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Abstract

We show that disjointness requires randomized commu-

nication Ω
(

n1/(k+1)

22k

)

in the general k-party number-on-

the-forehead model of complexity. The previous best lower

bound was Ω
(

log n
k−1

)

. By results of Beame, Pitassi, and

Segerlind, this implies 2nΩ(1)

lower bounds on the size of

tree-like Lovász-Schrijver proof systems needed to refute

certain unsatisfiable CNFs, and super-polynomial lower

bounds on the size of a broad class of tree-like proof sys-

tems whose terms are degree-d polynomial inequalities for

d = log log n − O(log log log n).

To prove our bound, we develop a new technique

for showing lower bounds in the number-on-the-forehead

model which is based on the norm induced by cylinder in-

tersections. This bound naturally extends the linear pro-

gram bound for rank useful in the two-party case to the

case of more than two parties, where the fundamental con-

cept of monochromatic rectangles is replaced by monochro-

matic cylinder intersections. Previously, the only gen-

eral method known for showing lower bounds in the un-

restricted number-on-the-forehead model was the discrep-

ancy method, which is limited to bounds of size O(log n)
for disjointness.

To analyze the bound given by our new technique for the

disjointness function, we build on an elegant framework de-

veloped by Sherstov in the two-party case and Chattopad-

hyay in the multi-party case which relates polynomial de-

gree to communication complexity. Using this framework

we are able to obtain bounds for any tensor of the form

F (x1, . . . , xk) = f(x1 ∧ . . . ∧ xk) where f is a function

which only depends on the number of ones in the input.
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1 Introduction

Since its introduction [1, 24], communication complex-

ity has become a key concept in complexity theory and theo-

retical computer science in general. Part of its appeal is that

it has applications to many different computational models,

for example to formula size and circuit depth, proof com-

plexity, branching programs, VLSI design, and time-space

trade-offs for Turing machines (see [16] for more details).

Perhaps the area of communication complexity which re-

mains the most mysterious today is the k-party “number-

on-the-forehead” model, originally introduced by Chandra,

Furst and Lipton [6]. In this model, k parties wish to com-

pute a function f : ({0, 1}n)k → {−1, 1} where player i
has the input xi ∈ {0, 1}n “on his forehead.” That is to

say, player i has knowledge of the entire input except for

the string xi. The communication is written “on the black-

board” so that all players have knowledge of each message.

The large overlap in the player’s knowledge is part of what

makes showing lower bounds in this model so difficult. This

difficulty, however, is rewarded by the richness of conse-

quences of such lower bounds: for example, by results of

[25, 13], showing a super-polylogarithmic lower bound on

an explicit function for super-polylogarithmic many play-

ers would give an explicit function which requires super-

polynomial size ACC0 circuits.

While showing such bounds remains a challenging open

problem, we do know of explicit functions which require

large communication in this model for Ω(log n) many play-

ers. Babai, Nisan, and Szegedy [3] show that the inner prod-

uct function generalized to k-parties requires randomized

communication Ω(n/4k), and for other explicit functions

slightly larger bounds of size Ω(n/2k) are known.

For some basic functions, however, there are huge gaps

in our knowledge. One example is the disjointness func-

tion, where the goal of the players is to determine if there

is an index j such that every string xi has a one in position

j. The best protocol known for disjointness has communi-

cation O(kn/2k) [12]—this upper bound in fact holds for

any function whose value only depends on the size of the

intersection of the strings xi. On the other hand, the best
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lower bound in the general number-on-the-forehead model

is Ω(log n/(k − 1)) [5, 23]. A major obstacle toward prov-

ing better lower bounds on disjointness is that it has a very

simple co-nondeterministic protocol—if the strings do in-

tersect, a log n size proof consists of the index where all

players have a one. One of the most common means of

showing lower bounds on randomized complexity, the dis-

crepancy method, also lower bounds (co)-nondeterministic

complexity, and thus is limited to logarithmic lower bounds

for disjointness. Even in the two-party case, determining

the randomized and quantum complexity of disjointness

was a long-standing open problem which required the de-

velopment of novel techniques to resolve [15, 19, 20].

In the multiparty case, this difficulty is compounded

by the fact that discrepancy is essentially the only method

available to show lower bounds in the general number-on-

the-forehead model. Indeed, Kushilevitz and Nisan [16]

say, “The only technique from two-party communication

complexity that generalizes to the multiparty case is the dis-

crepancy method.”

Besides this technical challenge, additional motivation

was given to studying the number-on-the-forehead com-

plexity of disjointness by Beame, Pitassi, and Segerlind,

who show that lower bounds on disjointness imply lower

bounds on a very general class of proof systems which in-

cludes cutting planes and Lovasz-Schrijver proof systems.

We show that disjointness requires randomized commu-

nication Ω
(

n1/(k+1)

22k

)

in the general k-party number-on-

the-forehead model. To do this, we develop a cylinder in-

tersection norm µ(A) which measures how efficiently a ten-

sor A can be decomposed as a sum of cylinder intersec-

tions. As a two-party protocol decomposes the communi-

cation matrix into monochromatic rectangles, in the multi-

party number-on-the-forehead case we have the analogous

structural theorem that a successful c bit number-on-the-

forehead protocol decomposes the communication tensor

into 2c many monochromatic cylinder intersections. The

µ norm lower bounds how efficiently A can be so decom-

posed.

For randomized complexity, the analogous structural

theorem says not that A itself can be decomposed, but a

matrix near A. To handle this, we look at an approxi-

mate version of the cylinder intersection norm µα where

1 ≤ α < ∞ represents the measure of approximation.

The limiting case µ∞(A) is exactly the usual discrepancy

method; for bounded α we obtain a technique which is

strictly stronger than the discrepancy method.

Disjointness has a O(log n) co-nondeterministic

protocol—the proof simply being the name of an index

where all players share a one, thus our results show a

separation between deterministic and non-deterministic

complexity for up to k = log log n − O(log log log n)
many players. Building on our work, David and Pitassi

[9] are able to separate deterministic and non-deterministic

complexity for up to k = log n players using a non-explicit

function f .

Chattopadhyay and Ada [8] independently obtained sim-

ilar bounds on disjointness with similar techniques. They

essentially use the dual version of the µα norm as we have

defined it here, which they call generalized discrepancy.

1.1 Comparison with previous work

For restricted models of computation, bounds are known

which are stronger than ours. Wigderson showed that

for one-way three-party number-on-the-forehead protocols,

disjointness requires communication Ω(n1/2) (this result

appears in [2]). Recently, Viola and Wigderson extended

this approach to show a bound of Ω(n1/(k−1)/kO(k)) for

one-way k-party protocols. These results actually show

bounds on a pointer jumping function, which reduces to dis-

jointness.

Beame, Pitassi, Segerlind, and Wigderson [5] devised

a method based on a direct product theorem to show a

Ω(n1/3) bound on the complexity of three-party disjoint-

ness in a model stronger than one-way where the first player

speaks once, and then the two remaining players interact ar-

bitrarily.

Our techniques have little to do with the above men-

tioned results, but rather build on another line of work. Our

cylinder intersection norm works very well in conjunction

with an elegant framework that evolved in a series of works

[21, 22, 7] for proving lower bounds on communication

complexity.

The two main ingredients in this framework are pattern

tensors and duality of normed spaces. For a symmetric

function f , a pattern tensor for f is a structured sub-tensor

of f(x1 ∧ · · · ∧ xk). The structure of this tensor allows one

to relate properties of the underlying function, such as its

degree as a polynomial, to complexity measures of the re-

lated pattern tensor. For example, in the case of disjointness

the underlying function is OR.

Sherstov first looked at pattern matrices in [21] and used

them to relate discrepancy and sign degree. Chattopadhyay

substantially generalized the pattern matrix framework to

tensors and related sign degree to discrepancy of pattern

tensors.

Sherstov [22] then showed a relation between approxi-

mate degree and approximate trace norm of a pattern ma-

trix. This simplified a proof of Razborov [20] who first

introduced the approximate trace norm technique to show

tight lower bounds on the quantum communication com-

plexity of symmetric functions.

For k-tensors with k ≥ 3 there is no equivalent defini-

tion of the trace norm, this is where the cylinder intersection

norm and its approximated variants, µα, come into play. In
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two dimensions in fact µα can be seen as a generalization

of the approximate trace norm technique.

The way we define approximation is slightly different

than the above mentioned results. A nice advantage of our

approach is that we can unify all of the above results by

relating the α-approximate degree to µα. For α = ∞ this is

the relation between sign degree and discrepancy.

1.2 Consequences for Lovász-Schrijver
proof systems and beyond

There is an additional motivation to studying the

complexity of disjointness in the number-on-the-forehead

model. Beame, Pitassi, and Segerlind [4] show that bounds

on disjointness imply strong lower bounds on the size of

refutations of certain unsatisfiable formulas, for a very gen-

eral class of proof systems. We now introduce and motivate

the study of these proof systems.

As linear and semidefinite programming are some of the

most sophisticated polynomial time algorithms which have

been developed, it is natural to ask how they fare when pit-

ted against NP-complete problems. For many NP-complete

problems, there is a very natural approach to solving them

via linear or semidefinite programming: namely, we first

formulate the problem as optimizing a convex function over

the Boolean cube, i.e. with variables subject to the quadratic

constraints x2
i = xi. We then relax these quadratic con-

straints to linear or semidefinite constraints to obtain a pro-

gram which can be solved in polynomial time. For ex-

ample, a linear relaxation of x2
i = xi may simply be the

constraint 0 ≤ xi ≤ 1. Such a relaxation already gives a

linear program with approximation ratio of 2 for the prob-

lem of vertex cover. Semidefinite constraints are in gen-

eral more complicated, but there are several “automatic”

ways of generating valid semidefinite inequalities—that is,

semidefinite inequalities satisfied by all Boolean solutions

of the original problem. Perhaps the best known of these

is the Lovász-Schrijver “lift and project” method [18]. The

seminal 0.878-approximation algorithm for MAXCUT of

Goemans and Williamson [11] can be obtained by relaxing

the natural Boolean programming problem with semidefi-

nite constraints obtained by one application of the Lovász-

Schrijver method.

As these techniques have given impressive results in ap-

proximation algorithms, it is natural to ask if they can also

be used to efficiently obtain exact solutions. Namely, how

many inequalities need to be added in general until all frac-

tional optima are eliminated and only true Boolean solu-

tions remain?

One way to address this question is to consider proof

systems with derivation rules based on linear programming

or the Lovász-Schrijver method. Our particular application

will look at the size of proofs needed to refute unsatisfiable

formulas. Given a CNF φ, we can naturally represent the

satisfiability of φ as the satisfiability of a system of linear

inequalities, one for each clause. For example, the clause

x1∨x4∨¬x5 would be represented as x1+x4+(1−x5) ≥ 1.

Suppose that φ is unsatisfiable. Then consider a proof sys-

tem in which the “axioms” are the inequalities obtained

from the clauses of φ, and the goal is to derive the contradic-

tion 0 ≥ 1. By the results of [4], our results on disjointness

imply that there are unsatisfiable formulas such that any

refutation obtained by generating new inequalities by the

Lovász-Schrijver method in a “tree-like” way requires size

2nΩ(1)

. For a standard formulation of the Lovász-Schrijver

method known as LS+, bounds of size 2Ω(n) for tree-like

proofs have already been shown by very different methods

[14].

The advantage of the number-on-the-forehead commu-

nication complexity approach, however, is that it can also

be applied to much more powerful proof systems which are

currently untouchable by other methods. Beame, Pitassi,

and Segerlind [4] show that lower bounds on k-party com-

munication complexity of disjointness give lower bounds

on the size of tree-like proofs of certain unsatisfiable CNFs

φ(x), where the derivation rule is as follows: from inequal-

ities f, g of degree k − 1 in x, we are allowed to con-

clude a degree k − 1 inequality h if every Boolean assign-

ment to x which satisfies f and g also satisfies h. Lovász-

Schrijver proof systems are a special case of such degree-

2 systems. Our bounds on disjointness imply the exis-

tence of unsatisfiable formulas whose refutation requires

super-polynomial size tree-like degree-k proofs, for any

k = log log n − O(log log log n). The aforementioned

lower bounds on LS+ proof systems strongly rely on spe-

cific properties of the Lovász-Schrijver operator—showing

superpolynomial bounds on the size of tree-like proofs in

the more general degree-k model was previously open even

in the case k = 2.

2 Preliminaries and notation

We let [n] = {1, . . . , n}. For multi-party communica-

tion complexity it is convenient to work with tensors, the

generalization of matrices to higher dimensions. If an el-

ement of a tensor A is specified by k indices, we say that

A has rank k or is a k-tensor. For a k-tensor A of dimen-

sions (n1, . . . , nk) we say size(A) = n1 · · ·nk. A tensor

for which all entries are in {−1, 1} we call a sign tensor.

For a function f : X1 × . . . × Xk → {−1, 1}, we de-

fine the communication tensor corresponding to f to be a

rank k tensor Af where Af [x1, . . . , xk] = f(x1, . . . , xk).
We identify f with its communication tensor. For a set

Z ⊆ X1 × . . .×Xk we let χ(Z) be its characteristic tensor

where χ(Z)[x1, . . . , xk] = 1 if (x1, . . . , xk) ∈ Z and is 0
otherwise.
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For a sign tensor A, we denote by Dk(A) the determinis-

tic communication complexity of A in the k-party number-

on-the-forehead model. The corresponding randomized

communication complexity with error bound ǫ ≥ 0 is de-

noted Rk
ǫ (A). We drop the superscript when the number of

players is clear from context.

We use the shorthand A ≥ c to indicate that all

of the entries of A are at least c. The Hadamard or

entrywise product of two tensors A and B is denoted

by A ◦ B. Their inner product is denoted 〈A,B〉 =
∑

x1,...,xk
A[x1, . . . , xk]B[x1, . . . , xk]. The ℓ1 and ℓ∞

norms of a tensor A are ‖A‖1 =
∑

x1,...,xk
|A[x1, . . . , xk]|

and ‖A‖∞ = maxx1,...,xk
|A[x1, . . . , xk]|, respectively.

We also need some basic elements of Fourier analysis.

For S ⊆ [n] we define χS : {0, 1}n → {−1, 1} as χS(x) =
(−1)

P

i∈S xi . As the χS form an orthogonal basis, for any

function f : {0, 1}n → R we have a unique representation

f(x) =
∑

S⊆n

f̂(S)χS(x)

where f̂(S) = (1/2n)〈f, χS〉. The degree of f is the size

of the largest set S for which f̂(S) is non-zero.

3 The Method

In this section we present a method for proving lower

bounds on randomized communication complexity in the

number-on-the-forehead model that generalizes and signifi-

cantly strengthens the discrepancy method.

3.1 Cylinder intersection norm

In two-party communication complexity, a key role is

played by combinatorial rectangles—subsets of the form

Z1 × Z2 where Z1 is a subset of inputs to Alice and Z2

is a subset of inputs to Bob. The analogous concept in the

number-on-the-forehead model of multi-party communica-

tion complexity is that of a cylinder intersection.

Definition 1 (Cylinder intersection) A subset Zi ⊆ X1 ×
. . . × Xk is called a cylinder in the ith dimension if mem-

bership in Zi does not depend on the ith coordinate. That

is, for every (z1, . . . , zi, . . . , zk) ∈ Zi and z′i ∈ Xi it also

holds that (z1, . . . , z
′
i, . . . , zk) ∈ Zi. A set Z is called a

cylinder intersection if it can be expressed as Z = ∩k
i=1Zi

where each Zi is a cylinder in the ith dimension.

The reason why cylinder intersections are so important is

that a successful protocol partitions the communication ten-

sor into cylinder intersections, each of which is monochro-

matic with respect to the function f . This leads us to our

next definition:

Cylinder intersection norm We denote by µ the norm in-

duced by the absolute convex hull of the characteristic func-

tions of all cylinder intersections. That is, for a k-tensor M

µ(M) = min

{

∑

i

|αi| : M =
∑

i

αiχ(Zi)

}

where each Zi is a cylinder intersection, and χ(Zi) is a k-

tensor where χ(Zi)[x1, . . . , xk] = 1 if (x1, . . . , xk) ∈ Zi

and 0 otherwise.

Remark 2 In our definition of µ above we chose to take

χ(Zi) as {0, 1} tensors. One can alternatively take them to

be ±1 valued tensors—a form which is sometimes easier to

bound—without changing much. One can show

µ(M) ≥ µ±1(M) ≥ 2−kµ(M).

where M is a k-tensor and µ±1(M) is defined as above

with χ(Zi) taking values from {−1, 1}.

We further remark that in the two dimensional case, µ
is very closely related to a semidefinite programming quan-

tity γ2 introduced to communication complexity by Linial

and Shraibman. Indeed, for matrices M we have µ(M) =
Θ(γ2(M)) [17].

A successful communication protocol for a sign k-tensor

M partitions M into monochromatic cylinder intersections,

Z1, Z2, . . . , Z2Dk(M) . Hence M =
∑

i αiχ(Zi) where the

coefficients αi are either 1 or −1. Therefore

Theorem 3 For every sign k-tensor M, Dk(M) ≥
log(µ(M)).

A randomized protocol is simply a probability distribu-

tion over deterministic protocols. This gives us the follow-

ing fact:

Fact 4 A sign k-tensor M satisfies Rk
ǫ (M) ≤ c if and only

if there are sign k-tensors Ai for i = 1, . . . , ℓ satisfying

Dk(Ai) ≤ c and a probability distribution (p1, . . . , pℓ)
such that

‖M −
∑

i

piAi‖∞ ≤ 2ǫ.

To lower bound randomized communication complexity we

consider an approximate variant of the cylinder intersection

norm.

Definition 5 (Approximate cylinder intersection norm)

Let M be a sign k-tensor, and α ≥ 1. We define the

α-approximate cylinder intersection norm as

µα(M) = min
M ′

{µ(M ′) : 1 ≤ M ◦ M ′ ≤ α}

848484
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In words, we take the minimum of the cylinder intersection

norm over all tensors M ′ which are signed as M and have

entries with magnitude between 1 and α. Considering the

limiting case as α → ∞ motivates us to define

µ∞(M) = min
M ′

{µ(M ′) : 1 ≤ M ◦ M ′}

One should note that µα(M) ≤ µβ(M) for 1 ≤ β ≤ α.

The following theorem is an immediate consequence of

the definition of approximate cylinder norm and Fact 4.

Theorem 6 Let M be a sign k-tensor, and 0 ≤ ǫ < 1/2.

Then

Rk
ǫ (M) ≥ log(µα(M)) − log(αǫ)

where αǫ = 1/(1 − 2ǫ) and α ≥ αǫ.

Proof: Let pi and Ai for 1 ≤ i ≤ ℓ be as in Fact 4. We take

B =
1

1 − 2ǫ

ℓ
∑

i=1

piAi.

Notice that 1 ≤ B ◦ M ≤ αǫ, and hence by Definition 5

µαǫ(M) ≤ µ(B).

Employing the fact that µ is a norm and Theorem 3, we get

µ(B) ≤ 1

1 − 2ǫ

∑

i

piµ(Ai)

≤ 1

1 − 2ǫ

∑

i

pi2
Dk(Ai)

≤ 2Rk
ǫ (M)

1 − 2ǫ
.

2

Remark 7 It is nice to note that since a non-deterministic

protocol induces a covering of the tensor with cylinder in-

tersections, it follows that log µ∞ is a lower bound on non-

deterministic communication complexity.

3.2 Employing duality

We now have a quantity, µα(M), which can be used to

prove lower bounds for randomized communication com-

plexity in the number-on-the-forehead model. As this quan-

tity is defined in terms of a minimization, however, it seems

in itself a difficult quantity to bound from below.

In this section, we employ the duality theory of linear

programming to find an equivalent formulation of µα(M)
in terms of a maximization problem. This makes the task

of proving lower bounds for µα(M) much easier, as the ∀
quantifier we had to deal with before is now replaced by an

∃ quantifier.

As it turns out, in order to prove lower bounds on µα(M)
we will need to understand the dual norm of µ, denoted µ∗.

The standard definition of a dual norm is

µ∗(Q) = max
M :µ(M)≤1

〈M,Q〉,

for every tensor Q. Since the unit ball of µ is the absolute

convex hull of the characteristic vectors of cylinder inter-

sections, we can alternatively write

µ∗(Q) = max
Z

|〈Q,χ(Z)〉|

where the maximum is taken over all cylinder intersections

Z.

We will use the following form for our lower bounds:

Theorem 8 Let M be a sign tensor and 1 ≤ α.

µα(M) = max
Q

(1 + α)〈M,Q〉 + (1 − α)‖Q‖1

2

s.t. µ∗(Q) ≤ 1

When α = ∞ we have

µ∞(M) = max
Q:M◦Q≥0

〈M,Q〉

s.t. µ∗(Q) ≤ 1

Proof: We treat the case 1 ≤ α < ∞ first. We can write

µα(M) as a linear program as follows. For each cylinder

intersection Zi let Xi = χ(Zi). Then

µα(M) = min
p,q

∑

i

pi + qi

s.t. 1 ≤
(

∑

i

(pi − qi)Xi

)

◦ M ≤ α

pi, qi ≥ 0

Taking the dual of this program in the straightforward

way, we obtain

µα(M) = max
Q

(1 + α)〈M,Q〉 + (1 − α)‖Q‖1

2

s.t. |〈Xi, Q〉| ≤ 1, for all Xi

For α = ∞ we get the same program as above without

the constraint (
∑

i(pi − qi)Xi) ◦ M ≤ α. Dualizing this

program gives the desired result. 2

Observing the bounds in Theorem 8 we see that to lower

bound µα(M) it suffices to find a tensor Q with µ∗(Q) ≤ 1
that has a large inner product with M . In Section 4 we

discuss a technique for showing bounds on µ∗.
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3.3 The discrepancy method

Virtually all lower bounds in the general number-on-the-

forehead model have used the discrepancy method, which

we now recall.

Definition 9 Let M be a sign k-tensor, and let P be a prob-

ability distribution on its entries. The discrepancy of M
with respect to P , written discP (M) is

discP (M) = max
Z

〈M ◦ P, χ(Z)〉

where the maximum is taken over cylinder intersections Z.

We further define the general discrepancy as

disc(M) = min
P

discP (M)

where the minimum is taken over all probability distribu-

tions P .

The discrepancy method turns out to be equivalent to

µ∞(M).

Theorem 10

µ∞(M) =
1

disc(M)
.

Proof: By Theorem 8, for every sign tensor M

µ∞(M) = max
Q◦M≥0

{〈M,Q〉 : µ∗(Q) ≤ 1}

We can rewrite this as

µ∞(M) = max
Q◦M≥0

〈M,Q〉
µ∗(Q)

= max
P :P≥0

〈M,M ◦ P 〉
µ∗(M ◦ P )

As both numerator and denominator are homogeneous, we

have

µ∞(M) = max
P :P≥0
‖P‖1=1

〈M,M ◦ P 〉
µ∗(M ◦ P )

= max
P :P≥0
‖P‖1=1

1

µ∗(M ◦ P )

=
1

disc(M)
.

2

4 Techniques to bound µ∗(Q)

In the last section, we saw that to bound the randomized

number-on-the-forehead communication complexity of a

tensor M , it suffices to find a tensor Q such that 〈M,Q〉

is large and µ∗(Q) is small. The first quantity is simply

a sum and is in general not too hard to compute. Upper

bounding µ∗(Q) is more subtle. In this section, we review

some techniques for doing this.

In upper bounding the magnitude of the largest eigen-

value of A, a common thing is to consider the matrix AAT ,

and use the fact that ‖A‖2 ≤ ‖AAT ‖. We will try to do

a similar thing in upper bounding µ∗(Q). In analogy with

AAT we make the following definition:

Definition 11 (Contraction product) Let A be a k-tensor

with entries indexed by elements from X1 × . . . × Xk. We

define the contraction product of A along X1, denoted A •1

A, to be a 2(k − 1)-tensor with entries indexed by elements

from X2 × X2 × . . . × Xk × Xk. The x2, x
′
2, . . . , xk, x′

k

entry is defined to be

A •1 A[x2, x
′
2, . . . , xk, x′

k] =

Ex1





∏

y2∈{x2,x′

2},...,yk∈{xk,x′

k}

A[x1, y2, . . . , yk]





The contraction product may be defined along other dimen-

sions mutatis mutandis.

Notice that when A is a m-by-n matrix A •1 A cor-

responds to (1/m)AAT . In analogy with the fact that

‖A‖2 ≤ m‖A •1 A‖, the next lemma gives a corresponding

statement for the µ∗ norm and k-tensors. This lemma orig-

inated in the work of Babai, Nisan, and Szegedy [3] and all

lower bounds on randomized number-on-the-forehead com-

plexity use some version of this lemma.

Lemma 12 Let A be a k-tensor. Then

(

µ∗(A)

size(A)

)2k−1

≤ µ∗(A •1 A)

size(A •1 A)
≤ E[|A •1 A|]

Proof: The second inequality follows since µ∗(X) ≤
‖X‖1 for any real matrix X . The first inequality is standard,

and follows by applying the Cauchy-Schwarz inequality re-

peatedly k − 1 times. 2

4.1 Example: Hadamard tensors

We give an example to show how Lemma 12 can be used

in conjunction with our µ method. Let H be a N -by-N
Hadamard matrix. We show that µ∞(H) ≥

√
N . Indeed,

simply let the witness matrix Q be H itself. Incidentally,

this corresponds to taking the uniform probability distribu-

tion in the discrepancy method. With this choice we clearly

have H ◦ Q ≥ 0, and so

µ∞(H) ≥ 〈H,H〉
µ∗(H)

=
N2

µ∗(H)
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Now we bound µ∗(H) using Lemma 12 which gives:

µ∗(H)2 ≤ N4
E[|H •1 H|] = N3

As H •1 H has nonzero entries only on the diagonal, and

these entries are of magnitude one.

Ford and Gál [10] extend the notion of matrix orthogo-

nality to tensors, defining what they call Hadamard tensors.

Definition 13 (Hadamard tensor) Let H be a sign k-

tensor of dimensions (N, . . . , N). We say that H is a

Hadamard tensor if

(H •1 H)[x2, x
′
2, . . . , xk, x′

k] = 0

whenever xi 6= x′
i for all i = 2, . . . , k.

The simple proof above for Hadamard matrices can be

easily extended to Hadamard tensors:

Theorem 14 (Ford and Gál [10]) Let H be a rank k
Hadamard tensor. Then

µ∞(H) ≥
(

N

k − 1

)1/2k−1

Proof: We again take the witness Q to be H itself. This

clearly satisfies H ◦ Q ≥ 0, and so

µ∞(H) ≥ 〈H,H〉
µ∗(H)

=
Nk

µ∗(H)

It now remains to upper bound µ∗(H) which we do by

Lemma 12. This gives us

µ∗(H)2
k−1 ≤ Nk2k−1

E[|H •1 H|]

The “Hadamard” property of H lets us easily upper bound

E[|H •1H|]. Note that each entry of H •1H is of magnitude

at most one, and the probability of a non-zero entry is at

most

Pr[∨k
i=2(xi = x′

i)] ≤
k − 1

N

by a union bound. Hence, we obtain

µ∗(H)2
k−1 ≤ (k − 1)

Nk2k−1

N
.

Putting everything together, we have

µ∞(H) ≥
(

N

k − 1

)1/2k−1

2

Remark 15 By doing a more careful inductive analysis,

Ford and Gál obtain this result without the k − 1 term in

the denominator. They also construct explicit examples of

Hadamard tensors.

5 Lower bounds on µα for pattern tensors

In Section 5.1 we describe a key lemma which relates

the approximate polynomial degree of f to the existence

of a hard input “distribution” for f . This will only truly

correspond to a distribution in the case of discrepancy—

otherwise it can take on negative values. Then in Section 5.2

we use this distribution, together with the machinery devel-

oped in Section 4 to show our main result relating the α-

approximate degree of f to µα(Af ), where Af is a pattern

tensor.

5.1 Dual polynomials

We define approximate degree in a slightly non-standard

way so that we may simultaneously treat the bounded α and

α = ∞ cases.

Definition 16 Let f : {0, 1}n → {−1, 1}. For α ≥ 1 we

say that a function g gives an α-approximation to f if 1 ≤
g(x)f(x) ≤ α for all x ∈ {0, 1}n. Similarly we say that

g gives an ∞-approximation to f if 1 ≤ g(x)f(x) for all

x ∈ {0, 1}n. We let the α-approximate degree of f , denoted

degα(f), be the smallest degree of a function g which gives

an α-approximation to f .

Remark 17 In a more standard scenario, one is consider-

ing a 0/1 valued function f and defines the approximate de-

gree as deg′ǫ(f) = min{deg(g) : ‖f − g‖∞ ≤ ǫ}. Let-

ting f± be the sign representation of f , one can see that for

0 ≤ ǫ < 1/2 our definition is equivalent to the standard

one in the following sense: deg′ǫ(f) = degαǫ
(f±) where

αǫ = 1+2ǫ
1−2ǫ .

For a fixed degree d, let αd(f) be the smallest value of

α for which there is a degree d polynomial which gives an

α-approximation to f . Notice that αd(f) can be written as

a linear program. Namely, let B(n, d) =
∑d

i=0

(

n
i

)

, and

Φ be a 2n-by-B(n, d) incidence matrix, with rows labelled

by strings x ∈ {0, 1}n and columns labelled by monomials

of degree at most d. We set Φ(x,m) = (−1)m(x), where

m(x) is the evaluation of the monomial m on input x. Then

αd(f) = min
y

{‖Φy‖∞ : 1 ≤ Φy ◦ f}

If this program is infeasible with value α—that is, if there is

no degree d polynomial which gives an α-approximation to

f—then the feasibility of the dual of this program will give

us a “witness” to this fact. It is this witness that we will use

to construct a tensor Q which witnesses that µα is large.

Lemma 18

αd(f) = max
v

{

1 + 〈v, f〉
1 − 〈v, f〉 : ‖v‖1 = 1, vT Φ = 0

}
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Proof: Follows from duality theory of linear programming.

2

Corollary 19 (cf. Sherstov Corollary 3.3.1 [22]) Let f :
{0, 1}n → {−1, 1} and let d = degα(f). Then there exists

a function v : {0, 1}n → R such that

1. 〈v, g〉 = 0 for any function g of degree ≤ d.

2. ‖v‖1 = 1.

3. 〈v, f〉 ≥ α−1
α+1 .

Furthermore, when α = ∞, there is a function v :
{0, 1}n → R satisfying items (1), (2), and such that

v(x)f(x) ≥ 0 for all x ∈ {0, 1}n.

5.2 Pattern Tensors

We define a natural generalization of the pattern matrices

of Sherstov [22] to the tensor case. Note that we need a

slightly different definition of pattern tensor than used by

Chattopahyay [7] to allow the reduction to disjointness.

A pattern k-tensor is described by natural numbers m,M
and a function φ : {0, 1}m → R. Let x = (x1, . . . , xm)
where each xi is a tensor of rank k − 1 with side length M .

Let Si ∈ [M ]m for i = 1, . . . , k − 1 be ordered sets. We

will let Si[t] ∈ [M ] refer to the tth element of Si, which

can be thought of as a pointer into the ith dimension of xt.

The sets S̄ = (S1, . . . , Sk) select an m bit string from x as

follows:

x|S̄ =

x1

[

S1[1], . . . , Sk−1[1]
]

, . . . , xm

[

S1[m], . . . , Sk−1[m]
]

.

We then define the (k,m,M, φ) pattern tensor, denoted

Ak,m,M,φ, as

Ak,m,M,φ[x, S1, . . . , Sk−1] = φ(x|S̄)

Now we are ready to state our main theorem.

Theorem 20 For non-negative integers k,m and a Boolean

function f on m variables

log µα(Ak,m,M,f ) ≥ degα0
(f)/2k−1 + log

α0 − α

α0 + 1
,

for every 1 ≤ α < α0 < ∞, provided M ≥ 2e(k −
1)22k−1

m/degα0
(f). Furthermore,

log µ∞(Ak,m,M,f ) ≥ deg∞(f)/2k−1,

provided M ≥ 2e(k − 1)22k−1

m/deg∞(f)

Proof: For simplicity we will drop the subscripts and just

write A for Ak,m,M,f . Recall that

µα(A) = max
Q:‖Q‖1=1

(1 + α)〈A,Q〉 + (1 − α)

2µ∗(Q)

µ∞(A) = max
Q:Q◦A≥0

〈A,Q〉
µ∗(Q)

.

Let q be the vector from Corollary 19 which witnesses

that the α0-approximate degree of f is at least d. We let

Q be 1/c times the (k,m,M, q) pattern tensor, where c =
size(Q)/2m. With this choice of normalization we have

‖Q‖1 = 1.

Lower bound on 〈A,Q〉 First consider the case 1 ≤ α <
∞. Then we have 〈q, f〉 ≥ (α0 − 1)/(α0 + 1), and so, by

our choice of normalization, 〈A,Q〉 ≥ (α0 − 1)/(α0 + 1).
This allows us to bound (1/2) the term in the numerator of

µα(A) as follows:

(1 + α)〈A,Q〉 + (1 − α)

2
≥ α0 − α

α0 + 1
.

In the case α = ∞, observe that Q inherits the property

Q◦A ≥ 0 as q◦f ≥ 0. The fact that q◦f ≥ 0 together with

‖q‖1 = 1 gives 〈f, q〉 = 1, which in turn implies 〈A,Q〉 =
1.

Upper bound on µ∗(Q) We will bound E[|Q •1 Q|] and

apply Lemma 11 to obtain an upper bound on µ∗(Q). Using

the Fourier decomposition of q, we obtain a decomposition

of Q as

Q =
1

c

∑

T⊆[m]

q̂(T )AT

where AT is the pattern tensor with function χT .

Now we have

size(Q)2
k−1

E[|Q •1 Q|] =

size(Q)2
k−1

c2k−1 ES̄0,S̄1





∣

∣

∣

∣

∣

∣

Ex





2k−1−1
∏

ℓ=0

∑

T⊆[m]

q̂(T )χT (x|S̄ℓ
)





∣

∣

∣

∣

∣

∣





≤ ES̄0,S̄1









∑

T0,...,T
2k−1

|Ti|>d

∣

∣

∣

∣

∣

∣

Ex





∏

ℓ∈{0,1}k−1

χTℓ
(x|S̄ℓ

)





∣

∣

∣

∣

∣

∣









Here we have used the fact that q̂(Tℓ) = 1/2m〈q, χTℓ
〉 ≤

1/2m, and that q̂(Tℓ) = 0 whenever |Tℓ| ≤ d = degα0
(f)

by Corollary 19.

Now fix sets S̄0, S̄1. We will count for how many sets

{Tℓ} the expectation over x is zero. Consider first a simpler

question, to evaluate

Ex∈{0,1}m

[

∏

i

χTi
(x)

]

.
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A moments reflection shows that this will be nonzero if and

only if
∑

Ti = 0 mod 2, where we think of Ti as being

the characteristic vector of the corresponding set. The next

lemma gives the generalization of this where the argument

to χTi
is not x, but x|Sℓ

a selection of m-bits from a longer

string x. Analogously to the simple case, the expectation

now will be nonzero if and only if
∑

Si|Ti
= 0 mod 2. By

this notation, we think of Sℓ = (X1
ℓ , . . . ,Xm

ℓ ) as a vector

of m many 0/1 valued tensors where each Xi
ℓ has exactly

one nonzero entry—namely the ith position selected by Sℓ.

By Sℓ|Tℓ
we zero out those tensors Xi

ℓ where i 6∈ Tℓ.

Lemma 21 Fix S̄0, S̄1 and {Tℓ}ℓ∈{0,1}k−1 .

Ex





∏

ℓ∈{0,1}k−1

χTℓ
(x|Sℓ

)



 = δ

(

∑

ℓ

Sℓ|Tℓ
, 0

)

,

where δ is the kronecker delta function. Notice that this

implies in particular that the expectation is zero unless
∑

ℓ Tℓ = 0.

We continue in the main line of the proof and delay the

proof of this lemma to the end. Call a k-cube degenerate if

it contains less than 2k many points. Let g be the number of

degenerate cubes selected by S̄0, S̄1. That is, the number of

t ∈ [m] such that Si
0[t] = Si

1[t] for some i ∈ [k−1]. Clearly,

by Lemma 21, the expectation will be zero if any of the sets

Tℓ contain an element t for which S̄0, S̄1 select a nondegen-

erate cube. Thus the number of sets T0, . . . , T2k−1−1 which

lead to a nonzero expectation is at most

(

g
∑

r=d

(

g

r

)

)2k−1

≤ 2g2k−1

.

Remark 22 We note without proof that our analysis above

is nearly tight, and cannot be improved much without using

more information about the Fourier coefficients of q.

Now we bound the probability that S̄0, S̄1 have g many

degenerate cubes. The probability that Si
0[t] = Si

1[t] is

1/M . Thus by a union bound, the probability that a single

cube is degenerate is at most (k − 1)/M . Finally, as each

index is chosen independently, the probability of g many

degenerate cubes is at most

(

m

g

)(

k − 1

M

)g

Putting everything together we have

E[|Q •1 Q|] ≤ 1

size(Q)2k−1

m
∑

g=d

(

m

g

)(

k − 1

M

)g

2g2k−1

≤ 1

size(Q)2k−1

m
∑

g=d

(

e(k − 1)22k−1

m

dM

)g

≤ 2−d+1

size(Q)2k−1

provided that M ≥ 2e(k − 1)22k−1

m/d.

2

Proof:[of Lemma 21] Let us now turn to the proof of the

lemma. Suppose that
∑

ℓ Sℓ|Tℓ
6= 0. Then there is some

t ∈ ∪Tℓ such that
∑

ℓ Xt
ℓ 6= 0. Let W be a nonzero entry

of this sum, and we assume wlog that Xt
0[W ] = 1. Now

consider

Ex





∏

ℓ∈{0,1}k−1

χTℓ
(x|Sℓ

)



 =

χT0
(x|S0

)Ex:x[W ]=1





∏

ℓ∈{0,1}k−1−0

χTℓ
(x|Sℓ

)



+

χT0
(x|S0

)Ex:x[W ]=0





∏

ℓ∈{0,1}k−1−0

χTℓ
(x|Sℓ

)





= 0.

If, on the other hand,
∑

ℓ Sℓ|Tℓ
= 0 then for each x the

product term will simply be one as each character will be

taken to an even power. Thus the expectation will be one.

2

6 Applications

6.1 Symmetric functions

In this section, we apply Theorem 20 to prove lower

bounds on the k-party number-on-the-forehead randomized

communication complexity of all symmetric functions. A

function fn : {0, 1}n → {−1, 1} is called symmetric if

fn(x) = gn(|x|) for some function gn : {0, 1, . . . , n} →
{−1, 1}.

For a function fn : {0, 1}n → {−1, 1} we denote by

Fk,n,f the function Fk,n,f : ({0, 1}n)k → {−1, 1} defined

by Fk,n,f (x1, . . . , xk) = f(x1 ∧x2 . . .∧xk). In particular,

we have DISJk,n = −Fk,n,OR.

Our main result on pattern tensors allows us to say the

following about functions Fk,n,f .

898989

Authorized licensed use limited to: Hebrew University. Downloaded on February 1, 2009 at 08:05 from IEEE Xplore.  Restrictions apply.



Theorem 23 Let fn : {0, 1}n → {−1, 1} be any symmet-

ric function. Fix 0 ≤ ǫ < 1/2, and let α0 > 1/(1−2ǫ). Let

ck = 2e(k − 1)22k−1

/degα0
(f), then

Rk
ǫ (Fk,n,f ) ≥ degα0

(fm)/2k−1 − O(1),

for m = ⌊(n/ck−1
k )1/k⌋.

Proof: Take m = ⌊(n/ck−1
k )1/k⌋, and M = ckm, and

n′ = mMk−1. It is easy to check that n ≥ n′.

We show that the (k,m,M, f) pattern tensor, Ak,m,M,f ,

is a sub-tensor of Fk,n′,f , i.e. that there is a reduction from

the problem of computing Ak,m,M,f to the problem of com-

puting Fk,n′,f . Let y1, . . . , yk be inputs to Fk,n′,f .

The reduction is as follows: The inputs

(x, S1, . . . , Sk−1) to Ak,m,M,f are mapped to inputs

(x, y1, . . . , yk−1) of Fk,n′,f as follows. The input x is

mapped to itself. For each j ∈ {1, . . . , k − 1}, we interpret

the n′ length strings yj = (yj
1, . . . , y

j
m) as consisting of m

many rank k − 1 tensors. We set yj
t [I1, . . . , Ik−1] = 1 if

Ij = Sj [t] and 0 otherwise.

To see that this is indeed a reduction, observe that

Fk,n′,f (x, y1, . . . , yk−1) = fn′(x ∧ (y1 ∧ y2 . . . ∧ yk−1))

= gn′(|x ∧ (y1 ∧ y2 . . . ∧ yk−1)|)
= gm(|x|S̄ |)
= fm(x|S̄)

= Ak,m,M,f (x, S1, . . . , Sk−1).

The third equality follows from the fact that the vector y1
t ∧

y2
t . . . ∧ yk−1

t is equal to 1 in coordinate (I1, . . . , Ik−1) if

and only if (I1 = S1[t]) ∧ (I2 = S2[t]) . . . ∧ (Ik−1 =
Sk−1[t]). Hence, the coordinates that are taken in x when

restricting x to S1, . . . , Sk−1 are exactly the coordinates in

which the vector y1 ∧ y2 . . . ∧ yk−1 is equal to 1. The rest

of the steps follow directly from the definitions.

Therefore, taking α0 > α > 1/(1 − 2ǫ) we have

log µα(Fk,n′,f ) ≥ log µα(Ak,m,M,f )

≥ degα0
(fm)/2k−1 − O(1),

where the last inequality follows from Theorem 20.

Finally there is a natural reduction from Fk,n′,f to Fk,n,f

for n ≥ n′, which simply restricts some of the coordinates

in the input to zero. Thus

log µα(Fk,n,f ) ≥ log µα(Fk,n′,f ).

The application to randomized communication complexity

follows from Theorem 6. 2

We can instantiate this theorem using a result of Paturi

which gives asymptotically optimal bounds on the approx-

imate degree of all symmetric functions. We need the fol-

lowing definition.

Definition 24 Let gn : [n] → {−1, 1}. Define

ℓ0(gn) ∈ {0, 1, . . . , ⌊n/2⌋}, ℓ1(gn) ∈ {0, 1, . . . , ⌈n/2⌉}

to be the smallest integers such that gn is constant in the

interval [ℓ0(gn), n − ℓ1(gn)]. For a symmetric function

f(x) = gn(|x|) let ℓ0(f) = ℓ0(gn) and similarly ℓ1(f) =
ℓ1(gn).

Theorem 25 (Paturi) Let f : {0, 1}n → {−1, 1} be a

symmetric function. Then

deg3(f) = Θ
(

√

n(ℓ0(f) + ℓ1(f))
)

.

Using this characterization of approximate degree, and

Theorem 23, we get the following simple lower bound.

Corollary 26 Let fn(x) = gn(|x|) be a symmetric function

and set ck = 2e(k − 1)22k−1

/deg3(f). Then

R1/4(Fn,k,f ) = Ω

(

√

m(ℓ0(fm) + ℓ1(fm))

2k−1

)

where m = ⌊(n/ck−1
k )1/k⌋. In particular,

R1/4(DISJk,n) = Ω

(

n1/(k+1)

22k

)
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