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Abstract 
Machine-based systems, especially those based on deep neural networks, have become an integral part of 

our everyday life. The performance in many fields, including translations, voice recognition, spam 

detection, and image processing, has surpassed that of humans. Their impact will even increase soon 

with the release of various autonomous systems, led by the autonomous vehicle. 

With the improved capabilities we get by using neural networks come new vulnerabilities as well. An 

industry of attacks on these networks called adversarial learning has been developed. In these attacks, the 

input data is altered slightly, in a way a human eye or ear cannot detect, causing the networks to change 

their behavior dramatically. Several methods have been presented over the years to deal with this 

phenomenon, some diagnoses the sensitivity of the network to minor changes, some add the perturbed 

examples to the training stage (this is called adversarial training). But, as far as we know, no generic 

defense system has been found for all types of attacks and domains. 

In this paper, we examine the vulnerability to adversarial attacks in one of the core parameters - the 

multiplicity of the input dimension. We explain why the high dimension of the input domain increases 

the vulnerability to an adversarial attack and we examine the effect of several reduction-based protection 

methods on diverse datasets, including those with multiple color channels (CIFAR10), and high 

dimension (INTEL). Our conclusion is that dimension reduction can improve the resilience of a network 

against adversarial attacks. But, it is difficult to find one method which fits all cases. Therefore our 

recommendation is an ensemble approach that combines several methods in order to obtain an optimal 

result. 
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1. Introduction 
In recent years we witness increased use of products and technologies based on machine learning and 

artificial intelligence. This phenomenon covers almost every aspect of our daily lives: web search, online 

translation, phone’s voice personal assistant and fingerprint locking, target advertising and much more. 

In the coming years, we expect even more advanced technologies that until recently were considered 

fiction rather than science. This includes autonomous vehicle and IoT products, which will make a 

significant change in our lives. 

Like the revolution of the personal computer, which became common in every home during the 1980s 

and the 1990s, the endless race to upgrade and progress has sometimes resulted in security neglect. 

Machine learning algorithms have always been tested for how much the model was right: accuracy, 

FP/FN, precision/recall and so on. There has never been a criterion for examining the durability of a 

model against intentional malformed input. Just imagine the impact of a cyber-attack adding minor 

changes to the sensors of the autonomous vehicle, causing it to be confused between a stopover sign and 

a highway sign. 

In this research, we explore a new field that emerged only in 2014 and focuses on methods of deliberate 

deception of learning models. This field is named Adversarial Learning. In their article, Szegedy et al. [1] 

were the first to discover a disturbing phenomenon in neural networks, which until then were 

considered to be incredibly accurate for many tasks. It turned out that small perturbations to an image, 

such that in many cases may not be distinguished by the human eye, can cause the network’s 

classification to change dramatically, and with high confidence.     

 

Figure 1: An adversarial image generated by the FGSM algorithm. 
Left - the original panda image; Middle - small perturbation added to the image; Right - an adversarial image, classified as a gibbon (Source: 

Explaining and harnessing adversarial examples, Goodfellow et al [16]) 

Figure 1 illustrates the problematic nature of this phenomenon. In this case, a small perturbation was 

added to the original panda image. This small noise was calculated using the Fast Gradient Sign Method 

suggested by [16]. Although the change is negligible and we can clearly see that the output is a panda 

image, the neural network identified it as gibbon with high confidence. 

The FGSM was the first algorithm to propose a scheme to produce adversarial images. It uses the sign 

elements of the cost function gradient with respect to the input image to calculate a small noise vector to 

be added. The magnitude of the change can be controlled by multiplying the noise vector with the 

epsilon parameter. A large value of epsilon increases the likelihood of being mistaken on the network, 

but, of course, also detract from image quality and make it easier to recognize that manipulation has 

been performed. Figure 2 shows the effect of different epsilon values on the test accuracy in the case of 

CIFAR10 and INTEL datasets.  
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Figure 2: FGSM algorithm for creating adversarial images. This figure shows how the epsilon parameter, controlling the magnitude of the noise 
vector, affects the accuracy achieved by the neural network model in two different datasets.  

We focused on the effect of the input dimension on the attacker’s ability to mislead the network, 

examining several different dimensionality reduction approaches on the classification accuracy in the 

case of both standards and manipulated input data.  

 

1.1. Contributions  

We studied a large number of dimensionality reduction defense strategies to combat adversarial machine 

learning attacks: PCA, KMeans, image rescaling, LPF, edge detection and other types of filtering 

including Gaussian, median, gradient and bilateral. Most of the prior work that took an approach of 

dimensionality reduction [30,31,32,33,35,36,40] deal with certain methods and hence the difficulty in 

making a qualitative comparison. Here we tried to perform an overview of as many methods as possible 

on the same architecture and data set.  

For each of these methods, we show a significant accuracy improvement compared to the original 

model. The models for which we got the best results were KMeans and PCA. KMeans with 20k   for 

example shows an improvement from 25.4% accuracy to 60.5% when 0.07   on the INTEL dataset 

while PCA with variance percent preserve equals 99.9% got an accuracy of 53.9%.  CIFAR-10 dataset 

showed the same trend where KMeans and PCA presented the best improvement on small epsilon 

values where KMeans with 20k   improved the accuracy of 28.3% in the original model to 58% when 

0.04  . We witnessed a dramatic improvements in classification accuracy for most of the 

dimensionality reduction methods, mostly in the low range of epsilon values. Note that small values for 

epsilon are the more likely scenario for an attack, considering the attacker’s desire not to be detected.  

Our work as well as other recent work suggest that there is no magic solution that is suitable for all 

problems or all network architectures and data types. Therefore we suggest three novel defense 

ensemble strategies for adversarial learning defense. Given a large number of models that have been 

trained on data that has been downgraded with different processes of dimensionality reduction, if by a 

variety of methods or by using a different set of parameters, we would like to train a meta-learner that 

will take the advantage of an ensemble approach to make a more accurate result based on the original 

results.  

We suggest to use three main methods. The first method is a simple voting among all the results for 

decision-making. A more sophisticated method is to use a stacking approach in which we give a new 
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meta-learner the dimension reduction predictions to perform training and testing. One option we tried 

is to give the model the predicted classes and perform one-hot encoding. Another is to be trained on all 

the probability vectors of all the models combined. Every model produced a distribution vector on 

every prediction that can be an indication of the confidence level of the model.  

For small epsilon value in the range of [0,0.07] these 3 methods got a higher score than the best 

dimension reduction method at each point. For example, on the CIFAR-10 dataset and adversarial rate 

of  0.03   the original model got an accuracy of 41.2% while the best dimension reduction method 

got a score of 58.5%. We were able to achieve an accuracy of 63% on both stacking approaches.  

We consider this a general approach for solving the problem of adversarial learning. This approach can 

be extended at any time by further models of different dimensionality reduction methods. Proper 

training of the meta-learner can take the best of all models to give the optimum result. To the best of 

our knowledge, there was no previous attempt of dealing with the adversarial learning problem with a 

stacking ensemble approach.   

 

1.2. Paper Outline 

The outline of this writeup is as follow. We first briefly provide the background required in chapter 2. 

We describe the problem of classification and then focus on neural networks and different relevant 

architectures. 

In Chapter 3 we elaborate on the problem domain. A full description of the adversarial learning 

phenomenon is given as well as several common attack methods from recent years. This chapter ends 

with a presentation of several common approaches for both detection and prevention. 

Chapter 4 will focus on the properties of multi-dimensional input. First, we describe a general 

phenomenon that makes it difficult for machine learning models to solve high-dimensional problems and 

has received the ominous term "the curse of dimensionality". Then we will see how high dimensionality 

is much more problematic when considering deliberate attacks on the model. 

Chapter 5 describes several dimension reduction methods that have been tested. We describe each of 

the methods in detail, define the experimental conditions and the measured metrics. 

Chapter 6 presents the results concentrate on the conclusions that follow. 

Chapter 7 summerises the contribution of this study as well as options for future research. 
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2. Background 
Machine Learning is the science of getting computers to act without being explicitly programmed. In the 

past decade, machine learning has given us self-driving cars, practical speech and image recognition, 

effective web search, and a vastly improved understanding of the human genome. 

Machine Learning was first mentioned in 1959 by Arthur Samuel [2] while trying to solve the game of 

checkers. As an interdisciplinary field, ML shares common properties with other fields such as Artificial 

Intelligence, statistics, information theory, game theory, and optimization. Evolved from data mining 

and pattern recognition, ML explores the study of algorithms that can learn from examples and make 

predictions and decisions based on a given data [3]. 

The ability to 'learn' is defined by progressively improve performance on a specific task. According to 

Tom M. Mitchell [4] ‘A computer program is said to learn from experience E with respect to some class 

of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with 

experience E’. 

Machine learning is divided into three main different classes: supervised learning, unsupervised learning 

and reinforcement learning. In supervised learning, the learning process is guided. That is, the algorithm 

trains the model with a labeled set of samples (the data), each of them is labeled by a ‘teacher’. 

Unsupervised learning is a subfield in ML that helps find previously unknown patterns in a dataset 

without pre-existing labels. This includes tasks such as clustering, dimension reduction, and outlier 

detection. In the more sophisticated problem of reinforcement learning, the user gives the algorithm 

feedback on its decisions, in order to improve performance over time.  

 

2.1. The Classification Problem 

We focus on supervised learning, and more specifically classification problems. In the basic statistical 

supervised learning model, the model has a set of N labeled points which will be our training set. 

Meaning, the training process includes N input vectors  
1
,

N
i i n

i
x x


  and N class labels 

   
1
, 0,1

N
i i

i
y y


  for the discrete classification problem and  

1
,

N
i i

i
y y


  for the continuous 

regression problem. The training model will give a prediction for every new data point. Testing the 

model with a new labeled dataset, called the test set, can give us a measure of how good our model is. If 

we define our hypothesis output for new data point x as h(x) and the real known output as f(x), then the 

accuracy of our model can be defined as  

   
1

(1) ( ), ( , )
n

i i

i

L l f x h x


    

where   is the learning parameters of the model and l is a loss function measuring the error of the 

prediction with respect to the real value. Some examples of such loss functions can be the square loss 

function and the logistic loss function. The total L function is referred to as the Training Loss Function.  

In order to avoid overfitting and keeping the model as simple as possible, we also define the 

regularization function  ( )h   which measures the complexity of the model. 

So, the objective function we wish to minimize in this optimization problem should be 

(2) ( ) ( ) ( ( ))Obj L h      

The machine learning process illustrated in Figure 3 shows the main stages during a supervised learning 

experiment [5]. The labeled data is divided into training and test sets. After Exploratory Data Analysis, 
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which includes cleaning, transforming and visualization of the input data, a feature extraction stage gives 

us input X. This input will be inserted into a machine learning model resulted in a predicted value. The 

model includes some learned parameters. The actual value and the metric value can be used to define 

the accuracy of our model.          

 

Figure 3: The Supervised Learning Process 
(Source: Coursera, Machine Learning Foundations: A Case Study Approach [5]) 

 

2.2. Deep Neural Network 
In recent years we witness large domains where the ML technologies based on deep learning lead to 

breakthroughs that was not seen before. These domains include tasks that not so long ago seemed very 

difficult, such as voice recognition (like Google assistance, Siri and Alexa [6]), natural language tasks 

(speech recognition[7][8][9] and translation [10][11], auto complete [12], machine summarization [13]) 

and real-time computer vision classifiers (the autonomous vehicle for example [14]).     

F. Rosenblatt [17] introduced the perceptron in 1957 as an algorithm for supervised learning of binary 

classifiers. As shown in figure 4, all inputs  
1

N
i

i
x


are multiplied with their weights  

1

N
i

i
w


and then 

summed up.  

 

Figure 4: The perceptron (source: mlxtend) 

The next stage is to apply a nonlinear activation function ( )x . In more general cases, the sigmoid or 

the RELU function will be used.  

 

  

 

Figure 5: The Sigmoid and RELU Activation Function 

1

2

1
(3) ( )

1

0 0
( )

0

x
x

e

for x
x

x for x











 


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The artificial neural network uses the repeated application of the perceptron model called neurons. The 

network applies layers of neurons. In each layer, every neuron output a signal real number, which is 

passed to every neuron in the next layer. At the next layer, each neuron forms its own weighted 

combination of these values, adds its own bias, and applied the activation function. The real numbers 

produced by the neurons on one layer are collected into a vector a, and then the vector of the outputs 

from the next layer has the form 

(4) ( )Wa b   

where W is the weights matrix and b is the bias vector. The number of columns in W will be the number 

of neurons at the previous layer that made the vector a. The number of rows in W and the size of vector 

b will be the number of neurons at the current layer.  

 

Figure 6: Full-Connected Neural Network 

We can now introduce the general form of an artificial neural network called the Fully Connected 

Neural Network. Assume our network has L layers, where layer 1 is the input layer, L is the output 

layer, and layer l contains ln  neurons. Notice that our network will map from ln
 space to Ln

 

space. We use 1[ ] l ln nlW 
  to note the weights at layer l and 

[ ] lnlb   for the vector of biases in 

layer l.  

We will assign an input data point x to the first layer as: 

1[1](5)
n

a x   

The recursive flow of the network will be as follow 

 [ ] [ ] [ 1] [ ](6) , 2,3,...,lnl l l la W a b for l L      

where 
[ ]Ly a  is the output of the model. 

 

2.3. Convolutional Neural Network 

Another form of a common ANN architecture is the Convolutional Neural Network (known as CNN). 

These networks were used constantly to obtain some remarkable results in object recognition for the 

ImageNet challenge (see [15] and Figure 7).  
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Figure 7: Results of the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) over the years 

Instead of connecting each neuron to all other neurons as it was defined in the Fully Connected Neural 

Network architecture, we will try to capture more local phenomena by connecting it to its neighbors 

only. In the image domain where our input neurons are pixels, we will connect each one of them to 

pixels in its local area. As a result, CNNs have much fewer connections and learning parameters and so 

they are easier to train, while their theoretical performance is likely to be only slightly worse. 

A convolutional neural network has four main building blocks:  

- Convolution layer 

- Activation (ReLu) 

- Pooling layer 

- Fully Connected layer 

Convolutional is a linear operation for feature extraction where an element-wise product is applied 

between a small window of the input and a small array of numbers vector called a kernel. The output is 

called a feature map. This procedure is repeated multiple times in different locations and neighborhoods 

(Figure 8).  

 

Figure 8: Convolutional Layer (Source: Convolutional neural networks: an overview 
and application in radiology [18]) 

Different kernels may be applied to capture different characteristics of the input image. Two main 

hyperparameters that define the convolution operation are the size of the window and the number of 

kernels (meaning, the numbers of neurons in the convolutional layer). Typical size for the kernel will be 

a 3 × 3, 5 × 5 or 7 × 7 window. Other parameters may be the Strides and Padding. Strides are the 

number of pixels shifts of the window when going over the input matrix. A typical value will be 1 or 2. 

Padding is used when the filter does not fit the input image. We can then decide to drop this part or pad 

the pictures with zeroes.  
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Figure 9: Common convolutional kernels and their output 

The outputs of the linear operation of convolutional are then passed through a non-linear activation 

function such as sigmoid, hyperbolic, ReLu or tangent (ReLu and tangent are common choices). We are 

applying these activation function on the feature maps to increase the non-linearity of our model, as the 

image themselves are non-linear.  

The pooling layer is a subsampling of the previous layer. It reduces the spatial size of the input, and 

therefore the number of computation and learnable parameters. The pooling layer selects a pooling 

operation to apply on each feature map separately and creates a new set with the same number of 

features maps. Typical types of pooling operators are average pooling and max pooling. There are non-

learnable parameters for the pooling layer as filter size, stride and padding are predefined.   

The last phase is the classification where the feature learning layers output is usually flattened to a one-

dimensional vector and then passed through several fully connected layers, also called dense layers. The 

activation layer for this phase is usually different from other activation function, where the softmax or 

sigmoid are the proper choices, and the numbers of output neurons are usually as the number of classes 

where each output represent the probability for the matching class.    

The step where the input data is transformed into output through these layers is called forward 

propagation. A typical schema for CNN architecture using these building blocks are shown in Figure 10.   

 



 

9 
 

 

Figure 10: A typical CNN architecture consists of several repetitions of a stack of convolutional layers and a pooling layer followed by one or 
more fully connected layers. 
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3. Problem Description - Adversarial Learning  
Adversarial examples are deliberately manipulated inputs created with the purpose of confusing a neural 

network and decreasing its performance. Adversarial examples are similar to regular example, differing 

only by a small perturbation. Even though these pertrubations are usually indistinguishable to the human 

eye, they cause the network to misclassify with high confidence.  

In 2014, a group of researchers from Google and NYU were the first to discover this intriguing 

weakness of deep neural networks in the image classification domain [1]. In their paper, the researchers 

found some disturbing properties among neural networks that one of them was that the smoothness 

assumption that is typically valid for computer vision problems and kernel method does not hold. One 

would expect that given a small radius 0   and an input image x , a x r satisfying r   will be 

classified with high probability to the same class as x . But, Szegedy et al. [1] showed that a simple 

optimization process breaks this assumption. It turns out that deliberate changes to some specific image 

could cause the network to identify it as another targeted class and with high probability. To make 

matter even worse it was found that the adversarial examples were relatively robust and shared by 

different models. Meaning, the same adversarial images were found to be hard for a family of networks 

that were trained with different hyperparameters or set of examples. 

This sparked a new fieled, the adversarial field, with intensive research. Many and varied methods have 

been suggested since then to deceive neural networks. In 2017, Moosavi-Dezfooli et al. [19] showed the 

existence of a universal and very small perturbation vector that causes state-of-the-art deep neural 

networks to be misclassified with high probability.  

 

Figure 11: Universal perturbation. Left - original images with the true label. Middle - small universal perturbation to be added. Right - 
Adversarial examples and their estimated label. (Source: [19]) 
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In the same year, some studies demonstrated the existence of adversarial learning in the real physical 

world. Kurakin et al. [20] showed that adversarial images that were printed and recapture using a cell 

phone camera, were still misclassified by the network (Figure 12). Another research introduced some 

methods for road sign attacks were stickers on a stop sign were managed to fool the network [21].  

 

Figure 12: Black box attack on a phone image classification application. On the left is the original image. This image was printed after adding 
small perturbations defining by the epsilon parameter. The model failed to classify it correctly (Source: [20]) 

3.1. Definitions of Terms 

In this section we describe common technical concepts and terms used in the world of adversarial 

learning. The focus is on the image processing domain. 

o Adversarial example advx - A malformed version of an original input image that was deliberately 

altered to deceive a learning model. 

o Adversarial training - A defense strategy against adversarial learning where adversarial examples 

are intentionally added to the training process of the model. 

o Black-box attack vs White box attack - In the black-box scenario, the attacker doesn’t have any 

prior knowledge about the model, its parameters, loss function, architecture or algorithm in 

contrast to the white-box case. 

o Clean image cx - The original input image. 

o Fooling ratio - Refer to the percentage of test images that changed their true label after been 

perturbed. 

o Image-specific vs universal attack - Whether the perturbation vector is calculated for each image 

separately or there is a universal perturbation vector for all test images. 

o One-shot vs iterative method - One-shot method is when the calculation process is in a single step 

compared to an iterative process that in most cases will be computationally expensive.  

o Perturbation - A small noise vector that was added to a clean image making it an adversarial 

example. 

o Targeted vs non-targeted attack - In a targeted attack, the model was fool to believe the adversarial 

example belonged to a specific label wherein non-targeted any label different from the true 

label is valid.  

o Transferability - The ability of an adversarial example to mislead other models as well. 
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3.2. Adversarial Classification Attacks 

In this section, we review some popular methods for adversarial classification attacks in the image 

processing domain. There are many other attack methods on different architectures and domains such as 

attacks on Recurrent Neural Networks, Autoencoders and Reinforcement Learning tasks, etc’, but we focus on 

the common case of classification problems. Of course, there are many different approaches, where 

some of them are the evolution of each other, and we cannot mention all of them. Therefore we give a 

review of only the more common methods or those that have formed a milestone in adversarial history 

while trying to give a varied list that presents the nature and properties of different attacks. The 

interested reader can see the surveys [22],[23],[24] for further reading.  

 

3.2.1. First Discovery - Box constrained L-BFGS 

Properties: White-box, Non-targeted, Image-specific, One-shot. 

Szegedy et al. [1] first introduced the term of adversarial learning by finding what they called blind spots 

in neural networks. They formalize the following minimization problem as the search for adversarial 

examples: 

Let  : 1, ,mf k be a deep neural network classifier mapping images to a discrete set of 

classes with a continuous loss function  : 1, ,m

floss k   . Then for an input image 

mx and a target label  1, ,l k we wish to solve the following optimization problem 

   

2
(7) arg min

. . , 0,1

p

m

p

s t f x p l x p   

 

where p is the perturbation vector. This problem has a nontrivial solution in case of  f x l . The 

original problem is hard, so the authors suggest approximating it by using a box-constrained L-BFGS. 

They look for the minimum 0c   for which the minimizer p of the following problem satisfies 

 f x p l  : 

 

 

(8)min ,

. . 0,1

f
p

m

c p loss x p l

s t x p

  

 
 

This will result in the exact solution in the case of a convex loss function, but this is not the general case 

in neural networks.  

As mention, this was the first suggested algorithm for finding adversarial examples, which cause a wide 

interest of researches in the adversarial attacks field. 
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3.2.2. Linear and Gradient-based - Fast Gradient Sign Method (FGSM) 

Properties: White-box, Non-targeted, Image-specific, One-shot. 

Goodfellow et al. [16] tried to explain the adversarial examples transferability across architectures and 

training sets with the linear nature of deep neural networks. They suggested having a linear process for 

creating perturbations. The adversarial examples were generated in the following way: 

 

  (9) , ,adv c c truex x sign J x y      

where   are the model parameters, cx  is the input image, truey is the true label of cx , and J is the 

gradient of the cost function.   is a small scalar number controlling the amplitude of the perturbation 

vector. They name it Fast Gradient Sign Method (FGSM). 

Figure 13 illustrates some visual results for the FGSM algorithm on the CIFAR 10 dataset. It can be seen 

that for small values, it is difficult to discern that the image has been manipulated but still in many cases 

the network will be surprisingly wrong. For example, in the case of the bird, the deer, the dog, the 

frog, the ship and the truck even for epsilon of 0.01, the classification was wrong, although it is clearly 

seen that the nature of the image has not changed. A large value of epsilon increase the likelihood of 

being mistaken on the network, but, of course, also detract from image quality and make it easier to 

recognize that the input has been manipulated. 

 

Figure 13: A demonstration of the Fast Gradient Sign Method (FGSM) on the CIFAR10 dataset. The leftmost image is the original file and its 
category while moving right express different values of epsilon during the adversarial attack and the prediction of the network. Green color 

means correct classification, while red color indicates an error. 

FGSM is one of the most used adversarial techniques and will be our main algorithm in this paper. Other 

variations of FGSM were published during the years. 
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3.2.2.1. One-step target class method  

Properties: White-box, Targeted, Image-specific, One-shot. 

Kurakin et al. [25] propose an alternative approach to maximizes the probability of a specific label differs 

from the true label. The new formula will be as followed: 

  arg(10) , ,adv c c t etx x sign J x y      

 

3.2.2.2. Basic Iterative Method (BIM) 

Properties: White-box, Non-targeted, Image-specific, Iterative. 

Till now we saw only one-shot methods taking a single large step in the direction of increasing the loss 

function. Another approach is taking some small steps to get a better result. This extension [25] got the 

name Basic Iterative Method (BIM): 

   0 1(11) , , ,N N

adv c adv adv c truex x x Clip x sign J x y       

where  is the step size (the authors chose 1  , meaning they change the pixel by 1 at each step) and 

 Clip clips the values of the values to fit the interval 
, ,

[ , ]
i j i jc cx x   . The authors determined 

the number of iterations as  min 4,1.25   . 

 

3.2.2.3. Iterative Least-likely Class Method (ILCM) 

Properties: White-box, Non-targeted, Image-specific, Iterative. 

By combining (10) and (11) we can get an iterative method of choosing the least likely class: 

   0 1(12) , , ,N N

adv c adv adv c least likelyx x x Clip x sign J x y 

      

This extension got the name Iterative Least-likely Class Method (ILCM) [25] and produce adversarial 

examples that shown some serious effect on the classification accuracy.  

 

3.2.3. 0  norm based - JSMA and One Pixel Attack 

Properties: White-box (JSMA) / Black-box (One Pixel), Non-targeted, Image-specific, Iterative. 

Most methods are using 2  and   norms when minimizing the perturbation vector. Different 

approaches suggest looking at 0  norm, meaning the number of pixels that were changed during the 

adversarial process. Papernot et al. [26] created a saliency map using the gradient of the network layers 

output to monitor how the change of each pixel affects the probability of misclassification. Once the 

map is ready it is easy to choose the most effective pixel. The algorithm restricts the number of pixels 

that can be altered. This method got the name Jacobian-based Saliency Map Attack (JSMA). 

Taking it to the extreme, Su et al. [27] demonstrated how a single pixel change can mislead the 

network.  
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3.2.4. Universal based Attack 

Properties: White-box, Non-targeted, Universal, Iterative. 

Moosavi-Dezfooli et al. [19] described the first method defining a general perturbation for a network 

that is not image-specific. Meaning, by adding the perturbation to any image the network will misclassify 

on it with high probability. Let   denote a distribution of clean images in ℝ𝑚. Their goal is to find a 

perturbation p that will be as small as possible and that will cause the network to be wrong in “most” 

cases. To formalize it the following 2 conditions should be applied: 

  

(13)

( ) 1
x

p

P f x p f x








   
 

where controls the fooling ratio and the parameter  limits the magnitude of the perturbation vector. 

To solve this the authors used an iterative approach going through each image input adding to the 

current universal perturbation the smallest possible vector that will make him the network to 

misclassified the current image.  

   
2

(14) arg min . .i i

c i
r

p r s t f x p r f x      

 

3.2.5. Neural Network-based - Adversarial Transformation Network (ATN) 

Properties: White-box, Non-targeted, Image-specific, Iterative 

Up to this point, most of the methods have focused on the direct calculation of the gradient or solving an 

optimization problem. Baluja and Fischer [28] idea was to train a feed-forward neural network 

generating adversarial examples that are misclassified by a target network. They call it the Adversarial 

Transformation Network (ATN). They did it by minimizing a loss function combining the task of 

similarity between the original image and the adversarial version while having a misclassification by the 

target network.  
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3.3. Adversarial Defense Strategies 

In this section, we provide an overview of some of the main paradigms to defend against an adversarial 

attack. It is important to mention that there is currently no general method that provides a proper 

solution to all types of adversarial attacks and this is an ongoing research field. The main difficulty is due 

to the lack of theoretical tools to deal with the inputs that were deliberately crafted while dealing with 

non-linear and non-convex environment and hard optimization problems to solve. In addition, adding 

mechanisms for protecting the models may affect the model accuracy on clean images as well as running 

time (training or testing) and resource consumption.  

Current approaches can be devided into the following families: 

o Training Modification - like adversarial training 

o Data modification - may be on the training phase, test phase or both  

o Network modification - make it more robust to small changes (fix the gradient, change the loss 

function or make the network deeper) 

o External models - like detection systems 

Here are some of the most popular methods to defend against adversarial attacks. 

 

3.3.1. Training Modification - Adversarial Learning 

One of the most popular methods in research today is adversarial learning. In this approach, the 

objective is to increase the robustness of the model by injecting random adversarial examples into the 

training phase alongside the original images. This method differs from the classical augmentation which 

includes image transformation such as rotation and results in a true input image. Adversarial training 

enriches the data with images that are unlikely to receive as input. 

Szegedy et al [1], who were the first to point out the existence of blind spots in neural networks, were 

also the first to examine the effect of adding these examples to the training set. Many studies suggesting 

new attack methods have at the same time introduced adversarial learning as the main defensive 

approach. Goodfellow et al [16] offered an alternative objective function combining both the original 

and the adversarial example generated by the Fast Gradient Sign Method: 

         (15) , , , , 1 , , , ,c true c true c c true trueJ x y J x y J x sign J x y y             

where J is the original loss function and  0,1  . 

A mentionable drawback of adversarial learning is that it tends to overfit to the specific attack method 

used while training. Moreover, the defense is not robust to black-box attacks.  

   

3.3.2. Data Modification 

Many attack methods create a high-frequency noise that is not distinguished by the human eye. This 

phenomenon led to several studies focusing on the preprocessing of the image data as a defense strategy. 

Several main approaches can be identified: 

 Image compression 

 Image denoising  

 Feature squeezing 

 Randomization 
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Image compression is probably the most common method, and especially the lossy compression of 

JPEG. One of the main features of JPEG compression making it relevant as an adversarial defense 

approach is the ability to remove high-frequency signals. Dziugaite et al [30] were the first to examine 

the effect of JPEG compression on adversarial samples calculated by FGSM [16]. Their research showed 

that JPEG compression is effective for large scale perturbations while small interferences may survive 

the process. Das et al [31] took a similar approach and extend the experiment to DeepFool method [32] 

as well. Their main focus was on the trade-off between image quality and accuracy improvement. They 

suggested taking an ensemble approach running several different compressions with different qualities 

while having a vote between all of the results. Shin et al [34] showed how to generate an adversarial 

sample that will survive JPEG compression.  

Further research by Cornell and Facebook [33] reached similar conclusions where other methods for 

feature squeezing and image denoising were tested such as image cropping and rescaling, bit depth-

reduction and Variance minimization. An ensemble approach has also been tested while averaging the 

results. Shaham et al [35] have also experimented the effectiveness of low pass filtering, PCA, JPEG 

compression, soft thresholding and low-resolution wavelet approximation as defense approaches against 

adversarial attacks. Sahay et al [40] on the other hand used autoencoder to denoise the input image and 

then used another autoencoder last hidden layer to apply a dimensionality reduction.  

A slightly different approach was taken by Xie et al [36] who offered to combine random elements (see 

Figure 14) and came second in the NIPS 2017 adversarial defense challenge.  

 

Figure 14: In this research Xie et al [36] used two randomization layers as a defense against adversarial examples: random image resizing and 
random zero paddings around the image. 

    

3.3.3. Network Modification 

Several methods have tried to address the phenomenon of adversarial learning by modifying the network 

and making it more robust to small changes.  

One of these methods is gradient masking or gradient hiding, which tries to hide information about the 

gradient from the adversary. Many white-box attacks use the gradient of the model to calculate the 

perturbation vector, meaning that turning it to non-differentiable or close to zero makes it totally 

useless. Ross and Doshi-Velez [42] suggested a defense process that penalizes the degree to which small 

changes in inputs can alter model predictions. This method may be useful to gradient-based attacks but 

double the complexity of the training process.  
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3.3.4. External Models 

Another defensive option may include add-on detectors to find out whether or not the image has been 

poisoned. An example of this approach can be found in the papers of [37] and [38] similar approach was 

proposed where different methods of feature squeezing have been used and all of the predictions were 

examined alongside the original image prediction. A large difference will be an indicator of an 

adversarial image in most cases.  

Methods based on external detectors require a large number of adversarial examples and tend to suffer 

from overfitting on the adversarial algorithm that generated the attack. 

 

Figure 15: Detector for adversarial examples. In this architecture, the model gets both the original image and the transformed samples . All the 
predictions are been sent to a judge module where large different is an indicator for an adversarial example (source: Gu et al [37]) 

Another approach that uses Generative Adversarial Network (GAN) was introduced by Lee et al [41]. In 

their research, they train simultaneously a network whose goal was to correctly classify clean and 

adversarial images and a network that tries to produce images that would fool the network. As in any 

GAN based architecture, the two networks compete with each other. This can be seen as a combination 

of adversarial training and an external model. Using the GAN-based defense method may be effective on 

gradient-based attacks but requires longer training time and resources.  

 

Figure 16: The classifier F is trained on both clean and adversarial images. A generative network G is training to generate adversarial examples 
using the clean image and its gradient (source Lee et al [41]) 
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4. The Dimension Effect 
Goodfellow et al. [16] were the first to point on the high dimension as one of the main factors that 

increase the probability of adversarial example to deceive the network, because the same amount of 

noise in each dimension will result in larger Euclidian distance from the original instance. This assumes a 

linearity behavior of NN which is known as the linearity hypothesis. 

 

4.1. Linearity Hypothesis 

Szegedy et al. [1] first discovered the existence of adversarial examples, but could not explain the cause. 

At first, it was widely assumed that this was due to the complexity and the nonlinearity nature of neural 

networks. It was also thought that it was just an example of overfitting. 

The leading hypothesis today, although not a consensus, is the linearity hypothesis suggested by 

Goodfellow et al. [16]. They claimed that the original hypothesis could not explain why simple and 

shallow models suffer from adversarial examples as much as deep models. Meaning the complexity and 

overfitting were failed to explain this phenomenon. Adversarial examples are able to fool models 

different from those they were originally derived from and with the same prediction. If adversarial is a 

form of overfitting, each network should react differently to these examples. 

Goodfellow et al. [16] presented the linear hypothesis which argued that the source of adversarial 

examples is that the model behaves extremely linearly as a function of its inputs. They claim that neural 

networks are too linear to resist linear adversarial perturbation. For easier optimization process, most of 

the NN architecture such as LSTM, ReLUs and maxout were intentionally designed to behave in a linear 

manner. As a result, they suggested a linear method for generating adversarial examples - the FGSM 

algorithm [16]. Their main hypothesis was that the neural network is too linear to resist linear 

adversarial. 

  

4.2. The Curse of Dimensionality  

Real-life datasets typically come with high dimensions, like the number of pixels in an image or the 

number of different words in a text document. The true dimension is often much lower. For example, if 

we are looking at a 28x28 handwritten digits image like in the MNIST dataset, the input dimension is 
28 28[0,1] 

 which is the total possible for input images. If we choose a random image from this domain, 

most chances it will not be a handwritten digit, but some random black and white image. In fact, 

handwritten is only a tiny fraction of events in this large input space. So, why high dimension input space 

could be a problem? 

The Curse of Dimensionality describes a phenomenon in which when the input dimension increases, the 

volume of the space increases exponentially, making it sparse. If for example, 10 data points seem 

reasonable for 1-dimensional space, in 2-dimensional space we’ll need 100 points for the same density of 

points and 1000 points for the 3-dimensional case. Most machine learning algorithms are statistical by 

nature, using counting of observations in various regions of some space and distance measures. Those 

two fails when the dimension is increasing.    

 

4.3. The Adversarial Curse of Dimensionality for Linear Models  

Goodfellow et al. [16] tried to explain how a combination of high dimension along with the linearity 

hypothesis of neural network models can lead to adversarial examples. 

In many cases, each feature has a precision limit. This could be a digital image that is stored as 8-bit so 

that any color channel in a pixel cannot measure any change lower than 1/255, or an accuracy limitation 
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of any of the sensors. For input x , adversarial image x x p   and an activation function  f x  it is 

reasonable to think that the model will respond the same for both if every element of the vector p is 

smaller than the precision of the features. Meaning, we expect    f x f x p   for p 

 , 

where   is smaller than the sensor precision. Consider a linear model we can describe the output for 

the adversarial input as follow: 

 (16) T T Tf x w x w x w p    

The adversarial perturbation p will cause the activation function  f x  to grow by 
Tw p . To 

maximize this growth we can assign  p sign w . For an n-dimensional vector w with an average 

magnitude of m , the activation function will grow by mn . 

   (17) f x f x mn   

Meaning, the activation value will grow linearly with n  for high dimensional problems. This can explain 

why linear models with high dimension inputs may suffer from adversarial examples.   
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5. Dimensionality Reduction Defence 
In this section, we provide a detailed description of all dimension reduction methods that have been 

tested as a way to protect against adversarial examples. We then describe the unique approach we 

decided to take - an ensemble of several models. We will take a look at what the ensemble approach is and 

describe the stacking method we chose to implement. 

Then, we present each experiment - what metrics we chose to use, the datasets to work on, the 

network architecture, the generation of the adversarial examples and the experimental steps. 

 

5.1. Dimensionality Defence Methods 

In this section, we will cover the dimensionality reduction methods that have been examined in this 

study. For each method, we will provide some theoretical background, the original Python source code 

that was applied and some image examples. 

   

5.1.1. Image Resize and Rescale 

We will start with a simple image squeezing of rescaling and resizing. Using this method, we wish to 

shrink an image by a certain factor and then expand it again to its original size. This is done with the 

skimage package by applying rescale and resize functions. 

Rescale operation resizes an image by a given scaling factor. Resize serves the same purpose, but allows 

to specify an output image shape instead of a scaling parameter. 

 

Figure 17: Rescaling an image by a given factor and then resizing it to its original shape. PSNR reflects the damage in image quality. The 
images are taken from the INTEL dataset. 

from skimage.transform import rescale, resize 

 

def resize_dim_reduction(im, facgtor): 

    new_im = resize(rescale(im, 1. / factor, multichannel=True),  
   (im.shape[0], im.shape[1], im.shape[2])) 

    return new_im 
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5.1.2. K-Means Color Auantization  

K-means is one of the most popular and widely used clustering algorithms both in literature and 

industry. Its simplicity and speed give K-means a major advantage over other, more accurate, methods. 

Given an integer K and a set of n data points 𝑥 ∈ ℝ𝑑, the goal is to find k clusters centers C that 

minimizes   the total squared distance between them.  

2

1

(18) min
n

i
c C

i

x c




   

This problem is NP-hard, but has an iterative approximation algorithm suggested by Lioyd [43] in 1982: 

1. Choose a random initial k centers  1 2, , , kC c c c  

2. For each data point : [1, ]ix i n  assign it to its nearest center 

3. For each [1, ]i k  set ic  to be the center of mass of all the points that were assigned to the 

group iC  , meaning 
1

i

i

x Ci

c x
C 

  . 

4. Repeat steps 2 and 3 until no update has been made 

Here we perform a pixel-wise vector quantization of the image to reduce the number of colors. A 

random codebook that is taken from each image is been used to quantized image colors. 

from sklearn.utils import shuffle 

from sklearn.cluster import KMeans 

 

def recreate_image(codebook, labels, w, h): 

    d = codebook.shape[1] 

    image = np.zeros((w, h, d)) 

    label_idx = 0 

    for i in range(w): 

        for j in range(h): 

            image[i][j] = codebook[labels[label_idx]] 

            label_idx += 1 

    return image 

 

def kmeans_dim_reduction(im, k, n_sample_pixles=1000): 

    im = im.astype('float64') 

 

    w, h, d = tuple(im.shape) 

 

    image_array = np.reshape(im, (w * h, d)) 

    image_array_sample = shuffle(image_array, random_state=0)[:n_sample_pixles] 

 

    kmeans = KMeans(k) 

    kmeans = kmeans.fit(image_array_sample) 

 

    labels = kmeans.predict(image_array) 

 

    new_image = recreate_image(kmeans.cluster_centers_, labels, w, h) 

 

    return new_image 
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Figure 18: K-means quantization of an image with a given k value. PSNR reflects the damage in image quality. The images are taken from the 
CIFAR10 dataset. 

 

5.1.3. PCA 

PCA is a dimensionality reduction and den-noising process that try to keep as much variance as possible 

in the original input matrix. This is done by finding the k leading principal component of the input, 

representing it in the PC space, and mapping it again to the input space. 

 For   1 2, , , d

mx x x  we would like to reduce their dimension with a linear transformation 

,k dW  , meaning having a mapping 
,: k dy Wx W  . Then we wish to recover the original 

vector using a linear transformation 
,: d kx Uy U  such that the compressed vector will be close 

to its source. To find the compression matrix W and the recovering matrix U that minimize the total 

squared distance we aim to solve the following optimization problem: 

,

,

2

2
1

(19) arg min
k d

d k

m

i
W i
U

x UWx
 


  

In the optimal solution of (19) the columns of U are orthonormal and will be the first largest 

eigenvectors of the covariance matrix 
1

m
T

i i

i

A x x


  and 
TW U . For full solution and proof please 

refer to [3]. 

We perform the PCA calculation, meaning finding the eigenvector, for the all training set and not for 

each image separately. Attached is the python implementation of this linear transformation. 
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from PIL import Image 

import glob 

import os 

import numpy as np 

import pickle 

from sklearn.preprocessing import normalize 

from sklearn.decomposition import PCA 

 

 

def learn_pca_model(path, percent): 

    file_name = path.replace("\\", "_") + '_pca_' + str(percent) + '_model.pkl' 

 

    if not os.path.isfile(file_name): 

 

        imlist = glob.glob(path + "\**/*.jpg", recursive=True) 
 

        # dimensions 

        im = np.array(Image.open(imlist[0])) 

        m, n = im.shape[0:2] 

        imbr = len(imlist) 

 

        # matrix with flattened images 

        print('Found ' + str(imbr) + ' images.') 

        print('Read and flatten images.') 

        immatrix = np.asarray([(np.array(Image.open(im)) / 255.0).flatten() for im in 

imlist], 'f') 

 

        # pca 

        print('Learning PCA model.') 

        pca = PCA(percent) 

        pca.fit(immatrix) 

 

        with open(file_name, 'wb') as output: 

            pickle.dump(pca, output, pickle.HIGHEST_PROTOCOL) 

 

    else: 

 

        with open(file_name, 'rb') as inp: 

            pca = pickle.load(inp) 

 

    return pca 

 

 

def pca_dim_reduction(im, pca_model): 

    X = [im.flatten()] 

 

    lower_dimensional_data = pca.transform(X) 

 

    approximation = pca.inverse_transform(lower_dimensional_data) 

 

    approximation = approximation.reshape(1, im.shape[0], im.shape[1], 3) 

 

    return approximation[0] 
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Figure 19: Performing PCA  of an image with a given factor value representing the percent of variance to preserve. PSNR reflects the damage in 
image quality. The images are taken from the INTEL dataset. 

 

5.1.4. Filtering 

Image filtering has many applications, including de-noising, smoothing, sharpening, and edge detection. 

Linear filtering of an image is obtained by performing a convolution operation defined by a kernel. In 

the general form, convolution is defined by: 

       (20) , , , ,
a b

s a t b

g x y f x y s t f x s y t 
 

       

where  ,f x y  is the original image,   is the kernel and  ,g x y  is the filtered image. In our case, 

it is a weighted sum of neighboring pixels as can be seen in figure 20. 

 

Figure 20: An image filtering applying as a linear convolutional operation on each pixel. 

Several kernels were examined. 

 



 

26 
 

5.1.4.1. Low pass filter 

Images can be filtered with low-pass filters (LPF) or high-pass filters (HPF). LPF is useful in noise 

removal or blurring the image while HPF helps in edge detection. The smoothed image is achieved by 

averaging nearby pixels. A simple example is a kernel of all ones divided by the number of elements 

within the kernel: 

1 1 1
1

1 1 1
9

1 1 1

 
 
 
  

 

In this case, the kernel size is 3 but can be any odd number. Other filters may include more weighting 

for the current pixel or different smoothing in the x and y-axis. 

Attached is a sample code for low pass filtering using a matrix of ones and a kernel size parameter. 

Below are some examples of different kernel sizes. 

 

Figure 21: Performing Low Pass Filtering of an image with a given factor value representing kernel size. PSNR reflects the damage in image 
quality. The images are taken from the INTEL dataset. 

  

import numpy as np 

import cv2 

 

 

def low_pass_filter_dim_reduction(im, factor): 

    kernel = np.ones((factor, factor), np.float32) / (factor * factor) 

    new_im = cv2.filter2D(im, -1, kernel) 

 

    return new_im 
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5.1.4.2. Gaussian filter 

Gaussian filter is widely used to reduce image noise. The gaussian function express the normal 

distribution for calculating the transformation in each pixel. The gaussian formula for 2 dimensions is 

 

2 2

22
2

1
(20) ,

2

x y

G x y e 






  

where x and y are the distance from the axes and   is the standard deviation. The distribution is shown 

in figure 22. 

 

 

 

 

Figure 22: 2-D Gaussian distribution with mean (0,0) and 1   

Here is an example for 5x5 Gaussian kernel: 

1 4 7 4 1

4 16 26 16 4
1

7 26 41 26 7
273

4 16 26 16 4

1 4 7 4 1

 
 
 
 
 
 
  

 

We used the implementation of the OpenCV python package with 0   for both axes, x and y. 

Attached are some examples of applying this method.  

 

 

 

 

 

 

 

 

 

 

. 

import cv2 

 

def gaussian_filter_dim_reduction(im, factor): 

    new_im = cv2.GaussianBlur(im, (factor, factor), 0) 

 

    return new_im 

Figure 23: Performing Gaussian Filtering of an image with a given factor value representing kernel size. PSNR reflects the damage in image 

quality. The images are taken from the INTEL dataset 
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5.1.4.3 Median filter 

A median filter is an effective non-linear technique for reducing random noise while preserving edges. 

This is done by a sliding window placing the median value across the input window. Unlike averaging or 

Gaussian filtering which can create new colors, the median filter will place some pixel value from the 

image.  

Bellow is the median filtering implementation using the python OpenCV package. 

Figure 24 illustrates the effect of the median filter on images with random Gaussian noise. The most 

important impact, as can be seen, is the edge-preserving. 

 

Figure 24: Performing Median Filtering of an image with a given factor value representing kernel size. On the left is the original image and 
beside it is the image with some random Gaussian noise. The next two images re median filtered images with a window size of 3 and 5. The 

images are taken from the INTEL dataset 

5.1.4.3. Gradient 

Gradient filters is a high pass filter (HPF) which is looking for a directional change in color or intensity. 

In general, the gradient is expressed as 

(21)
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import cv2 

 

 

def median_filter_dim_reduction(im, factor): 

    new_im = cv2.medianBlur(im, factor) 

 

    return new_im 
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The direction of the gradient may be in the x-axis only, y-axis or any other vector. The derivative in the 

image case may be approximated by finite differences, for example, the gradient of image A on the y-

axis can be written as a 1-D convolution 
1

1

f
A

y

 
  

  
. 

We examined 3 types of gradient filters: Laplacian, Sobel, and Scharr. Sobel and Scharr use a 3x3 kernel 

for finding edges along the x or y-axis. The two discrete filters described above with the x and y-axis 

version: 

_ _

_ _

1 0 1 1 2 1

2 0 2 0 0 0

1 0 1 1 2 1

3 0 3 3 10 3

10 0 10 0 0 0

3 0 3 3 10 3

sobel x sobel y

scharr x scharr y

C C

C C
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   

   
   
          

       
   

   
   
          

 

Laplacian, on the other hand, is given by the formula: 

2 2

2 2
(22)
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Since the image input is represented as discrete pixels, it is common to use an approximation sliding 

window to the second derivatives in the definition of the Laplacian. Two commonly used kernels are 

shown above: 

_1 _ 2

0 1 0 1 1 1

1 4 1 1 8 1

0 1 0 1 1 1

laplacian laplacianC C

      
   

     
   
         

 

Figure 25 illustrates the difference between all the mentioned gradient methods. 

 

 

Figure 25:  Performing different kinds of Gradient Filtering on an image. On the upper left is the original image. The other images show the 
output of Laplacian, Sobel x and Sobel y kernels. The images are taken from the OpenCV documenntation 

Attached is the python source code for implementing the gradient masking using the open cv package.  

https://docs.opencv.org/master/d5/d0f/tutorial_py_gradients.html
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import cv2 

import numpy as np 

 

def laplacian_derivatives_dim_reduction(im): 

    # | 0  1  0 | 

    # | 1 -4  1 | 

    # | 0  1  0 | 

    im = (im * 255).astype(np.uint8) 

    gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY) 

 

    laplacian = cv2.Laplacian(gray, cv2.CV_64F) 

 

    return laplacian 

 

 

def sobel_x_derivatives_dim_reduction(im): 

    # Sobel operators is a joint Gausssian smoothing plus differentiation operation,  

    # so it is more resistant to noise. 

    # | -1  0  +1 | 

    # | -2  0  +2 | 

    # | -1  0  +1 | 

    im = (im * 255).astype(np.uint8) 

    gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY) 

 

    sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=5) 

 

    return sobelx 

 

 

def sobel_y_derivatives_dim_reduction(im): 

    # Sobel operators is a joint Gausssian smoothing plus differentiation operation,  

    # so it is more resistant to noise. 

    # | +1 +2  +1 | 

    # |  0  0   0 | 

    # | -1 -2  -1 | 

    im = (im * 255).astype(np.uint8) 

    gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY) 

 

    sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=5) 

    return sobely 

 

 

def scharr_x_derivatives_dim_reduction(im): 

    # More accurate 

    # |  -3  0   +3 | 

    # | -10  0  +10 | 

    # |  -3  0   +3 | 

    im = (im * 255).astype(np.uint8) 

    gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY) 

 

    scharrx = cv2.Scharr(gray, cv2.CV_64F, 1, 0) 

 

    return scharrx 

 

 

def scharr_y_derivatives_dim_reduction(im): 

    # More accurate 

    # | +3  +10   +3 | 

    # |  0    0    0 | 

    # | -3  -10   -3 | 

    im = (im * 255).astype(np.uint8) 

    gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY) 

 

    scharry = cv2.Scharr(gray, cv2.CV_64F, 0, 1) 

 

    return scharry 
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5.1.4.4. Bilateral filter 

Most of the filters that were presented tend to blur edges as they are some kind of a weighted average of 

pixel values in the neighborhood of the pixel, such as in the case of LPF and Gaussian. The weights will 

be proportional to the distance from the pixel in Gaussian filtering. Bilateral filtering, on the other hand, 

adds to these spatial weights that look at the pixel values. This method gives the weights of the pixels a 

value according to how much they are close in colors to the center pixel. The two weighting systems 

allow having a Gaussian blurring while preserving the edges. 

We implemented this method by using the OpenCV package with a signal parameter controlling the 

diameter, the color sigma and the distance sigma (in this order). 

Figure 26 illustrates the bilateral filtering with factor equals 5 (meaning kernel size = 5, color sigma = 

10 and distance color = 5) on the famous picture of Lena. Here we can see the blurring effect while 

keeping the edges of the picture. 

 

5.1.5. Edge Detection 

Here we used the popular Canny edge detection algorithm that was developed by John F.Canny [44] in 

1986. In this algorithm, we first reduce noise by using a Gaussian filter so it won’t affect our result. 

Then the algorithm finds the gradient of each pixel using the Sobel kernel in both horizontal and vertical 

directions. From these 2 kernels xG  and yG we calculate the angle and the magnitude of the gradient: 
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import cv2 

 

 

def bilateral_filter_dim_reduction(im, factor): 

    new_im = cv2.bilateralFilter(im, factor, factor * 2, factor / 2) 

 

    return new_im 

 

Figure 26:  Performing Bilateral Filtering on an image. On the left is the original image. The right image is the filtered image with factor 
equals to 5. 
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Pixels with gradient magnitude lower than a minimum threshold will be removed and those higher than 

a maximum threshold will be marked as edges. Pixels that are on a route of 2 edge points and the 

direction of the gradient will mark as edges as well. 

 In our implementation, we used the OpenCV python package which takes a parameter lower and upper 

value. As these values are difficult to know because they are different from image to image and it also 

becomes a function in two dimensions, we work with the median of the image to determine these values 

and the external parameter sigma to control its sensitivity. 

In figure 27 we can saw different values of sigma and the output using the Canny edge detection 

algorithm. 

 

Figure  27: Performing Canny edge detection on an image with a given factor value representing the sensitivity parameter. On the left is the 
original image. The next images re Canny edge detection filtered images. The images are taken from the INTEL dataset 

 

 

  

import cv2 

import numpy as np 

 

def canny_edge_detection_dim_reduction(im, sigma): 

    x = np.uint8((im*255).astype(int)) 

    v = np.median(x) 

    lower = int(max(0, (1.0 - sigma) * v)) 

    upper = int(min(255, (1.0 + sigma) * v)) 

    edged = cv2.Canny(x, lower, upper) 

    return edged 
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5.2. Ensemble Defence Methods 

So far, we have shown several methods of dimensionality reduction for adversarial defending separately. 

In this section, we try to combine predictions of several methods to get a better classification, a well-

known approach called an ensemble. As far we know, no such method has been tested for dimensionality 

reduction and with stacking approach as we will introduce later. 

 

5.2.1. What is Ensemble 

Ensemble learning is a machine learning paradigm where multiple learning algorithms, sometimes called 

“weak learners”, are trained to solve the same problem and their results are combined to obtain better 

predictive performance than could be obtained from any of the models alone. 

Several major kinds of ensemble meta algorithms aim at combining weak learners are: 

o Bagging 

o Boosting  

o Stacking 

Bagging stands for Bootstrap Aggregation. Bootstrapping is a process of resampling the training set to 

reduce overfitting and decrease the variance. Every model in the Bagging process is trained separately 

and in parallel while their answers are combined in a deterministic averaging process. 

 

Figure 28: The Bagging process. Given a set of labeled data we are resampling it on each stage to create a new model. All the answers are 
combined with a weighted averaging. 

Boosting learns the model sequentially in an adaptative manner. Starting from a base model, boosting try 

to improve on each step by creating a new model based on the errors of the previous one.   

 

Figure 29: The boosting process. Given a set of labeled data we train a model such that in each step the new model is based on the previous one 
and its errors. 
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Stacking learns several different models in parallel and combines them by training a meta-model to 

output a prediction based on the weak learners' predictions.  

 

Figure 30: The stacking process. Given a set of labeled data, we train some different models in parallel and their predictions are inputs for a 
meta learner to predict.  

Bagging and boosting don’t seem like methods that can suitable for our use case because of the need for a 

large amount of image in resampling or because we have only a set of different models predictions. On 

the other hand, stacking seems like a choice that can give value.    

We chose to work with two types of staking - simple voting among the predictions and give them to a 

meta-learner. 

 

5.2.2. Voting 

The simplest way for working with the results of the models is to have a vote among all predictions. This 

way, we get as input the predicted class of each model on each image. For each image, we select the 

class with the most votes.  

Suppose we have a set of N models 1, Nh h  and an instance input ix . Then the classification of the 

meta-model g will be 

      1(24) ,i i N imodeg x h x h x  

A noteworthy disadvantage of this method is that all models have a similar impact so a plurality of weak 

leaners in a given area of the input space will bias the result if they have a majority there (or in other 

words - the majority is not always right). To overcome this difficulty, we examined the stacking 

approach. 

 

5.2.3. Stacking with Meta-Learner 

Stacking takes the prediction of each model and combined them to compute a more accurate prediction. 

Let 1, Nh h be a set of N models and ix  an input point. Then the prediction of the meta learner g is 

 

where the optimum  1, N  are the solution for the least-squares optimization problem: 
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In this version, we gave the meta-model only the prediction. To do it more efficient we can give it the 

probability of the predicted class or all the prediction vector in a similar way. 

5.3. Experiment Setup 

We design an experiment with image dimensionality reduction transformations that alter the structure 

of perturbation and hopefully will raise the ability of the neural network to defend against such an attack 

without damage the input quality. In this section we will give a full description of neural network 

architecture and implementation, the datasets and attack methods that we will use and the approach of 

measuring the success ratio.   

 

5.3.1. Metrics 

There are several ways to evaluate the performance of machine learning systems, including accuracy, 

precision, recall and f1 score. Because in our case there is no preference for FP over FN we chose to 

work with accuracy: 
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Accuracy measures among all data points the portion of true classification. This is the most general 

evaluation metric to look for. A more accurate metric in the case of an adversary may be the 

misclassification success rate or the fooling ratio which measures among only the correct classified image 

how many instances the adversary was able to fool.  
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where 1, , nx x are the input images, 1, , nx x are the adversary images and  h x is the hypothesis 

represented by the model. 

So far we have only measured the model classification performance but another thing to be concerned 

about when reducing the dimensionality is the input quality. To do so we will use the PSNR to evaluate 

how much we damaged the image. PSNR uses the mean square error (MSE) of the low dimensional 

input from the original input image. 
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5.3.2. Datasets 

All the experiments in this paper were done with convolutional neural networks on two image datasets: 

the CIFAR-10 and the INTEL datasets. 

The CIFAR-10 dataset consists of 60,000 32x32 color images in 10 different classes, and with 6000 

images per class. The classes are airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck. 

We used 25,000 images for training, 25,000 as validation (and for the ensemble stage) and 10,000 for 

testing.  

 

Figure 31: The CIFAR-10 dataset consists of 10 different classes. Here we can see 10 random examples for each of these classes. 

The INTEL dataset [45] was taken from the open datasets center of Kaggle. It consists of 17,034 

150x150 images in 6 categories: buildings, forest, glacier, mountain, sea, and street. The train includes 

6813 images, the validation 6814 images (for the ensemble stage as well) and the test set has 3407 

images. 

 

Figure 32: The INTEL dataset consists of 6 different classes. Here we can see some random examples for each of these classes.  
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5.3.3. Network Architecture  

We used the Keras implementation of a convolutional neural network with 4 Conv-Pooling blocks, 

having Conv filter depth of 32, 64, 128 and 256 respectively. The Conv filter size is 3x3 and the Pooling 

filter has a size of 2x2 with rectified linear units (ReLUs) as activation functions.  

This is followed by a Flatten layer and a Dropout regularization layer. Finally, we have two blocks of 

fully connected layers with size 512 and 128 respectively, that feeds into a softmax output layer with the 

number of classes.  

 

  

from keras.models import Sequential 

from keras.layers import Input,Conv2D,MaxPooling2D, Flatten, Dense, Dropout 

 

 

def create_model(input_size, num_classes): 

    """ 

    Create a standard classification model with Keras 

    """ 

    model = Sequential() 

    model.add(Conv2D(32, (3, 3), activation='relu', padding='same', name='conv_1', 

    /                 input_shape=input_size)) 

    model.add(MaxPooling2D((2, 2), name='maxpool_1')) 

    model.add(Conv2D(64, (3, 3), activation='relu', padding='same', name='conv_2')) 

    model.add(MaxPooling2D((2, 2), name='maxpool_2')) 

    model.add(Conv2D(128, (3, 3), activation='relu', padding='same', name='conv_3')) 

    model.add(MaxPooling2D((2, 2), name='maxpool_3')) 

    model.add(Conv2D(256, (3, 3), activation='relu', padding='same', name='conv_4')) 

    model.add(MaxPooling2D((2, 2), name='maxpool_4')) 

    model.add(Flatten()) 

    model.add(Dropout(0.2)) 

    model.add(Dense(512, activation='relu', name='dense_1')) 

    model.add(Dense(128, activation='relu', name='dense_2')) 

    model.add(Dense(num_classes, activation='softmax', name='output')) 

 

    model.compile(loss='categorical_crossentropy', optimizer='adam', 

metrics=['accuracy']) 

    model.summary() 

 

    return model 
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5.3.4. Adversarial Examples 

We evaluated the performance of different dimensionality reduction methods using the implementation 

of FGSM [16] provided by the Cleverhans library [46]. Several values of epsilon in the range of  

 0,0.5 were examined. 

  

from cleverhans.utils_keras import KerasModelWrapper 

from cleverhans.attacks import FastGradientMethod 

from keras import backend 

from skimage.io import imread_collection 

import imageio 

import sys, os 

 

epsilons = [0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1,  

            0.15, 0.2, 0.25, 0.3, 0.4, 0.5] 

 

def create_adversarial_directory(input_path, output_path, model, eps=0.1): 

    # delete if exists 

    make_new_dir(output_path) 

 

    total_counter = sum([len(files) for r, d, files in os.walk(input_dir)]) 

    counter = 0 

 

    for subdir, dirs, files in os.walk(input_path): 

 

        for directory in dirs: 

            current_dir = os.path.join(subdir, directory) 

            make_new_dir(current_dir.replace(input_path, output_path)) 

            sys.stdout.write("\r{}%".format(round(float(counter)/total_counter*100, 2))) 

            sys.stdout.flush() 

 

            # read all images 

            col = imread_collection(current_dir + r'\*') 

            images = [col[i] for i in range(len(col))] 

            images = np.asarray(images) 

 

            # adv 

            sess = backend.get_session() 

            wrap = KerasModelWrapper(original_model) 

            fgsm = FastGradientMethod(wrap, sess=sess) 

 

            fgsm_params = {'eps': eps, 

                           'clip_min': 0., 

                           'clip_max': 1.} 

 

            adv = fgsm.generate_np(images / 255, **fgsm_params) 

 

            # write to file 

            for i, image in enumerate(adv): 

                original_file_path = col.files[i] 

                new_file_path = original_file_path.replace(input_path, output_path) 

                imageio.imwrite(new_file_path, (image * 255).astype(int)) 

            counter = counter + len(col.files) 

 

 

# Create adversarial 

input_dir = r'original\test' 

output_dir = r'original\test_adv' 

 

for epsilon in epsilons: 

    current_output_dir = os.path.join(output_dir, str(epsilon)) 

    make_new_dir(current_output_dir) 

    print('Current Epsilon Value = ' + str(epsilon)) 

    create_adversarial_directory(input_dir,current_output_dir,original_model,epsilon)    
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5.3.5. Experimental Stages 

We trained the model for 200 epochs with an early stopping option using categorical cross-entropy loss 

and used the Adam optimizer.  

import keras, pickle, os 

from keras.callbacks import ModelCheckpoint, EarlyStopping 

 

class AccuracyHistory(keras.callbacks.Callback): 

    def on_train_begin(self, logs={}): 

        self.acc = [] 

        self.val_acc = [] 

 

    def on_epoch_end(self, batch, logs={}): 

        self.acc.append(logs.get('acc')) 

        self.val_acc.append(logs.get('val_acc')) 

 

    def to_file(self, model_file_name): 

        with open(model_file_name, 'wb') as output: 

            pickle.dump((self.acc, self.val_acc), output, pickle.HIGHEST_PROTOCOL) 

 

    def from_file(self, model_file_name): 

        with open(model_file_name, 'rb') as history_input: 

            self.acc, self.val_acc = pickle.load(history_input) 

 

def fit_model(model, train_generator, validation_generator, new_run=True,    

              model_file_name='my_model', early_stopping_patience=30, epochs=200,          

              verbose=1): 

    if (new_run) or not os.path.isfile(model_file_name + '_model.h5'): 

        history = AccuracyHistory() 

        early_stopping_monitor = EarlyStopping(patience=early_stopping_patience) 

 

        mcp_save = ModelCheckpoint('.mdl_wts.hdf5', save_best_only=True,   

                                    monitor='val_loss', mode='min') 

 

        STEP_SIZE_TRAIN = train_generator.n // train_generator.batch_size 

        STEP_SIZE_VALID = validation_generator.n // validation_generator.batch_size 

        fit_history = model.fit_generator(train_generator,  

                                          steps_per_epoch=STEP_SIZE_TRAIN, 

                                          epochs=epochs, verbose=verbose, 

                                          validation_data=validation_generator,  

                                          validation_steps=STEP_SIZE_VALID, 

                                          callbacks=[early_stopping_monitor, mcp_save,  

                                          history]) 

        plot_compare(fit_history) 

        model.load_weights(filepath='.mdl_wts.hdf5') 

        model.save(model_file_name + '_model.h5') 

        history.to_file(model_file_name + '_history.pkl') 

 

    else: 

        model = load_model(model_file_name + '_model.h5') 

        history = AccuracyHistory() 

        history.from_file(model_file_name + '_history.pkl') 

        plot_compare(history) 

 

    return model, history 

 

#create and compile model 

original_model = create_model(input_size=input_size,  

                              num_classes=len(original_train_generator.class_indices)) 

#train the network 

original_model, original_history = fit_model(original_model, original_train_generator,  

                                             original_validation_generator,  

                                             new_run = False,   

                                             model_file_name=dataset_name+'_original',  

                                             epochs =200 ) 
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To test the model we simulate it on the original test set files and the adversarial files for each epsilon 

value. We repeated this process for each of the dimensionality reduction methods that were mentioned 

with different parameters. 

def test_model(model, test_generator, silent=False, file_name=''): 

    """ 

    Get the X_test and y_testb (as categorical) and return predcitions, classes, loss,   

    accuracy, f1-score, percision, recall, confusion-matrix and classification report. 

    """ 

    if not os.path.isfile(file_name + '_predict_results.pkl'): 

        score = model.evaluate_generator(test_generator, steps=test_generator.n //   

                                         test_generator.batch_size, verbose=0) 

        if not silent: 

            print('Test loss:', score[0]) 

            print('Test accuracy:', score[1]) 

 

        pred = model.predict_generator(test_generator, steps=test_generator.n //   

                                       test_generator.batch_size) 

        pred_classes = np.argmax(pred, axis=1) 

        classes = test_generator.classes 

 

        r = classes == pred_classes 

        print('Accuracy:') 

        print(sum(r) / len(r)) 

 

        cm = confusion_matrix(classes, pred_classes) 

        cr_str = classification_report(classes, pred_classes, output_dict=False) 

        if not silent: 

            print(cm) 

            print('-' * 50) 

            print(cr_str) 

 

        cr = classification_report(classes, pred_classes, output_dict=True) 

        test_result = {'loss': score[0], 

                       'accuracy': score[1], 

                       'predictions': pred, 

                       'f1': cr['weighted avg']['f1-score'], 

                       'precision': cr['weighted avg']['precision'], 

                       'recall': cr['weighted avg']['recall'], 

                       'confusion matrix': cm, 

                       'classification report': cr_str} 

        with open(file_name + '_predict_results.pkl', 'wb') as output: 

            pickle.dump(test_result, output, pickle.HIGHEST_PROTOCOL) 

    else: 

        with open(file_name + '_predict_results.pkl', 'rb') as input: 

            test_result = pickle.load(input) 

    return test_result 

 

# test the model 

test_result = test_model(original_model, original_test_generator, silent=False,  

                         file_name=dataset_name+'_original_test') 
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For the ensemble stage, we created 2 types of dataframes containing all the results of all models on all 

samples. The first type will be the size of the number of models and the number of samples when each 

cell [i,j] contains the predicted class of image i with model j. In the second type of matrix the prediction 

of each model j on the image i will be the distribution vector with the size of the number of classes. That 

is, each column that previously contained a single number, that is, the class number, will now be split 

into the number of classes with the probability for each class. These matrices will be later used by the 

meta-learner as input for the training and testing and all our adversarial results. 

from keras.datasets import cifar10 

import glob, itertools 

 

epsilons = [0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1,  

            0.15, 0.2, 0.25, 0.3, 0.4, 0.5] 

dataset_name = cifar10 

train_generator, validation_generator, test_generator = load_dataset_generators( 

                                                                  dataset = 'original') 

 

# 1. get true classes 

#----------------------------------------------------------- 

validation_classes = validation_generator.classes 

test_classes = test_generator.classes 

 

# 2. find all models 

#----------------------------------------------------------- 

model_files = glob.glob(dataset_name+'*_model.h5') 

def get_dir_name_from_model_name(model_name): 

    return model_name.replace(dataset_name+'_',"").replace("_model.h5","") 

models = list(map(get_dir_name_from_model_name, model_files)) 

 

# 3. define dataframe with all class results for - validation, test and adv 

#----------------------------------------------------------- 

columns = ['true_value']+models 

validation_models_predict_class_df = pd.DataFrame(columns = columns)                                    

# validation 

test_models_predict_class_df = pd.DataFrame(columns = columns)                                          

# test 

test_adv_models_predict_class_df_dict =  

       {eps : pd.DataFrame(columns = columns) for eps in epsilons}     # test adv 

 

# add a ture_value column 

validation_models_predict_class_df['true_value'] = validation_classes                                   

# validation 

test_models_predict_class_df['true_value'] = test_classes                                               

# test 

for eps in epsilons:                                                                                    

# test adv 

    test_adv_models_predict_class_df_dict[eps]['true_value'] = test_classes 

 

# 4. do the same for the probabilityresult dataframe 

#----------------------------------------------------------- 

classes = list(train_generator.class_indices.keys()) 

columns = ['true_value'] + list( 

    itertools.chain.from_iterable( 

                            [[x + '__' + model for x in classes] for model in models])) 

 

validation_models_predict_prob_df = pd.DataFrame(columns=columns)  # validation 

test_models_predict_prob_df = pd.DataFrame(columns=columns)  # test 

test_adv_models_predict_prob_df_dict =  

                 {eps: pd.DataFrame(columns=columns) for eps in epsilons}  # test adv 

 

validation_models_predict_prob_df['true_value'] = validation_classes  # validation 

test_models_predict_prob_df['true_value'] = test_classes  # test 
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validation_models_predict_class_df['true_value'] = validation_classes  # validation 

test_models_predict_class_df['true_value'] = test_classes  # test 

for eps in epsilons:  # test adv 

    test_adv_models_predict_prob_df_dict[eps]['true_value'] = test_classes 

 

# 5. fill all dataframes 

#----------------------------------------------------------- 

for i, model_file in enumerate(model_files, start=0): 

    folder = models[i] 

    print(f'Progress = {str(i + 1)}/{len(model_files)},    folder = {folder}') 

    print(model_file) 

    # load model 

    model = load_model(model_file) 

 

    # read data sets 

    train_generator, validation_generator, test_generator =    

                                       load_dataset_generators(dataset=folder) 

 

    # run model on validation and test 

    validation_result = test_model(model, validation_generator, silent=True, 

                                   file_name=dataset_name + '_validation_ensemble_' +     

                                   folder) 

    test_result = test_model(model, test_generator, silent=True, file_name=dataset_name    

                              + '_test_ensemble_' + folder) 

 

    # get predictions on validation and test 

    validation_pred = validation_result['predictions'] 

    test_pred = test_result['predictions'] 

 

    # get pred classes 

    validation_pred_classes = np.argmax(validation_pred, axis=1) 

    test_pred_classes = np.argmax(test_pred, axis=1) 

 

    # add to classes df 

    validation_models_predict_class_df[folder] = validation_pred_classes 

    test_models_predict_class_df[folder] = test_pred_classes 

 

    # add to predict prob df 

    columns = [x + '__' + folder for x in classes] 

    validation_models_predict_prob_df.loc[:, columns] = validation_pred 

    test_models_predict_prob_df.loc[:, columns] = test_pred 

 

    for eps in epsilons: 

        current_directory = folder + "\\test_adv\\" + str(eps) 

 

        adv_generator = load_dataset_generator(current_directory) 

 

        adv_result = test_model(model, adv_generator, silent=False, 

                                file_name=dataset_name + '_test_adv_' + folder +   

                                '_eps_' + str(eps) + '_adv') 

 

        test_adv_pred = adv_result['predictions'] 

 

        test_adv_pred_classes = np.argmax(test_adv_pred, axis=1) 

 

        test_adv_models_predict_class_df_dict[eps][folder] = test_adv_pred_classes 

        test_adv_models_predict_prob_df_dict[eps].loc[:, columns] = test_adv_pred 
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Let's see how our data looks like. Bellow is the first type of matrix that contains for each image and 

model the predicted class. For example, here the model original_bilateral_filter_10 (meaning, the 

factor value is 10) predicted that image 2 belongs to class 3 where the true value should be 0. 

 

 

The second type of matrix will expand each column for all classes' possibilities. For example, for the 

original_bilaterla_filter_10 model and 10 possible different classes in the CIFAR-10 case, we will split 

the column into 10 different columns according to the probability of the class. And so, bellow we can 

see that the cell [2, 0__original_bilateral_filter_10] tells that the bilateral_10 model predicted that the 

likelihood of image 2 to belong to class 0 is 0.060611. 

 

Now to implement ensemble voting, we wish to look at the first type of matrix on each row and select 

the maximum class and this will be the meta-learner prediction to every image. From this, we can easily 

find the percentage of accuracy by comparing it to the true value. 
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For stacking implementation we will have the same experiments twice - one for the predicted class 

matrix and the other for the probabilities. The code will be the same so we will give it only for the first 

case. We will organize the data for the model – separation of x and y, shuffling all instances and applying 

one-hot encoding for the case of using the predicated classes.  

  

# Voting 

#----------------------------------------------------------- 

 

# validation 

voting_validation_predicted = validation_models_predict_class_df.drop( 

                               ['true_value'], axis=1).mode(axis=1)[0].astype('int64') 

validation_score = sum(voting_validation_predicted ==        

                                     validation_models_predict_class_df['true_value']) 

                  /len(validation_models_predict_class_df) 

 

ensemble_results_table_total.at['validation', 'ensemble_voting'] = validation_score 

 

# test 

voting_test_predicted = test_models_predict_class_df.drop( 

                                ['true_value'], axis=1).mode(axis=1)[0].astype('int64') 

test_score = sum(voting_test_predicted ==          

                                    test_models_predict_class_df['true_value']) 

            /len(test_models_predict_class_df) 

 

ensemble_results_table_total.at['test', 'ensemble_voting'] = test_score 

 

ensemble_results_table_total 

 

# adv test 

for eps in epsilons: 

    voting_adv_predicted = test_adv_models_predict_class_df_dict[eps].drop( 

                               ['true_value'], axis=1).mode(axis=1)[0].astype('int64') 

    adv_score = sum(voting_adv_predicted ==   

                            test_adv_models_predict_class_df_dict[eps]['true_value']) 

               /len(test_adv_models_predict_class_df_dict[eps]) 

 

    ensemble_results_table_total.at['adv_epslion_'+str(eps), 'ensemble_voting'] =  

                                                                            adv_score 

 

# Stacking 

#----------------------------------------------------------- 

 

train = validation_models_predict_class_df.astype(str) 

test = test_models_predict_class_df.astype(str) 

test_adv_dict = {k:v.astype(str) for k,v in 

test_adv_models_predict_class_df_dict.items()} 

 

# shuffle the data 

 

train=train.iloc[np.random.permutation(len(train))] 

train=train.reset_index(drop=True) 

 

test=test.iloc[np.random.permutation(len(test))] 

test=test.reset_index(drop=True) 

 

for k,v in test_adv_dict.items(): 

    test_adv_dict[k] = 

test_adv_dict[k].iloc[np.random.permutation(len(test_adv_dict[k]))] 

    test_adv_dict[k] = test_adv_dict[k].reset_index(drop=True) 
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For training and evaluating the meta-learner, we used the H2O Auto-ML [47]. H2O automates the 

process of training a large selection of candidate models. We’ve tried several models including DRF 

(Distributed Random Forest), XGBoost, fully-connected neural network and more. We restricted the 

algorithm to a 12-hour run (after noticing that additional time has little effect). 

 

# separate x and y 

 

train_y = train['true_value'] 

train_x = train.drop(['true_value'], axis=1) 

 

test_y = test['true_value'] 

test_x = test.drop(['true_value'], axis=1) 

 

test_adv_dict_x = dict() 

test_adv_dict_y = dict() 

for k,v in test_adv_dict.items(): 

    test_adv_dict_y[k] = test_adv_dict[k]['true_value'] 

    test_adv_dict_x[k] = test_adv_dict[k].drop(['true_value'], axis=1) 

 

# apply one hot encoding of categorical features 

 

for col in train_x.dtypes[train_x.dtypes == 'object'].index: 

    for_dummy = pd.Categorical(train_x.pop(col), categories=list(set(train_y))) 

    train_x = pd.concat([train_x, pd.get_dummies(for_dummy, prefix=col)], axis=1) 

 

for col in test_x.dtypes[test_x.dtypes == 'object'].index: 

    for_dummy = pd.Categorical(test_x.pop(col), categories=list(set(train_y))) 

    test_x = pd.concat([test_x, pd.get_dummies(for_dummy, prefix=col)], axis=1) 

 

for k, v in test_adv_dict_x.items(): 

    for col in test_adv_dict_x[k].dtypes[test_adv_dict_x[k].dtypes == 'object'].index: 

        for_dummy = pd.Categorical(test_adv_dict_x[k].pop(col), 

categories=list(set(train_y))) 

        test_adv_dict_x[k] = pd.concat([test_adv_dict_x[k], pd.get_dummies(for_dummy, 

prefix=col)], axis=1) 

 

# run h2o auto ml for model selection 

import h2o 

from h2o.automl import H2OAutoML 

 

h2o.init() 

 

htrain = h2o.H2OFrame(pd.concat([train_y, train_x], axis=1)) 

htest = h2o.H2OFrame(test_x) 

htest_adv = {} 

for k,v in test_adv_dict_x.items(): 

    htest_adv[k] =  h2o.H2OFrame(v) 

 

x =htrain.columns 

y ='true_value' 

x.remove(y) 

 

htrain[y] = htrain[y].asfactor() 

 

aml = H2OAutoML(max_runtime_secs = 60*60*12, stopping_metric='misclassification', 

                include_algos = ["GLM", "DeepLearning", "DRF", "XGBoost", "GBM",  

                                 "DeepLearning", "StackedEnsemble"], stopping_rounds=0) 

 

aml.train(x=x, y =y, training_frame=htrain) 

 



 

46 
 

After finding the optimal model in the next step we can evaluate it on the training set test set, and all the 

adversarial examples. 

 

All the results of our experiments are presented in the next section.   

# train 

 

train_y_pred = aml.leader.predict(htrain) 

train_y_pred = train_y_pred.as_data_frame()['predict'].astype(str) 

 

ensemble_results_table_total.at['validation', 'ensemble_stacking_class(H2O)'] =  

                                                 accuracy_score(train_y, train_y_pred) 

 

# test 

 

test_y_pred = aml.leader.predict(htest) 

test_y_pred = test_y_pred.as_data_frame()['predict'].astype(str) 

 

ensemble_results_table_total.at['test', 'ensemble_stacking_class(H2O)'] =  

                                                 accuracy_score(test_y, test_y_pred) 

 

# adv 

 

for eps in epsilons: 

    print('current eps=' + str(eps)) 

    test_adv_y_pred = aml.leader.predict(htest_adv[eps]) 

    test_adv_y_pred = test_adv_y_pred.as_data_frame()['predict'].astype(str) 

 

    ensemble_results_table_total.at 

                 ['adv_epslion_' + str(eps), 'ensemble_stacking_class(H2O)'] =   

                              accuracy_score(test_adv_dict_y[eps], test_adv_y_pred) 
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6. Results 
In this section, we will show the efficiency of each dimensionality reduction defense mechanism that was 

mention in the previous section. We will measure our performance with the metrics defined in the 

previous section.  

 

6.1. Dimensionality Reduction Results 
We will now look at the results obtained for each dimension reduction method. For each method, we 

trained a network with a training set that was reduced using this method. In all experiments, we 

obtained a convergence of the validation set after 15-40 epochs as seen in the example in figure 33. 

 

 

Figure 33: Accuracy results over epochs. Here we see the progress for the accuracy in the case of the INTEL dataset and dimension reduction 
using the K-means method with parameter k = 60. It can be seen that the validation accuracy stabilizes at around 0.8 after the 30th epoch  

 

After training, we ran a prediction for every method and epsilon value on the data, measuring the 

accuracy, fooling rate and the median PSNR value. The FGSM algorithm for generating adversarial 

examples used the following epsilons values: [0.01,0.02,0.03,0.04,0.05,0.06,0.06,0.07,0.08,0.09,0.1, 

0.15,0.2,0.25,0.3,0.4,0.5] 
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6.1.1. Image Resize and Rescale 

The resizing and rescaling algorithm includes a squeezing parameter. The following values were 

examined: [1.1,1.2,1.3,1.4,1.5,1.7,2.0,2.5,3.0]. Figure 34 shows the accuracy and the fooling rate for 

this experiment. We can see that for epsilons values smaller than 0.3-0.4 all the alternative models got 

better and similar results than the original model on adversarial examples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 35 shows the effect on image quality as a function of the squeezing parameter in PSNR units. 

Indeed, consistent and slow decay can be observed as the compression factor increases. 

Figure  35: The effect of dimension reduction using the resizing and rescaling method on the quality of the image. In the x axis we can see different sizing 
factor values, while the y axis represent PSNR values. The upper graphs are box plot where we can see the 25 & 75 percentile and the median value of the 
PSNR for different factor values. The graphs at the bottom are separate for ech class.   

Figure 34: The effect of dimension reduction using the reszizing and rescaling method on correctly identifying adversarial examples. The x axis is the epsilon value in the FGSM 
adversarial method, while the y axis represent percentage. The two upper graphs shows the accuracy in INTEL and CIFAR-10 datasets while at the bottom we can see the fooling rate. 
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6.1.2. K-means Color Quantization  

For the k-means algorithm, the following k values were examined: [3,5,8,10,15,20,25,30,40,50,60]. 

As can be seen in figure 36, that shows the accuracy and fooling rate, all the examined k values gave 

better results than the original model. In many cases, the accuracy improvement was more than 2 or 3 

times higher than the original model. As for epsilon equals 0, meaning there is no adversarial attack, all 

the model acted similar to the original model as they got an accuracy of 78-80% vs 80% in the original 

model for INTEL dataset and similar in the case of CIFAR-10 except for lower k values (3 and 5). 

Figure 37 shows the effect of k-means dimensionality reduction on image quality using the PSNR value. 

As you might assume, the smaller the number of colors (k) in the image, the higher the quality (and the 

variance of the results). 

 

  

Figure 36: The effect of dimension reduction using the kmeans method on correctly identifying adversarial examples. The x axis is the epsilon value in the FGSM adversarial 
method, while the y axis represent percentage. The two upper graphs shows the accuracy in INTEL and CIFAR-10 datasets while at the bottom we can see the fooling rate. 

Figure 37: The effect of dimension reduction using the kmeans method on the quality of the image. In the x axis we can see different k values, 
while the y axis represent PSNR values. The upper graphs are box plot where we can see the 25 & 75 percentile and the median value of the PSNR 
for different k values. The graphs at the bottom are separate for ech class.   
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6.1.3. PCA 

Running the PCA algorithm shows an improvement in classification, whereas for the INTEL dataset it is 

clear that lowering the variance percentage parameter improved the results while for a CIFAR-10 a 

mixed trend was observed - for the lower values of variance percentage (0.85 and 0.8) it was observed 

that for small epsilon values the results were lower than other models and got the highest scores for 

when epsilon passed 0.1 value. 

 

 

 

 

 

 

 

 

 

 

 

 

Selecting PCA severely damage image quality on small resolution images (such as CIFAR-10) even when 

taking a high percentage of variance (like 0.999). In contrast, a higher quality image (INTEL) shows that 

selecting high variance percentage values (>0.99) yields good results but very quickly results in serious 

damage to image quality when going bellow this threshold.   

Figure 38: The effect of dimension reduction using the pca method on correctly identifying adversarial examples. The x axis is the epsilon value in the FGSM adversarial 
method, while the y axis represent percentage. The two upper graphs shows the accuracy in INTEL and CIFAR-10 datasets while at the bottom we can see the fooling rate. 

 

Figure 39: The effect of dimension reduction using the PCA method on the quality of the image. In the x axis we can see different k values, while the y axis represent 
PSNR values. The upper graphs are box plot where we can see the 25 & 75 percentile and the median value of the PSNR for different variance percentage values. 
The graphs at the bottom are separate for ech class.   
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6.1.4. Low Pass Filtering 

In the low pass filtering case a similar improvement can be observed for different window size values 

while epsilon value is bellow 0.3-0.4. The only exception is a small size of 3 for the convolutional 

window in the INTEL dataset that performs slightly less, but still better from the original model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Indeed, the image quality in this case stands out significantly over the other cases, as can be seen in 

figure 41. 

 

Figure 40: The effect of dimension reduction using the low pass filter method on correctly identifying adversarial examples. The x axis is the epsilon value in the FGSM adversarial 
method, while the y axis represent percentage. The two upper graphs shows the accuracy in INTEL and CIFAR-10 datasets while at the bottom we can see the fooling rate. 

Figure 41: The effect of dimension reduction using the low pass filter method on the quality of the image. In the x axis we can see different factor values, while 
the y axis represent PSNR values. The upper graphs are box plot where we can see the 25 & 75 percentile and the median value of the PSNR for different factor 
values. The graphs at the bottom are separate for ech class.   
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6.1.5. Gaussian Filtering 

By running gaussian filtering we will get better results than the original model as long as epsilon value is 

less than 0.3-0.4. It is notable that enlarging the window size, meaning more blurring result, we get 

better classification on adversarial examples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

On the other hand, increasing the blurring will result in obvious damage to image quality.   

Figure 43: The effect of dimension reduction using the gaussian filter method on the quality of the image. In the x axis we can see different factor values, while 
the y axis represent PSNR values. The upper graphs are box plot where we can see the 25 & 75 percentile and the median value of the PSNR for different factor 
values. The graphs at the bottom are separate for ech class.   

 

Figure 42: The effect of dimension reduction using the gaussian filter method on correctly identifying adversarial examples. The x axis is the epsilon value in the FGSM adversarial 
method, while the y axis represent percentage. The two upper graphs shows the accuracy in INTEL and CIFAR-10 datasets while at the bottom we can see the fooling rate. 
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6.1.6. Median Filtering 

Median filters, which selects existing colors from the image itself, shows an improvement over the 

original model for epsilon values smaller than 0.3-0.4. The two window sizes that were examined gave 

similar results.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Increasing the window size as expected damaged image quality.  

Figure 44: The effect of dimension reduction using the median filter method on correctly identifying adversarial examples. The x axis is the epsilon value in the FGSM adversarial 
method, while the y axis represent percentage. The two upper graphs shows the accuracy in INTEL and CIFAR-10 datasets while at the bottom we can see the fooling rate. 

Figure 45: The effect of dimension reduction using the median filter method on the quality of the image. In the x axis we can see different factor values, while 
the y axis represent PSNR values. The upper graphs are box plot where we can see the 25 & 75 percentile and the median value of the PSNR for different factor 
values. The graphs at the bottom are separate for ech class.   
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6.1.7. Gradient Filtering 

Gradient filtering appears to be one of the weakest methods among those that were tested. There seems 

to be some small improvement in classification accuracy and fooling rate but it only applies for small 

values of epsilon (lower then ~0.1-0.2). For very small values the gradient models respond even worse 

than the original model. This certainly makes sense as the impact of the gradient is to find the map of 

changes in a certain direction, so the result is quite different from the original image. 

In all the experiments Sobel y gave the best results while the laplassian gave the worst results.   

  
Figure 46: The effect of dimension reduction using the gradient filter method on correctly identifying adversarial examples. The x axis is the epsilon value in the FGSM adversarial 
method, while the y axis represent percentage. The two upper graphs shows the accuracy in INTEL and CIFAR-10 datasets while at the bottom we can see the fooling rate. 
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6.1.8. Bilateral Filtering 

This filter enjoys both worlds - it performs a weighted average that depends on both the physical 

distance from the pixel and the color distance. Let us remember that bilateral filtering knows how to 

blur an image while preserving the edges. Therefore, it produces excellent results for a wide range of 

epsilon values. We can see that the bilateral filter gives similar results for different factor values, 

especially in the case of the low-resolution CIFAR-10 dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notably, the filter retains the quality of the original image best than we have seen so far, based on the 

high PSNR values. In the case of CIFAR-10 this is even more obvious when for small values of the 

factor, a significant portion of the images received a maximum value of 100, which indicates that the 

MSE was equal to zero (meaning, identical images).  

Figure 47: The effect of dimension reduction using the bilateral filter method on correctly identifying adversarial examples. The x axis is the epsilon value in the FGSM adversarial 
method, while the y axis represent percentage. The two upper graphs shows the accuracy in INTEL and CIFAR-10 datasets while at the bottom we can see the fooling rate. 

Figure 48: The effect of dimension reduction using the bilateral filter method on the quality of the image. In the x axis we can see different factor values, while 
the y axis represent PSNR values. The upper graphs are box plot where we can see the 25 & 75 percentile and the median value of the PSNR for different factor 
values. The graphs at the bottom are separate for ech class.   
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6.1.9. Canny Edge Filtering 

As for gradient filtering, canny edge detection filtering is useful for only a certain range of epsilon 

values. For values too small the model gives a weaker identification than the original model. Again, this 

was easy to predict because by finding the edges we lost most of the image information, so for small 

epsilon, we will have less accurate results.  

  

 

 

 

  

Figure 49: The effect of dimension reduction using the canny edge detection filter method on correctly identifying adversarial examples. The x axis is the epsilon value in the FGSM 
adversarial method, while the y axis represent percentage. The two upper graphs shows the accuracy in INTEL and CIFAR-10 datasets while at the bottom we can see the fooling rate. 
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6.1.10. Summary 
To summarize the nine experiments we performed we wish to examine which dimension reduction 

methods were more effective in dealing with an adversarial attack using the FGSM algorithm. We also 

compare all methods to the original model. When comparing effectiveness, we consider the predefined 

accuracy metrics as well as the damage in image quality.  

Figure 50 shows all the results on a single graph when each color represents a particular reduction 

method and the plurality of graphs from the same color is due to the number of parameters set. The 

continuous black line expresses the performance of the original model on the test set. It is noticeable 

that K-means and PCA were able to achieve the best accuracy and fooling rate results. On the other 

hand, the least successful results were unsurprisingly due to the loss of a lot of information, those that 

relied on finding maps from the original image - gradient filtering and edge detection. 

 

 

Table 1 lists the impact of each method on image quality by the PSNR value. To summarize the box 

plots presented earlier, we can see the best median obtained for each method, the worst median and the 

average median for different parameters.  

It seems from the results that bilateral filtering achieved the minimum image quality impairment. 

Kmeans also achieved significantly high performance for large k values. PCA, on the other hand, showed 

a mixed trend when CIFAR-10 showed good results but got worst on the INTEL dataset. Other models 

achieved similar median PSNR results.  

Figure 50: The effect of all dimension reduction methods on correctly identifying adversarial examples. The x axis is the epsilon value in the FGSM adversarial method, while the y 
axis represent percentage. The two upper graphs shows the accuracy in INTEL and CIFAR-10 datasets while at the bottom we can see the fooling rate. The black line represent the 
performance of the original model while each color stand for different dimension redction method. Same color lines are due to different parameter values. 
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  INTEL CIFAR-10 

Method 
Best 

median 
PSNR 

AVG 
median 

PSNR 

Worst 
median 

PSNR 

Best 
median 

PSNR 

AVG 
median 

PSNR 

Worst 
median 

PSNR 

Resize & Rescale 31.4 30.56 29.5 31.5 30.24 29.4 
Kmeans 37.8 29.59 20.1 37.7 32 28.1 
PCA 28.2 28.16 28.1 37.5 29.64 28.1 
LPF 30.6 29.88 29.11 30.2 29.15 28.5 
Gaussian 30.5 30.06 29.8 30.7 29.43 28.7 
Median 31.2 30.85 30.5 31.4 30.7 30 
Gradient - - - - - - 
Bilateral 49.9 46.4 40.8 100 56.8 42 
Canny - - - - - - 

Table 1: The effect of different dimension reduction methods on image qaulity using the PSNR measure.  
For each method and dataset we show the highest, lowest and average of the median PSNR value for each exprermint of certain factor. 
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6.2. Ensemble Results 

As mentioned, we gave the results of all the models to a meta-learn for training and evaluation. We have 

taken several ensembles approaches: voting, stacking of predicated classes and stacking of prediction 

distribution. Before describing the results we first give the motivation for studying ensemble methods. 

 

6.2.1. Motivation 

We know that the multiplicity of dimensions is one of the most influential factors on the likelihood of an 

adversarial attack. With adversarial training, dimension reduction is one of the most-studied approaches 

in literature (see chapter 3.3.2) for dealing with this phenomena, and was intensively examined in this 

research as well. Many methods have given good results for certain data sets and certain attack methods. 

But, each method also failed in some of the conditions. Hence, there seems to be no magic solution that 

is suitable for all cases.  

We have therefore considered the distribution of model answers. Figure 51 shows for selected epsilon 

values the right prediction distribution of each model on all instances. In the rows, you can see each of 

the test models (a dimension reduction method with a parameter value) and all the test set images in the 

columns. Black cube in a cell [i, j] indicates that model i had the right prediction on the image j. The 

percentage of black cells per row is the accuracy of the model, and the percentage in the column is the 

percentage of the models that were right to predict the specific image. Note that the first line expressing 

the true value is black all the way.  

Some conclusions arise from this graph. First of all, of course, you can visually see the accuracy decline 

with the rise in the value of epsilon. Secondly, it is possible to notice that there is no uniformity in the 

answers of the models, meaning that each model has the input areas where it is better in prediction than 

other models and there is no perfect overlap between these areas. Therefore, several models can be 

harnessed to try to train a meta-learner in the cases in which it tends to be more accurate. So, for 

example, the meta-leaner may be taught that a particular model is better in predicting some kind of class 

and therefore will prioritize its answer over other models.   
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Figure 51: Each graph shows for a particular epsilon value a matrix of results for all models (rows) on all images (columns), with a black value indicating a correct prediction and a white 
value indicating an error. The first line expresses the true value and is therefore black in length. 
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6.2.2. Voting and Stacking Results 

Figure 52 shows the results for the CIFAR-10 dataset, when the graphs of voting, class stacking and 

probability stacking are painted in green, red and blue respectively. The continuous black line describes 

the results of the original model and the broken line is the best dimension reduction model at that point. 

The results are notable for the fact that the three methods of ensembling win each model for epsilon 

values equals or smaller than 0.07. This is, of course, the greatest chance of an attack, since we have 

seen that it has a very little effect on the impact of the image but critically harms the identification 

performance. So, for example, the percentage of the original model is dropping up to 0.174 for epsilon 

equals 0.07, a performance that begins to approach the trivial model that gives a random class 

uniformly. For larger epsilon values, the ensemble models give better results than most of the models 

except PCA. Also, the trend between the methods itself is turned off at a certain point, i.e. for low 

values of epsilon stacking-based methods gave better results and starting from a certain point voting 

model performs better.    

Figure 52: The effect of using ensemble approaches on dimension reduction methods results for correctly identifying adversarial examples. The 
x-axis is the epsilon value in the FGSM adversarial method, while the y-axis represents the accuracy percentage.  

Diving into the numbers themselves in table 2 shows that probability stacking gives the best result in 

small epsilon values immediately thereafter class stacking and at some point voting. 

Table 2: Accuracy results in the CIFAR-10 dataset for different epsilon values. The table displays the results for the original model, the best 
result achieved for a dimension reduction model at this point and the ensemble methods of voting, class stacking and probability stacking. 

original best_result_single_model ensemble_voting ensemble_stacking_class(H2O) ensemble_stacking_prob(H2O)

train 0.915 0.923

validation 0.701 0.723 0.741 0.779 1.000

test 0.683 0.710 0.736 0.760 0.767

adv_epslion_0.01 0.670 0.705 0.732 0.759 0.767

adv_epslion_0.02 0.522 0.669 0.707 0.735 0.744

adv_epslion_0.03 0.413 0.636 0.680 0.703 0.710

adv_epslion_0.04 0.284 0.585 0.623 0.630 0.630

adv_epslion_0.05 0.235 0.552 0.580 0.583 0.582

adv_epslion_0.06 0.191 0.494 0.517 0.505 0.498

adv_epslion_0.07 0.174 0.474 0.475 0.463 0.453

adv_epslion_0.08 0.158 0.459 0.421 0.402 0.389

adv_epslion_0.09 0.150 0.446 0.391 0.370 0.353

adv_epslion_0.1 0.140 0.431 0.353 0.326 0.313

adv_epslion_0.15 0.118 0.376 0.239 0.209 0.197

adv_epslion_0.2 0.105 0.325 0.179 0.159 0.149

adv_epslion_0.25 0.100 0.282 0.150 0.132 0.126

adv_epslion_0.3 0.092 0.246 0.130 0.118 0.115

adv_epslion_0.4 0.088 0.178 0.111 0.105 0.106

adv_epslion_0.5 0.089 0.126 0.100 0.103 0.103
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For the INTEL dataset, we see a similar trend when up to epsilon that is less than or equal to 0.05 the 

ensemble methods gave better results than the best dimension reduction model at this point. 

 

 

Figure 53: The effect of using ensemble approaches on dimension reduction methods results for correctly identifying adversarial examples. The 
x-axis is the epsilon value in the FGSM adversarial method, while the y-axis represents the accuracy percentage.  

The following table shows the results summary. 

 

Table 3: Accuracy results in the INTEL dataset for different epsilon values. The table displays the results for the original model, the best result 
achieved for a dimension reduction model at this point and the ensemble methods of voting, class stacking and probability stacking. 

 

 

  

original best_result_single_model ensemble_voting ensemble_stacking_class(H2O) ensemble_stacking_prob(H2O)

train 0.975 0.997

validation 0.826 0.842 0.830 0.870 1.000

test 0.811 0.827 0.827 0.850 0.852

adv_epslion_0.01 0.800 0.821 0.831 0.851 0.856

adv_epslion_0.02 0.679 0.794 0.800 0.830 0.841

adv_epslion_0.03 0.588 0.765 0.775 0.806 0.824

adv_epslion_0.04 0.439 0.725 0.724 0.746 0.763

adv_epslion_0.05 0.362 0.698 0.685 0.703 0.712

adv_epslion_0.06 0.289 0.657 0.626 0.632 0.640

adv_epslion_0.07 0.255 0.640 0.593 0.592 0.596

adv_epslion_0.08 0.225 0.606 0.541 0.539 0.540

adv_epslion_0.09 0.212 0.576 0.500 0.497 0.501

adv_epslion_0.1 0.201 0.543 0.460 0.448 0.452

adv_epslion_0.15 0.161 0.440 0.332 0.333 0.322

adv_epslion_0.2 0.121 0.361 0.266 0.262 0.257

adv_epslion_0.25 0.093 0.305 0.198 0.213 0.206

adv_epslion_0.3 0.081 0.254 0.151 0.188 0.181

adv_epslion_0.4 0.085 0.188 0.120 0.174 0.172

adv_epslion_0.5 0.094 0.173 0.126 0.172 0.172
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7. Concluding Remarks and Future Work  
The use of ensemble approaches, both stacking and voting, on dimensionality reduction methods has 

proven itself to be a very effective way with dramatic classification performance improvement. The 

method aims to cover different areas of the input space in which certain models may be better than 

others and to learn them in order to give the best possible answer. Thus, by implementing a bucket 

containing a large number of dimension reduction models, it can be enriched at any given moment with 

thousands of other models. 

The ensemble approach and the results that we got using it suggest several directions of future research. 

First, it is interesting to verify the results that were received on additional attacks and deeper networks. 

We can also examine the addition of extra methods and parameters on a large scale that we tested here. 

Secondly, we put all the models inside the bucket for the meta-learner. A more intelligent approach 

might examine the models and choose how to filter them or how to better select the parameters for the 

dimension reduction algorithm. For example, here we examined several k values in the KMeans 

algorithm. It is interesting to see if one can make a smart choice of the k parameter.  

We have presented 3 types of ensemble methods here and noticed, again, that there are different 

conditions in which each meta-leaner is better than others. Therefore, why not build a new meta leaner 

that accepts all existing meta-leaners' answers to maximize their answer as well?  

In this research we focused only on the classification performance, using the accuracy and fooling rate, 

and the image quality damage using the PSNR. Since the dimension reduction algorithm is used each 

time the netweork classifies a new example and not only in the training phase, the time complexity of 

each algorithm might also be important for some applications. The different dimensionality reduction 

methods also differ in running time. This may be critical when talking about systems that require a rapid 

diagnosis in a short time like for example in the case of the autonomous vehicle. 

. 
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