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We provide a functional measure, the synaptic information efficacy (SIE), to assess the impact of
synaptic input on spike output. SIE is the mutual information shared by the presynaptic input and
postsynaptic output spike trains. To estimate SIE we used a method based on compression
algorithms. This method detects the effect of a single synaptic input on the postsynaptic spike output
in the presence of massive background synaptic activity in neuron models of progressively increasing
realism. SIE increased with increases either in time locking between the input synapse activity and the
output spike or in the average number of output spikes. SIE depended on the context in which the
synapse operates. We also measured SIE experimentally. Systematic exploration of the effect of
synaptic and dendritic parameters on the SIE offers a fresh look at the synapse as a communication
device and a quantitative measure of how much the dendritic synapse informs the axon.

The word synapsis, later modified to synapse, was coined in 1897
(from the Greek word ouvartta to clasp) by Lord Sherrington to
describe the functional connection between neurons. Sherring-
ton! noted that “...each synapsis offers an opportunity for a
change in the character of nervous impulses, that the impulse as
it passes over from the terminal arborescence of an axon into the
dendrite of another cell, starts in that dendrite an impulse having
characters different from its own.” Indeed, it is now common
knowledge that the typical chemical synapse transforms the all-
or-none spike in the presynaptic axon into a graded response in
the dendrites of the postsynaptic neuron, and that the synapse
shows activity-dependent modification. We must understand the
intricacies of the synapse if we are to comprehend how networks
of neurons operate collectively and how memory and learning
are embedded in such networks. Over the past 50 years, the
synapse has become a focus of intense research, and, as a result,
we have become intimately familiar with the fine anatomy, mol-
ecular biology and biophysical properties of the synapse.

The understanding of synapses at the functional level is, how-
ever, surprisingly limited. Basic questions remain regarding infor-
mation processing by the synapse, including: What is the
appropriate measure for the effect of a synapse? What is the rela-
tionship between the biophysical parameters of a synapse (such as
the release probability and the amplitude of the postsynaptic
potential) and the efficacy of the synapses in the functional sense?
Are there plausible learning rules that optimize the effect of a
synapse? (See, however, refs 2-5.)

The need to assign a functional meaning to the synapse is
reflected in the popular use of the term synaptic efficacy, typi-
cally preceded by phrases such as maintenance of, regulation of
and redistribution of. In the biophysical realm, synaptic efficacy
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is typically characterized by parameters associated with specific
synaptic mechanisms, such as the number of transmitter quanta
released (per spike), the release probability, the peak value (or
time integral or rise time) of the postsynaptic potential or the
synaptic conductance change®’. If the value of these parameters
increases, the synapse should have a stronger impact on the out-
put of the postsynaptic neuron. But which of these parameters
is functionally the most relevant? In addition, in experimental
explorations of the synaptic effect, researchers typically treat the
synapse in isolation, ignoring the fact that in vivo the synapse
acts in the presence of massive background synaptic activity®=!1,
Should we consider the effect of an isolated synapse, ignoring the
context provided by the other active synapses?

A functional link between synaptic parameters and the fir-
ing of the postsynaptic neuron is provided by the cross-corre-
lation (CC) measure. Because the shape of the CC is closely
related to the time course of the postsynaptic potential'2~13, the
question remains: Which of the parameters that characterize the
CC is functionally the most relevant, its peak, its rise time or
rather its time integral?

A rigorous definition for synaptic efficacy (or synaptic weight)
can be found in the field of connectionist theory, in which the
synapse is modeled by a single scalar, w;;, that characterizes the
strength of the connection between neuron j and neuron i. With-
in this framework, learning algorithms and memory formation
rely on activity-dependent changes in the value of w;;1415. How-
ever, in the connectionist framework, neurons are highly simpli-
fied elements, and the relationship between the compact
description of the synaptic weight, w;;, and the actual biophysical
parameters of real synapses is not wefl defined (but see O. Shriki,
et al., Soc. Neurosci. Abstr. 24, 143, 1998).
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Fig. 1. Single dendritic synapses, among
many other synapses, do matter.
(a) Layer 5 pyramidal neuron from the cat
somatosensory cortex®® used for the
model. 400 excitatory synapses (peak
conductance, Gy, = 2 nS) were uniformly
distributed over the dendritic surface
(small magenta dots); each synapse was
activated randomly 10 times s™'. A further
100 inhibitory synapses were uniformly
distributed; each synapse was activated at
random, 65 times s~' (cyan dots; see
Methods). The dendritic tree and axon
were excitable as in ref. 21. (b) An extra
excitatory input synapse (identical to all
other excitatory synapses) was placed at
either a proximal or a distal dendritic site
(corresponding arrows in a). The resul-
tant single somatic EPSPs are plotted in
the absence of background synaptic activ-
ity. (c) Voltage response at the soma when
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the input synapse was located proximally (red) or distally (blue). In these example traces (800 ms of a 200-s simulation in each case), the difference
between the two cases is evident. Except for the re-allocation of the input synapse, all other model parameters were identical for the two simulated
cases, including the activation times of the input synapse (marked by vertical bars at bottom) and of the background synapses. (d) Histogram of the
absolute difference between the somatic voltage traces for the two simulated cases (after removal of spikes), revealing that these differed by >0.5 mV
more than 0% of the time. (e) The CC between the input spike train and the output spike train for identical simulations, except for the input synapse
that was potentiated (G, = 8 nS; red, proximal input synapse; blue, distal input synapse).

We propose to treat the synapse as a communication device
that receives a train of presynaptic spikes and, through a graded
analog response, affects the spike train at the postsynaptic neuron.
Information theory enables one to quantify the efficacy of the
synapse by measuring the mutual information between the input
and the output spike trains*~>1%-18, This measure is henceforth
termed SIE. Utilizing the context-tree weighting compression algo-
rithm!®, we estimated the SIE in the presence of realistic massive
background synaptic activity. Consequently, we provide insights
into the effect of a variety of synaptic and dendritic parameters, as
well as the statistical properties of the background synapses, on
the information transmitted by the synapse. Ultimately we would
like to know what a single dendritic synapse, among the crowd of
many other synapses, tells the postsynaptic axon. This, however,
requires knowledge of the neuronal code. Nonetheless, we may ask
an intermediate question: how much does the synapse tell the axon?

RESULTS

A single synapse matters for spike output

The dendritic location (proximal versus distal) of even a single
excitatory synapse, activated in the presence of massive background
synaptic bombardment (Fig. 1a), can have a noticeable effect on
axonal spike output (Fig. 1c). Specifically, some of the output spikes
that were elicited in one case disappeared, or were shifted by a few
milliseconds, in the other case. Nothing in the very small differ-
ence between the two corresponding isolated excitatory postsy-
naptic potentials (EPSPs) measured at the soma (Fig. 1b) explained
the marked difference between the two cases (Fig. 1d). This non-
linear effect was the result of the threshold for spike firing at the
axon, as well as the complex nonlinear interaction between the
active soma-axon region and the excitable dendrites?0—24,

Is there a systematic method to quantify the effect of an indi-
vidual synapse on spike output? This effect depends both on the
parameters of the input synapse, in particular the properties of
the somatic EPSP'>2-27, and on the properties of the postsy-
naptic neuron (cable properties of dendrites, excitability of the
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axon) as well as the background synapses. Hence, the effect of a
given synapse on spike output should be quantified statistically
(as is the CC measure), because it depends on the state of the
neuron when the synapse is activated.

The difficulty in quantifying the effect of a synapse using the
CC is illustrated in Fig. le. Although there was a clear deviation
from the baseline for both proximal and distal inputs, it was not
clear which parameter of the CC was relevant for quantifying the
efficacy of the synapses. In addition, the CC for the proximal input
(red) showed two peaks, implying a tendency for spike doublets,
whereas no such double peak appeared for the distal input (blue).
How should one quantify the difference between these two cases?

Effects of synaptic parameters on SIE
We propose that the mutual information (MI) between the spike
train that activates the input synapse and the spike train at the
postsynaptic neuron is the natural measure for the efficacy of this
synapse. This measure, SIE, functionally links the properties of
the synaptic input to the neuron’s output.

The concepts of information and entropy are closely linked.
Consider the spike train as a sequence of the symbols ‘0’ and ‘1’
(Fig. 2a) and the neuron as a generator of these symbols. The
entropy rate (in bits s7') of the output spike train measures the
average degree of uncertainty regarding whether the next sym-
bol will be ‘1’ or ‘0’ The larger the entropy, the less certainty there
is. Suppose now that the spike train activating the input synapse
is known. If the synapse does affect the output then, on the aver-
age, we expect that our uncertainty about the next symbol would
decrease. This reduction in uncertainty is quantified by the MI
between the input and the output spike trains. Data compres-
sion provides another perspective on these quantities (Fig. 2a).
(For formal definitions of entropy, conditional entropy and MI,
see Supplementary Methods 1 on the supplementary informa-
tion page of Nature Neuroscience online.)

We started with the simplest neuron model, consisting of an
isopotential resistance-capacitance (RC) compartment with an
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Fig. 2. Ml as a measure of synaptic efficacy. (a) At left, a model of an
isopotential RC compartment with an I&F spike mechanism. The back-
ground synaptic input consisted of 400 excitatory synapses and 100
inhibitory synapses activated as described in Methods. We arbitrarily
assigned one excitatory synapse to be the input synapse (red) and set the
threshold for spike firing at 10 mV above the resting potential. This model
produced an average output firing frequency of 10 spikes s~!, with nearly
random statistics (coefficient of variation (c.v.) = 0.75—1.1, depending on
the strength of the input synapse). At right (blue), a 500-ms stretch of the
voltage fluctuation (output). To compute the MI, we transformed all spike
trains into strings of ‘0s’ and ‘Is’, using a temporal bin of 3 ms (binned
output, blue). An illustrative example for estimating the Ml using a com-
pression algorithm is also shown (see Methods for the actual method
used). The binned output spike train was compressed using the rules
denoted in the green box. This compression resulted in a shorter string
of ‘0s’ and ‘Is’ (green). Its length, divided by the total duration of the out-
put, was an estimate of the entropy rate of the output spike train.
(The true entropy rate is the limit for a very long string and an ideal com-
pression algorithm.) If the spike train arriving at the input synapse is
known, the output spike train can be compressed even further using, for
example, the rule described in the lower table with the input
000000010000000000000100000000000000000000. The length of this
short output string (compressed output given input) is the conditional
entropy. The Ml is the difference between the output entropy and the
conditional entropy; it measures how many bits of information were saved
in the compressed output spike train by knowing the input. (b) The Ml
(henceforth SIE) between the presynaptic input spike train and the output
spike train, as a function of the peak current of the input synapse (filled
circles). We also plotted the estimated SIE of one excitatory background
synapse (+,SIE.nero), the entropy of the input spike train (dashed line),
the entropy of the output spike train (asterisks) and the conditional
entropy of the output, given the input spike train (stars). Error bars in the
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SIE for the input synapse represent 2 s.d., computed over 25 repetitions of the simulation with different seeds. Because of estimation bias for very
weak inputs, the estimated SIE could obtain negative values. Because this never exceeded —0.5 bits s', no correction was made.

integrate-and-fire (I&F) spike generation mechanism (Fig. 2a). In
this model, both the input synapse and the background synapses
(the noise) were linear current sources. Figure 2b summarizes the
results for the case in which the peak current of the input synapse
was potentiated. SIE between the input synapse and the output
spike t.rain, SIEinput synapser Was sigmoidal function of the peak
synaptic current. For small inputs, the SIE was close to zero and, as
expected, it was not markedly different from other background
(nonpotentiated) synapses, SIE_, .- With further potentiation,
the SIE increased monotonically until it reached saturation. In this
regime, the input synapse was so powerful that, when activated, it
always triggered an output spike; additional potentiation did not
affect further the output and, thus, no information was accrued.
Although very strong inputs are physiologically rare (but see
ref. 28), the case of a strong temporal correlation among several
excitatory synaptic inputs is similar to that of a strong synapse.
The saturation of the SIE sets a limit on the number of correlated
inputs for maximizing information transmission by this synaptic
input!'2°-30 (but see the extension in Fig. 5 for a more realistic,
conductance-based spike generation mechanism). For the Poisson
input spike train used here, with an average firing rate of r = 10
spikes s! for the excitatory synapses and a sampling bin size of At
= 3 ms, the entropy was H = r X log,(e)/(r X At) = 10 x log,(e)/
(10 X 0.003) = 65 bits s~! (Fig. 2b; dashed line, input entropy). For
any mean firing rate, the input entropy is maximal for spike trains
with Poisson statistics, and is zero at the opposite extreme of a reg-
ular-input spike train'”.

Figure 2b also depicts the entropy of the output spike train,
H(S,,1)> as well as the entropy of the output given the input (the
conditional entropy, H(S,,|Si,))- SIE is the difference between
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these two quantities. At low firing rates, assuming nearly Pois-
son statistics, the probability of a spike at any given time is low,
implying only low uncertainty regarding the output (that is, we
were fairly certain that there would be no output spike in the next
bin). In this regime, the uncertainty increased with increases in
the firing probability. Thus, the entropy of the output spike train
increased after synaptic potentiation (which caused an increase in
the average output firing rate; top curve in Fig. 2b). The condi-
tional entropy was smaller than the output entropy because, given
the knowledge of the input spike train, the predictability of the
output spike train was improved.

Plastic properties of the synaptic machinery as well as the pas-
sive and active cable properties of dendrites?®3! may affect both
the amplitude and the shape of the somatic EPSP32-33, Conse-
quently, EPSPs come in many shapes and amplitudes, and it is
important to explore the effect of the EPSP shape indices on the
SIE. In Fig. 3 (left column), the peak EPSP of the input synapse
was held constant whereas its time course changed (left, inset at
top). In Fig. 3a, we measured the SIE as a function of the EPSP
time-to-peak for four EPSP peak amplitudes (right), leaving all
background synapses unchanged. All four curves were rather flat,
implying that for the I&F model and the specific input EPSPs
simulated here, the SIE is mainly affected by the value of the EPSP
peak, rather than by other shape indices of the EPSP (but see
below).

In many studies, the efficacy of a synapse is measured with
respect to the input charge the synapse generates?>33-34, Figure 3b
shows the correspondence between synaptic charge and the SIE
when the synaptic charge was held constant for all input EPSPs
and the SIE was plotted as a function of the EPSP time-to-peak.

nature neuroscience * volume 5 no 4 + april 2002
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Fig. 3. Effect of EPSP shape indices on the SIE. (a) The SIE as
a function of the EPSP time-to-peak, with fixed EPSP peak.
Four peak values for the input EPSP were considered (peak
values at right). Inset at top shows 2 representative EPSPs,
both with 2.4 mV peaks and a time-to-peak of | ms and
10 ms, respectively (scale bar, 10 ms, 2 mV). EPSPs were sim-
ulated by an a-function (see Methods). Arrows at bottom
mark the SIE for these representative EPSPs. (b) As in (a) but
the input synapse injected a fixed charge (see Methods).
Inset depicts 2 EPSPs, both with input charge of 0.1 nCand a

1
EPSP time to peak (ms) EPSP time to peak (ms)

time-to-peak of | ms and 10 ms, respectively. (c, d) Input
EPSP (top frames, same EPSPs as in insets of a and b) and the
corresponding raster plot (middle) and CC (bottom). In the
raster plots, for every input spike (aligned at time 0), we
plotted the output spikes in the subsequent 30-ms time win-
dow. We sorted the plots such that cases with at least | out-
put spike in the time window appeared in the lower part. We
omitted spikes preceding the input spikes for clarity. The
horizontal dashed line shows the number of time windows

L containing spikes that were expected by chance (computed
by randomly sampling the 200-s long-output spike train in
30-ms bins, and multiplying the proportion of windows con-
taining at least | spike by the total number of input spikes).
The CC (lower frames) was computed between the input
spike train and the output spike train (open area), as well as
between one background spike train and the output spike
train (filled area). A bin size of | ms was used. The same I&F

model as in Fig. 2 was used.

The two lower panels in Fig. 3¢ show the CC
between the input spike train and the output spike
train. The sharp CC corresponded to the brief EPSP,
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Although the synaptic charge was fixed, the SIE decreased
markedly with increases in the EPSP time-to-peak.

To better understand the results in Fig. 3a and b, Fig. 3¢ exam-
ines the effect of the input synapse with a fixed peak EPSP amplitude
once for a brief input EPSP (top left), and once for a broad EPSP
(top right), keeping the background activity identical. The raster
plot (middle) shows the output spikes in a 30-ms time window after
each of the spikes activating the input synapse. In the left raster plot,
655 input spikes (of a total of 1,942) were followed by an output
spike within the 30-ms time window. As expected from a sharp
EPSP, in most cases the output spike was tightly locked to the input
spike (dense vertical region near time 0). For the broader EPSP
(right), almost twice (1,095) the number of input spikes were fol-
lowed by an output spike within the time window. However, the
time locking of the output spikes was less precise. These two con-
sequences of EPSP broadening (the increase in probability for an
output spike and the decrease in the time locking) affected the SIE
in opposite directions, leading to flat curves in Fig. 3a.

Fig. 4. SIE is context dependent. (a) Effect of activation frequency of
the input synapse on the SIE. Three EPSP peak amplitudes were consid-
ered. Background frequency remained fixed at 10 spikes s~'. (b) Effect of
the frequency of the background excitatory synapses on the SIE. The
results for 6 values of peak input EPSPs are shown. To preserve the bal-
ance between excitation and inhibition, when the frequency of the back-
ground excitatory synapses was increased, G, for the inhibitory
synapses was increased proportionally. Neuron model and the back-
ground synapses were as in Fig. 2.
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whereas the broad EPSP resulted in a shallower CC
covering a larger area. This increase in area corresponds
to the increase in the probability for an output spike
with an increase in the EPSP area. Both CCs were nar-
rower than the corresponding EPSPs!2.

When the synaptic charge was held constant (Fig. 3d), the
probability of an output spike, given the input spike, was virtually
unaffected by the shape of the EPSP. In fact, the number of out-
put spikes in the 30-ms time window after an input spike was
almost identical for both the sharp and the broad EPSPs (978
versus 961, respectively; Fig. 3d, middle), and the area of the cor-
responding CCs was also similar (Fig. 3d, bottom). However, the
accuracy (time locking) of the output spikes became less precise
when the EPSP was broader. The consequence was a decrease of
the SIE with broadening of the EPSP, as depicted in Fig. 3b. This
decrease in temporal accuracy may have resulted in a marked
decrease in the information rate transmitted by the synapse. For
example, observing the top curve in Fig. 3b, the SIE for an EPSP
with a 1-ms rise time was 18.2 bits s™!, whereas it was only
5.4 bits s7! for an EPSP with a 14.5-ms rise time.

In summary, the EPSP shape affected both the probability of
an output and the time locking (temporal accuracy) between the
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Fig. 5. Effect of dendritic input location on the SIE. (a) Model Background synapses

used consisted of a |-A-long passive cylindrical dendrite, which

Axon

was coupled to an isopotential passive soma. An axon with

@ UL o~

Hodgkin-and-Huxley-like kinetics2! was connected to the soma.

v
We uniformly distributed 400 excitatory and 100 inhibitory con- DistalT
ductance-based synapses over the dendritic cylinder (see | d
Methods). We placed the excitatory input synapse at one of 3 40 —401
Proximal

locations (proximal, red; middle, green; distal, blue). (b) The SIE
as a function of peak synaptic conductance for the 3 input loca- 30 _M
tions depicted in (a). Inset shows the resultant soma EPSPs
when the input synapse was activated alone. (c) Same as in (b),
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but the SIE was plotted as a function of the peak soma EPSP gen-
erated by the input synapse. This peak was measured after
incorporating the shunt imposed by the background synaptic
activity into the dendritic membrane conductance®'!. To allow o 2 w0 e
for measurement of suprathreshold EPSPs, active conductances Gyyn (0S)

at the axon were set to their value at the resting potential.  C
(d) Top, two-soma EPSPs measured in the absence of back-
ground activity. The EPSP at left was just at threshold when acti-
vated alone (taking into account the average depolarization and
conductance change due to background synaptic activity). The
EPSP at right was twice the just-threshold EPSP. Middle, 25 ran-
domly chosen superimposed somatic voltage traces that fol-
lowed the activation of the input EPSPs shown at top. (All EPSPs 500
were aligned at time 0.) Bottom, the corresponding raster plots. 0
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input spike and the output spike. Each of these effects corre-
sponded most closely to one of the factors determining the SIE.
The change in the probability of an output spike mainly affect-
ed the output entropy, H(S,,,), whereas the accuracy of the out-
put spike, given an input spike, mainly affected the conditional
entropy, H(S,,1|S;,)- Thus, when we kept the synaptic charge fixed
while increasing the EPSP rise time, the average rate of output
spikes remained almost constant, and thus the output entropy
was also fairly constant. The conditional entropy, in contrast,
increased with the increase in the EPSP rise time (the uncertain-

synaptic charge).
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Fig. 6. SIE in nonlinear dendrites. (a) Subthreshold nonlinearities. The same model as in Fig. 5 with a low den-
sity (I pS Um™2) of voltage-dependent Na* ion channels over the dendritic surface. To enhance membrane
voltage fluctuations, soma input resistance was slightly increased and the time-to-peak of G, , was decreased
to 0.3 nS. The SIE as a function of peak G, is shown for the proximal, middle and distal input synapses (con-
tinuous line for the active case and dashed line for the corresponding passive case). (b) Suprathreshold nonlin-
earities. A simplified model of a pyramidal cell composed of a soma, apical dendrite and 4 tuft and 4 basal
dendrites (only 2 of each are shown). Kinetics and spatial distribution of active currents were identical to
those in Fig. |. Density of both voltage-dependent Ca** channels and of Ca**-activated K* channels was
increased in the tufts to 10 pS um~2 and the density of dendritic Na* channels was reduced to 16 pS um=2.
Sufficiently strong current input at the proximal location induced a single Na* action potential in the axon,
which propagated semi-actively backward into the apical dendrite (top left). Current input to the distal apical
dendrite induced a dendritic Ca** spike, which resulted in a burst of Na* spikes in the axon (top right). At bot-
tom, examples of the somatic action potentials with background synaptic activity when Gsyn progressively
increased. Vertical dashed lines show the activation times of the input synapse. With potentiation of the distal
synapse (blue trace at top), bursts of spikes appeared in some cases, and some background spikes disappeared
(dashed circle). (c) The SIE as a function of G, for the 3 input synapses depicted in (b). With small potentia-
tion, the distal synapse (blue) became more effective than the basal synapse. For larger potentiation, the SIE of
the distal input was even larger than that of the proximal synapse.
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ty regarding the time of occurrence of an output spike was larg-
er) and approached the output entropy. Because the SIE is the
difference between the output entropy (which remained fairly
constant) and the conditional entropy (which increased), the SIE
decreased when the EPSP rise time increased (assuming constant

In contrast, when we kept the EPSP peak constant while
increasing its rise time, the synaptic charge increased. This result-
ed in an increase in the output rate (an increase in H(S,,)),
whereas the accuracy of the output spikes, given an input spike,

decreased (an increase in
H(S,4Sin))- Because both the
output entropy and the condi-
tional entropy increased at the
same rate when the rise time
increased, the SIE remained
almost constant for the specific
EPSP time course simulated in
Fig. 3a. Indeed, for a fixed volt-
age peak, it is the balance
between the EPSP rise time and
the EPSP charge that determines
SIE. For example, for a fixed
EPSP peak value and rise time,
an increase in SIE was expected
with an increased synaptic
charge. This was the case when
comparing the left columns in
Fig. 3c and d. For these two
EPSPs, both amplitude and rise
time were almost identical, and
only the synaptic charge was larg-
er for the EPSP in the left column
of Fig. 3d. Consequently, SIE
associated with the broader EPSP
was 2 bits s~! and that associated
with the brief EPSP was only 0.53
bits s~! (Fig. 3a and b).
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SIE is context dependent
The SIE depended not only on the proper-
ties of the input synapse but also on the sta-
tistics of the input and the output spike
trains. Changes in either the properties of
the background activity (the context) or
the characteristics of the input spike train
were expected to affect the SIE. In Fig. 4a,
the frequency of the spikes activating the
input synapse increased whereas the fre-
quency of the background synapses
remained fixed. We computed the SIE for
the input synapse as a function of the input
frequency for three peak EPSP values
(denoted at right). All curves increased
monotonically with input frequency
because more output spikes per unit time
were contributed by the input synapse.
Increasing the input frequency also
increased the input entropy. Normalizing
the SIE by the input entropy resulted in an
almost constant value of 0.05, 0.3 and 0.6
(unitless) for the cases plotted, respective-
ly. This implies that, for a given EPSP peak
and background statistics, the fraction of
the information contained in the input that
was conveyed by the synapse was almost
independent of the input frequency.

In Fig. 4b, we fixed the frequency of the
input synapse and increased the frequency
of the background synapses. For low back-
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Fig. 7. Experimental measurements of the SIE. (a) Layer 5 pyramidal neuron from the somatosen-
sory cortex filled with biocytin and reconstructed in 3D. We used a patch electrode at the soma
to inject a fluctuating background current, which mimicked random background synaptic activity
(see Methods). We used a second extracellular electrode to stimulate synaptic input. (b) Average
somatic EPSP recorded in this neuron in response to 4 extracellular stimulus intensities.
(c) Sample voltage recording (1 s) showing the response to the background current (black trace)
and to the strongest extracellular stimulus (red input in b) activated together with the back-
ground input (red trace). The vertical red ticks show the times of extracellular stimulus activation;
the longer ticks depict the cases in which the input EPSP was followed by a time-locked output
spike. (d) The corresponding cross-correlograms (black, background alone; colors, correspond-
ing inputs in b were activated together with the background input). (e) The SIE was plotted as a
function of the average somatic EPSP amplitude for 6 different cells (each represented by a differ-
ent symbol and color). A sigmoid function (black line) was used for the fit. The arrow marks the

ground frequencies and a relatively weak
input synapse, the probability that the input

result for the case depicted in red in (b—d).

synapse would trigger an output spike was

low and the corresponding SIE was small (lower curves). Mem-
brane voltage fluctuations increased with an increase in back-
ground frequency, and this increased the probability that the input
synapse would cross threshold for spike firing. Therefore, the SIE
increased in this regime (early rising phase). A further increase in
the background activity increased the noise (more output spikes
resulted from the background activity), and, consequently, the
efficacy of the input synapse was reduced. Indeed, for small and
intermediate values of the input synapse, the SIE showed a max-
imum at relatively low background frequencies. These results
agreed with results from stochastic resonance theory?>. In the case
of very large input EPSPs (top curve), for which every input spike
triggered an output spike in the absence of background activity,
the SIE was reduced monotonically with increases in background
frequency. SIE may have been affected by temporal correlations
within the background activity, depending on whether the input
synapse was correlated with the background (not shown).

SIE in dendritic neuron models

The I&F model used thus far ignored the effect of cable properties
of dendrites on the integration of synaptic inputs, as well as the
effect of the dynamics of the spike generation mechanism in the
axon. Because of the passive cable properties of dendrites, the peak
of the EPSP severely attenuates and is delayed, and the time course
(shape) of the EPSP changes as it spreads from the dendrites to the
soma. The farther the input is from the soma, the slower the rise
time and the broader the resultant somatic postsynaptic poten-
tial313436-37 In contrast to the considerable attenuation of the
postsynaptic potential’s peak, a substantial fraction of the synaptic
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charge does reach the soma®”. Background synaptic activity dra-
matically increases the membrane conductance of the dendrites,
leading to an increase in their electrotonic length and to a decrease
in the effective membrane time constant®-11-38, Realistic spike
mechanisms may introduce complicated subthreshold nonlinear-
ity and history-dependent membrane voltage dynamics. Figure 5
shows the neuron model used, consisting of a passive cylindrical
cable (dendrite) coupled to an isopotential soma, which is attached
to an excitable axon with a Hodgkin-and-Huxley-like spike mech-
anism?!. Excitatory and inhibitory synapses were distributed over
the dendritic surface, and each was simulated as a transient con-
ductance change (see Fig. 5a and Methods).

In Fig. 5b, we plotted the SIE as a function of the peak synap-
tic conductance for three dendritic input sites (proximal, middle
and distal). The curve for the proximal synapse (red) was quali-
tatively similar to that found for the I&F model in Fig. 2b, imply-
ing that the qualitative behavior of SIE was model independent.
The SIE for the middle and distal synapse did not reach satura-
tion even for very large synaptic conductance. This was the direct
consequence of the local saturation of the synaptic current at the
input site, as well as the severe attenuation of the peak EPSP in
the dendrite. As a result, in passive dendrites, distal dendritic
synapses were substantially less efficient than proximal synapses.

In the I&F model, the EPSP peak corresponded closely to the
SIE, whereas the exact shape of the EPSP had a relatively minor
effect (Fig. 3b). In Fig. 5¢, the same data as in Fig. 5b were plot-
ted against the peak amplitude of the soma EPSP. We measured
this peak after rescaling the passive membrane conductance of
the cylindrical dendrite to account for the effective change in
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dendritic membrane conductance due to the background synap-
tic activity®!1. The three curves overlapped, implying that, as in
the I&F model, the relationship between the EPSP peak and the
SIE was very similar for all synaptic locations. However, this
occurred only when the EPSP peak was rescaled to incorporate
the shunting effect of the background synaptic activity. This is
yet another aspect of the dependence of the SIE on the context
within which the input synapse operates (see Discussion).

The spike generation mechanism affected the SIE in a man-
ner that was not seen in the I&F model (Fig. 5d). The top frames
show two suprathreshold EPSPs (just-threshold EPSP at left and
twice-threshold EPSP at right). Both EPSPs were initiated at a
proximal site and almost always generated a spike when activat-
ed in the presence of all other background synapses (Fig. 5d, mid-
dle and bottom). However, the larger EPSP at right generated
more accurate (time locked) output spikes. This increase in tem-
poral accuracy of the output spike was mostly due to the short-
ening of the delay in spike initiation with an increase in the
temporal derivative of the input EPSP!23°, (Compare dashed
curves, a representative spike, in the top frames of Fig. 5d.) The
two arrows in Fig. 5¢ indicate the corresponding SIE for these
two EPSPs. Although both EPSPs were suprathreshold and yield-
ed approximately the same total number of output spikes, the
SIE increased by 15 bits s~! because of the increase in time lock-
ing for the larger EPSP.

Effects of dendritic nonlinearities on the SIE

Dendrites are equipped with a variety of voltage-gated ion chan-
nels. When activated, these channels may affect the shape and
amplitude of the input EPSP, and they may also have a substan-
tial effect on the membrane voltage fluctuations (noise) due to
background synaptic activity'®4. Figure 6 highlights some effects
of excitable dendrites on synaptic information efficacy.

Figure 6a focuses on the effect of dendritic nonlinearities in
the subthreshold regime. Voltage-gated Na* channels at very low
density were uniformly distributed over a passive cylindrical den-
drite. With a relatively large local excitatory conductance change
at distal locations, these ion channels boosted the single EPSP, as
measured at the soma, approximately twofold (not shown). For
proximal inputs, the amplification due to the excitable dendritic
channels was relatively much smaller. (Distal inputs experienced
larger local depolarization, and they also had the advantage of
being amplified while propagating towards the soma.) The mem-
brane voltage fluctuations due to background synaptic activity
as measured at the soma were also boosted by the voltage-gated
dendritic ion channels but to a relatively lesser degree as com-
pared with the boosting of individual distal excitatory inputs.
The result was an increase in the SIE for distal synapses in the
active case as compared with the corresponding passive case (blue
curves in Fig. 6a). The opposite was true for proximal inputs. In
the case of an excitable dendrite, the enhanced noise due to back-
ground synaptic activity overwhelmed the (relatively small)
amplification of individual proximal inputs. As a consequence,
the SIE of the proximal synapses was reduced in the excitable case
(red curves) as compared with the passive case. The interactions
among dendritic geometry, background synaptic activity, input
location and membrane excitability determined whether the effi-
cacy of a given input will increase, decrease or remain unaffected
by dendritic excitability.

Figure 6b shows the case of a high density of voltage-gated Ca**
channels at distal dendritic tufts. Sufficiently strong individual
inputs at proximal sites gave rise to a single Na™ action potential
in the axon (top left). This action potential propagated actively
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backwards (with attenuation) into the dendrites. When this synap-
tic input was activated at the distal tuft, a large Ca*™* spike was ini-
tiated locally, and this resulted in a burst of Na* action potentials in
the axon (top right)?®>. When background synaptic activity was
present (bottom traces), strong distal inputs gave rise to occasion-
al bursts of spikes at the soma (encircled blue trace), which were
typically followed by a quiescent period without action potentials.
These added spikes in the axon that were followed by a decrease
in the background spikes may have resulted in a larger SIE for dis-
tal inputs, as compared with corresponding proximal inputs (the
blue curve crosses the red curve for large G, values in Fig. 6c¢).
Thus, suprathreshold dendritic nonlinearities may counterbalance
the effect of voltage attenuation in dendrites as well as the effect
of background noise.

Experimental measurements of SIE

The SIE can also be measured under experimental conditions,
where trial-to-trial variability and other noise sources exist
(Fig. 7). Somatic patch recordings were made from six cortical
pyramidal neurons in a slice preparation, and a fluctuating cur-
rent was injected through this electrode to simulate random back-
ground synaptic activity. A test excitatory synaptic input was
delivered through extracellular stimulation, and the voltage
response of the postsynaptic neuron to the combination of back-
ground noise and the synaptic input was measured. Increasing
the strength of the extracellular stimulation resulted in EPSP sizes
ranging from 2 to 12 mV (Fig. 7b). The effect of this input on
the output spike train can be seen in the raw traces (Fig. 7c) and
in the corresponding CC plots (Fig. 7d). Because the background
voltage fluctuations were large (as required for generating an
average spike rate of 10 spikes s7!), a relatively strong synaptic
input was required to elicit time-locked spikes.

The summary of the results for the SIE in all six cell recordings
is shown in Fig. 7e. The arrow points to the specific case shown in
Fig. 7b and ¢ (red trace). Despite the large noise expected when
pooling responses from different cells (with different input resis-
tance, different voltage threshold for spike firing and substantial
fluctuations in the response to the synaptic stimulus, for example,
due to short-term synaptic dynamics), it was possible to measure
the SIE reliably. Furthermore, the SIE increased with EPSP size as
theoretically expected (Figs 3-5). In this set of experiments, the
SIE was far from saturation. Indeed, even the largest input EPSP
that was used did not always generate an output spike (Fig. 7c).

DiscussioN
Synapses are primarily responsible for transmitting information
among nerve cells. It is thus useful to explore the theoretic impli-
cations of the electrical and plastic characteristics of synapses for
this information transfer. The SIE, the new measure suggested
in this study, makes it possible to assess the key factors at the
synaptic, dendritic and network levels that govern information
transmission by an excitatory synapse. The general theoretical
approach used here can easily be extended to explore questions
such as: what factors determine the SIE of inhibitory synapses?
What is the effect of synaptic dynamics (short-term depres-
sion/facilitation), as well as the probabilistic nature of the synaps-
es, on the SIE? What is the effect of the input structure (for
example, of bursts of spikes activating the input synapse*!), as
well as the spike generation mechanism in the axon, on the SIE?
The SIE is not a set number for a given synapse, but depends
on the properties of the network in which the synapse is embedded
(the number, strength and statistics of background synapses—that
is, the context). For a given context, one may explore the effect of
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specific synaptic or dendritic parameters on the amount of infor-
mation that the synapse transmits. It is the relative (rather than
absolute) values of SIE in the different cases explored that provide
the key insights obtained in this study.

The information transmitted by an excitatory synapse increas-
es with the average number of output spikes initiated by the
synapse, as well as with the accuracy of time locking between the
input synapse and the output spike. Increases in output rate are
most sensitive to the total synaptic charge at the soma/axon
region, whereas the degree of time locking between input and
output is most sensitive to the rate of rise of the somatic
EPSP!2%. In passive dendrites, for a given peak somatic EPSP,
the increase in rise time associated with distal synapses (implying
temporally less accurate output spikes) is accompanied by broad-
ening of the EPSP. In terms of the SIE, these two opposite effects
tend to cancel each other, making distal and proximal synapses
with similar somatic EPSP peaks (measured after incorporating
the shunting effect of network activity; Fig. 5¢) roughly equally
effective. This correspondence between the isolated somatic EPSP
amplitude and the SIE is no longer valid when voltage-gated den-
dritic processes are important in determining the voltage dynam-
ics. It would also be erroneous to assume that the isolated peak
soma EPSP is a good predictor of the SIE when the background
synapses are correlated with the input.

The severe attenuation of the EPSP peak from distal inputs
implies a considerable reduction in the SIE in passive trees com-
pared with proximal synapses. It is possible to boost the SIE of
distal synapses by increasing the synaptic conductance of distal
dendritic synapses*>. When many such synapses operate simul-
taneously, however, as is the case in vivo, they substantially shunt
the dendritic membrane and this reduces the peak soma EPSP
from distal synapses considerably more than those for proximal
synapses!l. Alternatively, voltage-gated mechanisms (either at
the synapse or at the dendritic membrane) could compensate for
the dendritic voltage attenuation®®3343-44, As a consequence, the
SIE could become similar (or even larger) for distal compared
with proximal synapses. An important message of this study is
that any boosting mechanism that enhances individual synaptic
input also affects the noise associated with all other background
synapses! 40, Whether the boosting mechanism increases or
decreases the SIE of a given input depends on the ratio between
the signal (generated by the input synapse) and the noise (gen-
erated by all other synapses).

Finally, the results presented in Fig. 7 indicate that many of
the theoretical predictions of this study are experimentally
testable. Multiple electrodes allow simultaneous recording from
the dendrites and soma of synaptically connected neurons and
quantitative computing of the SIE for various input sources, input
statistics and input locations>®23-24, If tightly linked to the the-
oretical framework presented here, these experiments should
shed light on the functional meaning of the synapse. These exper-
iments will provide an opportunity to understand the transfor-
mation of the digital character of nervous impulses to an analog
postsynaptic potential in the dendrites, which then changes back
to a digital signal in the axon of the postsynaptic neuron. The
SIE thus captures the information rate that is transmitted by this
digital-to-analog-to-digital transformation.

METHODS

Input and output spike trains. We generated random presynaptic spike
trains with a specified average rate by sampling an exponential distribu-
tion, using the random number generator of Matlab (version 5.3;
www.mathworks.com). We omitted intervals <3 ms to account for refrac-
tory periods.
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Numerical simulations. We carried out numerical simulations using
NEURON®, Each epoch simulated 200 s. We implemented an I&F spike
mechanism using a special module in NEURON that resets the voltage
(to Vet = 65 mV) after crossing of the firing threshold (=55 mV) for a
refractory period of 3 ms. We implemented synaptic inputs using a con-
tinuously integrated kinetic scheme. For a linear synapse, the synaptic
current was Iy, (1) = Gy ())(Vyyy = Vi), using Gy (1) with a shape of
an a-function. If not otherwise stated, the background activity was com-
posed of 400 excitatory synapses (V,y,, = 0 mV, £, = 0.5 ms,
Gpax = 2 1S and a mean input frequency of 10 spikes s™!) and 100
inhibitory synapses (75 mV, 0.75 ms, 5 nS, 65 spikes s™'). We preserved a
fixed synaptic charge while changing the input time course (Fig. 3b) by
increasing #,,,, and decreasing Gy, proportionally.

We generated EPSPs with a shape of an a-function (Fig. 3a) by
injecting a current that was computed using the Laplace transform of
an O-function, divided by the transform of an RC filter, and taking the
inverse Laplace transform. This method is applicable only for single

passive RC compartments.

Experiments. We made somatic patch clamp recordings from layer 5
pyramidal cells in slices of somatosensory cortex prepared using stan-
dard techniques?* from P28 Wistar rats and maintained at 32-35°C (for
details of extracellular and intracellular solutions, see Supplementary
Methods 2). To generate background synaptic input, we convolved white
noise with an exponential decay with a time constant of 1 ms and adjust-
ed the variance and amplitude to give a spike rate of (10 spikes s! with
a c.v. of [ll. We alternated sweeps with background current alone (60 s)
with sweeps where the identical background current was applied togeth-
er with synaptic input evoked by extracellular stimulation (using a Pois-
son train at 10 spikes s~! mean rate). We periodically monitored the
amplitude of the synaptic input using a 10 Hz train applied in the absence
of background input.

Estimation of the SIE. We estimated the SIE as follows:
SIE(Sin; Sout) = Hn(Sout) _Hn(Sout|Sin) (1)

where S;; and S, are the binned input and output spike trains, respec-
tively, of length n bins. H,, (S,,,) is the estimated entropy of the output
spike train (see below) and H,, (S,,,[JS;,) is the estimated output spike
train entropy given the input spike train (the conditional entropy; see
Supplementary Methods 1).

For illustration, let S,,,, = (x}, x,, ..., x,,) , where x; [1{0,1} represents
the i bin, and assume that this string is the realization of a stationary
and ergodic stochastic process x = {x;} /_ ;. We can now use the Shan-
non MacMillan Brieman theorem*:

——-log, p(x), %, e X ) ma=H @

where H is the entropy rate of X and p(x;, x;, ..., x,,) is the probability of
obtaining the string (x, X, ..., x,,) as a realization of X.

Let ﬁ(x],xz, ..» X,,) be an estimator of p(x,, x,, ..., x,,). We then use the
following estimate for the entropy:

. . X
Hn =—- log2 p(xl, X wens xn) )

The context-tree weighting algorithm proposed by Willems et al.®
provides such an estimator, denoted p} (x;,%y, ..., x,,), which is a good
estimator under all possible Markov processes with memory bounded
by an integer D. This idea can be easily applied for estimating conditional
entropies. The depth parameter D assumed by the context-tree weighting
algorithm was
10 bins (30 ms) for the simulation of the I&F model and for the experi-
mental data, and 15 bins (45 ms) for the models with realistic spike gen-
eration mechanisms. Larger values produced minor differences.

Entropy estimation is vulnerable to undersampling problems
a detailed investigation of this issue will be published elsewhere

47-49.
>
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(Schreibman et al., manuscript in preparation). We note that, in our
data, the estimation did not substantially change for spike trains
>100 s, whereas for simulations we used spike trains that were 200 s.
In the experimental data (in which we used epochs of 60 s), we com-
bined several epochs together in the counts of the weighted context tree
(see Supplementary Methods 1).

Note: Supplementary Methods are available on the Nature Neuroscience

website.

Acknowledgements

The authors thank R. El-Yaniv for his help in developing the entropy estimation
method. This work was supported by grants from the ONR, NIMH, the US-
Israel BSE, the Israel Science Foundation and the Wellcome Trust.

Competing interests statement
The authors declare that they have no competing financial interests.

RECEIVED 17 DECEMBER 2001; ACCEPTED 22 FEBRUARY 2002

20.

Sherrington, C. S. The central nervous system. in A Text-Book of Physiology
7th edn. Vol. 3 (ed. Foster, M.) (Macmillan, London, 1897).

Tsodyks, M. V. & Markram, H. The neural code between neocortical
pyramidal neurons depends on neurotransmitter release probability. Proc.
Natl. Acad. Sci. USA 94, 719-723 (1997).

Abbott, L. F, Varela, J. A., Sen, K. & Nelson, S. B. Synaptic depression and
cortical gain control. Science 275, 220-224 (1997).

Manwani, A. & Koch, C. Detecting and estimating signals over noisy and
unreliable synapses: information-theoretic analysis. Neural Comput. 13, 1-33
(2001).

Fuhrmann, G., Segev, I., Markram, H. & Tsodyks, M. Coding of temporal
information by activity-dependent synapses. J. Neurophysiol. 87, 140-148
(2002).

Markram, H., Lubke, J., Frotscher, M., & Sakmann, B. Regulation of synaptic
efficacy by coincidence of postsynaptic APs and EPSPs. Science 275, 213-215
(1997).

Gil, Z., Connors, B. W. & Amitai, Y. Efficacy of thalamocortical and
intracortical synaptic connections: quanta, innervation, and reliability.
Neuron 23, 385-397 (1999).

Bernander, O., Douglas, R. J., Martin, K. A. C. & Koch, C. Synaptic
background activity determines spatio-temporal integration in single
pyramidal cells. Proc. Natl. Acad. Sci. USA 88, 11569-11573 (1991).
Borg-Graham, L. J., Monier, C., & Fregnac, Y. Visual input evokes transient
and strong shunting inhibition in visual cortical neurons. Nature 393,
369-373 (1998).

. Destexhe, A. & Pare, D. Impact of network activity on the integrative

properties of neocortical pyramidal neurons in vivo. J. Neurophysiol. 81,
1531-1547 (1999).

. London, M. & Segev, I. Synaptic scaling in vitro and in vivo. Nat. Neurosci. 4,

853-855 (2001).

. Fetz, E. E. & Gustafsson, B. Relation between shapes of post-synaptic

potentials and changes in firing probability of cat motoneurones. J. Physiol.
(Lond.), 387-410 (1983).

. Abeles, M. Corticonics. (Cambridge Univ. Press, Cambridge, 1991).
. Hebb, D. O. The Organization of Behavior (Wiley, New York, 1949).
. Hoppfield, J. J. Neural networks and physical systems with emergent

collective computational abilities. Proc. Natl. Acad. Sci. USA 79, 2254-2258
(1982).

. Yamada, S., Nakashima, M., Matsumoto, K. & Shiono, S. Information

theoretic analysis of action potential trains. I. Analysis of correlation between
two neurons. Biol. Cybern. 68, 215-220 (1993).

. Rieke, E, Warland, D., de Ruyter van Steveninck, R. & Bialek, W. Spikes:

Exploring the Neural Code. (MIT Press, Cambridge, Massachusetts, 1997).

. Borst, A. & Theunissen, F. E. Information theory and neural coding. Nat.

Neurosci. 2, 947-957 (1999).

. Willems, F. M. J., Shtarkov, Y. M. & Tjalkens, T. The context-tree weighting

method: basic properties. IEEE Trans. Info. Theory Vol. IT-41, 653-664
(1995).

Pinsky, P. F. & Rinzel, J. Intrinsic and network rhythmogenesis in a reduced
traub model for ca3 neurons J. Comput. Neurosci. 1, 39-60 (1994) [erratum
in J. Comput. Neurosci. 2,275 (1995)].

340

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

4

—_

42.

4

)

44.

45.

46.

47.

48.

4

o

50.

Mainen, Z. F. & Sejnowski, T. J. Influence of dendritic structure on firing
pattern in model neocortical neurons. Nature 382, 363—-366 (1996).

Segev, 1. & London, M. Untangling dendrites with quantitative models.
Science 290, 744-750 (2000).

Larkum, M. E., Zhu, J. J. & Sakmann, B. A new cellular mechanism for
coupling inputs arriving at different cortical layers. Nature 398, 338-341
(1999).

Stuart, G. J. & Hiusser, M. Dendritic coincidence detection of EPSPs and
action potentials. Nat. Neurosci. 4, 63—71 (2001).

Stratford, R. D., Mason, A. J. R., Larkman, A. U., Major, G. & Jack, J. J. B. The
modeling of pyramidal neurons in the visual cortex. in The Computing
Neuron (eds. Durbin, R., Miall, C. & Mitchson, C.) Addison-Wesley, Reading,
Massachusetts, 1989).

Nicoll, A., Larkman, A. & Blakemore, C. Modulation of EPSP shape and
efficacy by intrinsic membrane conductances in rat neocortical pyramidal
neurons in vitro. J. Physiol. (Lond.) 468, 693-710 (1993).

Carnevale, N. T. & Johnston, D. Electrophysiological characterization of
remote chemical synapses. J. Neurophysiol. 47, 606621 (1982).

Qertel, D. Synaptic responses and electrical properties of cells in brain slices
of the mouse anteroventral cochlear nucleus. J. Neurosci. 3, 2043—-2053
(1983).

Bernander, O. & Koch, C. The effect of synchronized inputs at the single
neuron level. Neural Comput. 6, 622—641 (1994).

Murthy, V. N. & Fetz, E. E. Effects of input synchrony on the firing rate of a
three-conductance cortical neuron model. Neural Comput. 6, 1111-1126
(1994).

Rall, W. Distinguishing theoretical synaptic potentials computed for different
soma-dendritic distributions of synaptic input. J. Neurophysiol. 30,
11381168 (1967).

Liao, D., Hessler, N. A. & Malinow, R. Activation of postsynaptically silent
synapses during pairing-induced LTP in CA1l region of hippocampal slice.
Nature 375, 400-404 (1995).

Cook, E. P. & Johnston, D. Voltage-dependent properties of dendrites that
eliminate location-dependent variability of synaptic input. J. Neurophysiol.
81, 535-543 (1999).

Iansek, R. & Redman, S. J. The amplitude, time course and charge of unitary
excitatory post-synaptic potentials evoked in spinal motoneurone dendrites.
J. Physiol. (Lond.) 234, 665-688 (1973).

Levin, J. E. & Miller, J. P. Stochastic resonance enhances neural encoding of
broadband stimuli in the cricket cercal sensory system. Nature 380, 165-168
(1996).

Rall, W. Theoretical significance of dendritic trees for neuronal input-output
relations. in Neural Theory and Modeling (ed. Reiss, R.) 73-97 (Stanford Univ.
Press, Stanford, 1964).

Rinzel, J. & Rall, W. Transient response in a dendritic neuron model for
current injected at one branch. Biophys. J. 14, 759-790 (1974).

Héusser, M. & Clark, B. A. Tonic synaptic inhibition modulates neuronal
output pattern and spatiotemporal synaptic integration. Neuron 19, 665678
(1997).

Fricker, D. & Miles, R. EPSP amplification and the precision of spike timing
in hippocampal neurons. Neuron 28, 559-569 (2001).

De Schutter, E. Dendritic voltage and calcium-gated channels amplify the
variability of postsynaptic responses in a Purkinje cell model. J. Neurophysiol.
80, 504-519 (1998).

. Reinagel, P., Godwin, D., Sherman, S. M. & Koch, C. Encoding of visual

information by LGN bursts. J. Neurophysiol. 81, 2558-2569 (1999).

Magee, J. C. & Cook, E. P. Somatic EPSP amplitude is independent of synapse
location in hippocampal pyramidal neurons. Nat. Neurosci. 3, 895-903
(2000).

. Reyes, A. Influence of dendritic conductances on the input-output properties

of neurons. Annu. Rev. Neurosci. 24, 653—675 (2001).

Magee, J. C. Dendritic Ih normalizes temporal summation in hippocampal
CA1 neurons. Nat. Neurosci. 2, 508514 (1999).

Hines, M. L. & Carnevale, N. T. The NEURON simulation environment.
Neural Comput. 9, 1179-1209 (1997).

Cover, T. M. & Thomas, J. A. Elements of Information Theory (Wiley, New
York, 1991).

Treves, A. & Panzeri, S. The upward bias in measures of information derived
from limited data samples. Neural Comput. 7, 399-407 (1995).

Strong, S. P,, Koberle, R., de Ruyter van Steveninck, R. & Bialek, W. Entropy
and information in neuronal spike trains. Phys. Rev. Lett. 80, 197-201
(1997).

. Schultz, S. R. & Panzeri, S. Temporal correlations and neural spike train

entropy. Phys. Rev. Lett. 86, 5823-5826 (2001).

Contreras, D., Destexhe, A. & Steriade, M. Intracellular and computational
characterization of the intracortical inhibitory control of synchronized
thalamic inputs in vivo. J. Neurophysiol. 78, 335-350 (1997).

nature neuroscience * volume 5 no 4 + april 2002



