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Abstract

In the matrix completion problem the aim is to recover an unknown real matrix
from a subset of its entries. This problem comes up in many application areas, and has
received a great deal of attention in the context of the net�ix prize.

A central approach to this problem is to output a matrix of lowest possible com-
plexity (e.g. rank or trace norm) that agrees with the partially speci�ed matrix. The
performance of this approach under the assumption that the revealed entries are sampled
randomly has received considerable attention (e.g. [SRJ05, SS05, FS11, CT10, CR09,
Rec09, KMO10, KTL10]). In practice, often the set of revealed entries is not chosen at
random and these results do not apply. We are therefore left with no guarantees on the
performance of the algorithm we are using.

We present a means to obtain performance guarantees with respect to any set of
initial observations. The �rst step remains the same: �nd a matrix of lowest possible
complexity that agrees with the partially speci�ed matrix. We give a new way to
interpret the output of this algorithm by next �nding a probability distribution over
the non-revealed entries with respect to which a bound on the generalization error can
be proven. The more complex the set of revealed entries according to a certain measure,
the better the bound on the generalization error.

1 Introduction

In the matrix completion problem we observe a subset of the entries of a target matrix
Y , and our aim is to retrieve the rest of the matrix. Obviously some restriction on the
target matrix Y is unavoidable as otherwise it is impossible to retrieve even one missing
entry; usually, it is assumed that Y has some structure resulting in low rank.

A common scheme for the matrix completion problem is to select a matrix X that
minimizes some combination of the complexity of X and the distance between X and
Y on the observed part. In particular, one can demand that X agrees with Y on the
observed initial sample (i.e. the distance between X and Y on the observed part is
zero). This general algorithm is described in Figure 3, and we refer to it as Alg1. It
outputs a matrix with minimal complexity that agrees with Y on the initial sample S.
The complexity measure can be rank, or a norm to serve as an e�ciently computable
proxy for the rank such as the trace norm or γ2 norm. When we wish to mention which
complexity measure is used we write it explicitly, e.g. Alg1(γ2). Our framework is
suitable using any norm satisfying few simple conditions described in the sequel.

The performance of Alg1 under the assumption that the initial subset is picked at
random is well understood [SRJ05, SS05, FS11, CT10, CR09, Rec09, KMO10, KTL10].
This line of research can be divided into two parts. One line of research [CR09, Rec09,
CT10] studies conditions under which Alg1(Tr) retrieves the matrix exactly 1. They

1There are other papers studying exact matrix completion, e.g. [KMO10].
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de�ne what they call an incoherence property which quanti�es how spread the singular
vectors of Y are. The exact de�nition of the incoherence property varies in di�erent
results. It is then proved that if there are enough samples relative to the rank of Y
and its incoherence property, then Alg1(Tr) retrieves the matrix Y exactly with high
probability, assuming the samples are chosen uniformly at random. Note that in this
line of research the trace norm is used as a complexity measure in the algorithm. It is
not clear how to prove similar results with the γ2 norm.

Candes and Recht [CR09] observed that it is impossible to reconstruct a matrix that
has only one entry equal to 1 and zeros everywhere else, unless most of its entries are
observed. Thus, exact matrix completion must assume some special property of the
target matrix Y . In a second line of research, general results are proved regarding the
performance of Alg1. These results are weaker in that they do not prove exact recovery,
but rather bounds on the distance between the output matrix X and Y . But these
results apply for every matrix Y , they can be generalized for non-uniform probability
distributions, and also apply when the complexity measure is the γ2 norm. These results
take the following form:

Theorem 1 ([SS05]) Let Y be an n× n real matrix, and P a probability distribution
on pairs (i, j) ∈ [n]2. Choose a sample S of |S| > n log n entries according to P . Then,
with probability at least 1− 2n/2 over the sample selection, the following holds:∑

i,j

pij |xij − yij | ≤ cγ2(X)

√
n

|S|
.

Where X is the output of the algorithm with sample S, and c is a universal constant.

In practice, the assumption that the sample is random is not always valid. Sometimes
the subset we see re�ects our partial knowledge which is not random at all. What can
we say about the output of the algorithm in this case? The analysis of random samples
does not help us here, because these proofs do not reveal the structure that makes
generalization possible. In order to answer this question we need to understand what
properties of a sample enable generalization.

A �rst step in this direction was taken in [HSS12] where the initial subset was
chosen deterministically as the set of edges of a good expander (more generally, a good
sparsi�er). Deterministic guarantees were proved for the algorithm in this case, that
resemble the guarantees proved for random sampling. For example:

Theorem 2 [HSS12] Let S be the set of edges of a d-regular graph with second eigen-
value 2 bound λ. For every n × n real matrix Y , if X is the output of our algorithm
with initial subset S, then

1

n2

∑
i,j

(xij − yij)2 ≤ cγ2(Y )2λ

d
,

where c is a small universal constant.

Recall that d-regular graphs with λ = O(
√
d) can be constructed in linear time using

e.g. the well-known LPS Ramanujan graphs [LPS88].
The results in [HSS12] still do not answer the practical question of how to reconstruct

a matrix from an arbitrary sample. In this paper we continue the work started in
[HSS12], and give a simple and general answer to this second question.

We extend the results of [HSS12] in several ways:

1. We enhance Alg1 so that one can use it for matrix completion given any set of
initial observations.

2The eigenvalues are eigenvalues of the adjacency matrix of the graph.
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2. We show there is a probability distribution outside of the observed entries such
that the generalization error under this distribution is bounded in terms of the
complexity of the observed entries, under a certain complexity measure.

3. The results hold not only for γ2 but also for the trace norm, and in fact any norm
satisfying a few basic properties.

2 Preliminaries

Here we introduce some of the matrix notation and norms that we will be using. For
matrices A,B of the same size, let A ◦ B denote the Hadamard or entrywise product
of A and B. For a m-by-n matrix A with m ≥ n let σ1(A) ≥ · · · ≥ σn(A) denote the
singular values of A. The trace norm, denoted ‖A‖tr, is the `1 norm of the vector of
singular values, and the Frobenius norm, denoted ‖A‖F , is the `2 norm of the vector of
singular values.

As the rank of a matrix is equal to the number of non-zero singular values, it follows
from the Cauchy-Schwarz inequality that

‖A‖2tr
‖A‖2F

≤ rk(A) . (1)

This inequality motivates the use of the trace norm as a proxy for rank in rank
minimization problems. A problem with the bound of (1) as a complexity measure is
that it is not monotone�the bound can be larger on a submatrix of A than on A itself.
As taking the Hadamard product of a matrix with a rank one matrix does not increase
its rank, a way to �x this problem is to consider instead:

max
u,v

‖u‖=‖v‖=1

‖A ◦ vuT ‖2tr
‖A ◦ vuT ‖2F

≤ rk(A) .

When A is a sign matrix, this bound simpli�es nicely�for then, ‖A◦vuT ‖F = ‖u‖‖v‖ =
1, and we are left with

max
u,v

‖u‖=‖v‖=1

‖A ◦ vuT ‖2tr ≤ rk(A) .

This motivates the de�nition of the γ2 norm.

De�nition 3 Let A be a n-by-n matrix. Then

γ2(A) = max
u,v

‖u‖=‖v‖=1

‖A ◦ vuT ‖tr .

We will also make use of the dual norms of the trace and γ2 norms. Recall that in
general for a norm Φ(A) the dual norm Φ∗ is de�ned as

Φ∗(A) = max
B

〈A,B〉
Φ(B)

Notice that this means that

〈A,B〉 ≤ Φ∗(A)Φ(B) . (2)

The dual of the trace norm is ‖ · ‖ the operator norm from `2 to `2, also known as
the spectral norm. The dual of the γ2 norm looks as follows.
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De�nition 4

γ∗2 (A) = min
X,Y

XTY=A

1

2

(
‖X‖2F + ‖Y ‖2F

)
= min

X,Y

XTY=A

‖X‖F ‖Y ‖F ,

where the min is taken over X,Y with orthogonal columns.

Finally, we will make use of the approximate γ2 norm. This is the minimum of the
γ2 norm over all matrices which approximate the target matrix in some sense. The
particular version we will need is denoted γ0,∞

2 and is de�ned as follows.

De�nition 5 Let S ∈ {0, 1}m×n be a boolean matrix. Let S̄ denote the complement of
S, that is S̄ = J − S where J is the all ones matrix. Then

γ0,∞
2 (S) = min

T
{γ2(T ) : T ◦ S ≥ S, T ◦ S̄ = 0}

In words, γ0,∞
2 (S) is the minimum γ2 norm of a matrix T which is 0 whenever S is zero,

and at least 1 whenever S is 1. This can be thought of as a �one-sided error� version of
the more familiar γ∞2 norm of a sign matrix, which is the minimum γ2 norm of a matrix
which agrees in sign with the target matrix and has all entries of magnitude at least 1.
The γ∞2 bound is also known to be equal to the margin complexity [LMSS07].

3 The algorithm

Let S ⊂ [m] × [n] be a subset of entries, representing our partial knowledge. We can
always run Alg1 and get an output matrix X. What we need in order to make intelligent
use of X is a way to measure the distance between X and Y . Our �rst observation is
that although Y is not known, it is possible to bound the distance between X and Y .
This result is stated in the following theorem which generalizes Theorems (2) and (4)
of [HSS12] 3:

Theorem 6 Fix a set of entries S ⊂ [m] × [n]. Let P be a probability distribution on
pairs (i, j) ∈ [m]× [n], such that there exists a real matrix Q satisfying

1. Qij = 0 when (i, j) 6∈ S.
2. γ∗2(P −Q) ≤ Λ

Then for every m × n real target matrix Y , if X is the output of our algorithm with
initial subset S, it holds that∑

i,j

Pij(Xij − Yij)2 ≤ 4Λγ2(Y )2 .

Theorem 6 says that γ∗2 (P − Q) determines, at least to some extent, the expected
distance between X and Y with respect to P .

This gives us a way to measure the quality of the output of Alg1 for any set S of
initial observations. Namely, we can do the following:

1. Choose a probability distribution P on the entries of the matrix.

2. Find a real matrix Q such that qij = 0 when (i, j) 6∈ S, and γ∗2(P −Q) is minimal.

3. Output the minimal value λ.

3Here we state the result for γ2. See Section 4 for the corresponding result for the trace norm as well.
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1. Input: a subset S ⊂ [n]2 and the value of Y on S.
2. Output: a matrix X of smallest possible CC(X) under the condition that

xij = yij for all (i, j) ∈ S.

Figure 1: Algorithm Alg1(CC)

We then know, using Theorem 6 that the expected square distance between X and
Y can be bounded in terms of Λ and the complexity of Y .

Obviously, the choice of P makes a big di�erence. For example if the set of initial
observations is contained in a submatrix we cannot expect X to be close to Y outside
this submatrix. In such cases it makes sense to restrict P to the submatrix containing
S.

One approach to �nd a distribution for which we can expect to be close on the unseen
entries is to optimize over probability distributions P such that Theorem 6 gives the
best bound. Since γ∗2 can be expressed as the optimum of semide�nite program, we can
�nd in polynomial time a probability distribution P and a weight function Q on S such
that γ∗2(P −Q) is minimizd. Thus, instead of trying di�erent parameters, we can �nd
a probability distribution for which we can prove optimal guarantees using Theorem 6.
The second algorithm we suggest does exactly that. We refer to this algorithm as Alg2,
or Alg2(CC) if we wish to state the complexity measure that is used.

For Alg2(γ2), we do the following: Minimize γ∗2(P −Q) over all m × n matrices Q
and P such that:

1. qij = 0 for (i, j) 6∈ S.
2. pij = 0 for (i, j) ∈ S.
3.
∑
i,j pij = 1.

Globally, our algorithm for matrix completion therefore works in two phases. We
�rst use Alg1 to get an output matrix X, and then use Alg2 in order to �nd optimal
guarantees regarding the distance between X and Y . The generalization error bounds
for this algorithm are proved in Section 4.

3.1 Using a general norm

In our description of Alg2 above we have used the norm γ2. The same idea works for any
norm Φ satisfying the property Φ(A ◦ A) ≤ Φ(A)2. Moreover, if the dual norm can be
computed e�ciently via a linear or semide�nite program, then the optimal distribution
P for the bound can be found e�ciently as well.

For example for the trace norm the algorithm becomes: Given the sample S run
Alg1(‖·‖tr) and get an output matrix X. The second part of the algorithm is: Minimize
‖P −Q‖ over all m× n matrices Q and P such that:

1. Qij = 0 for (i, j) 6∈ S.
2. Pij = 0 for (i, j) ∈ S.
3.
∑
i,j Pij = 1.

Denote by Λ the optimal value of the above program, and by P the optimal proba-
bility distribution. Then analogously to Theorem 6, we have∑

i,j

Pij(xij − yij)2 ≤ 4Λ‖Y ‖2tr .

Both of these results will follow from a more general theorem which we show in the
next section.
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4 Generalization bounds

Here we show a more general theorem which will imply Theorem 6.

Theorem 7 Let Φ be a norm and Φ∗ its dual norm. Suppose that Φ(A ◦ A) ≤ Φ(A)2

for any matrix A.
Fix a set of indices S ⊂ [m] × [n]. Let P be a probability distribution on pairs

(i, j) ∈ [m]× [n], such that there exists a real matrix Q satisfying

1. Qij = 0 when (i, j) 6∈ S.
2. Φ∗(P −Q) ≤ Λ

Then for every m × n real target matrix Y , if X is the output algorithm Alg1(Φ) with
initial subset S, it holds that∑

i,j

Pij(Xij − Yij)2 ≤ 4Φ(Y )2Λ.

Proof Let R be the matrix where Rij = (Xij − Yij)2. By assumption Φ∗(P −Q) ≤ Λ
thus by (2)

〈P −Q,R〉 ≤ ΛΦ(R) .

Now let us focus on Φ(R). As R = (X −Y ) ◦ (X −Y ) by the assumption on Φ we have

Φ(R) ≤ Φ(X − Y )2 ≤ (Φ(X) + Φ(Y ))2 .

Now by de�nition of Alg1(Φ) we have Φ(X) ≤ Φ(Y ), thus Φ(R) ≤ 4Φ(Y )2. Also, by
de�nition of the algorithm Rij = 0 for (i, j) ∈ S, and Qij equals zero outside of S,
which implies that

∑
i,j QijRij = 0. We conclude that∑

i,j

Pij(Xij − Yij)2 ≤ 4ΛΦ(Y )2.

Both the trace norm and γ2 norm satisfy the condition of the theorem as they are
multiplicative under tensor product. The fact that γ2(A ⊗ A) = γ2(A)2 was shown in
[LS�08].

5 Analyzing the error bound

We now look more closely at the minimal value of the parameter Λ from Theorem 6.
The optimal value of Λ depends only on the set of observed indices S. For a set of
indices S ⊂ [m]× [n] let S̄ be its complement.

Given samples S we want to �nd P,Q so as to minimize γ∗2(P − Q) such that P
is a probability distribution over S̄ and Q has support in S. We can express this as a
semide�nite program

Λ =minimize
α,P,Q

1

2
Tr(α)

subject to α− (P̂ − Q̂) � 0

P ≥ 0

〈P, S̄〉 = 1

〈Q,S〉 = Q.

Here

P̂ =

[
0 P
PT 0

]
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is the �bipartite� version of P , and similarly for Q̂.
Taking the dual of this program we �nd

1/Λ =minimize
A

γ2(A)

subject to A ≥ S̄
A ◦ S̄ = A

In words, this says that that 1
Λ is equal to the minimum γ2 norm of a matrix that is

zero on all entries in S and at least 1 on all entries in S̄. Thus Λ = 1/γ0,∞
2 (S̄) (recall

De�nition 5). This says that the more complex the set of unobserved entries S̄ according
to the measure γ0,∞

2 , the smaller the value of Λ. Note that in particular, if we consider
the sign matrix S̄ − S then γ0,∞

2 (S̄) ≥ (γ∞2 (S̄ − S) − 1)/2 is lower bounded by the
margin complexity of S − S̄.
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