + p) for ” p||m <¢g,

where & is smaller than the sensor precision. Consider a linear model we can describe the output for

the adversarial input as follow:
16) f(X)=w'x=w'x+w'p

The adversarial perturbation p will cause the activation function f (X) to grow by w' p.To

maximize this growth we can assign P = Sign (W) . For an n-dimensional vector W with an average

magnitude of M, the activation function will grow by &mn .
@7) f(X)=~ f(x)+emn

Meaning, the activation value will grow linearly with N for high dimensional problems. This can explain

why linear models with high dimension inputs may suffer from adversarial examples.
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5. Dimensionality Reduction Defence
In this section, we provide a detailed description of all dimension reduction methods that have been
tested as a way to protect against adversarial examples. We then describe the unique approach we
decided to take - an ensemble of several models. We will take a look at what the ensemble approach is and

describe the stacking method we chose to implement.

Then, we present each experiment - what metrics we chose to use, the datasets to work on, the

network architecture, the generation of the adversarial examples and the experimental steps.

5.1. Dimensionality Defence Methods
In this section, we will cover the dimensionality reduction methods that have been examined in this
study. For each method, we will provide some theoretical background, the original Python source code

that was applied and some image examples.

5.1.1. Image Resize and Rescale
We will start with a simple image squeezing of rescaling and resizing. Using this method, we wish to
shrink an image by a certain factor and then expand it again to its original size. This is done with the

skimage package by applying rescale and resize functions.

from skimage.transform import rescale, resize

def resize dim reduction(im, facgtor):
new im = resize(rescale(im, 1. / factor, multichannel=True),
(im.shape[0], im.shape[l], im.shapel[2]))

return new im

Rescale operation resizes an image by a given scaling factor. Resize serves the same purpose, but allows

to specify an output image shape instead of a scaling parameter.

original factor=1.1 factor=1.5 factor=3 factor=5

PSNR=25.23 PSNR=23.3 PSNR=20.88 PSNR=19.76

PSNR=25.66 PSNR=23.8 PSNR=21.05 PSNR=20.1

PSNR=17 41 PSNR=16.33

Figure 17: Rescaling an image by a given factor and then resizing it to its original shape. PSNR reflects the damage in image quality. The
images are taken from the INTEL dataset.
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5.1.2. K-Means Color Auantization
K-means is one of the most popular and widely used clustering algorithms both in literature and

industry. Its simplicity and speed give K-means a major advantage over other, more accurate, methods.
Given an integer K and a set of n data points X € ]Rd, the goal is to find k clusters centers C that

minimizes ¢ the total squared distance between them.

n
. 2
@) =3 minl, ¢
i-1
This problem is NP-hard, but has an iterative approximation algorithm suggested by Lioyd [43] in 1982:

1. Choose a random initial k centers C = {017 C,,':+,C, }
2. For each data point X; : ie[ln] assign it to its nearest center

3. Foreach I €[1,K] set C; to be the center of mass of all the points that were assigned to the

1
group Ci , meaning C, = E Z X.
i

4. Repeat steps 2 and 3 until no update has been made

xeC;

Here we perform a pixel-wise vector quantization of the image to reduce the number of colors. A

random codebook that is taken from each image is been used to quantized image colors.

from sklearn.utils import shuffle
from sklearn.cluster import KMeans

def recreate image (codebook, labels, w, h):

d = codebook.shape[l]

image = np.zeros((w, h, d))

label idx = 0

for i in range (w):

for j in range (h):

image([i] [J] = codebook[labels[label idx]]
label idx +=1

return image

def kmeans dim reduction(im, k, n_sample pixles=1000):
im = im.astype ('float64d')

w, h, d = tuple(im.shape)

image array = np.reshape(im, (w * h, d))

image array sample = shuffle(image array, random state=0) [:n sample pixles]
kmeans = KMeans (k)

kmeans = kmeans.fit (image array sample)

labels = kmeans.predict (image array)

new image = recreate image (kmeans.cluster centers , labels, w, h)

return new_ image

22



original k=60 k=20 k=10 k=3

PSNR=38.3 PSNR=33.54 PSNR=30.46 PSNR=22.62

PSNR=37 41 PSNR=33.19 PSNR=30.61 PSNR=24 34

PSNR=36.54 PSNR=29.38 PSNR=21.12

s T T I

Figure 18: K-means quantization of an image with a given k value. PSNR reflects the damage in image quality. The images are taken from the
CIFARIO dataset.

5.1.3. PCA

PCA is a dimensionality reduction and den-noising process that try to keep as much variance as possible
in the original input matrix. This is done by finding the k leading principal component of the input,
representing it in the PC space, and mapping it again to the input space.

For {X17 Xypee, Xm} € R" we would like to reduce their dimension with a linear transformation

W e R*¢ , meaning having a mapping Y =Wx :W € R*" . Then we wish to recover the original

. . . i . d,k .
vector using a linear transformation X = Uy : U € R™" such that the compressed vector will be close
to its source. To find the compression matrix W and the recovering matrix U that minimize the total

squared distance we aim to solve the following optimization problem:

(19) argmin i”xi —UWx||22
W eRkd i=1
UeR%k

In the optimal solution of (19) the columns of U are orthonormal and will be the first largest

m
cigenvectors of the covariance matrix A = Z X XiT and W =U T . For full solution and proof please
i=1
refer to [3].

We perform the PCA calculation, meaning finding the eigenvector, for the all training set and not for

each image separately. Attached is the python implementation of this linear transformation.
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from PIL import Image

import glob

import os

import numpy as np

import pickle

from sklearn.preprocessing import normalize
from sklearn.decomposition import PCA

def learn pca model (path, percent):
file name = path.replace("\\", "_") + '_pca ' + str(percent) + '_model.pkl'
if not os.path.isfile(file name):

imlist = glob.glob (path + "\**/* 9pg", recursive=True)

# dimensions

im np.array (Image.open (imlist[0]))
m, n = im.shape[0:2]
imbr = len(imlist)

# matrix with flattened images

print ('Found ' + str(imbr) + ' images.')

print ('Read and flatten images.')

immatrix = np.asarray([(np.array(Image.open (im)) / 255.0).flatten() for im in
imlist], '£")

# pca

print ('Learning PCA model.')

pca = PCA(percent)

pca.fit (immatrix)

with open(file name, 'wb') as output:
pickle.dump (pca, output, pickle.HIGHEST PROTOCOL)

else:

with open(file name, 'rb') as inp:
pca = pickle.load(inp)

return pca
def pca dim reduction(im, pca model) :
X = [im.flatten ()]
lower dimensional data = pca.transform (X)
approximation = pca.inverse transform(lower dimensional data)
approximation = approximation.reshape(l, im.shape[0], im.shape[l], 3)

return approximation([0]
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original factor=0.999 factor=0.99 factor=0.9 factor=0.8

PSNR=49.2 PSNR=33.62 PSNR=20.92 PSNR=18.02

PSNR=47.45 PSNR=31.08 PSNR=21.69 PSNR=19.18

O

< iirg

PSNR=53.99 PSNR=37.96 PSNR=16.56

Figure 19: Performing PCA of an image with a given factor value representing the percent of variance to preserve. PSNR reflects the damage in
image quality. The images are taken from the INTEL dataset.

5.1.4. Filtering
Image filtering has many applications, including de-noising, smoothing, sharpening, and edge detection.
Linear filtering of an image is obtained by performing a convolution operation defined by a kernel. In

the general form, convolution is defined by:

20) g(xy)=w*f(xy)= 3 3 o(st) f (x-s.y-1)

s=—at=-b

where f (X, y) is the original image, @ is the kernel and g (X, y) is the filtered image. In our case,

itisa weighted sum of neighboring pixels as can be seen in figure 20.

(-1x3)+(0x0)+(1x1)+
(2x2)+(0x6) +(2x2) +
(-1x2)+(0x4)+(1x1) =-3

ALV

Figure 20: An image filtering applying as a linear convolutional operation on each pixel.

Several kernels were examined.
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5.1.4.1. Low pass filter
Images can be filtered with low-pass filters (LPF) or high-pass filters (HPF). LPF is useful in noise
removal or blurring the image while HPF helps in edge detection. The smoothed image is achieved by
averaging nearby pixels. A simple example is a kernel of all ones divided by the number of elements

within the kernel:

O+

1
1
1

e
e

In this case, the kernel size is 3 but can be any odd number. Other filters may include more weighting

for the current pixel or different smoothing in the x and y-axis.

Attached is a sample code for low pass filtering using a matrix of ones and a kernel size parameter.

import numpy as np
import cv2

def low pass filter dim reduction(im, factor):
kernel = np.ones ((factor, factor), np.float32) / (factor * factor)
new im = cv2.filter2D(im, -1, kernel)

return new im

Below are some examples of different kernel sizes.

original k=3 k=5 k=7 k=9

PSNR=20.78 PSNR=19.61 PSNR=19.17 PSNR=18.88

PSNR=24.2 PSNR=22.14 PSNR=21.37 PSNR=20.86

PSNR=21.76 PSNR=21.06 PSNR=20.63

Figure 21: Performing Low Pass Filtering of an image with a given factor value representing kernel size. PSNR reflects the damage in image
quality. The images are taken from the INTEL dataset.
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51.4.2. Gaussian filter
Gaussian filter is widely used to reduce image noise. The gaussian function express the normal
distribution for calculating the transformation in each pixel. The gaussian formula for 2 dimensions is

X2 +y?

(20) G(x,y)= P e 2

where x and y are the distance from the axes and ¢ is the standard deviation. The distribution is shown

in figure 22. o
0.15 o
= AN
% 04 i/
5 ik 3
0.05 )
i i,
A
L

Figure 22: 2-D Gaussian distribution with mean (0,0) and O = 1

Here is an example for 5x5 Gaussian kernel:

1 4 7 41

1 4 16 26 16 4

—|7 26 41 26 7
273

4 16 26 16 4

1 4 7 41

We used the implementation of the OpenCV python package with o = 0 for both axes, x and y.

import cv2

def gaussian filter dim reduction(im, factor):
new im = cv2.GaussianBlur (im, (factor, factor), 0)

return new im

Attached are some examples of applying this method.

original factor=3 factor=7 factor=11 factor=15

PSNR=19.32 PSNR=17.04 PSNR=16.39 PSNR=16.01

PSNR=25.85 PSNR=23.28 PSNR=22.39 PSNR=21.82
T —

PSNR=26.03 PSNR=23.0 PSNR=21.93 PSNR=21.22

Figure 23: Performing Gaussian Filtering of an image with a givenﬁftor value representing kernel size. PSNR reflects the damage in image

quality. The images are taken from the INTEL dataset



5.1.4.3 Median filter
A median filter is an effective non-linear technique for reducing random noise while preserving edges.

This is done by a sliding window placing the median value across the input window. Unlike averaging or

Gaussian filtering which can create new colors, the median filter will place some pixel value from the
image.

Bellow is the median filtering implementation using the python OpenCV package.

import cv2

def median filter dim reduction(im, factor):
new im = cv2.medianBlur (im, factor)

return new im

Figure 24 illustrates the effect of the median filter on images with random Gaussian noise. The most
important impact, as can be seen, is the edge-preserving.

original noised median-filter (k=3) median-filter (k=5)

REWIITEATEY  PREYTE TR

o

y > ‘ 4

Figure 24: Performing Median Filtering of an image with a given factor value representing kernel size. On the left is the original image and
beside it is the image with some random Gaussian noise. The next two images re median filtered images with a window size of 3 and 5. The
images are taken from the INTEL dataset

5.1.4.3. Gradient
Gradient filters is a high pass filter (HPF) which is looking for a directional change in color or intensity.

In general, the gradient is expressed as

of

OX
of

%y

(21) Vf =
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The direction of the gradient may be in the x-axis only, y-axis or any other vector. The derivative in the

image case may be approximated by finite differences, for example, the gradient of image A on the y-
of -1

axis can be written as a 1-D convolution — = *

+1

We examined 3 types of gradient filters: Laplacian, Sobel, and Scharr. Sobel and Scharr use a 3x3 kernel

for finding edges along the x or y-axis. The two discrete filters described above with the x and y-axis
version:

(-1 0 +1 [+1 +2 +1
CSO,JE,_X =-2 0 +2 Cmbe,_y =0 0 O
-1 0 +1 -1 2 -1
(-3 0 +3 [+3 +10 +3
Cscha"_x =|-10 0 +10 Cscha"_y: 0 0 0
|3 0 +3 -3 -10 -3

Laplacian, on the other hand, is given by the formula:

2 2
o f N o f
2 2
OX oy
Since the image input is represented as discrete pixels, it is common to use an approximation sliding
window to the second derivatives in the definition of the Laplacian. Two commonly used kernels are
shown above:

(22) Vf =

0 -1 0 SV )
C|3P|EC|6",1 =-1 4 -1 Claplaclan72 =[-1 8 -1
0 -1 0 11 -1

Figure 25 illustrates the difference between all the mentioned gradient methods.

Figure 25: Performing different kinds of Gradient Filtering on an image. On the upper left is the original image. The other images show the
output quaplacian, Sobel x and Sobel y kernels. The images are mkenfrom the OpenCV documenntation

Attached is the python source code for implementing the gradient rnasking using the open cv package.
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https://docs.opencv.org/master/d5/d0f/tutorial_py_gradients.html

import cv2
import numpy as np

def laplacian derivatives dim reduction (im) :

#1 0 1 0 |
#11 -4 1|
#1 0 1 0 |
im = (im * 255).astype (np.uint8)

gray = cv2.cvtColor(im, cv2.COLOR BGR2GRAY)
laplacian = cv2.Laplacian(gray, cv2.CV_64F)
return laplacian

def sobel x derivatives dim reduction (im):
# Sobel operators is a joint Gausssian smoothing plus differentiation operation,

# so it is more resistant to noise.

#1 -1 0 +1 |

# 1 -2 0 +2 |

#1 -1 0 +1 |

im = (im * 255) .astype (np.uint8)

gray = cv2.cvtColor(im, cv2.COLOR BGR2GRAY)

sobelx = cv2.Sobel (gray, cv2.CV 64F, 1, 0, ksize=5)

return sobelx

def sobel y derivatives dim reduction (im):
# Sobel operators is a joint Gausssian smoothing plus differentiation operation,
# so it

is more resistant to noise.
# 1 +1 +2 +1 |
#1 0 0 0 |
# 1 -1 -2 -1 |
im = (im * 255) .astype (np.uint8)

cv2.cvtColor (im, cv2.COLOR BGR2GRAY)
sobely = cv2.Sobel (gray, cv2.CV 64F, 0, 1, ksize=5)

return sobely

def scharr x derivatives dim reduction (im) :
# More accurate

#1 -3 0 +3 |
# | -10 0 +10 |
#1 -3 0 +3 |

im = (im * 255) .astype (np.uint8)
gray = cv2.cvtColor (im, cv2.COLOR BGR2GRAY)

scharrx = cv2.Scharr(gray, cv2.CV_64F, 1, 0)

return scharrx

def scharr y derivatives dim reduction (im) :
# More accurate
# 1 +3 +10 +3 |
# 1 0 0 0
# 1 -3 =10 -3 |
im = (im * 255) .astype (np.uint8)
gray = cv2.cvtColor (im, cv2.COLOR BGR2GRAY)

scharry = cv2.Scharr(gray, cv2.CV_64F, 0, 1)

return scharry
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5.1.4.4. Bilateral filter
Most of the filters that were presented tend to blur edges as they are some kind of a weighted average of
pixel values in the neighborhood of the pixel, such as in the case of LPF and Gaussian. The weights will
be proportional to the distance from the pixel in Gaussian filtering. Bilateral filtering, on the other hand,
adds to these spatial weights that look at the pixel values. This method gives the weights of the pixels a
value according to how much they are close in colors to the center pixel. The two weighting systems

allow having a Gaussian blurring while preserving the edges.

We implemented this method by using the OpenCV package with a signal parameter controlling the

diameter, the color sigma and the distance sigma (in this order).

import cv2

def bilateral filter dim reduction(im, factor):
new im = cv2.bilateralFilter (im, factor, factor * 2, factor / 2)

return new im

Figure 26 illustrates the bilateral filtering with factor equals 5 (meaning kernel size = 5, color sigma =
10 and distance color = 5) on the famous picture of Lena. Here we can see the blurring effect while

keeping the edges of the picture.

Figure 26: Performing Bilateral Filtering on an image. On the left is the original image. The right image is the filtered image with factor

equalsto 5.

5.1.5. Edge Detection
Here we used the popular Canny edge detection algorithm that was developed by John F.Canny [44] in
1986. In this algorithm, we first reduce noise by using a Gaussian filter so it won’t affect our result.

Then the algorithm finds the gradient of each pixel using the Sobel kernel in both horizontal and vertical

directions. From these 2 kernels Gx and Gy we calculate the angle and the magnitude of the gradient:

_ , 2 2
Gmagnitude_ Gx +Gy

4G,
c-:'Angle (X’ y) =tan ' G_y

(23)
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Pixels with gradient magnitude lower than a minimum threshold will be removed and those higher than
a maximum threshold will be marked as edges. Pixels that are on a route of 2 edge points and the

direction of the gradient will mark as edges as well.

In our implementation, we used the OpenCV python package which takes a parameter lower and upper
value. As these values are difficult to know because they are different from image to image and it also
becomes a function in two dimensions, we work with the median of the image to determine these values

and the external parameter sigma to control its sensitivity.

import cv2
import numpy as np

def canny edge detection dim reduction(im, sigma) :
x = np.uint8 ((im*255) .astype (int))
v = np.median (x)
lower = int(max(0, (1.0 - sigma) * v))
upper int (min (255, (1.0 + sigma) * v))
edged = cv2.Canny(x, lower, upper)
return edged

In figure 27 we can saw different values of sigma and the output using the Canny edge detection

algorithm.

onginal k=0.01 k=0.1 k=05 k=0.99

Figure 27: Pcrﬁn’ming Canny edge detection on an image with a given factor value representing the sensitivity parameter. On the left is the

original image. The next images re Canny edge detection filtered images. The images are taken from the INTEL dataset

32



5.2. Ensemble Defence Methods
So far, we have shown several methods of dimensionality reduction for adversarial defending separately.
In this section, we try to combine predictions of several methods to get a better classification, a well-
known approach called an ensemble. As far we know, no such method has been tested for dimensionality

reduction and with stacking approach as we will introduce later.

5.2.1. What is Ensemble
Ensemble learning is a machine learning paradigm where multiple learning algorithms, sometimes called
“weak learners”, are trained to solve the same problem and their results are combined to obtain better

predictive performance than could be obtained from any of the models alone.

Several major kinds of ensemble meta algorithms aim at combining weak learners are:

O Bagging
O Boosting
) Stacking

Bagging stands for Bootstrap Aggregation. Bootstrapping is a process of resampling the training set to
reduce overfitting and decrease the variance. Every model in the Bagging process is trained separately

and in parallel while their answers are combined in a deterministic averaging process.

“Bagging” : Bootstrap AGGregatING

data + labels

-

‘ Bootstrap 1 ‘ ‘ Bootstrap 2 ‘ """

Model 1 Model 2 Model m
\ i
NV Bagged Ensemble
Vote

Figure 28: The Bagging process. Given a set of labeled data we are resampling it on each stage to create a new model. All the answers are

combined with a weighted averaging.

Boosting learns the model sequentially in an adaptative manner. Starting from a base model, boosting try

to improve on each step by creating a new model based on the errors of the previous one.

Boosting
data + labels
\ Commerz | owmes | owssers |
Z N A N A~ N T
Model 1 Model 2 Model 3 Model 4

Figure 29: The boosting process. Given a set of labeled data we train a model such that in each step the new model is based on the previous one

and its errors.
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Stacking learns several different models in parallel and combines them by training a meta-model to

output a prediction based on the weak learners' predictions.

Stacking

»
m ey
o,
P
/ m %

Final Prediction
e
Base Learner 3
i \ ‘A

)
>
S

Figure 30: The stacking process. Given a set of labeled data, we train some different models in parallel and their predictions are inputs for a
meta learner to predict.

Bagging and boosting don’t seem like methods that can suitable for our use case because of the need for a
large amount of image in resampling or because we have only a set of different models predictions. On

the other hand, stacking seems like a choice that can give value.

We chose to work with two types of staking - simple voting among the predictions and give them to a

meta-learner.

5.2.2. Voting
The simplest way for working with the results of the models is to have a vote among all predictions. This
way, we get as input the predicted class of each model on each image. For each image, we select the

class with the most votes.

Suppose we have a set of N models hl’ .- hN and an instance input X; . Then the classification of the

meta-model ¢ will be

(24) g(xi):mOde{hl(Xi)’“'hN (Xi)}

A noteworthy disadvantage of this method is that all models have a similar impact so a plurality of weak
leaners in a given area of the input space will bias the result if they have a majority there (or in other
words - the majority is not always right). To overcome this difficulty, we examined the stacking

approach.

5.2.3. Stacking with Meta-Learner

Stacking takes the prediction of each model and combined them to compute a more accurate prediction.

Let hl! .- hN be a set of N models and X; an input point. Then the prediction of the meta learner gis

N
(28) 9(x) =28, (%)
-1
where the optimum { B By } are the solution for the least-squares optimization problem:

2

(26) g :argﬁminz Y, —Zﬂjhj (%)
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In this version, we gave the meta-model only the prediction. To do it more efficient we can give it the

probability of the predicted class or all the prediction vector in a similar way.

5.3. Experiment Setup
We design an experiment with image dimensionality reduction transformations that alter the structure
of perturbation and hopefully will raise the ability of the neural network to defend against such an attack
without damage the input quality. In this section we will give a full description of neural network
architecture and implementation, the datasets and attack methods that we will use and the approach of

measuring the success ratio.

5.3.1. Metrics
There are several ways to evaluate the performance of machine learning systems, including accuracy,
precision, recall and f1 score. Because in our case there is no preference for FP over FN we chose to

work with accuracy:

anl[h(xi): yi]

(27) accuracy == N

Accuracy measures among all data points the portion of true classification. This is the most general
evaluation metric to look for. A more accurate metric in the case of an adversary may be the
misclassification success rate or the fooling ratio which measures among only the correct classified image

how many instances the adversary was able to fool.

il[h()@:& y,and h(x)=y, |

(28) Fooling _ ratio ==

where X, X are the input images, )~(1, sy )~(n are the adversary images and h (X) is the hypothesis
represented by the model.

So far we have only measured the model classification performance but another thing to be concerned
about when reducing the dimensionality is the input quality. To do so we will use the PSNR to evaluate

how much we damaged the image. PSNR uses the mean square error (MSE) of the low dimensional

input from the original input image.

M

1 o Rt
MSEzwgg(X(hJ)—X.ow_dim("l))

(29)

PSNR = 20-log,, (w]

JMSE
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5.3.2. Datasets

All the experiments in this paper were done with convolutional neural networks on two image datasets:
the CIFAR-10 and the INTEL datasets.

The CIFAR-10 dataset consists of 60,000 32x32 color images in 10 different classes, and with 6000
images per class. The classes are airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck.
We used 25,000 images for training, 25,000 as validation (and for the ensemble stage) and 10,000 for

testing.
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Figure 31: The CIFAR-10 dataset consists of 10 different classes. Here we can see 10 random examples for each of these classes.

The INTEL dataset [45] was taken from the open datasets center of Kaggle. It consists of 17,034

150x150 images in 6 categories: buildings, forest, glacier, mountain, sea, and street. The train includes
6813 images, the validation 6814 images (for the ensemble stage as well) and the test set has 3407

images.

mountain d

——

street

glacier

Figure 32: The INTEL dataset consists of 6 different classes. Here we can see some random examples for each of these classes.
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5.3.3. Network Architecture

We used

the Keras implementation of a convolutional neural network with 4 Conv-Pooling blocks,

having Conv filter depth of 32, 64, 128 and 256 respectively. The Conv filter size is 3x3 and the Pooling

filter has

a size of 2x2 with rectified linear units (ReLUs) as activation functions.

This is followed by a Flatten layer and a Dropout regularization layer. Finally, we have two blocks of

fully connected layers with size 512 and 128 respectively, that feeds into a softmax output layer with the

number of classes.

from keras.models import Sequential
from keras.layers import Input,Conv2D,MaxPooling2D, Flatten, Dense, Dropout

def create model (input_ size, num classes):

mn

Create a standard classification model with Keras

mn

model

model.

/

model.
model.
model.
model.
model.
model.
model.
model.
model.

model

model.
model.

model
metrics=|[
model

= Sequential ()

add(Conv2D (32, (3, 3), activation='relu',K padding='same', name='conv_1',
input shape=input size))

add (MaxPooling2D((2, 2), name='maxpool 1'))

add (Conv2D (64, (3, 3), activation='relu', padding='same',6 name='conv_2'))

add (MaxPooling2D((2, 2), name='maxpool 2'))

add(Conv2D (128, (3, 3), activation='relu', padding='same',6 name='conv_3'"))

add (MaxPooling2D((2, 2), name='maxpool 3'))

add(Conv2D (256, (3, 3), activation='relu', padding='same',6 name='conv_4'"))

add (MaxPooling2D((2, 2), name='maxpool 4'))

add (Flatten())

add (Dropout (0.2))

.add (Dense (512, activation='relu', name='dense_1'))

add (Dense (128, activation='relu', name='dense 2'))

add (Dense (num_classes, activation='softmax', name='output'))

.compile(loss='categorical crossentropy', optimizer='adam',
'accuracy'])
.summary ()

return model
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5.3.4. Adversarial Examples
We evaluated the performance of different dimensionality reduction methods using the implementation
of FGSM [16] provided by the Cleverhans library [46]. Several values of epsilon in the range of

[0,0.5]w@reexanﬁned.

from cleverhans.utils keras import KerasModelWrapper
from cleverhans.attacks import FastGradientMethod
from keras import backend

from skimage.io import imread collection

import imageio

import sys, os

epsilons = [0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1,
0.15, 0.2, 0.25, 0.3, 0.4, 0.5]

def create adversarial directory(input path, output path, model, eps=0.1):
# delete if exists
make new dir (output path)

total counter = sum([len(files) for r, d, files in os.walk(input dir)])
counter = 0

for subdir, dirs, files in os.walk(input path):
for directory in dirs:

current dir = os.path.join(subdir, directory)
make new dir (current dir.replace (input path, output path))

sys.stdout.write(”\r{}%".format(round(float(counter)/total_counter*lOO, 2)))

sys.stdout.flush ()

# read all images

col = imread collection(current dir + r'\*")
images = [col[i] for i in range(len(col))]
images = np.asarray (images)

# adv

sess = backend.get session()
wrap = KerasModelWrapper (original model)

fgsm = FastGradientMethod(wrap, sess=sess)
fgsm params = {'eps': eps,

'clip min': O.,

'clip max': 1.}

adv = fgsm.generate np(images / 255, **fgsm params)

# write to file

for i, image in enumerate (adv) :
original file path = col.files[1i]
new file path = original file path.replace(input path, output path)
imageio.imwrite (new file path, (image * 255).astype (int))

counter = counter + len(col.files)

# Create adversarial
input dir = r'original\test'
output dir = r'original\test_adv'

for epsilon in epsilons:
current output dir = os.path.join(output dir, str(epsilon))
make new dir (current output dir)
print ('Current Epsilon Value = ' + str(epsilon))

create adversarial directory (input dir,current output dir,original model, epsilon)
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5.3.5. Experimental Stages
We trained the model for 200 epochs with an early stopping option using categorical cross-entropy loss

and used the Adam optimizer.

import keras, pickle, os
from keras.callbacks import ModelCheckpoint, EarlyStopping

class AccuracyHistory(keras.callbacks.Callback) :
def on train begin(self, logs={}):
self.acc = []
self.val acc = []

def on epoch end(self, batch, logs={}):
self.acc.append(logs.get('acc'))
self.val_acc.append(logs.get('val_acc'))

def to file(self, model file name):
with open(model file name, 'wb') as output:
pickle.dump( (self.acc, self.val acc), output, pickle.HIGHEST PROTOCOL)

def from file(self, model file name) :
with open(model file name, 'rb') as history input:
self.acc, self.val acc = pickle.load(history input)

def fit model (model, train generator, validation generator, new_run=True,
model file name='my model', early stopping patience=30, epochs=200,
verbose=1) :
if (new_run) or not os.path.isfile(model file name + ' model.h5'"):
history = AccuracyHistory/()
early stopping monitor = EarlyStopping(patience=early stopping patience)

mcp_ save = ModelCheckpoint ('.mdl wts.hdf5', save best only=True,
monitor='val loss', mode='min')

STEP SIZE TRAIN = train generator.n // train generator.batch size

STEP SIZE VALID = validation generator.n // validation generator.batch size

fit history = model.fit generator (train generator,
steps per epoch=STEP SIZE TRAIN,
epochs=epochs, verbose=verbose,
validation data=validation generator,
validation steps=STEP SIZE VALID,
callbacks=[early stopping monitor, mcp_ save,
history])

plot compare (fit history)

model.load weights(filepath='.mdl wts.hdf5")

model.save (model file name + ' _model.h5')

history.to_file(model file name + '_history.pkl')

else:
model = load model (model file name + ' model.hS5'")
history = AccuracyHistory()
history.from file(model file name + ' history.pkl')
plot compare (history)

return model, history

#create and compile model
original model = create model (input size=input size,
num classes=len(original train generator.class indices))
#train the network B B B -
original model, original history = fit model (original model, original train generator,
original validation generator,
new run = False, B
model file name=dataset name+' original',
epochs =200 )
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To test the model we simulate it on the original test set files and the adversarial files for each epsilon
value. We repeated this process for each of the dimensionality reduction methods that were mentioned
with different parameters.

def test model (model, test generator, silent=False, file name='"):
mmrn
Get the X test and y testb (as categorical) and return predcitions, classes, loss,
accuracy, fl-score, percision, recall, confusion-matrix and classification report.
mmrn
if not os.path.isfile(file name + '_predict results.pkl'):
score = model.evaluate generator (test generator, steps=test generator.n //
test generator.batch size, verbose=0)
if not silent:
print ('Test loss:', score[0])
print ('Test accuracy:', score[l])

pred = model.predict generator (test generator, steps=test generator.n //
test generator.batch size)

pred classes = np.argmax (pred, axis=1l)
classes = test generator.classes
r = classes == pred classes

print ('Accuracy: ')
print (sum(r) / len(r))

cm = confusion matrix(classes, pred classes)
cr_str = classification report (classes, pred classes, output dict=False)
if not silent:

print (cm)

print('-' * 50)

print (cr_str)

cr = classification report (classes, pred classes, output dict=True)
test result = {'loss': score[0],

'accuracy': scorel[l],

'predictions': pred,

'fl': cr['weighted avg']['fl-score'],
'precision': cr['weighted avg'] [ 'precision'],
'recall': cr['weighted avg'](['recall'],

'confusion matrix': cm,
'classification report': cr str}
with open(file name + ' predict results.pkl', 'wb') as output:
pickle.dump(test result, output, pickle.HIGHEST PROTOCOL)
else:
with open(file name + ' predict results.pkl', 'rb') as input:
test result = pickle.load(input)
return test result

# test the model
test result = test model (original model, original test generator, silent=False,
file name=dataset name+' original test')
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For the ensemble stage, we created 2 types of dataframes containing all the results of all models on all
samples. The first type will be the size of the number of models and the number of samples when cach
cell [i,j] contains the predicted class of image i with model j. In the second type of matrix the prediction
of each model j on the image i will be the distribution vector with the size of the number of classes. That
is, each column that previously contained a single number, that is, the class number, will now be split
into the number of classes with the probability for each class. These matrices will be later used by the

meta-learner as input for the training and testing and all our adversarial results.

from keras.datasets import cifarlO
import glob, itertools

epsilons = [0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1,
0.15, 0.2, 0.25, 0.3, 0.4, 0.5]

dataset name = cifarlO
train generator, validation generator, test generator = load dataset generators(
dataset = 'original')

# 1. get true classes
# ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
validation classes = validation generator.classes
test classes = test generator.classes
# 2. find all models
# ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
model files = glob.glob(dataset name+'* model.h5')
def get dir name from model name (model name) :

return model name.replace(dataset name+' ',"").replace(" _model.h5","")
models = list (map(get dir name from model name, model files))
# 3. define dataframe with all class results for - validation, test and adv
# ___________________________________________________________
columns = ['true_value']+models
validation models predict class df = pd.DataFrame (columns = columns)
# validation
test models predict class df = pd.DataFrame(columns = columns)
# test
test adv models predict class df dict =

{eps : pd.DataFrame (columns = columns) for eps in epsilons} # test adv

# add a ture value column
validation models predict class df['true value'] = validation classes
# validation - B B
test _models predict class df['true_value'] = test classes
# test
for eps in epsilons:
# test adv

test_adv_models predict class df dictl[eps]['true value'] = test classes
# 4. do the same for the probabilityresult dataframe
# ___________________________________________________________
classes = list(train generator.class indices.keys())
columns = ['true value'] + list(

itertools.chain.from iterable(

[[x + ' ' + model for x in classes] for model in models]))

validation models predict prob df = pd.DataFrame (columns=columns) # validation
test models predict prob df = pd.DataFrame (columns=columns) # test

test adv models predict prob df dict =
{eps: pd.DataFrame (columns=columns) for eps in epsilons} # test adv

validation models predict prob df['true value'] = validation classes # validation
test models predict prob df['true value'] = test classes # test
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validation models predict class df['true value'] = validation classes # validation

test models predict class df['true value'] = test classes # test
for eps in epsilons: # test adv
test adv models predict prob df dict[eps]['true value'] = test classes

# 5. fill all dataframes

for i, model file in enumerate (model files, start=0):
folder = models[i]
print (f'Progress = {str(i + 1)}/{len(model files)}, folder = {folder}')
print (model file)
# load model
model = load model (model file)

# read data sets
train generator, validation generator, test generator =

load dataset generators(dataset=folder)

# run model on validation and test

validation result = test model (model, validation generator, silent=True,
file name=dataset name + '_validation_ensemble ' +
folder)

test result = test model (model, test generator, silent=True, file name=dataset name

+ ' _test ensemble ' + folder)

# get predictions on validation and test
validation pred = validation result['predictions']
test pred = test result['predictions']

# get pred classes
validation pred classes = np.argmax(validation pred, axis=l)
test pred classes = np.argmax(test pred, axis=l)

# add to classes df
validation models predict class df[folder] = validation pred classes

test models predict class df[folder] = test pred classes

# add to predict prob df

columns = [x + ' ' + folder for x in classes]
validation models predict prob df.loc[:, columns] = validation pred
test models predict prob df.loc[:, columns] = test pred

for eps in epsilons:
current directory = folder + "\\test_adv\\" + str (eps)

adv_generator = load dataset generator (current directory)
adv_result = test model (model, adv_generator, silent=False,
file name=dataset name + ' test adv ' + folder +

'_eps ' + str(eps) + '_adv')

test adv pred = adv_result|['predictions']

test adv pred classes = np.argmax(test adv pred, axis=1l)
test adv models predict class df dict[eps][folder] = test adv pred classes
test adv _models predict prob df dict[eps].loc[:, columns] = test adv pred
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Let's see how our data looks like. Bellow is the first type of matrix that contains for each image and

model the predicted class. For example, here the model original_bilateral_filter_10 (meaning, the

factor value is 10) predicted that image 2 belongs to class 3 where the true value should be 0.
validation_models_predict_class_df

true_value original_bilateral_filter_10 original_bilateral_filter_2 original_bilateral_filter_3 original_bilateral_filter_4 original_bilateral_filter_5 original_bilater

0 0 0 0 0 0 0
1 0 0 0 0 0 0
2 0 3 7 3 0 3
3 0 8 ] 8 ] &
4 0 0 0 0 0 0
24995 g 9 g 9 ] 9
24996 § 9 § 9 § 9
24997 9 9 9 9 9 9
24998 E] 9 E] 9 g 9
24999 g 9 g 9 g 9

25000 rows % 81 columns

The second type of matrix will expand each column for all classes' possibilities. For example, for the
original_bilaterla_filter_10 model and 10 possible different classes in the CIFAR-10 case, we will split
the column into 10 different columns according to the probability of the class. And so, bellow we can
see that the cell [2, O__original_bilateral_filter_10] tells that the bilateral_10 model predicted that the
likelihood of image 2 to belong to class 0is 0.060611.

validation_models_predict_prob_df

true_value 0__original_bilateral_filter_10 1__original_bilateral_filter_10 2__original_bilateral_filter_10 3__original_bilateral_filter_10 4__original_bilateral_filte

0 0 0.763911 0.001489 0.145023 0.014805 1971242
1 0 0.967272 0.000043 0.001850 0.000035 6303112
2 0 0.060611 0.002237 0.029430 0.589650 4.73485¢
3 0 0.323592 0.029280 0.000246 0.000017 7.49374:
4 0 0.663715 0.000689 0.203205 0.012648 9.44434%
24885 § 0.000064 0.006278 0.000001 0.000002 1.08063¢
24996 9 0.000071 0.001531 0.000003 0.000005 1.96792:
24997 g 0.004519 0.003864 0.000199 0.011742 1.160611
24988 9 0.000029 0.203127 0.000002 0.000037 4.48334¢
24999 9 0.000219 0.074475 0.000003 0.000130 5.0342%¢

25000 rows x 601 columns

Now to implement ensemble voting, we wish to look at the first type of matrix on each row and select
the maximum class and this will be the meta-learner prediction to every image. From this, we can casily

find the percentage of accuracy by comparing it to the true value.
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# validation
voting validation predicted = validation models predict class df.drop(
['true value'], axis=l).mode (axis=1) [0].astype('int64")
validation score = sum(voting validation predicted ==
validation models predict class df['true value'])
/len (validation models predict class_df)

ensemble results table total.at['validation', 'ensemble voting'] = validation score

# test
voting test predicted = test models predict class df.drop(
N N N ['t;ue_valug'], agiszl).mode(axis=1)[O].astype('int64')
test score = sum(voting test predicted ==
- B B test _models predict_class_df['true_value'])
/len (test models predict class df)

ensemble results table total.at['test', 'ensemble voting'] = test score
ensemble results table total

# adv test
for eps in epsilons:
voting adv predicted = test adv models predict class df dictleps].drop(
['true value'], axis=l).mode (axis=1) [0].astype('int64")
adv_score = sum(voting adv_ predicted ==
test _adv_models predict class_df dict[eps]['true value'])
/len(test_adv_models predict class_df dict[eps])

ensemble results_table total.at['adv_epslion_ '+str(eps), 'ensemble voting'] =
adv score

For stacking implementation we will have the same experiments twice - one for the predicted class
matrix and the other for the probabilities. The code will be the same so we will give it only for the first
case. We will organize the data for the model — separation of x and y, shuffling all instances and applying

one-hot encoding for the case of using the predicated classes.

train = validation models predict class_df.astype (str)
test = test models predict class df.astype(str)
test adv dict = {k:v.astype(str) for k,v in

test adv models predict class df dict.items()}

# shuffle the data

train=train.iloc[np.random.permutation(len(train))]
train=train.reset index(drop=True)

test=test.iloc[np.random.permutation (len (test))]
test=test.reset index(drop=True)

for k,v in test adv dict.items():
test adv dict[k] =

test adv _dict[k].iloc[np.random.permutation(len (test adv _dict[k]))]
test adv_dict[k] = test adv dict[k].reset index(drop=True)
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# separate x and y

train y = train['true value']
train x = train.drop(['true value'], axis=1)

test y = test['true value']
test x test.drop(['true value'], axis=l)

test adv dict x = dict()
test adv dict y = dict()
for k,v in test adv dict.items():
test adv dict ylk] = test adv dict[k]['true value']
test adv dict x[k] = test adv dict[k].drop(['true value'], axis=Il)

# apply one hot encoding of categorical features

for col in train x.dtypes[train x.dtypes == 'object'].index:
for dummy = pd.Categorical (train x.pop(col), categories=list(set(train y)))
train x = pd.concat([train x, pd.get dummies (for dummy, prefix=col)], axis=l)

for col in test x.dtypes[test x.dtypes == 'object'].index:
for dummy = pd.Categorical (test x.pop(col), categories=list (set(train y)))
test x = pd.concat ([test x, pd.get dummies (for dummy, prefix=col)], axis=l)

for k, v in test adv_dict x.items():
for col in test adv dict x[k].dtypes([test adv_dict x[k].dtypes == 'object'].index:
for dummy = pd.Categorical (test adv dict x[k].pop(col),
categories=list (set(train y)))
test adv dict x[k] = pd.concat ([test adv dict x[k], pd.get dummies (for dummy,
prefix=col)], axis=1)

For training and evaluating the meta-learner, we used the H2O Auto-ML [47]. H2O automates the
process of training a large selection of candidate models. We’ve tried several models including DRF
(Distributed Random Forest), XGBoost, fully-connected neural network and more. We restricted the
algorithm to a 12-hour run (after noticing that additional time has little effect).

# run hZ2o auto ml for model selection
import h2o
from h2o.automl import H20AutoML

h2o0.init ()

htrain = h20.H20Frame (pd.concat ([train y, train x], axis=1))
htest = h20.H20Frame (test x)
htest adv = {}
for k,v in test adv dict x.items():
htest adv[k] = h2o0.H20Frame (v)

X =htrain.columns
y ='true value'
x.remove (y)

htrain[y] = htrain[y].asfactor()
aml = H20AutoML (max runtime secs = 60*60*12, stopping metric='misclassification',
include algos = ["GLM", "DeepLearning", "DRF", "XGBoost", "GBM",

"DeepLearning", "StackedEnsemble"], stopping rounds=0)

aml.train(x=x, y =y, training frame=htrain)
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After finding the optimal model in the next step we can evaluate it on the training set test set, and all the

adversarial examples.

# train

train y pred = aml.leader.predict (htrain)
train y pred = train y pred.as_data frame() [ 'predict'].astype (str)

ensemble results_table total.at['validation', 'ensemble_ stacking class(H20)'] =
accuracy score(train y, train y pred)

# test

test y pred = aml.leader.predict (htest)
test y pred = test y pred.as data frame () ['predict'].astype (str)

ensemble results_table total.at['test', 'ensemble stacking class(H20)'] =
accuracy score (test y, test y pred)

# adv

for eps in epsilons:
print ('current eps=' + str (eps))
test _adv_y pred = aml.leader.predict (htest adv([eps])
test adv_y pred = test adv_y pred.as _data frame () ['predict'].astype (str)

ensemble results table total.at
['adv_epslion_' + str(eps), 'ensemble_ stacking class(H20)'] =
accuracy score (test adv dict yleps], test adv y pred)

All the results of our experiments are presented in the next section.
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6. Results
In this section, we will show the efficiency of each dimensionality reduction defense mechanism that was
mention in the previous section. We will measure our performance with the metrics defined in the

previous section.

6.1. Dimensionality Reduction Results
We will now look at the results obtained for each dimension reduction method. For each method, we
trained a network with a training set that was reduced using this method. In all experiments, we

obtained a convergence of the validation set after 15-40 epochs as seen in the example in figure 33.

Accuracy over epochs for KMeans with K=60 (INTEL dataset)

10 .
—— Train Acc  Train Accuracy: 0.980
09 4 — Val Acc
08
071

Val Accuracy: 0.808
accuracy 06

05
0.4
03
0.2

epochs

Figure 33: Accuracy results over epochs. Here we see the progress for the accuracy in the case of the INTEL dataset and dimension reduction

using the K-means method with parameter k = 60. It can be seen that the validation accuracy stabilizes at around 0.8 after the 30th epoch

After training, we ran a prediction for every method and epsilon value on the data, measuring the
accuracy, fooling rate and the median PSNR value. The FGSM algorithm for generating adversarial
examples used the following epsilons values: [0.01,0.02,0.03,0.04,0.05,0.06,0.06,0.07,0.08,0.09,0.1,
0.15,0.2,0.25,0.3,0.4,0.5]
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6.1.1. Image Resize and Rescale

The resizing and rescaling algorithm includes a squeezing parameter. The following values were

examined: [1.1,1.2,1.3,1.4,1.5,1.7,2.0,2.5,3.0]. Figure 34 shows the accuracy and the fooling rate for
this experiment. We can see that for epsilons values smaller than 0.3-0.4 all the alternative models got
better and similar results than the original model on adversarial examples.

Resize effect on adversarial examples (intel)

Resize effect on adversarial examples (cifar10)
- orignal
o8 S sz 11 o - == onginal
— msizz12
Ny — msizz13
ar \ — ez 14 a6
v — msizz 15
LRy esize 1.7
| — msiz= 20
06 y resize 2.5 05
H — msize 30
[H 1
Hos |
Y
\ 03
03
0z
02
0 01
00 01 02 (] 01 3 [ o1 02 [¥] 0 0
epsiton epsiion
Resize effect on adversarial examples (cifar10)
10
10

faaling rate

fooling rate

00 o1

02 (5]
epsilon

Y] a5 (] 0 02 03 04

[
epsilon

Figure 34: The effect of dimension reduction using the reszizing and rescaling method on correctly identifying adversarial examples. The x axis is the epsilon value in the FGSM
adversarial method, while the y axis represent percentage. The two upper graphs shows the accuracy in INTEL and CIFAR-10 datasets while at the bottom we can see thefoo]ing rate

Figure 35 shows the effect on image quality as a function of the squeezing parameter in PSNR units
Indeed, consistent and slow decay can be observed as the compression factor increases
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Figure 35: The effect of dimension reduction using the resizing and rescaling method on the quality of the image. In the x axis we can see different sizing

factor values, while the}/ axis represent PSNR values. The upper graphs are box plot where we can see the 25 & 75 percentile and the median value qftbe
PSNR for different factor values. The graphs at the bottom are separate for ech class.
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6.1.2. K-means Color Quantization
For the k-means algorithm, the following k values were examined: [3,5,8,10,15,20,25,30,40,50,60].
As can be seen in figure 36, that shows the accuracy and fooling rate, all the examined k values gave
better results than the original model. In many cases, the accuracy improvement was more than 2 or 3
times higher than the original model. As for epsilon equals 0, meaning there is no adversarial attack, all
the model acted similar to the original model as they got an accuracy of 78-80% vs 80% in the original
model for INTEL dataset and similar in the case of CIFAR-10 except for lower k values (3 and 5).

Kmeans effect on adversarial examples (intel) Kmeans effect on adversarial examples (cfarl0)
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Figure 36: The effect of dimension reduction using the kmeans method on correctly identifying adversarial examples. The x axis is the epsilon value in the FGSM adversarial
method, while the y axis represent percentage. The two upper graphs shows the accuracy in INTEL and CIFAR-10 datasets while at the bottom we can see thefoo]ing rate.

Figure 37 shows the effect of k-means dimensionality reduction on image quality using the PSNR value.
As you might assume, the smaller the number of colors (k) in the image, the higher the quality (and the

variance of the results).
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while the}/ axis represent PSNR values. The upper graphs are box plot where we can see the 25 & 75 percentile and the median value qfthe PSNR
for different k values. The graphs at the bottom are separate for ech class.
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6.1.3. PCA
Running the PCA algorithm shows an improvement in classification, whereas for the INTEL dataset it is
clear that lowering the variance percentage parameter improved the results while for a CIFAR-10 a
mixed trend was observed - for the lower values of variance percentage (0.85 and 0.8) it was observed
that for small epsilon values the results were lower than other models and got the highest scores for

when epsilon passed 0.1 value.
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Figure 38: The effect of dimension reduction using the pca method on correctly identifying adversarial examples. The x axis is the epsilon value in the FG SM adversarial

method, while the y axis represent percentage. The two upper graphs shows the accuracy in INTEL and CIFAR-10 datasets while at the bottom we can see the fooling rate.
Selecting PCA severely damage image quality on small resolution images (such as CIFAR-10) even when
taking a high percentage of variance (like 0.999). In contrast, a higher quality image (INTEL) shows that
selecting high variance percentage values (>0.99) yields good results but very quickly results in serious
damage to image quality when going bellow this threshold.
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6.1.4. Low Pass Filtering
In the low pass filtering case a similar improvement can be observed for different window size values
while epsilon value is bellow 0.3-0.4. The only exception is a small size of 3 for the convolutional
window in the INTEL dataset that performs slightly less, but still better from the original model.
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Figure 40: The effect of dimension reduction using the low pass filter method on correctly identifying adversarial examples. The x axis is the epsilon value in the FGSM adversarial
method, while the y axis represent percentage. The two upper graphs shows the accuracy in INTEL and CIFAR-10 datasets while at the bottom we can see thefoo]ing rate.

Indeed, the image quality in this case stands out significantly over the other cases, as can be seen in

figure 41.
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Figure 41: The #ct qfdimension reduction using the low passfi]ter method on the qualit)f (yrthe image. In the x axis we can see d{ﬂreremfactor values, while
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6.1.5. Gaussian Filtering

By running gaussian filtering we will get better results than the original model as long as epsilon value is

less than 0.3-0.4. It is notable that enlarging the window size, meaning more blurring result, we get
better classification on adversarial examples.
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Figure 42: The effect of dimension reduction using the gaussian filter method on correctly identifying adversarial examples. The x axis is the epsilon value in the FGSM adversarial
method, while the y axis represent percentage. The two upper graphs shows the accuracy in INTEL and CIFAR-10 datasets while at the bottom we can see thefoo]ing rate.

On the other hand, increasing the blurring will result in obvious damage to image quality.
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Figure 43: The gﬁ%ct (yrdimension reduction using the gaussianﬁ]ter method on the qua]it)/ thhe image. In the x axis we can see djfferemfactor values, while

the}/ axis represent PSNR values. The upper graphs are box plot where we can see the 25 & 75 percentile and the median value qfthe PSNRfor djﬁrerentfactor
values. The graphs at the bottom are separate for ech class.
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6.1.6. Median Filtering
Median filters, which selects existing colors from the image itself, shows an improvement over the
original model for epsilon values smaller than 0.3-0.4. The two window sizes that were examined gave

similar results.
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Figure 44: The effect of dimension reduction using the median filter method on correctly identifying adversarial examples. The x axis is the epsilon value in the FGSM adversarial
method, while the y axis represent percentage. The two upper graphs shows the accuracy in INTEL and CIFAR-10 datasets while at the bottom we can see thefoo]ing rate.

Increasing the window size as expected damaged image quality.
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Figure 45: The (Eﬁéct qfdimension reduction using the medianﬁ]ter method on the qua]it)/ qftbe image. In the x axis we can see dz’ﬁ%rentfactor values, while
the}/ axis represent PSNR values. The upper graphs are box plot where we can see the 25 & 75 percentile and the median value qfthe PSNRfor dgﬁrerentfactoz/
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6.1.7. Gradient Filtering
Gradient filtering appears to be one of the weakest methods among those that were tested. There seems
to be some small improvement in classification accuracy and fooling rate but it only applies for small
values of epsilon (lower then ~0.1-0.2). For very small values the gradient models respond even worse
than the original model. This certainly makes sense as the impact of the gradient is to find the map of

changes in a certain direction, so the result is quite different from the original image.
In all the experiments Sobel y gave the best results while the laplassian gave the worst results.
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Figure 46: The effect of dimension reduction using the gradient filter method on correctly identifying adversarial examples. The x axis is the epsilon value in the FGSM adversarial
method, while the y axis represent percentage. The two upper graphs shows the accuracy in INTEL and CIFAR-10 datasets while at the bottom we can see thefoo]ing rate.
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6.1.8. Bilateral Filtering

This filter enjoys both worlds - it performs a weighted average that depends on both the physical
distance from the pixel and the color distance. Let us remember that bilateral filtering knows how to

blur an image while preserving the edges. Therefore, it produces excellent results for a wide range of

epsilon values. We can see that the bilateral filter gives similar results for different factor values,

especially in the case of the low-resolution CIFAR-10 dataset.
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Figure 47: The effect of dimension reduction using the bilateral filter method on correctly identifying adversarial examples. The x axis is the epsilon value in the FGSM adversarial
method, while the y axis represent percentage. The two upper graphs shows the accuracy in INTEL and CIFAR-10 datasets while at the bottom we can see thefoo]ing rate.

Notably, the filter retains the quality of the original image best than we have seen so far, based on the
high PSNR values. In the case of CIFAR-10 this is even more obvious when for small values of the

factor, a significant portion of the images received a maximum value of 100, which indicates that the

MSE was equal to zero (meaning, identical images).
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Figure 48: The gﬁ%ct (yrdimension reduction using the bi]atera]ﬁ]ter method on the qualit)f @rthe image. In the x axis we can see d}'fﬁzremfactor values, while
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6.1.9. Canny Edge Filtering
As for gradient filtering, canny edge detection filtering is useful for only a certain range of epsilon
values. For values too small the model gives a weaker identification than the original model. Again, this
was casy to predict because by finding the edges we lost most of the image information, so for small

epsilon, we will have less accurate results.
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Figure 49: The effect of dimension reduction using the canny edge detection filter method on correctly identifying adversarial examples. The x axis is the epsilon value in the FGSM
adversarial method, while the y axis represent percentage. The two upper graphs shows the accuracy in INTEL and CIFAR-10 datasets while at the bottom we can see thefoo]ing rate.
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6.1.10. Summary
To summarize the nine experiments we performed we wish to examine which dimension reduction
methods were more effective in dealing with an adversarial attack using the FGSM algorithm. We also
compare all methods to the original model. When comparing effectiveness, we consider the predefined

accuracy metrics as well as the damage in image quality.

Figure 50 shows all the results on a single graph when each color represents a particular reduction
method and the plurality of graphs from the same color is due to the number of parameters set. The
continuous black line expresses the performance of the original model on the test set. It is noticeable
that K-means and PCA were able to achieve the best accuracy and fooling rate results. On the other
hand, the least successful results were unsurprisingly due to the loss of a lot of information, those that

relied on finding maps from the original image - gradient filtering and edge detection.

D reduction methods effect on adversarial image classification (intel)

Dimensionality reduction methods effect on adversarial image classification (cifar10)

w—original
~=- kmeans

resize == original

=== kmeans

pea :
median filter 06 N 8 —mn resize

--- gradient filter
gaussian filter
low pass filter
bilateral filter
canny edge filter

2
-~ median fiiter

-~ gradient filter
gaussian fliter

N Tow pass filter
bilateral fiiter
canny edge filter

z
€ o4
¥
04
03
03
0
02 =
01 01
00 01 02 03 04 05 00 o1 02 03 04 0s
epsilon epsiion
Dimensionality reduction methods effect on adversarial image classification (intel) Dimensionality reduction methods effect on adversarial image classification (cifar10)
10
07 &
— original
------ . ~== kmeans
....... } - resize
¥ 06 % --- paa
08 L e et i & === median filter
-~ gradient filter
gaussian filter
" A low pass filter
05 bilateral filter
canny edge filter
06
y
€ 0e
g
&

== original
=== kmeans
-=- resize
=== pca

-~ median filter
~== gradient filter
gaussian filter
fow pass filter
bilateral filter
canny edge filter

°
-

02

00

00 01 02 03 04
epsilon

00 01 02 03 04 05
epsilon

Figure 50: The gﬁrect ofa]] dimension reduction methods on correctly identiﬁ'ing adversarial examples. The x axis is the epsilon value in the FGSM adversarial method, while the y
axis represent percentage. The two upper graphs shows the accuracy in INTEL and CIFAR-10 datasets while at the bottom we can see the fooling rate. The black line represent the

performance of the original model while each color stand for different dimension redction method. Same color lines are due to different parameter values.

Table 1 lists the impact of each method on image quality by the PSNR value. To summarize the box
plots presented earlier, we can see the best median obtained for each method, the worst median and the

average median for different parameters.

It seems from the results that bilateral filtering achieved the minimum image quality impairment.
Kmeans also achieved significantly high performance for large k values. PCA, on the other hand, showed
a mixed trend when CIFAR-10 showed good results but got worst on the INTEL dataset. Other models

achieved similar median PSNR results.
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INTEL CIFAR-10

Best AVG Worst Best AVG Worst
Method median  median median median median median

PSNR PSNR PSNR PSNR PSNR PSNR
Resize & Rescale 31.4 30.56 29.5 31.5 30.24 29.4
Kmeans 37.8 29.59 20.1 37.7 32 28.1
PCA 28.2 28.16 28.1 37.5 29.64 28.1
LPF 30.6 29.88 29.11 30.2 29.15 28.5
Gaussian 30.5 30.06 29.8 30.7 29.43 28.7
Median 31.2 30.85 30.5 314 30.7 30
Gradient - - - - - -
Bilateral 49.9 46.4 40.8 100 56.8 42
Canny - - - - - -

Table 1: The effect of different dimension reduction methods on image qaulity using the PSNR measure.
¢ 0] di g J

For each method and dataset we show the highest, lowest and average of the median PSNR value for each exprermint of certain factor.
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6.2, Ensemble Results
As mentioned, we gave the results of all the models to a meta-learn for training and evaluation. We have
taken several ensembles approaches: voting, stacking of predicated classes and stacking of prediction
distribution. Before describing the results we first give the motivation for studying ensemble methods.

6.2.1. Motivation
We know that the multiplicity of dimensions is one of the most influential factors on the likelihood of an
adversarial attack. With adversarial training, dimension reduction is one of the most-studied approaches
in literature (see chapter 3.3.2) for dealing with this phenomena, and was intensively examined in this
research as well. Many methods have given good results for certain data sets and certain attack methods.
But, each method also failed in some of the conditions. Hence, there seems to be no magic solution that

is suitable for all cases.

We have therefore considered the distribution of model answers. Figure 51 shows for selected epsilon
values the right prediction distribution of each model on all instances. In the rows, you can see each of
the test models (a dimension reduction method with a parameter value) and all the test set images in the
columns. Black cube in a cell [i, j] indicates that model i had the right prediction on the image j. The
percentage of black cells per row is the accuracy of the model, and the percentage in the column is the
percentage of the models that were right to predict the specific image. Note that the first line expressing
the true value is black all the way.

Some conclusions arise from this graph. First of all, of course, you can visually see the accuracy decline
with the rise in the value of epsilon. Secondly, it is possible to notice that there is no uniformity in the
answers of the models, meaning that each model has the input areas where it is better in prediction than
other models and there is no perfect overlap between these areas. Therefore, several models can be
harnessed to try to train a meta-learner in the cases in which it tends to be more accurate. So, for
example, the meta-leaner may be taught that a particular model is better in predicting some kind of class

and therefore will prioritize its answer over other models.
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True predicted value distribution for each model on every image
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Figure 51: Each graph shows for a particular epsilon value a matrix of results for all models (rows) on all images (columns), with a black value indicating a correct prediction and a white
value indicating an error. The first line expresses the true value and is therefore black in length.



6.2.2. Voting and Stacking Results
Figure 52 shows the results for the CIFAR-10 dataset, when the graphs of voting, class stacking and
probability stacking are painted in green, red and blue respectively. The continuous black line describes

the results of the original model and the broken line is the best dimension reduction model at that point.

The results are notable for the fact that the three methods of ensembling win each model for epsilon
values equals or smaller than 0.07. This is, of course, the greatest chance of an attack, since we have
scen that it has a very little effect on the impact of the image but critically harms the identification
performance. So, for example, the percentage of the original model is dropping up to 0.174 for epsilon
equals 0.07, a performance that begins to approach the trivial model that gives a random class
uniformly. For larger epsilon values, the ensemble models give better results than most of the models
except PCA. Also, the trend between the methods itself is turned off at a certain point, i.e. for low
values of epsilon stacking-based methods gave better results and starting from a certain point voting

model performs better.

Dimensionality reduction methods effect on adversarial image classification (cifar10)

08
—::.\ ensemble - probability stacking
T
a7 !
07 \ N}
%\ ensemble - class stacking
‘\

06

05
>
9
B
2 04
®

best resuit single model
S
~
03 it YO
TS
e~
02

03 onginal model

00 01 02 03 04 05
epsilon

Figure 52: The effect of using ensemble approaches on dimension reduction methods results for correctly identifying adversarial examples. The

x-axis is the ep:ilon value in the FGSM adversarial method, while the)'—axis represents the accuracy percentage.

Diving into the numbers themselves in table 2 shows that probability stacking gives the best result in

small epsilon values immediately thereafter class stacking and at some point voting.

original  best_result_single_model ensemble_voting ensemble_stacking_class(H20) ensemble_stacking_prob(H20)

train 0.915 0.923

validation 0.701 0.723 0.741 0.779 1.000
test 0.683 0.710 0.736 0.760 0.767
adv_epslion_0.01| 0.670 0.705 0.732 0.759 0.767
adv_epslion_0.02| 0.522 0.669 0.707 0.735 0.744
adv_epslion_0.03 0.413 0.636 0.680 0.703 0.710
adv_epslion_0.04| 0.284 0.585 0.623 0.630 0.630
adv_epslion_0.05| 0.235 0.552 0.580 0.583 0.582
adv_epslion_0.06| 0.191 0.494 0.517 0.505 0.498
adv_epslion_0.07| 0.174 0.474 0.475 0.463 0.453
adv_epslion_0.08| 0.158 0.459 0.421 0.402 0.389
adv_epslion_0.09| 0.150 0.446 0.391 0.370 0.353
adv_epslion_0.1 0.140 0.431 0.353 0.326 0.313
adv_epslion_0.15| 0.118 0.376 0.239 0.209 0.197
adv_epslion_0.2 0.105 0.325 0.179 0.159 0.149
adv_epslion_0.25| 0.100 0.282 0.150 0.132 0.126
adv_epslion_0.3 0.092 0.246 0.130 0.118 0.115
adv_epslion_0.4 0.088 0.178 0.111 0.105 0.106
adv_epslion_0.5 0.089 0.126 0.100 0.103 0.103

Table 2: Accuracy results in the CIFAR-10 damsetfbr djﬁrerem epsilon values. The table di.rp]cgfs the resu]m»fbr the ori(qina] model, the best

result achieved for a dimension reduction model at this point and the ensemble methods qf voting, class stacking and probability stacking.
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For the INTEL dataset, we see a similar trend when up to epsilon that is less than or equal to 0.05 the

ensemble methods gave better results than the best dimension reduction model at this point.
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Figure 53: The effect of using ensemble approaches on dimension reduction methods results for correctly identifying adversarial examples. The

x-axis is the epsilon value in the FGSM adversarial method, while the y-axis represents the accuracy percentage.

The following table shows the results summary.

original best_result_single_model ensemble_voting ensemble_stacking_class(H20) ensemble_stacking_prob(H20)

train 0.975 0.997

validation 0.826 0.842 0.830 0.870 1.000
test 0.811 0.827 0.827 0.850 0.852
adv_epslion_0.01 0.800 0.821 0.831 0.851 0.856
adv_epslion_0.02 0.679 0.794 0.800 0.830 0.841
adv_epslion_0.03 0.588 0.765 0.775 0.806 0.824
adv_epslion_0.04 0.439 0.725 0.724 0.746 0.763
adv_epslion_0.05 0.362 0.698 0.685 0.703 0.712
adv_epslion_0.06 0.289 0.657 0.626 0.632 0.640
adv_epslion_0.07 0.255 0.640 0.593 0.592 0.596
adv_epslion_0.08 0.225 0.606 0.541 0.539 0.540
adv_epslion_0.09 0.212 0.576 0.500 0.497 0.501
adv_epslion_0.1 0.201 0.543 0.460 0.448 0.452
adv_epslion_0.15 0.161 0.440 0.332 0.333 0.322
adv_epslion_0.2 0.121 0.361 0.266 0.262 0.257
adv_epslion_0.25 0.093 0.305 0.198 0.213 0.206
adv_epslion_0.3 0.081 0.254 0.151 0.188 0.181
adv_epslion_0.4 0.085 0.188 0.120 0.174 0.172
adv_epslion_0.5 0.094 0.173 0.126 0.172 0.172

Table 3: Accuracy results in the INTEL datasetfor dgﬁrerem epsilon values. The table displays the Iesu]tsfor the original model, the best result

achievedfor a dimension reduction model at this point and the ensemble methods oj voting, class Stad\’jng and pmbabi]it)' stacking.
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7. Concluding Remarks and Future Work
The use of ensemble approaches, both stacking and voting, on dimensionality reduction methods has
proven itself to be a very effective way with dramatic classification performance improvement. The
method aims to cover different areas of the input space in which certain models may be better than
others and to learn them in order to give the best possible answer. Thus, by implementing a bucket
containing a large number of dimension reduction models, it can be enriched at any given moment with

thousands of other models.

The ensemble approach and the results that we got using it suggest several directions of future research.
First, it is interesting to verify the results that were received on additional attacks and deeper networks.

We can also examine the addition of extra methods and parameters on a large scale that we tested here.

Secondly, we put all the models inside the bucket for the meta-learner. A more intelligent approach
might examine the models and choose how to filter them or how to better select the parameters for the
dimension reduction algorithm. For example, here we examined several k values in the KMeans

algorithm. It is interesting to see if one can make a smart choice of the k parameter.

We have presented 3 types of ensemble methods here and noticed, again, that there are different
conditions in which each meta-leaner is better than others. Therefore, why not build a new meta leaner

that accepts all existing meta-leaners' answers to maximize their answer as well?

In this research we focused only on the classification performance, using the accuracy and fooling rate,
and the image quality damage using the PSNR. Since the dimension reduction algorithm is used each
time the netweork classifies a new example and not only in the training phase, the time complexity of
cach algorithm might also be important for some applications. The different dimensionality reduction
methods also differ in running time. This may be critical when talking about systems that require a rapid

diagnosis in a short time like for example in the case of the autonomous vehicle.
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