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Abstract We consider the problem of embedding vectors from an arbitrary Euclid-
ean space into a low-dimensional Euclidean space while preserving, up to a small
distortion, a subset of the distances. In particular, preserving only the distance of
each vector to a small number of its nearest neighbors. We show that even when the
subset of distances we wish to preserve is very small, the problem does not become
easier than when one is required to preserve all the distances.

Keywords Johnson–Lindenstrauss lemma · Dimension reduction · Nearest
neighbors

1 Introduction

We consider the problem of embedding vectors from an arbitrary Euclidean space
into a low-dimensional Euclidean space while preserving a subset of the distances.
Formally, given a graph G = (V ,E) on V = [n] = {1,2, . . . , n}, ε > 0 and vec-
tors x1, . . . , xn ∈ R

n, we ask: What is the minimal k such that there are vectors
y1, . . . , yn ∈ R

k satisfying (1−ε)‖xi −xj‖ ≤ ‖yi −yj‖ ≤ (1+ε)‖xi −xj‖ for every
(i, j) ∈ E? Concerning the nonedges, we consider two paradigms. The first asks for
some lower bound on ‖yi − yj‖ for (i, j) /∈ E, and the second imposes no restriction
on these distances.

The motivation for considering this problem comes from a particularly interest-
ing instance of it, when the underlined graph is the graph induced by the m nearest
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neighbors of x1, . . . , xn. That is, (i, j) ∈ E if and only if xj is among the m nearest
neighbors to xi or xi is among the m nearest neighbors to xj . We shall call this graph
the m-nearest neighbors graph.

A well-known result of Johnson and Lindenstrauss [4] asserts that for the complete
graph Kn, k can be taken to be O(

logn

ε2 ). An example due to Alon [2] shows that,

for Kn, this is basically the best possible; in this example k must be �(
logn

ε2 log 1/ε
). We

remark in passing that it is unknown whether the Johnson–Lindenstrauss estimate
can be improved in terms of the dependence on ε or whether one can find an example
which necessarily satisfies k = �(

logn

ε2 ).
One might hope that if one only wants to preserve the, say, three nearest neighbors

of each vector, one could do with a much smaller k. The main purpose of this note is
to show that this is not the case.

One can interpret the phrase “preserve the m-nearest neighbors” in two ways. First,
one may want to preserve, up to a factor of 1 + ε, the distances ‖xi − xj‖ whenever
xj is among the m-nearest neighbors to xi or xi is among the m-nearest neighbors to
xj and one does not care what happen to the other distances. Second, one may want
to additionally ensure that, for each i and j , yj is among the first m neighbors of yi

if and only if xj is among the first m neighbors of xi . That is, the map sending the
xi ’s to the yi ’s preserves—in addition to the approximate distances—the graph of the
m-nearest neighbors.

In the second, more interesting case, we show a simple example (with m = 2)
in which necessarily k = �(

logn

ε2 log 1/ε
); see Theorem 8. In the first case (not caring

what happens to nonclosest neighbors) we build, in Theorem 9, a somewhat more
elaborate example (with m = 3) such that for each sufficiently small ε > 0, k still
needs to be �(logn). In contrast to the example discussed above, here we do not get
good dependence on ε.

The proof of Theorem 8 depends on a theorem evaluating the rank of positive
semidefinite matrices which are perturbations of the identity matrix. This result,
which is a variation of a result of Alon [2], is discussed in Sect. 2. We find it to
be of independent interest and we discuss some more applications a-la-Alon [2] in
Sect. 6.

Our attention to the problems discussed in this paper was prompted by Abraham,
Bartal and Neiman [1]. Some problems raised there are solved here (see in particular
the last sentence in [1]).

2 The Rank of Some Positive Semidefinite Matrices

As mentioned in the introduction, the best lower bound on dimension reduction in
the general case is due to Alon [2]. Alon’s proof relies on a general lower bound for
the rank of a real matrix in which the absolute value of all off-diagonal entries is
significantly smaller than the value of diagonal entries (Theorem 1.1 in [2]).

We need a somewhat stronger version of Theorem 1.1 from [2] for positive semi-
definite matrices. The point is that, in this case, we only need an upper bound on the
value of off-diagonal entries, instead of an upper bound on their absolute value.
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Theorem 1 Let A be an n × n symmetric positive semi-definite matrix such that
aii ≥ 1/2 for all i and aij ≤ ε for all i �= j , where 1

n1/3 ≤ ε ≤ 1/4. Then

rank(A) ≥ �

(
logn

ε2 log 1/ε

)
.

Note that the range of ε here is a bit smaller than that in Alon’s theorem (the lower
bound is n−1/3 rather than n−1/2). Alon [2] gives many applications of his Theo-
rem 1.1, many of which involve semi-definite matrices. For these applications one
can use Theorem 1 and get a somewhat stronger assertion. We give two examples in
Sect. 6.

The proof of Theorem 1 is similar to the proof of Theorem 1.1 in [2], but there are
some non-trivial modifications. The most substantial change is to replace Lemma 2.2
from [2] with Lemma 4 below.

As in [2], it is convenient to first prove the following theorem.

Theorem 2 Let A be an n × n symmetric positive-definite matrix such that aii = 1
for all i and aij ≤ ε for all i �= j , where 1

n1/3 ≤ ε ≤ 1/2. Then

rank(A) ≥ �

(
logn

ε2 log 1/ε

)
.

Remark 3 We note that Theorem 2 is equivalent to giving a lower bound on the di-
mension of a spherical code with a given number of elements (equivalently, an upper
bound on the maximal size of spherical codes of a given dimension). A k-dimensional
spherical code of angular distance θ and size n is an n element subset of the k − 1-
dimensional sphere such that the angle between any two points in the set is at least θ .
Equivalently, the inner product between any two points is at most cos(θ). Good as-
ymptotic bounds for the maximal size of a spherical code with fixed distance θ are
known; see, e.g., [3]. The advantage of our bound (on the dimension k) is that it holds
for every ε and n, and that the proof is elementary. We discuss this further in Sect. 6.1.

We need the following two lemmas.

Lemma 4 Let A be an n×n symmetric positive semidefinite matrix such that aij ≤ ε

for every 1 ≤ i < j ≤ n, and aii = 1 for all i = 1, . . . , n. Then

rank(A) ≥ n

2(ε−1 + (n − 1)ε2)
.

In particular, if ε ≤ 1
n1/3 , then rank(A) ≥ n2/3/4.

Proof Recall that given two symmetric positive semidefinite matrices of the same di-
mensions, (bij ) and (cij ), the matrix (bij cij ) is also symmetric positive semidefinite.
Since both A and (a2

ij ) are symmetric positive semidefinite, it follows that,

n∑
i,j=1

aij a
2
ij ≥ 0.
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Put I = {(i, j);ai,j < −ε}, it follows that

−
∑

(i,j)∈I

ai,j a
2
i,j ≤

∑
(i,j)∈I c

ai,j a
2
i,j ≤

∑
{(i,j); ai,j >0}

ai,j a
2
i,j ≤ n+ε ·

∑
{(i,j); i �=j, ai,j >0}

a2
i,j ,

which implies that

∑
(i,j)∈I

a2
i,j ≤ nε−1 +

∑
{(i,j); i �=j, ai,j >0}

a2
i,j ,

concluding that
∑n

i,j=1 a2
i,j ≤ 2n(ε−1 + (n − 1)ε2).

The claim now follows by using the following bound. For every real matrix X,

rank(X) ≥
(∑

xii

)2/(∑
x2
ij

)
. �

Lemma 5 ([2]) Let B = (bi,j ) be an n × n matrix of rank d , and let P(x) be an
arbitrary polynomial of degree k. Then the rank of the n×n matrix P(bi,j ) is at most(
k+d

k

)
. Moreover, if P(x) = xk , then the rank of (P (bi,j )) is at most

(
k+d−1

k

)
.

Proof of Theorem 2 The proof is quite similar to the proof of Theorem 2.1 in [2]. We
repeat it here for completeness.

Denote d = rank(A). If ε ≤ n−δ for any fixed 0 < δ < 1/3 the result follows from
Lemma 4, thus we may assume that ε ≥ n−δ for some fixed small δ > 0. Let k =
� logn

3 log 1/ε
� if this number is odd, and k = � logn

3 log 1/ε
� − 1 otherwise, so that k is always

an odd positive integer. The assumption that ε ≥ n−δ ensures that k is larger than any
fixed integer we wish. Set also n′ = �ε−3k� and note that n′ ≤ n and εk ≤ 1

(n′)1/3 .

Denote by B the n′ × n′ principle minor of the matrix (ak
i,j ). B is symmetric

positive semidefinite, its diagonal elements are all 1, and off-diagonal elements are
all smaller than εk ≤ 1

(n′)1/3 . By Lemma 5 the rank of B is at most
(
d+k

k

) ≤ (
e(k+d)

k
)k .

On the other hand, by Lemma 4 the rank of B is at least (n′)2/3/4. Thus

(
e(k + d)

k

)k

≥ (n′)2/3/4 = 1

4

(⌊
1

ε3k

⌋)2/3

≥ 1

8ε2k
.

The result now follows from simple algebraic manipulations. �

Proof of Theorem 1 Let d = rank(A), then aij = 〈xi, xj 〉 for some set x1, . . . , xn ∈
R

d and all 1 ≤ i ≤ j ≤ n. Take yi = xi‖xi‖2
for i = 1, . . . , n, and consider the matrix

B = (bi,j ) where bi,j = 〈yi, yj 〉. B is positive semidefinite, its diagonal elements all
equal to 1, its off diagonal elements are at most 2ε and rank(B) ≤ rank(A). The result
thus follows from Theorem 2. �

Remark 6 As is clear from the proof, the numbers 1/2 and 1/4 in the statement of
Theorem 1 can be replaced by any two numbers a > b > 0. This will affect only the
unspecified value of the constant hiding behind the � notation in the conclusion of
the theorem.
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3 Preserving the Nearest Neighbors Graph

We begin with a very simple result showing that one cannot preserve the closest
neighbor (i.e., m = 1) and the 1-nearest neighbor(s) graph unless k = �(logn). This
happens even if we allow large distortion and relax somewhat the requirement of
preserving the 1-nearest neighbors graph.

Proposition 7 For each n there are n + 1 points 0 = x0, x1, . . . , xn in R
n such that

all the distances ‖xi − xj‖ are different and such that if y0, y1, . . . , yn are vectors in
R

k with

a−1‖xi − xi∗‖ ≤ ‖yi − yi∗‖ ≤ b‖xi − xi∗‖
for all i, where xi∗ is the closest to xi , and

‖yi − yi∗‖ ≤ c‖yi − yj‖

for some c > 0, all i and all j �= i, i∗. Then k ≥ logn
log(1+2abc∗) where c∗ = max(c,1).

Proof Let A be any symmetric n × n real matrix with 1 ≥ ai,i ≥ 1 − δ and |ai,j | ≤ δ

for all 1 ≤ i < j ≤ n. If δ > 0 is small enough this matrix is positive definite, so there
are x1, . . . , xn in R

n with 〈xi, xj 〉 = ai,j . If δ is small enough ‖xi − xj‖ > 1 for all
i �= j ; i, j = 1, . . . , n. In particular 0 is closer to xi , than any other xj . It is easy to
arrange that in addition all the distances ‖xi − xj‖, i �= j, i, j = 0, . . . , n are different
(with x0 = 0).

Let {yi}ni=0 be as in the statement of Proposition 7 and assume as we may that
y0 = 0, then yi∗ = 0 for all i = 1, . . . , n and thus ‖yi‖ ≤ b, i = 1, . . . , n. Also,
‖yi − yj‖ ≥ (ac∗)−1 for all i �= j ; i, j = 1, . . . , n.

We get that the n balls of radius 1/2ac∗ centered at the yi ’s are disjoint and that
all are contained in a ball of radius b + 1

2ac∗ . Consequently, n( 1
2ac∗ )k ≤ (b + 1

2ac∗ )k

or

k ≥ logn

log(1 + 2abc∗)
. �

Note that the result above does not give good dependence on ε even if, as we shall
assume below, 1 ≤ a, b ≤ 1 + ε and c = 1. Indeed, the best lower bound one could
expect from this result is logn/ log 3. Moreover, it is easy to see that the example
built in the proof above does not give anything better (except maybe for the numerical
constant log 3). This follows from the fact that, for some numerical constant c > 1,
there are ck unit vectors in R

k such that the distance between each two of them is
between 1.1 and 1.2, say. We shall remedy this in the following result, which is the
main result of this section, by considering the first two nearest neighbors.

Theorem 8 For each n and 1
n1/3 ≤ ε ≤ 1

14 there are n + 1 points 0 = x0, x1, . . . , xn

in R
n such that all the distances ‖xi −xj‖ are different and such that if y0, y1, . . . , yn

are vectors in R
k with

(1 + ε)−1‖xi − xi∗‖ ≤ ‖yi − yi∗‖ ≤ (1 + ε)‖xi − xi∗‖,
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and

(1 + ε)−1‖xi − xi∗∗‖ ≤ ‖yi − yi∗∗‖ ≤ (1 + ε)‖xi − xi∗∗‖
for all i, where xi∗ (resp. xi∗∗ ) denotes the closest (resp. second closest) vector to xi ,
and

‖yi − yi∗∗‖ ≤ ‖yi − yj‖
for all i and all j �= i, i∗. Then k ≥ �(

logn

ε2 log(1/ε)
).

Proof As in the previous proof, let A be any symmetric n × n real matrix with 1 ≥
ai,i ≥ 1 − δ and |ai,j | ≤ δ for all 1 ≤ i < j ≤ n. If δ > 0 is small enough, this matrix
is positive definite, so there are x1, . . . , xn in R

n with 〈xi, xj 〉 = ai,j . If δ is small
enough ‖xi‖ ≥ (1 + ε)−1 and ‖xi − xj‖ >

√
2(1 + ε)−1 for all i �= j ; i, j = 1, . . . , n.

In particular 0 is closer to xi than any other xj . It is easy to arrange that in addition
all the distances ‖xi − xj‖, i �= j ; i, j = 0, . . . , n are different (with x0 = 0).

Let {yi}ni=0 be as in the statement of the proposition and assume as we may that
y0 = 0, then yi∗ = 0 for all i = 1, . . . , n and thus (1 + ε)−2 ≤ ‖yi‖ ≤ 1 + ε, i =
1, . . . , n. Also,

‖yi − yj‖ ≥ ‖yi − yi∗∗‖ ≥ √
2(1 + ε)−2

for all i �= j ; i, j = 1, . . . , n.
Renormalizing the yi ’s and looking at their Gram matrix we get an at-most rank k

symmetric positive semidefinite matrix with 1’s on the diagonal and with off-diagonal
entries bounded from above by O(ε). (Note, however, that the absolute value of some
of the entries may be large.) We conclude the proof using Theorem 1. �

4 Preserving Only the Nearest Neighbors

Here we show that even if we only want to preserve the three nearest neighbors, with
no requirement on the other distances, we cannot, in general, reduce the dimension
below �(logn). We do not get a good dependence on ε here.

Theorem 9 There is an ε > 0 and c > 0 such that for each n there are n + 1 points
0 = x0, x1, . . . , xn in R

n such that all the distances ‖xi − xj‖ are different and such
that if y0, y1, . . . , yn are vectors in R

k with

(1 + ε)−1‖xi − xij ‖ < ‖yi − yij ‖ < (1 + ε)‖xi − xij ‖
for all i and j = 1,2,3 where xi1 , xi2 , xi3 denotes the three closest vectors to xi . Then
k ≥ c logn.

Proof Assume as we may that n = h(h+1)/2 for some h. Let {ei}hi=1 ∪{ei,j }1≤i<j≤h

be an orthonormal basis of R
n.

Put z0 = 0, zi = ei, i = 1, . . . , h, zi,j = 2
3ei + 1

3ej + 2ei,j , 1 ≤ i < j ≤ h. Note
that for all 1 ≤ i < j ≤ h
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1. ‖zi − zj‖ = √
2, ‖zi‖ = 1.

2. ‖zi,j − zi‖ =
√

2
9 + 4, ‖zi,j − zj‖ =

√
8
9 + 4, ‖zi,j‖ =

√
5
9 + 4.

3. ‖zi,j − zs‖ =
√

5
9 + 5, s �= i, j,0.

4. ‖zi,j − zu,v‖ >
√

8, (u, v) �= (i, j).

It follows in particular that the closest to each zi among the zj ’s and zu,v’s is z0. It
also follows that the closest to each zi,j is zi , the second closest z0 and the third zj .
If we want all distances to be different we may now perturb the vectors an arbitrarily
small perturbation while keeping the structure of the first three closest neighbors. We
call the new sequence xt , t = i for i = 0, . . . , h or t = i, j for 1 ≤ i < j ≤ h.

Assume now yt are in R
k and satisfy

(1 + ε)−1‖xt − xs‖ < ‖yt − ys‖ < (1 + ε)‖xt − xs‖
for all t and all s such that xs is among the first three closest neighbors of xt . Then,
assuming the perturbation is small enough, ‖yi‖ ≤ 1 + ε for all i = 1, . . . , h and

‖yj − yi‖ ≥ ‖yj − yi,j‖ − ‖yi − yi,j‖ ≥ (1 + ε)−1

√
8

9
+ 4 − (1 + ε)

√
2

9
+ 4

for all 1 ≤ i < j ≤ h. If ε is small enough, this last quantity is larger than 0.01.
We now proceed as in the proof of Proposition 7: We have h disjoint balls of

radius 0.005 contained in a ball of radius 2 (say) around y0, so h(0.005)k < 2k and
thus k >

logh
log 400 >

logn
2 log 400 . �

Yair Bartal informed us that Itai Abraham, Ofer Neiman and himself had a similar
idea for an example of an n-point metric space (not clearly a subset of Euclidean
space) satisfying the conclusion of Theorem 9.

There are two related problems to which we do not know the answer:

1. What is the behavior of the best dimension k as a function of ε as ε → 0? Does an
estimate like the one we get in Theorem 8 still hold?

2. What happens for large distortion? That is, when ε is allowed to be some large
constant? Is there then an upper bound on k which is better than O(logn)? We
remark that Theorem 8 in [1] gives such a bound under additional assumptions.

5 Other Graphs

Recall that we consider the problem of embedding vectors x1, . . . , xn ∈ R
n into a low-

dimensional Euclidean space, while preserving a subset of the distances. We identify
the subset of pairs (xi, xj ) whose distances we wish to preserve with the edges of a
graph G = (V ,E) on V = [n] = {1,2, . . . , n}. Denote by kε(G, {xi}) the minimal k

such that there are vectors y1, . . . , yn ∈ R
k satisfying (1− ε)‖xi −xj‖ ≤ ‖yi −yj‖ ≤

(1 + ε)‖xi − xj‖ for every (i, j) ∈ E. Also, let k1
ε (G, {xi}) be the minimal k such

that there are vectors y1, . . . , yn ∈ R
k satisfying (1 − ε)‖xi − xj‖ ≤ ‖yi − yj‖ ≤

(1 + ε)‖xi − xj‖ for every (i, j) ∈ E, and ‖yi − yj‖ ≥ max{s;(i,s)∈E} ‖yi − ys‖, for
every i, j such that (i, j) �∈ E.



280 Discrete Comput Geom (2009) 41: 273–283

In Sect. 3 we exhibited graphs G and x0, x1, . . . , xn ∈ R
n such that

k1
ε

(
G, {xi}

) ≥ �

(
logn

ε2 log(1/ε)

)
,

for every 1
n1/3 ≤ ε ≤ 1

14 . In Sect. 4 we gave an example of graphs G and
x0, x1, . . . , xn ∈ R

n such that kε(G, {xi}) ≥ �(logn) for small enough ε. All these
graphs had very large degree, at least at one vertex, and this was important in our
analysis. Note, however, that the graphs we have considered up to this point can
naturally be viewed also as directed graphs (where each vertex is connected by an
outgoing edge to its m-nearest neighbors), these graphs then have a constant and low
out-degree but some vertices may have large in-degree. Here we consider the value
of k1

ε for d-regular graphs. In Theorem 11 we give an example of a set of vectors
X ⊂ R

n such that k1
ε (G,X) is large for expander graphs.

We use the following Poincaré-type inequality (see, e.g., [5, p. 548]).

Lemma 10 Let G = ([n],E) be a d-regular graph with second eigenvalue bound λ.
Then for every x1, . . . , xn ∈ R

n it holds that

d − λ

dn2

∑
(i,j)∈[n]

‖xi − xj‖ ≤ |E|−1
∑

(i,j)∈E

‖xi − xj‖.

Theorem 11 Denote by e1, . . . , en the standard basis in R
n, and fix 0 < ε < 1/2. If

G = ([n],E) is a d-regular graph, d ≥ 3, with second eigenvalue bounded by d/2,
then there is no set of vectors y1, . . . , yn ∈ R

k satisfying

(1 − ε)‖ei − ej‖ ≤ ‖yi − yj‖, (1)

for every pair i, j ∈ [n], and

(1 − ε)‖ei − ej‖ ≤ ‖yi − yj‖ ≤ (1 + ε)‖ei − ej‖, (2)

for every (i, j) ∈ E, unless k ≥ �(logn).

Proof Let y1, . . . , yn ∈ R
k satisfy the conditions of the theorem, we show that k ≥

�(logn). It follows from our assumptions and Lemma 10 that

1

n2

∑
i,j∈[n]

‖yi − yj‖ ≤ 2

|E|
∑

(i,j)∈E

‖yi − yj‖ ≤ (1 + ε)
√

8.

The first inequality is by Lemma 10, and the second uses (2).
Also, there always exists a point yo such that

1

n

∑
r∈[n]

‖yo − yr‖ ≤ 1

n2

∑
i,j∈[n]

‖yi − yj‖ ≤ (1 + ε)
√

8.
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Assume without loss of generality that yo = 0, then

1

n

∑
i∈[n]

‖yi‖ ≤ (1 + ε)
√

8.

We get that there are at most n/
√

2 vectors yi with ‖yi‖ ≥ 4(1 + ε).
We thus have (1 − 1√

2
)n yi ’s whose norms are at most 6 and whose mutual dis-

tances at least 1/
√

2 (by (1)). We can now conclude as in the proof of Proposition 7. �

Remarks

1. We note that the assumption on the second eigenvalue in Theorem 11 is essential.
Consider the graph G = ([n]d ,E), where (u, v) ∈ E if and only if ‖u − v‖1 = 1.
The set of vertices of G are naturally embedded in R

d , as a subset of the integers
grid, in such a manner that the distance between every two adjacent vertices in G

is exactly 1, and all other distances are greater than 1. This graph has maximal
degree 2d, but is not quite 2d regular. A similar example of a 2d regular graph
is the following: Consider a cycle Cn of length n. It is naturally embedded in
R

2 (on an actual circle), where the Euclidean distances of edges are exactly one.
Put G = (Cd

n ,E), where ((u1, . . . , ud), (v1, . . . , vd)) ∈ E iff the two vectors differ
exactly in one coordinate i and (ui, vi) is an edge in Cn. G is 2d regular and it
naturally embeds into R

2d where the distance between adjacent vertices is 1 and
the other distances are at least

√
2.

2. The assumption in Theorem 11 that the embedding is noncontractible is also un-
avoidable. This follows from the following upper bound. Given a graph G =
(V ,E) on n vertices and ε > 0, e1, . . . , en are embedded in Rk with k =
�(logχ(G)/ε2) while preserving the distances on the edges of G up to (1 ± ε).
To see this, consider a coloring of G into χ(G) colors. First map {ei} to the stan-
dard basis {êa} in R

χ(G) by mapping ei to êa , where a is the color of the vertex i.
It is not hard to see that this mapping preserves the distances on the edges of G.
We then use the Johnson–Lindenstrauss lemma with the set {êa} to reduce the
dimension to �(logχ(G)/ε2).

Since the chromatic number of d-regular graphs is at most d + 1, the above
(canonical) example does not provide a good lower bound when we allow the
distances on nonedges to change arbitrarily.

3. Finally we comment that the lower bound in Theorem 11 does not depend on ε.
Therefore, when ε is very small there might still be a better upper bound than for
the complete graph.

6 More Applications of Theorem 1

Alon gives in [2] several applications of his Theorem 1.1 other than for distortion in
low-dimension embedding. For many of these applications Theorem 1 can be used to
give slightly more general results (for a more restrictive set of ε’s). We give here two
examples, and refer the reader to [2] for more details.
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6.1 Coding Theory

A binary code of length k is a set C ⊂ {±1}k . We say that a code is ε-good if the
Hamming distance between any two code-words is at least 1−ε

2 k. A major challenge
in coding theory is to determine the cardinality of a largest ε-good code of length k.

A code is called ε-balanced if it is ε-good and in addition the Hamming distance
between any two code words is at most 1+ε

2 k. The following upper bound on the size
of ε-balanced codes was proved in [2].

Claim 12 [2] There exists an absolute positive constant α so that for all 1√
k

≤ ε ≤
1/2 the cardinality of any ε-balanced code of length k is at most 2αε2 log(1/ε)k .

Using Alon’s proof but applying Theorem 1 and Lemma 4 instead of the corre-
sponding counterparts we get a similar bound for ε-good codes.

Claim 13 There exists an absolute positive constant α so that for all 1
k1/3 ≤ ε ≤ 1/2

the cardinality of any ε-good code of length k is at most 2αε2 log(1/ε)k .

Proof Let C = {c1, . . . , cn} ⊂ {±1}k be an ε-good code, and denote by B the matrix
whose rows are the vectors ci/

√
k, i = 1, . . . , n. The matrix BBt is symmetric posi-

tive semidefinite, its diagonal elements are all 1, and its off-diagonal elements are all
smaller than ε. Thus by Theorem 1

k ≥ rank(BBt ) ≥ logn

αε2 log 1/ε
,

for some positive constant α. The claim easily follows. �

In fact, as noted in Sect. 4, the statements of Theorem 1 and Lemma 4 can be
interpreted as the following lower bounds for spherical codes. The lower bounds for
binary codes are a special case of this fact, since binary codes can be seen as a special
case of spherical codes (by normalizing the sign vectors).

Claim 14 Fix 0 ≤ θ ≤ 1, and denote by M(k, θ) the maximal size of a k-dimensional
spherical code with distance θ , then if cos(θ) ≥ 1/k1/3

1

k
logM(k, θ) ≤ O

(
cos(θ)2 log cos(θ)

)
.

6.2 Nearly Independent Random Variables

Let X1, . . . ,Xn be a set of random variables over a sample space S of size m, attaining
values in {0,1}. For every subset Y ⊂ [n], denote by XY the xor of the Xi ’s, i ∈ Y ;
i.e. XY = ⊕

i∈Y Xi . The family X1, . . . ,Xn is called ε-biased if for every Y �= ∅,

∣∣Pr[XY = 0] − Pr[XY = 1]∣∣ ≤ ε.
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Theorem 15 [2] Let {X1, . . . ,Xn} be an ε-biased set of n random variables over
a sample space of size m. If ε ≥ 2−n/2, then m ≥ �( n

ε2 log 1/ε
). If ε < 2−n/2, then

m ≥ �(2n).

The proof uses rank lower bounds, as in Sect. 6.1. Since the underlined matrix
is again symmetric positive semidefinite, the same lower bound holds, with essen-
tially the same proof, even if we only assume that for every Y �= ∅, Pr[XY = 0] ≤
Pr[XY = 1] + ε. That is:

Theorem 16 Let {X1, . . . ,Xn} be a set of n binary random variables over a sample
space of size m satisfying for every Y �= ∅,

Pr[XY = 0] ≤ Pr[XY = 1] + ε.

Then m ≥ �( n

ε2 log 1/ε
) if ε ≥ 2−n/3.
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