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Abstract

A major open question in communication complexity is if randomized and quantum communication
are polynomially related for all total functions. So far, no gap larger than a power of two is known,
despite significant efforts.

We examine this question in the number-on-the-forehead model of multiparty communication com-
plexity. We show that essentially all lower bounds known on randomized complexity in this model also
hold for quantum communication. This includes bounds of size Ω(n/2k) for the k-party complexity of
explicit functions, bounds for the generalized inner product function, and recent work on the multiparty
complexity of disjointness. To the best of our knowledge, these are the first lower bounds of any kind on
quantum communication in the general number-on-the-forehead model.

We show this result in the following way. In the two-party case, there is a lower bound on quantum
communication complexity in terms of a norm γ2, which is known to subsume nearly all other tech-
niques in the literature. For randomized complexity there is another natural bound in terms of a different
norm µ which is also one of the strongest techniques available. A deep theorem in functional analysis,
Grothendieck’s inequality, implies that γ2 and µ are equivalent up to a constant factor. This connection
is one of the major obstacles to showing a larger gap between randomized and quantum communication
complexity in the two-party case.

The lower bound technique in terms of the norm µ was recently extended to the multiparty number-
on-the-forehead model. Here we show how the γ2 norm can be also extended to lower bound quantum
multiparty complexity. Surprisingly, even in this general setting the two lower bounds, on quantum and
classical communication, are still very closely related. This implies that separating quantum and classical
communication in this setting will require the development of new techniques. The relation between
these extensions of µ and γ2 is proved by a multi-dimensional version of Grothendieck’s inequality.
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1 Introduction

Since its introduction thirty years ago [Abe78, Yao79], communication complexity has become a key con-
cept in complexity theory and theoretical computer science in general. Part of its appeal is that it has
applications to many different computational models, for example to formula size and circuit depth, proof
complexity, branching programs, VLSI design, and time-space trade-offs for Turing machines (see [KN97]
for more details).

A major open question in communication complexity is if randomized and quantum communication
complexity are polynomially related for all total functions. While an exponential separation between these
models has been exhibited for a promise problem [Raz99], for total functions currently the largest known
gap is a power of two, realized by the disjointness function which has bounded-error randomized complexity
Θ(n) [KS87] and quantum complexity Θ(

√
n) [Raz03, AA05].

Part of the difficulty of showing larger gaps between these models is that there are very few techniques
known that lower bound randomized complexity and do not also work for quantum complexity. In the two-
party model we currently have a relatively good understanding of how the various lower bound techniques
are related. For the classical case, a powerful lower bound technique is in terms of a norm µ. For quantum
communication there is another bound in terms of a different norm γ2.

The µ norm is the norm induced by the absolute convex hull of combinatorial rectangles. The norm γ2

is a factorization norm—it seeks the best factorization of an operator from `1 to `∞ via `2. Formally, for
every real matrix B

γ2(B) = min
XY=B

‖X‖2→∞‖Y ‖1→2.

Where ‖X‖2→∞ = maxv:‖v‖2≤1 ‖Xv‖∞ and the operator norm ‖Y ‖1→2 of Y from `1 to `2 is defined
similarly. For more details see Section 4.

To deal with bounded-error models, the appropriate quantity is an approximated version of the underly-
ing norm. For example, for quantum communication complexity the lower bound is in terms of γα2 , defined
next. For a real number α ≥ 1 and a sign matrix A, γα2 (A) is defined by

γα2 (A) = min
B:1≤bijaij≤α

γ2(B).

The approximation variant µα of µ is defined accordingly. In both cases the parameter α is related to the
maximum allowed error probability of the algorithm.

All lower bounds on randomized and quantum communication complexity that use the structure of
Euclidean space in any way can be shown to follow from the µα bound for randomized communication
complexity, and from the γα2 bound for quantum communication complexity [LS07, LS08a]. This includes
the discrepancy method [KN97], bounds using Fourier analysis [Raz95, Kla01], bounds in terms of singular
values [Kla01, Raz03], approximation rank [BW01], and more.

Grothendieck’s inequality, a deep theorem from functional analysis, shows, however, that µ and γ2 are
related by a constant factor. Thus, one cannot use any of the aforementioned lower bound techniques to
separate quantum and classical communication complexity.

In fact, it is an open question whether logµα is polynomially related to randomized communication
complexity [LS07]. If there is such a polynomial relation, then by Grothendieck’s inequality, quantum and
classical communication complexity are also polynomially related. It is also known that µα is polynomi-
ally related to approximation rank [LS08a], thus this question is also nicely linked to the famous log rank
conjecture for deterministic communication complexity [LS88].
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In this paper we generalize this theory to multiparty communication complexity. The major applica-
tion we discuss is for the multiparty number-on-the-forehead (NOF) model of communication complexity
originally introduced by Chandra, Furst and Lipton [CFL83]. In this model there are k-players trying to
evaluate a function f(x1, . . . , xk), but now player i knows the entire input except for xi. This large overlap
in information makes showing lower bounds very difficult in this model, but this difficulty is rewarded by
implications for circuit and proof complexity [HG91, BPS06].

To generalize the results from the two-player model we need first to extend the µα and γα2 bounds. The
µα bound was extended to randomized multiparty communication complexity in [LS08b]. In analogy with
this extension of the µ norm, we similarly show that a natural extension of the γ2 norm provides a lower
bound on multiparty quantum communication complexity.

Having generalized the norm based bounds for multiparty communication complexity, the natural ques-
tion is whether the corresponding version of Grothendieck’s inequality holds. There are many results re-
garding high dimensional extensions of Grothendieck’s inequality in the literature. A large portion of the
results are negative, implying that for certain type of extensions, a corresponding Grothendieck type in-
equality does not hold [Ble01, Smi88]. It is therefore somewhat surprising that in our case a strong version
of Grothendieck’s type inequality does hold, and the two generalized norms are closely related.

This result allows us to immediately transfer essentially all known lower bounds on randomized multi-
party communication complexity to the quantum case. We now list some examples. Babai, Nisan, Szegedy
[BNS89] adapted the discrepancy method, one of the earliest and most general techniques for showing lower
bounds on randomized two-party complexity, to the multiparty case to obtain among other things a bound of
Ω(n/22k) on the k-party complexity of the generalized inner product function. The discrepancy method has
seen many more applications [CT93, Raz00, FG05, Cha07], in particular to show bounds of size Ω(n/2k)
on k-party complexity of explicit functions, the largest bounds currently known. The discrepancy method
is a special case of the µα bound—in fact, it is exactly the limiting case µ∞ [LS08b]— thus we are able to
obtain that these bounds also hold in the quantum case.

More recently, a series of works have used the extension of the µ norm to the multiparty case, together
with a generalization of the pattern matrix framework of Sherstov [She07, She08], to show lower bounds that
the discrepancy method cannot [LS08b, CA08, DPV08, BHN08], including a bound of Ω(n1/(k+1)/22k) on
the k-party complexity of the disjointness function. These bounds also transfer to the quantum case.

To the best of our knowledge, these are the first lower bounds of any kind on quantum communication
complexity in the number-on-the-forehead model. We should mention that there are bounds known on
quantum NOF complexity in more restricted models: for example, [BARW08] show a bound of Ω̃(

√
n) on

the complexity of disjointness in the three-party one-way model, and a bound of Ω̃(n1/3) on disjointness
in the case of three parties where the first player sends a message and then players two and three interact
arbitrarily.

On the other hand, our results also mean that quantum and classical communication complexity cannot
be separated with current techniques unless the number of players is either two or very large.

Although we focus on the number-on-the-forehead model of communication complexity, all our results
hold in a more general setting. In particular, the corresponding results for the number-in-the-hand (NIH)
model of multiparty communication complexity, follow by a simple adjustment of our definitions and proofs.

2 Preliminaries

We let [n] = {1, . . . , n}. For multiparty communication complexity it is convenient to work with tensors,
the generalization of matrices to higher dimensions. If an element of a tensor A is specified by k indices,
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we say that A is a k-tensor. A tensor where all entries are in {−1,+1} we call a sign tensor. For a function
f : X1 × . . . ×Xk → {−1,+1}, we define the communication tensor corresponding to f to be a k-tensor
Af where Af [x1, . . . , xk] = f(x1, . . . , xk). We identify f with its communication tensor.

We use the shorthand A ≥ c to indicate that all of the entries of A are at least c. The Hadamard or
entrywise product of two tensors A and B is denoted by A ◦ B. Their inner product is denoted 〈A,B〉 =∑

x1,...,xk
A[x1, . . . , xk]B[x1, . . . , xk]. For vectors u1, . . . , uk ∈ Rd we let 〈u1, . . . , uk〉 =

∑d
j=1

∏k
i=1 ui(j),

the k-linear from. We write ‖u‖ for the `2 norm of a vector u and use Sd−1 to denote the set {u ∈ Rd :
‖u‖ = 1}. For a norm ϕ, we denote its dual norm ϕ∗(A) = maxB:ϕ(B)≤1〈A,B〉.

3 Quantum multiparty communication complexity

We now define the NOF model of quantum multiparty communication complexity (see also [Ker07]). Let
f : ({0, 1}n)k → {−1,+1} be a function of k strings x1, . . . , xk where each xi ∈ {0, 1}n. In the classical
NOF model, player i receives as input all the strings except xi. In the quantum setting, we can represent the
NOF model as follows. If there are k players then we work in a Hilbert space H1 ⊗ · · ·Hk ⊗ C, composed
of k+ 1 many registers, one for each player in addition to a one qubit channel C. On the turn of player i, an
arbitrary unitary independent of xi is applied on Hi ⊗ C and acts as the identity everywhere else.

We will only discuss the model without shared entanglement. Such a protocol begins in a pure state
|v1〉 · · · |vk〉|0〉 independent of the input. The protocol outputs 1 with probability the norm squared of the
projection of the final state onto the |1〉 state of the channel qubit. As we use a 1-qubit channel, the cost of
a protocol is simply the number of rounds. For a sign tensor A, we define Qεk(A) as the minimum cost of a
k-player NOF protocol which computes A with error probability at most ε.

The next lemma extracts the property of quantum protocols which we use in our lower bound. This
statement follows similar statements in the two-party case [Yao93, Kre95, LS07], and we defer the proof to
the appendix.

Lemma 1 After c qubits of communication on input (x1, . . . , xk), the state of a quantum NOF protocol
without shared entanglement can be written as∑

r∈R
|v1
r 〉|v2

r 〉 · · · |vkr 〉|0〉+
∑
s∈S
|v1
s〉|v2

s〉 · · · |vks 〉|1〉,

where the set of vectors {vtr}r∈R is a function of (x1, . . . , xt−1, xt+1, . . . , xk) and c.
Moreover,

∑
r∈R ‖vtr‖2 +

∑
s∈S ‖vts‖2 ≤ 2c for every 1 ≤ t ≤ k. Note that vectors indexed by t belong

to the space Ht.

4 The multiparty norm

We describe the µk and γk norms and how they are applied to obtain lower bounds for classical and quantum
bounded error communication complexity, respectively. Only the part about quantum communication is new.
We discuss the classical case as well, for completeness.

4.1 Classical communication complexity and µk

In a series of recent works [LMSS07, LS07, LS08b], a general framework has been developed for showing
lower bounds on communication complexity in terms of norms. The basic idea of this approach is that a suc-
cessful communication protocol allows one to express the communication matrix, or tensor, as a linear sum
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of simpler objects. This set of simple objects depends upon the model under consideration. For example:
in the deterministic two-party case, it is the set of combinatorial rectangles; in the deterministic multiparty
NOF case, it is the set of cylinder intersections. The technique then actually bounds how efficiently the
communication tensor can be expressed in terms of these simpler objects.

Let us see an instantiation of this framework. Consider the 2-player deterministic communication model.
Let A be an m × n sign matrix and let C be the set of combinatorial rectangles on [m] × [n]. Define the
norm µ2 by

µ2(A) = min
∑
j

|αj | : A =
∑
j

αjχ(Cj)

where each Cj belongs to C, and χ(X) stands for the characteristic matrix of the subset X ∈ [m]× [n].
The fact that a deterministic protocol for A that uses at most c bit of communication partitions A into at

most 2c combinatorial rectangles clearly gives that logµ(A) is a lower bound on the deterministic commu-
nication complexity of A.

The randomized communication complexity of A can then be similarly bounded by the following ap-
proximation variant of µ2

µα2 (A) = min
A′:1≤A◦A′≤α

µ2(A′).

Denoting by ε the maximum allowed error, then the following bound holds for randomized communica-
tion complexity

Rε(A) ≥ logµα2 (A)− logα,

for α = α(ε) = 1
1−2ε .

A similar norm (and its approximation variant) can be defined for other models of classical communi-
cation, and the corresponding lower bounds for deterministic and randomized communication complexity
will hold accordingly. What changes between different models is the set of simple objects C which reflects
structural properties of the underlying model.

In particular, one can apply the above principles with the basic sets being cylinder intersections. The
corresponding norm is the norm induced by k cylinder intersections, denoted by µk. As shown by Lee and
Shraibman [LS08b] using the framework described above, the µk norm and its approximation variant yield
lower bounds on classical NOF communication complexity (see also [CA08] where a formulation of µk
dual to the one described here is used).

Very closely related to the µk norm, and sometimes more convenient to analyze [Raz00, FG05], is the
νk norm where one considers {−1,+1} valued functions rather than {0, 1} valued functions.

Definition 2 Let A be a k-tensor

νk(A) = min
∑
j

|αj | : A =
∑
j

αjCj

where each Cj can be written as Cj [x1, . . . , xk] =
∏k
t=1 φ

t(x1, . . . , xk) for {−1,+1} valued functions φt

which are independent of xt.

It is not too difficult to show that the µk and νk are closely related: νk(A) ≤ µk(A) ≤ 2kνk(A).

5



4.2 Quantum communication complexity and γk

To lower bound quantum NOF communication complexity, we first want to identify the set of simple objects
into which a successful protocol decomposes the communication tensor. This is indicated by Lemma 1.
Formally, we define the set of simple objects as

Ck = {C : C[x1, . . . , xk] = 〈φ1(x2, . . . , xk), . . . , φk(x1, . . . , xk−1)〉 and

‖φt(x1, . . . , xk)‖ ≤ 1 for all t, x1, . . . , xk}

where each φt(x1, . . . , xk) is a vector independent of xt. The γ2,k norm is then defined as follows

Definition 3

γ2,k(A) = min

∑
j

|αj | : A =
∑
j

αjCj , where Cj ∈ Ck


When k = 2 and A is a matrix, this agrees with the γ2 norm of [LMSS07]. Note that the intention of the 2
in γ2 is not to indicate 2 players, but rather that the normalization is taken with respect to the `2 norm. For
this reason, we use the notation γ2,k to indicate that we normalize with respect to the `2 norm but consider
the k-fold inner product. One could alternatively consider this definition with respect to any `p norm. For
the rest of the paper, however, we stick to the `2 norm and drop the subscript of 2 to simply write γk.

To work with protocols with some probability of error, we will also use an approximate version of the
γk norm.

Definition 4 (Approximate quantum norm) Let α ≥ 1, and A be a sign k-tensor.

γαk (A) = min
A′:1≤A◦A′≤α

γk(A′).

Observe that γαk (A) is a decreasing function of α.
The γk norm can be used to lower bound communication complexity in the quantum number-on-the-

forehead model as follows.

Theorem 5 Let A be a sign k-tensor. Then

Qεk(A) ≥
log γαεk (A)− logαε − 2

k
,

where αε = 1/(1− 2ε).

Proof: Let P be the k-tensor whose entry (x1, . . . , xk) is the probability that the protocol outputs 1 on input
(x1, . . . , xk). Let (∑

s∈S
|v1
s〉 · · · |vks 〉

)
⊗ |1〉,

where |vts〉 is independent of xt, be the projection of the final state of the algorithm on input (x1, . . . , xk)
onto the |1〉 state of the channel. As the probability that the algorithm outputs 1 on (x1, . . . , xk) is given by
the norm squared of this vector, we have

P [x1, . . . , xk] =
∑

s1,s2∈S
〈v1
s1 , v

1
s2〉〈v

2
s1 , v

2
s2〉 · · · 〈v

k
s1 , v

k
s2〉. (1)
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Let us now upper bound γk(P ). We have

∑
s1,s2∈S

〈vts1 , v
t
s2〉

2 ≤

(∑
s∈S
‖vts‖2

)2

≤ 22c,

as Lemma 1 implies in particular that
∑

s∈S〈vts, vts〉 ≤ 2c for each t.
This means that

1
2ck

∑
s1,s2∈S

〈v1
s1 , v

1
s2〉〈v

2
s1 , v

2
s2〉 · · · 〈v

k
s1 , v

k
s2〉 ∈ Ck,

and so γk(P ) ≤ 2ck.
Now as the protocol has error probability at most ε, we have that if A[x1, . . . , xk] = 1 then

P [x1, . . . , xk] ≥ 1 − ε and if A[x1, . . . , xk] = −1 then P [x1, . . . , xk] ≤ ε. Thus the matrix P ′ =
αε(2P − J), where J is the all one tensor, satisfies 1 ≤ A ◦ P ′ ≤ αε. Therefore we conclude

γαεk (A) ≤ γk(P ′) ≤ αε(2ck+1 + 1)

which gives the theorem. 2

5 A Grothendieck type inequality in high dimension

As mentioned earlier, all existing lower bounds in the randomized NOF model for more than two players can
be shown using the µk norm. In this section, we show that the γk and µk norms are equivalent up to a factor
of Ck for some universal constant C. Thus we can immediately transfer all randomized NOF lower bounds
to the quantum case, up to the loss of an additive O(k) factor. We do this by presenting a Grothendieck type
inequality for γk and µk. Our inequality holds in a more general framework, as described next.

Fix a family of partitions P = {Pj}kj=1 of Nk, and for j = 1 . . . k, and d ∈ N, let Fj be the family of
all functions f : [n1] × [n2] × · · · × [nk] → Sd−1, which are constant on each set in the partition Pj . We
define a semi-norm Φd as follows

Φd(A) = sup
fj∈Fj :j=1...k

∑
I∈[n1]×[n2]×···×[nk]

A[I]〈f1(I), f2(I), . . . , fk(I)〉.

Where A is a n1 × n2 × · · · × nk real tensor. We prove that for any fixed tensor A, Φd(A) depends very
weakly on d.

Theorem 6 For every k-tensor A, let Φ(A) = supd Φd(A), then

Φ1(A) ≤ Φ(A) ≤ C(k)Φ1(A).

We first prove the theorem with C(k) = (C log k)k/2. We then provide a slightly more involved proof
in Appendix B that gives the statement of the theorem with C(k) = Ck for an absolute constant C.

Note that in the above theorem Φ1 and Φd are defined with respect to the same family of partitions.
Observe that when the underlying family of partitions is P = {Pj}kj=1 where Pj partitions Nk according to
all coordinates except the jth coordinate, then Φ1 = ν∗k and Φ = γ∗k . Hence as µ∗k ≤ ν∗k ≤ 2kµ∗k we obtain
the following corollary
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Corollary 7 For every k-tensor A,

γk(A) ≤ µk(A) ≤ Ckγk(A),

for some absolute constant C.

Another interesting special case of Theorem 6 is when Pj partition Nk according to the j-coordinate. In
this case Φd(A) takes the form

sup
fj :[nj ]→Sd−1

n1,...,nk∑
i1=1,...,ik=1

A[i1, . . . , ik]〈f1(i1), . . . , fk(ik)〉.

This instance of Theorem 6 is related to the NIH model of multiparty communication complexity. It was
first proved by Blei [Ble79], and with constant Ck by Tonge [Ton78]. In fact, it is possible to reduce the
instance of Theorem 6 related to the NOF model to the NIH case. We feel, however, that Theorem 6 is
superior to statements in [Ble79, Ton78] as it works in the broadest generality and moreover the proof we
give provides the clearest insight to the machinery behind the scenes.

The proof is a generalization of the proofs of the 2-dimensional Grothendieck’s inequality in [DJT95]
and [JL01]. We think that this is currently the most elegant and accessible proof for the 2-dimensional
Grothendieck’s inequality. We note that the generalization is not straightforward, and requires some addi-
tional ideas. The main difficulty stems from the fact that the problem is no longer unitarily invariant; 1 it is
important, for example, that we use Rd as the underlying Hilbert space and not L2 over a probability space,
say.

5.1 Auxiliary lemmas

To prove Theorem 6 we require a few facts from probability theory. We describe these next.
Let {gi,j} for j = 1 . . . d and i = 1 . . . k − 1 be independent Bernoulli random variables, and let

gk,j =
∏k−1
i=1 gi,j . Notice that

1. E(gi,j) = 0 for every i = 1 . . . k and j = 1 . . . d.

2. E(g2
i,j) = 1 for i = 1 . . . k − 1 and j = 1 . . . d.

3. Let π be a function π : [k] → [d]. Then E(
∏
i gi,π(i)) = 0 if the image of π contains at least two

elements, and otherwise E(
∏
i gi,π(i)) = 1.

Lemma 8 Let g1, . . . , gd be independent Bernoulli random variables. For a vector u ∈ Sd−1 consider the
random variable G(u) =

∑
uigi.

Furthermore, for some constant T , denote by Ḡ(u) the random variable which is equal to G(u) when-
ever |G(u)| is greater than T and zero otherwise. Then

1.
E(|G(u)|2) = 1.

1Conventional (two dimensional) inner product is unitarily invariant, i.e. it holds that 〈x, y〉 = 〈Ux, Uy〉 for every pair of
vectors x and y and any unitary transformation U . The k-dimensional Grothendieck type inequality involves the k-linear form
〈x1, . . . , xk〉. For k ≥ 3 this form is no longer unitarily invariant.
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2. If T ≥ 2
E(|Ḡ(u)|2) ≤ 3T 2e−T

2/2.

Proof: The first part of the lemma follows from the following simple calculation

E(|G(u)|2) = E((
∑

uigi)2) =
∑

u2
i = 1.

For the second part of the lemma, recall that for every random variable X

E(|X|k) = k

∫ ∞
0

tk−1 Pr(|X| > t)dt.

(See, for example, page 42 of [Dur05].) Also by Hoeffding’s inequality [Hoe63], the random variable G(u)
is sub-Gaussian, with constant 1/2. i.e., Pr(|G(u)| > t) ≤ 2e−t

2/2.
Using these two facts we get that the 2nd moment of |Ḡ(u)| is bounded by

E(|Ḡ(u)|2) = 2
∫ ∞

0
tPr(|Ḡ(u)| > t)dt

= 2
∫ T

0
tPr(|Ḡ(u)| > t)dt+ 2

∫ ∞
T

tPr(|Ḡ(u)| > t)dt

≤ 4
∫ T

0
te−T

2/2dt+ 4
∫ ∞
T

te−t
2/2dt

≤ 2T 2e−T
2/2 + 4e−T

2/2

≤ 3T 2e−T
2/2,

when T ≥ 2. 2

5.2 Proof of Theorem 6

Let gi,j be random variables as defined in Section 5.1. For a vector u ∈ Sd−1 and i ∈ [k] consider the
random variable Gi(u) =

∑
ujgi,j . Observe that for every k × d matrix U with rows u1, . . . , uk,

E(
∏
i

Gi(ui)) = E(
∏
i

(
∑
j

ui,jgi,j))

=
∑

j1,...,jk

∏
t

ut,jtE(
∏
t

gt,jt)

= 〈u1, . . . , uk〉.

Therefore, Φd(A) can be equivalently written as

Φd(A) = sup
fi∈Fi:i=1...k

∑
I⊂[n1]×[n2]×···×[nk]

A[I]〈f1(I), f2(I), . . . , fk(I)〉

= sup
fi∈Fi:i=1...k

∑
I⊂[n1]×[n2]×···×[nk]

A[I]E(
k∏
i=1

Gi(fi(I))). (2)
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Fix a constant T . For any vector u ∈ Rm and i ∈ [k], write the random variable Gi(u) as a sum of two
random variables Gi(u) = G1

i (u) + G2
i (u) such that G1

i (u) is equal to Gi(u) if |Gi(u)| ≤ T and is zero
otherwise, and G2

i (u) = Gi(u)−G1
i (u). Then, the right hand side of (2) is bounded by

∑
b∈{1,2}k

sup
fi∈Fi:i=1...k

∑
A[I]E(

k∏
i=1

Gbii (fi(I))).

When b = (1, 1, . . . , 1) we can bound the corresponding expression as follows

sup
fi∈Fi:i=1...k

∑
A[I]E(

k∏
i=1

G1
i (fi(I))) = sup

fi∈Fi:i=1...k
E(
∑

A[I]
k∏
i=1

G1
i (fi(I)))

≤ E( sup
fi∈Fi:i=1...k

∑
A[I]

k∏
i=1

G1
i (fi(I)))

≤ T k · Φ1(A).

To bound the rest of the terms we use the Fourier representation of the random variables Gbii (fi(I)). For
a subset S ⊂ [d] we denote by WS the corresponding Walsh function (or character). Fix b ∈ {1, 2}k, the
Fourier representation of Gbii (fi(I)) is

Gbii (fi(I)) =
∑
S

Ĝi,S(fi(I))WS .

Here we think of the random variable as a function from {±1}d to R. For convenience we identify {±1}d
with Zd2 with addition modulo 2. Denote by4 set theoretic symmetric difference, we see that

E(
k∏
i=1

Gbii (fi(I))) =
∑

S1,...,Sk

∏
i

Ĝi,Si(fi(I))Ex1,...,xk−1∈Zd2
(WS1(x1) ·WS2(x2) · · ·WSk(

k∑
j=1

xj))

=
∑

S1,...,Sk

∏
i

Ĝi,Si(fi(I))Ex1,...,xk−1∈Zd2
(WS1(x1) ·WS2(x2) · · ·

k−1∏
j=1

WSk(xj))

=
∑

S1,...,Sk

∏
i

Ĝi,Si(fi(I))Ex1,...,xk−1∈Zd2
(
k−1∏
j=1

WSj4Sk(xj))

=
∑
S

∏
i

Ĝi,S(f(I))

Therefore

sup
fi∈Fi:i=1...k

∑
A[I]E(

k∏
i=1

Gbii (fi(I))) = sup
fi∈Fi:i=1...k

∑
A[I]〈Ĝ1(f1(I)), . . . , Ĝk(fk(I))〉, (3)

where Ĝi(fi(I)) is a vector in R2d , whose coordinate corresponding to S ⊂ [d] is equal to Ĝi,S(fi(I)).
Note that the right hand side of (3) is bounded from above by Φ2d times the product of the lengths of the

vectors Ĝi(fi(I)) for i = 1 . . . k. But by Parseval’s identity ‖Ĝi(fi(I))‖2 = E(Gbii fi(I)2)1/2 and therefore
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Lemma 8 provides a bound on the length of these vectors. Assume that exactly L of the entries of b are
equal to 2, this give us

sup
fi∈Fi:i=1...k

∑
A[I]E(

k∏
i=1

Gbii (fi(I))) ≤ (
√

3Te−T
2/4)LΦ2d(A).

Finally, for large enough T

Φd(A) ≤ T k · Φ1(A) + Φ2d(A)
∑
L>0

(
k

L

)
(
√

3Te−T
2/4)L

= T k · Φ1(A) +
[
(1 +

√
3Te−T

2/4)k − 1
]

Φ2d(A)

≤ T k · Φ1(A) +
√

12 · kTe−T 2/4Φ2d(A).

The last inequality is because (1 + x)k ≤ 1 + 2kx for 0 ≤ x ≤ 1
2(k−1) .

Taking large enough d (so that both Φd(A) and Φ2d(A) are basically Φ(A)) and T ∼
√

log k we get the
statement of the theorem.
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A Proof of Lemma 1

For convenience, we restate the lemma here.

Lemma 1 After c qubits of communication on input (x1, . . . , xk), the state of a quantum NOF protocol can
be written as ∑

r∈R
|v1
r 〉|v2

r 〉 · · · |vkr 〉|0〉+
∑
s∈S
|v1
s〉|v2

s〉 · · · |vks 〉|1〉,

where the set of vectors {vtr}r∈R is a function of (x1, . . . , xt−1, xt+1, . . . , xk) and c.
Moreover,

∑
r∈R ‖vtr‖2 +

∑
s∈S ‖vts‖2 ≤ 2c for every 1 ≤ t ≤ k. Note that vectors indexed by t belong

to the space Ht.

Proof: We prove by induction. The statement clearly holds after 0 qubits of communication. Assume c > 0
qubits were transmitted, then by the induction hypothesis we have some state∑

r∈R
|v1
r 〉|v2

r 〉 · · · |vkr 〉|0〉+
∑
s∈S
|v1
s〉|v2

s〉 · · · |vks 〉|1〉.

with
∑

r∈R ‖vtr‖2 +
∑

s∈S ‖vts‖2 ≤ 2c for every t.
For simplicity, suppose it is the turn of player 1, who applies a unitary which does not depend on x1 and

acts as identity everywhere except for the first register and the channel. We can then write the new state as∑
r∈R
|v1
r0〉|v2

r 〉 · · · |vkr 〉|0〉+ |v1
r1〉|v2

r 〉 · · · |vkr 〉|1〉+
∑
s∈S
|v1
s0〉|v2

s〉 · · · |vks 〉|0〉+ |v1
s1〉|v2

s〉 · · · |vks 〉|1〉

=
∑
i∈R∪S

|v1
i0〉|v2

i 〉 · · · |vki 〉|0〉+
∑
i∈R∪S

|v1
i1〉|v2

i 〉 · · · |vki 〉|1〉

For every t = 2, . . . , k ∑
i∈R∪S

‖vti‖2 ≤
∑
r∈R
‖vtr‖2 +

∑
s∈S
‖vts‖2 ≤ 2c

And for t = 1 we get ∑
i∈R∪S

‖v1
i0‖2 +

∑
i∈R∪S

‖v1
i1‖2 =

∑
i∈R∪S

‖v1
i ‖2 ≤ 2c.

2

B Improving the constant

We start again from equation (2), using the same notation as we had before. We first claim that for s =
0, . . . , k − 1

Φd(A) ≤ Cs sup
fi∈Fi:i=1...k

∑
I

A[I]E(
s∏
i=1

G1
i (fi(I))

k∏
j=s+1

Gj(fj(I))).
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for some absolute constant C. The proof is by induction on s. The case s = 0 is trivial. For simplicity we
show the induction step for s = 1. By linearity of expectation

E(
k∏
i=1

Gi(fi(I))) =
∑
b=1,2

E(Gb1(f1(I))
k∏
i=2

Gi(fi(I))). (4)

Consider the Fourier representation of the random variables Gi(fi(I)) and recall that they are defined as
the linear sum of Bernoulli (=Rademacher) random variables. This means that its Fourier representation
is the linear sum of Rademacher functions (with the same coefficients) and the coefficients of all the other
characters are zero. A Rademacher function is a function of the form f(ε1, . . . , εk) = εj for some 1 ≤ j ≤ k.
This is not necessarily the case with G2

1(f1(I)); its Fourier expansion may involve the other characters. But
the orthogonality properties of the Fourier characters, as used in the proof of Theorem 6, implies that we
can ignore all Fourier coefficients of G2

1(f1(I)) for non-Rademacher functions to achieve another random
variable G1(r1(I)) without changing the expectation. I.e.

E(G2
1(f1(I))

k∏
i=2

Gi(fi(I))) = E(G1(r1(I))
k∏
i=2

Gi(fi(I))). (5)

Now G1(r1(I)) is the sum of Bernoulli random variables, and by Lemma 8

‖r1(I)‖2 = ‖r̂1(I)‖2 ≤ ‖f̂1(I)‖2 ≤ E(G2
1(f1(I)))1/2 ≤

√
3Te−T

2/4.

Therefore we can move the second term in the right hand side of (4) to the left hand side, and since we
consider the supremum of the linear sum of such expectations, we get the desired result. Hence,

Φd(A) ≤ Ck−1 sup
fi∈Fi:i=1...k

∑
I

A[I]E(

(
k−1∏
i=1

G1
i (fi(I))

)
Gk(fk(I))).

For the last step we cannot use the analogue of (5) since in the right hand side we do not have any more a
variable whose Fourier expansion involves only the Rademacher functions. However, we can use the same
argument as in the end of the proof of Theorem 6. Since we are using it to eliminate only one term (rather
than 2k − 1, as in the proof of Theorem 6) we only pay at most another factor of Ck−1. This concludes the
proof.
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