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Abstract

This paper has two main focal points. We first consider
an important class of machine learning algorithms - large
margin classifiers, such as Support Vector Machines. The
notion of margin complexity quantifies the extent to which
a given class of functions can be learned by large margin
classifiers. We prove that up to a small multiplicative con-
stant, margin complexity is equal to the inverse of discrep-
ancy. This establishes a strong tie between seemingly very
different notions from two distinct areas.

In the same way that matrix rigidity is related to rank,
we introduce the notion of rigidity of margin complexity.
We prove that sign matrices with small margin complexity
rigidity are very rare. This leads to the question of proving
lower bounds on the rigidity of margin complexity. Quite
surprisingly, this question turns out to be closely related
to basic open problems in communication complexity, e.g.,
whether PSPACE can be separated from the polynomial
hierarchy in communication complexity.

There are numerous known relations between the field
of learning theory and that of communication complexity
[6, 9, 25, 15], as one might expect since communication
is an inherent aspect of learning. The results of this paper
constitute another link in this rich web of relations. This link
has already proved significant as it was used in the solution
of a few open problems in communication complexity [19,
17, 28].

1 Introduction

Many papers and results link between learning theo-
retic quantities and communication complexity counter-
parts. Examples are the characterization of unbounded error
communication complexity in terms of dimension complex-
ity of [25], and the equivalence between VC-dimension and

one-way distributional complexity with respect to product
distributions proved in [15].

We study here the margin complexity of sign matrices.
A primary motivation for this study is the desire to under-
stand the strengths and weaknesses of large margin classi-
fiers, such as Support Vector Machines (aka SVM). But as
it turned out communication complexity is also an inherent
subject of this study, as was the case with previous work on
margin complexity and related issues, e.g. [6, 9].

We first describe the learning theoretic point of view,
and define margin complexity and then review the relevant
background and explain our new results.

A classification algorithm receives as input a sample
(z1, f(z1)), . . . , (zm, f(zm)) which is a sequence of points
{zi} from a set D (the domain) and the corresponding eval-
uations of some unknown function f : D → {±1}. The
output of the algorithm is a function h : D → {±1}, which
should be close to f . Here we think of f as chosen by an
adversary from a predefined class F (the so-called concept
class). (In practical situations the choice of the class F rep-
resents our prior knowledge of the situation.)

Large margin classifiers take the following route to
the solution of classification problems: The domain D is
mapped into R

t (this map is usually called a feature map).
If zi is mapped to xi for each i, our sample points are now
{xi} ⊂ R

t. The algorithm then seeks a linear functional
(i.e., a vector) y that maximizes

mf ({xi}, y) = min
i

| 〈xi, y〉 |
‖xi‖2‖y‖2

.

under the constraint that sign(〈xj , y〉) = f(xj), for all j.
We denote this maximum by mf ({xi}).

Clearly, an acceptable linear functional y defines a hy-
perplane H that separates the points (above and below H)
as dictated by the function f . What determines the perfor-
mance of the classifier associated with y is the distances of
the points xi from H , i.e., the margin mf ({xi}, y). For
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more on classifiers and margins, see [32]. Thus, the margin
captures the extent to which the family F can be described
by the sign of a linear functional. We study the margin,
in quest of those properties of a concept class that deter-
mine how well suited it is for such a description. Large
margin classifiers occupy a central place in present-day ma-
chine learning in both theory and practice. As we show
here, there is an interesting connection between margins of
concept classes and complexity theory, in particular with
the study of communication complexity.

These considerations lead us to define the margin of a
class of functions. But before we do that, some words about
the feature map are in order. The theory and the practice of
the choice of a feature map is at present a subtle art. Mak-
ing the proper choice of a feature map can have a major
impact on the performance of the classification algorithm.
Our intention here is to avoid this delicate issue and concen-
trate instead on the concept class per se. In order to bypass
the dependence of our analysis on the choice of a feature
map, we consider the best possible choice. This explains
the supremum in the definition of margin below

m(F) = sup
{xi}

inf
f∈F

mf ({xi}).

How should we model this setup? For every set of m
samples there is only a finite number, say n, of possible
classifications by functions from the relevant concept class.
Consequently, we can represent a concept class by an m×n
sign matrix, each column of which represents a function f :
[m] → {±1}. It should be clear then, that the margin of a
sign matrix A is

m(A) = sup min
i,j

| 〈xi, yj〉 |
‖xi‖2‖yj‖2

, (1)

where the supremum is over all choices of
x1, . . . , xm, y1, . . . , yn ∈ R

m+n such that
sign(〈xi, yj〉) = aij , for all i,j. (It is not hard to
show that there is no advantage in working in any higher
dimensional Euclidean space.)
It is also convenient to define mc(A) = m(A)−1, the
margin complexity of A.

We mention below some previous results and some sim-
ple observations on margin complexity. We begin with
some very rough bounds:

Observation 1 For every m × n sign matrix A,

1 ≤ mc(A) ≤ min{√m,
√

n}.
The lower bound follows from Cauchy-Schwartz. For the
upper bound, assume w.l.o.g that m ≥ n and let xi be the
i-th row of A and yj the j-th vector in the standard basis.

The first paper on margin complexity [6] mainly con-
cerns the case of random matrices. Among other things they
proved:

Theorem 2 (Ben-David, Eiron and Simon [6]) Almost 1

every n × n sign matrix has margin complexity at least

Ω(
√

n
log n ).

This theorem illustrates the general principle that random
elements are complex. A main goal in that paper is to show
that V C −dimension and margin complexity are very dis-
tinct measures of complexity. E.g.,

Theorem 3 (Ben-David, Eiron and Simon [6]) Let d ≥
2. Almost every matrix with V C-dimension at most 2d has
margin complexity larger than

Ω
(
n

1
2− 1

2d− 1
2d+1

)
.

If A : U → V is a linear map between two normed
spaces, we denote its operator norm by ‖A‖U→V =
maxx:‖x‖U=1 ‖Ax‖V , with the shorthand ‖·‖p→q to denote
‖ · ‖�p→�q

. A particularly useful instance of this is ‖A‖2→2

that is equal to the largest singular value of A which can
be computed efficiently. Forster [8] proved the following
lower bound on margin complexity.

Claim 4 (Forster [8]) For every m × n sign matrix A

mc(A) ≥
√

nm

‖A‖2→2
.

This result has several nice consequences. For example, it
implies that almost every n×n sign matrix has margin com-
plexity Ω(

√
n). Also, together with Observation 1 it yields

that the margin complexity of an n × n Hadamard matrix
is
√

n. Forster’s proof is of interest too, and provides more
insight than earlier proofs which were based on counting
arguments.

Subsequent papers [9, 10, 11] following [8], improved
Forster’s bound in different ways. Connections were shown
between margin complexity and other complexity mea-
sures. These papers also determine exactly the margin com-
plexity of some specific families of matrices.

In [18] we noticed the relation between margin complex-
ity and factorization norms. Given an operator A : U → V
and a normed space W , the factorization problem seeks
to express A as A = XY , where Y : U → W and
X : W → V , such that X and Y have small operator
norms. Of special interest is the case U = �n

1 , V = �m
∞

and W = �2. We denote

γ2(A) = min
XY =A

‖X‖2→∞‖Y ‖1→2.

It is not hard to see that ‖B‖1→2 is the largest �2 norm of a
column of B, and ‖B‖2→∞ is the largest �2 norm of a row

1Here and below we adopt a common abuse of language and use the
shorthand “almost every” to mean “asymptotically almost every”.
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of B.
It is proved in [18] that for every m × n sign matrix A,

mc(A) = min
B: bijaij≥1 ∀i,j

γ2(B). (2)

This identity turns out to be very useful in the study of
margin complexity. Some consequences drawn in [18] are:
For every m × n sign matrix A,

• mc(A) = maxB:sign(B)=A,γ∗
2 (B)≤1〈A,B〉.

• mc(A) ≤ γ2(A) ≤ √
rank(A).

• Let RC(A) be the randomized or quantum communi-
cation complexity of A, then

log mc(A) ≤ RC(A) ≤ mc(A).

In this paper, we derive another consequence of the re-
lation between margin complexity and γ2. Discrepancy is
a combinatorial notion that comes up in many contexts, see
e.g. [21, 7]. We prove here that the margin and the discrep-
ancy are equivalent up to a constant factor for every sign
matrix. Let A be a sign matrix, and P a probability mea-
sure on its entries. We define

discP (A) = max
S,T⊂[n]

∣∣∣∣∣∣
∑

i∈S,j∈T

pijaij

∣∣∣∣∣∣ .

The discrepancy of A is then defined by

disc(A) = min
P

discP (A).

Then

Theorem 5 For every sign matrix A

1
8
m(A) ≤ disc(A) ≤ 8m(A).

Discrepancy is used to derive lower bounds on commu-
nication complexity in different models [33, 5], and Theo-
rem 5 constitutes another link in the rich web of relations
between the study of margins and the field of communica-
tion complexity, see e.g. [6, 9, 19]. As described below, we
find in this paper new relations to communication complex-
ity, specifically to questions about separation of communi-
cation complexity classes.

It is very natural to consider as well classification algo-
rithms that tolerate a certain probability of error but achieve
larger margins. Namely, we are led to consider the follow-
ing complexity measure

mcr(A, l) = minB:h(B,A)≤l mc(B),

where h(A,B) is the Hamming distance between the two
matrices. We call this quantity mc-rigidity. The relation

between this complexity measure and margin complexity is
analogous to the relation between rank-rigidity and rank.
Rank-rigidity (usually simply called rigidity) was first de-
fined in [31] and has attracted considerable interest, e.g.
[20, 29, 14]. A main motivation to study rank-rigidity is
that, as shown in [31], the construction of explicit examples
of sign matrices with high rank-rigidity would have very
interesting consequences in computational complexity.

It transpires that mc-rigidity behaves similarly. To be-
gin, it does not seem easy to construct sign matrices with
high mc-rigidity (where ’high’ means close to the expected
complexity of a random matrix). Furthermore, we are able
to establish interesting relations between the construction
of sign matrices of high mc-rigidity and complexity classes
in communication complexity, as introduced and studied in
[5, 20].

The mc-rigidity of random matrices is considered in [23,
24]. It is shown there that there is an absolute constant 1 >
c > 0 so that for almost every n × n sign matrix

mcr(A, cn2)) ≥ Ω(
√

n).

We give a bound on the number of sign matrices with small
mc-rigidity that is much stronger than that of [23, 24]. Our
proof is also significantly simpler.

Regarding explicit bounds, we prove the following lower
bounds on mc-rigidity

Claim 6 Every m × n sign matrix A satisfies

mcr(A,
mn

8g
) ≥ g,

provided that g < mn
2KG‖A‖∞→1

.

and

Claim 7 Every n × n sign matrix A with γ2(A) ≥ Ω(
√

n)
(this is a condition satisfied by almost every sign matrix)
satisfies

mcr(A, cn2) ≥ Ω(
√

log n),

for some constant c > 0.

In a 1986 paper [5], Babai et al., took a complexity the-
oretic approach to communication complexity. They de-
fined communication complexity classes analogous to com-
putational complexity classes. For example, the polynomial
hierarchy is defined as follows: We define the following
classes of 2m × 2m 0 − 1 matrices. We begin with Σcc

0

the set of combinatorial rectangles and with Πcc
0 = coΣcc

0 .
From here we proceed to define

Σcc
i =


A|A =

2polylog(m)∨
j=1

Aj , Aj ∈ Πcc
i−1




Πcc
i =


A|A =

2polylog(m)∧
j=1

Aj , Aj ∈ Σcc
i−1


 .
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For more on communication complexity classes see [5, 20,
16].

Some communication complexity classes were implic-
itly defined prior to [5], e.g. the communication complexity
classes analogous of P , NP and coNP . For example, it is
known that P cc = NP cc ∩ coNP cc [1].

It remains a major open question in this area whether the
hierarchy can be separated. We approach this problem using
results of Lokam [20] and Tarui [30]. (In our statement of
Theorems 8 and 9 we adopt a common abuse of language
and speak of individual matrices where we should refer to
an infinite family of sign matrices of growing dimensions).

Theorem 8 Let A be an n×n sign matrix. If there exists a
constant c ≥ 0 such that for every c1 ≥ 0

mcr(A,n2/2(log log n)c

) ≥ 2(log log n)c1
,

then A is not in PHcc.

and

Theorem 9 An n × n sign matrix A that satisfies

mcr(A,n2/2(log log n)c

) ≥ 2(log log n)c1

for every c, c1 ≥ 0, is outside AM cc.

As mentioned, questions about rigidity tend to be diffi-
cult, and mc-rigidity seems to follow this pattern as well.
However, the following conjecture, if true, would shed
some light on the mystery surrounding mc-rigidity:

Conjecture 10 For every constant c1 there are constants
c2, c3 such that every n × n sign matrix A satisfying
mc(A) ≥ c1

√
n also satisfies:

mcr(A, c2n
2) ≥ c3

√
n.

What the conjecture says is that every matrix with high mar-
gin complexity has a high mc-rigidity as well. In particular,
explicit examples are known for matrices of high margin
complexity e.g. Hadamard matrices. It would follow that
such matrices have high mc-rigidity as well.

The rest of this paper is organized as follows. We start
with relevant background and notations in Section 2. In
Section 3 we prove the equivalence of discrepancy and mar-
gin. Section 4 contains the definition of mc-rigidity, the
mc-rigidity of random matrices, and applications to the the-
ory of communication complexity classes. In Section 5 we
prove lower bounds on mc-rigidity. Open questions are dis-
cussed in Section 6.

2 Background and notations

Basic notations Let A and B be two real matrices. We
use the following notations:

• The inner product of A and B is denoted 〈A,B〉 =∑
ij aijbij .

• Matrix norms: ‖B‖1 =
∑ |bij | is B’s �1 norm,

‖B‖2 =
∑

b2
ij is its �2 (Frobenius) norm, and

‖B‖∞ = maxij |bij | is its �∞ norm.

• If A and B are sign matrices then h(A,B) = 1
2‖A −

B‖1 denotes the Hamming distance between A and B.

The minimal dimension in which a sign matrix A can be
realized is defined as

d(A) = min
B:A=sign(B)

rank(B).

(For more about this complexity measure see [25, 8, 6, 11,
9, 18].)

Definition 11 (Discrepancy) Let A be a sign matrix, and
let P be a probability measure on the entries of A. The
P -discrepancy of A, denoted discP (A), is defined as the
maximum over all combinatorial rectangles R in A of
|P+(R) − P−(R)|, where P+ [P−] is the measure of the
positive entries [negative entries].

The discrepancy of a sign matrix A, denoted disc(A), is
the minimum of discP (A) over all probability measures P
on the entries of A.

We make substantial use of Grothendieck’s inequality
(see e.g. [26, pg. 64]), which we now recall.

Theorem 12 (Grothendieck’s inequality) There is a uni-
versal constant
1.5 ≤ KG ≤ 1.8 such that for every real matrix B and
every k ≥ 1

max
∑

bij〈ui, vj〉 ≤ KG max
∑

bijεiδj . (3)

where the max are over the choice of u1, . . . , um, v1, . . . , vn

as unit vectors in R
k and ε1, . . . , εm, δ1, . . . , δn ∈ {±1}.

We denote by γ∗
2 the dual norm of γ2, i.e. for every real

matrix B

γ∗
2(B) = max

C:γ2(C)≤1
〈B,C〉.

We note that for any real matrix γ∗
2 and ‖ · ‖∞→1 are equiv-

alent up to a small multiplicative factor, viz.

‖B‖∞→1 ≤ γ∗
2 (B) ≤ KG‖B‖∞→1. (4)

The left inequality is easy, and the right inequality is a
reformulation of Grothendieck’s inequality. Both use the
observation that the left hand side of (3) equals γ∗

2(B), and
the max term on the right hand side is KG‖B‖∞→1.

565656
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The norm dual to ‖ · ‖∞→1 is the nuclear norm from l1
to l∞. The nuclear norm of a real matrix B, is defined as
follows

ν(B) = min{
∑

|wi| such that
∑

wixiy
t
i = B

for some choice of sign vectors x1, x2, . . . , y1, y2 . . .}.
See [12] for more details.

It is a simple consequence of the definition of duality and
(4) that for every real matrix B

γ2(B) ≤ ν(B) ≤ KG · γ2(B). (5)

3 Margin and discrepancy are equivalent

Here we prove (Recall that mc(A) = m(A)−1):

Theorem 13 For every sign matrix A

1
8
m(A) ≤ disc(A) ≤ 8m(A).

We first define a variant of margin:

Margin with sign vectors: Given an m × n sign matrix
A, denote by Λ = Λ(A) the set of all pairs of sign matrices
X,Y such that the sign pattern of XY equals A, i.e., A =
sign(XY ) and let

mν(A) = max
(X,Y )∈Λ

min
i,j

|〈xi, yj〉|
‖xi‖2‖yj‖2

. (6)

Here xi is the i-th row of X , and yj is the j-th column of Y .
The definitions of mν is almost the same as that of margin
(Equation 1), except that in defining mν we consider only
pairs of sign matrices X,Y and not arbitrary matrices. It is
therefore clear that mν(A) ≤ m(A) for every sign matrix
A. As we see next, the two parameters are equivalent up to
a small multiplicative constant.

3.1 Proof of Theorem 13

First we prove that margin and mν are equivalent up to
a constant factor KG < 1.8, the Grothendieck constant.
Then we show that mν is equivalent to discrepancy up to a
multiplicative factor of at most 4.

Lemma 14 For every sign matrix A,

K−1
G · m(A) ≤ mν(A) ≤ m(A),

where KG is the Grothendieck constant.

Proof The right inequality is an easy consequence of the
definitions of m and mν , so we focus on the left one. Let
Bν be the convex hull of rank one sign matrices. The norm
induced by Bν is the nuclear norm ν, which is dual to the
operator norm from �∞ to �1. With this terminology we can
express mν(A) as

mν(A) = max
B∈Bν

min
ij

aijbij . (7)

It is not hard to check (Using Equation 2) that m(A) can be
equivalently expressed as

m(A) = max
B∈Bγ2

min
ij

aijbij .

Equation (5) can be restated as

Bν ⊂ Bγ2 ⊂ KG · Bν .

Now let B ∈ Bγ2 be a real matrix satisfying m(A) =
minij aijbij . The matrix K−1

G B is in Bν and therefore

mν(A) ≥ K−1
G min

ij
aijbij = K−1

G m(A).

Remark 15 Grothendieck’s inequality has an interesting
consequence in the study of large margin classifiers. As
mentioned above, such classifiers map the sample points
into R

t and then seek an optimal linear classifier (a linear
functional, i.e. a real vector). Grothendieck’s inequality
implies that if we map our points into {±1}k rather than to
real space, the loss in margin is at worst a factor of KG.

We return to prove the equivalence between mν and dis-
crepancy. The following relation between discrepancy and
the ∞ → 1 norm is fairly simple (e.g. [4]):

disc(A) ≤ minP ‖P ◦ A‖∞→1 ≤ 4 · disc(A)

where P ◦ A denotes, as usual, the Hadamard (entry-wise)
product of the two matrices.

Lemma 16 Denote by P the set of matrices whose elements
are nonnegative and sum up to 1. For every sign matrix A,

mν(A) = min
P∈P

‖P ◦ A‖∞→1. (8)

575757
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Proof We express mν as the optimum of some linear pro-
gram and observe that the right hand side of Equation (8)
is the optimum for the dual program. The statement then
follows from LP duality.

Equation (7) allows us to express mν as the optimum of a
linear program. The variables of this program correspond to
a probability measure q on the vertices of the polytope Bν ,
and an auxiliary variable δ is used to express minij aijbij .
The vertices of Bν are in 1:1 correspondence with all m ×
n sign matrices of rank one. We denote this collection of
matrices by {Xi|i ∈ I}. The linear program is

maximize δ
s.t. : ∑

i∈I qi (Xi ◦ A) − δJ ≥ 0
∀ i ∈ I qi ≥ 0∑

i qi = 1.

Here J is the all-ones matrix. It is not hard to see that the
dual of this linear program is

minimize ∆
s.t. :
∀ i ∈ I 〈P ◦ A,Xi〉 = 〈P,Xi ◦ A〉 ≤ ∆
∀i, j pij ≥ 0∑

i,j pij = 1,

where P = (pij). The optimum of the dual program is
equal to the right hand side of Equation (8) by definition
of ‖ · ‖∞→1. The statement of the lemma follows from LP
duality.

To conclude, we have proved the following:

Theorem 17 The ratio between any two of the following
four parameters is at most 8 for any sign matrix A,

• m(A) = mc(A)−1

• mν(A)

• disc(A),

• minP∈P ‖P ◦ A‖∞→1, where P is the set of matrices
with nonnegative entries that sum up to 1.

4 Soft margin complexity, or mc-rigidity

As mentioned in the introduction, some classification al-
gorithms allow the classifier to make a few mistakes, in
search of a better margin. Such algorithms are called soft
margin algorithms. The complexity measure associated
with these algorithms is what we call mc-rigidity. The mc-
rigidity of a sign matrix A is defined

mcr(A, l) = minB:h(B,A)≤l mc(B),

We prove that low mc-rigidity is rare.

Theorem 18 There is a constant c > 0 such that the num-

ber of n × n sign matrices A that satisfy mcr(A, l) ≤
√

l
n

is at most (
n2

l

)c·l·log n2
l

,

for every 0 < l ≤ n2/2.
In particular, there exist ε > 0 such that almost every n×n
sign matrix A satisfies:

Pr(mcr(A, εn2) >
√

εn) = 1 − o(1).

The first part of the theorem is significantly better than
previous bounds [6, 18, 23, 24]. Note that using Theo-
rems 13 and 18 we get an upper bound on the number of
sign matrices with small discrepancy. We don’t know of a
direct method to show that low-discrepancy matrices are so
rare.

Theorem 18 is reminiscent of bounds found in [3, 27]
on the number of sign matrices that are realizable in a low
dimensional space.

To prove Theorem 18 we use the following theorem by
Warren (see [2] for a comprehensive discussion), and the
lemma below it.

Theorem 19 (Warren (1968)) Let P1, . . . , Pm be real
polynomials in t ≤ m variables, of total degree ≤ k each.
Let s(P1, . . . , Pm) be the total number of sign patterns of
the vectors (P1(x), . . . , Pm(x)), over x ∈ R

t. Then

s(P1, . . . , Pm) ≤ (4ekm/t)t
.

In the next lemma we consider the relation between the
margin complexity of a sign matrix A and the minimal di-
mension at which it can be realized (see Section 2). This
relation makes it possible to use Warren’s theorem in the
proof of Theorem 18.

Lemma 20 Let B be a n × n sign matrix, and let 0 <
ρ < 1. There exists a matrix B̃ with Hamming distance
h(B, B̃) < ρn2, such that

d(B̃) ≤ O(log ρ−1 · mc(B)2).

Proof We use the following known fact (e.g. [13, 22]): Let
x, y ∈ R

n be two unit vectors with |〈x, y〉| ≥ ε then

Pr
L

(sign(〈P (x), P (y)〉) �= sign(〈x, y〉)) ≤ 4e−kε2/8.

Where the probability is over k-dimensional subspaces L,
and where P : R

n → L is the projection onto L.
By definition of the margin complexity, there are two n×

n matrices X and Y such that

• B = sign(XY )

585858

Authorized licensed use limited to: Hebrew University. Downloaded on February 1, 2009 at 08:12 from IEEE Xplore.  Restrictions apply.



• Every entry in XY has absolute value ≥ 1

• ‖X‖2→∞ = ‖Y ‖1→2 =
√

mc(B).

Denote by x1, x2, . . . , xn and y1, y2, . . . , yn the rows
of X and columns of Y respectively. Take C such that
4e−C/8 ≤ ρ, then by the above fact, for k = Cmc(B)2

there is a k-dimensional linear subspace L, such that
projecting the points onto L preserves at least (1 − ρ)n2

signs of the n2 inner products {〈xi, yj〉}.

To complete the proof of Theorem 18 let A be a sign
matrix with mcr(A, l) ≤ µ. Namely, it is possible to
flip at most l entries in A to obtain a sign matrix B with
mc(B) ≤ µ. Let ρ = l/n2 and apply Lemma 20 to B.
This yields a matrix E, such that the Hamming distance
h(sign(E), B) ≤ l and E has rank O(log ρ−1 · µ2)
(In the terminology of Lemma 20 B̃ = sign(E)). To
sum up, we change at most l entries in A to obtain B
and then at most l more entries to obtain sign(E), a
matrix realizable in dimension O(log ρ−1 · µ2). Therefore
A = sign(E + F1 + F2), where F1, F2 have support of
size at most l each (corresponding to the entries where sign
flips were made).

Now E can be expressed as E = UV t for some n × r
matrices U and V with r ≤ c1 log ρ−1 ·µ2 (c1 is a constant).

Let us fix one of the ≤ (
n2

l

)2
choices for the supports of the

matrices F1, F2 and consider the entries of U, V and the
nonzero entries in F1, F2 as formal variables. Each entry in
A is the sign of a polynomial of degree 2 in these variables.
We apply Warren’s theorem (Theorem 19) with these para-
meters to conclude that the number of n × n sign matrices
A with mcr(A, l) ≤ µ is at most

(
n2

l

)2

·(8en2/(2c1 log ρ−1 · µ2 · n + 2l)
)2c1 log ρ−1·µ2·n+2l

.

Recall that ρ = l/n2 and substitute µ =
√

l
n , to get

(
n2

l

)2

·
(

8en2/(2c1 · l · log
n2

l
+ 2l)

)2c1·l·log n2
l +2l

=
(

n2

l

)O(l·log n2
l )

.

4.1 Communication complexity classes

Surprisingly, mc-rigidity is related to questions about
separating communication complexity classes. A major
open problem, from [5] is to separate the polynomial hi-
erarchy. Lokam [20] has raised the question of explicitly
construction matrices outside AM cc, the class of bounded
round interactive proof systems. We tie these questions to
mc-rigidity.

Theorem 21 Let A be an n × n sign matrix. If there exists
a constant c ≥ 0 such that for every c1 ≥ 0

mcr(A,n2/2(log log n)c

) ≥ 2(log log n)c1
,

then A is not in PHcc.

and

Theorem 22 An n × n sign matrix A that satisfies

mcr(A,n2/2(log log n)c

) ≥ 2(log log n)c1

for every c, c1 ≥ 0, is outside AM cc.

Following are the proofs of Theorems 21 and 22
Proof [of Theorem 21] The theorem is a consequence of
the definition of mcr and the following claim: For every
2m × 2m sign matrix A ∈ PHcc and every constant c ≥ 0
there is a constant c1 ≥ 0 and a matrix B such that:

1. The entries of B are nonzero integers.

2. γ2(B) ≤ 2(log log n)c1 .

3. h(A, sign(B)) ≤ n2/2(log log n)c

.

The proof of this claim is based on a theorem of Tarui [30]
(see also Lokam [20]).

It should be clear how boolean gates operate on 0−1 ma-
trices. By definition of the polynomial hierarchy in commu-
nication complexity, every boolean function f in Σk can be
computed by an AC0 circuit of polynomial size whose in-
puts are 0−1 matrices of size 2m×2m and rank 1. Namely,

f(x, y) = C(X1, . . . , Xs),

where C is an AC0 circuit, {Xi}s
i=1 are 0 − 1 rank 1 ma-

trices, and s ≤ 2polylog(m).
Now, AC0 circuits are well approximated by low degree

polynomials, as proved by Tarui [30]. Let C be an AC0

circuit of size 2polylog(m) acting on 2m ×2m 0−1 matrices
φ1, . . . , φs. Fix 0 < δ = 2(log m)c

for some constant c ≥ 0.
Then there exists a polynomial Φ ∈ Z[X1, . . . , Xs] such
that

1. The sum of absolute values of the coefficients of Φ is
at most 2polylog(m).

2. The fraction of entries where the matrices
C(φ1, . . . , φs) and Φ(φ1, . . . , φs) differ is at most δ.
Here and below, when we evaluate Φ(φ1, . . . , φs),
products are pointwise matrix products.

3. Where Φ and C differ, Φ(φ1, . . . , φs) ≥ 2.
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Let us apply Tarui’s theorem on the 0 − 1 version of A,
and let Φ =

∑
T∈{0,1}s aT Πi∈T Xi be the polynomial given

by the theorem. Notice that YT = Πi∈T Xi has rank 1. Let

B = (
∑

T∈{0,1}s

aT YT ) − J.

Then

1. The entries of B are nonzero integers,

2. γ2(B) ≤ 1 +
∑

T∈{0,1}s |aT | ≤ 2polylog(m),

3. h(A, sign(B)) ≤ δn2,

as claimed.

Proof [of Theorem 22] We first recall some background
from [20]. A family G ⊂ 2[n], is said to generate a fam-
ily F ⊂ 2[n] if every F ∈ F can be expressed as the union
of sets from G. We denote by g(F) the smallest cardinality
of a family G that generates F . Each column in a 0 − 1
matrix Z is considered as the characteristic vector of a set
and Φ(Z) is the family of all such sets. If A is an n×n sign
matrix, we define F(A) as Φ(Ā) where Ā is obtained by
replacing each −1 entry in A by zero. We denote g(F(A))
by g(A). Finally there is the rigidity variant of g(A):

g(A, l) = minB:h(B,A)≤l g(B),

Lokam [20, Lemma 6.3] proved that if
g(A,n2/2(log log n)c

) ≥ 2(log log n)ω(1)
for every c > 0 then

A �∈ AM cc. We conclude the proof by showing that

g(A) ≥ (mc(A) − 1)/2

for every n × n sign matrix A.
Let g = g(A) and let G = {G1, . . . , Gg} be a minimal

family that generates F(A). Let X be the n×g 0−1 matrix
whose i-th column is the characteristic vector of Gi. Denote
by Y a g × n 0 − 1 matrix that specifies how to express the
columns of Ā by unions of sets in G. Namely, if we choose
to express the i-th column in Ā as ∪t∈T Gt, then the i-th
column in Y is the characteristic vector of T . Clearly XY
is a nonnegative matrix whose zero pattern is given by Ā.
Consequently, the matrix B = XY − J

2 satisfies

1. sign(B) = A,

2. |bij | ≥ 1/2 and

3. γ2(B) ≤ γ2(XY ) + γ2(J
2 ) ≤ g + 1/2.

It follows that

mc(A) ≤ γ2(2B) ≤ 2g + 1,

as claimed.

5 Lower bounds on mc-rigidity

To provide some perspective for our discussion of lower
bounds on mc-rigidity, it is worthwhile to recall first some
of the known results about rank-rigidity. The best known
explicit lower bound for rank-rigidity is for the n × n
Sylvester-Hadamard matrix Hn [14], and has the follow-
ing form: For every r > 0, at least Ω(n2

r ) changes have to
be made in Hn to reach a matrix with rank at most r. Our
first lower bound has a similar flavor. For example, since
‖Hn‖∞→1 = Θ(n3/2) (e.g. Lindsey lemma), Theorem 23
below implies that at least Ω(n2

g ) sign flips in Hn are re-
quired to reach a matrix with margin complexity ≤ g. (This
applies for all relevant values of g, since we only have to
consider g ≤ O(

√
n).)

Theorem 23 Every m × n sign matrix A satisfies

mcr(A,
mn

8g
) ≥ g,

provided that g < mn
2KG‖A‖∞→1

.

We conjecture that there is an absolute constant ε0 > 0
such that for every sign matrix A with mc(A) ≥ Ω(

√
n) at

least Ω(n2) sign flips are needed in A to reach a sign matrix
with margin complexity ≤ ε0 · mc(A). Theorem 23 yields
this conclusion only when ε0 ≤ O( 1√

n
). The next theorem

offers a slight improvement and yields a similar conclusion

already for ε0 ≤ O(
√

log n
n ). (Recall that mc(A) ≤ γ2(A)

for every sign matrix A. Thus mc(A) ≥ Ω(
√

n) entails the
assumption of Theorem 24.)

Theorem 24 Every n × n sign matrix A with γ2(A) ≥
Ω(

√
n) satisfies

mcr(A, δn2) ≥ Ω(
√

log n),

for some δ > 0.

The proofs of Theorems 23, 24 use some information
about the Lipschitz constants of two of our complexity mea-
sures:

Lemma 25 The Hamming distance of two sign matrices
A,B is at least

h(A,B) ≥ 1
2

(‖B‖∞→1 − ‖A‖∞→1) .
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Proof [of Lemma 25] Let x and y be two sign vectors sat-
isfying

∑
bi,jxiyj = ‖B‖∞→1. If M is the Hamming dis-

tance between A and B, then

‖A‖∞→1 ≥
∑

aijxiyj

=
∑

bi,jxiyj +
∑

(aij − bi,j)xiyj

≥
∑

bi,jxiyj −
∑

|aij − bi,j |
= ‖B‖∞→1 − 2M

We next need a similar result for γ2:

Lemma 26 For every pair of sign matrices A and B

h(A,B) ≥ Ω(|γ2(A) − γ2(B)|4).
In the proof of Lemma 26 we need a bound on the γ2 of

sparse (−1, 0, 1)-matrices given by the following lemma.

Lemma 27 Let A be a (−1, 0, 1)-matrix with N non-zero
entries, then γ2(A) ≤ 2(N)1/4.

Proof We find matrices B and C such that A = B +C and

γ2(B), γ2(C) ≤ (N)1/4,

since γ2 is convex, γ2(A) ≤ 2(N)1/4.
Let I be the set of rows of A with more than (N)1/2

non-zero entries, we define the matrices B and C by:

bij =
{

aij if i ∈ I
0 otherwise

cij =
{

aij if i �∈ I
0 otherwise

The matrix B has at most (N)1/2 non zero rows, and each
row in C has at most (N)1/2 non-zero entries, thus by
considering the trivial factorizations (IX = XI = X)
we conclude that γ2(B), γ2(C) ≤ (N)1/4. Obviously
A = B + C, which concludes the proof.

Proof [of Lemma 26] Let A and B be two sign matrices.
The matrix 1

2 (A − B) is a (−1, 0, 1)-matrix with h(A,B)
non-zero entries, thus by Lemma 27

γ2(A − B) ≤ 4h(A,B)1/4

Since γ2 is a norm

γ2(A − B) ≥ |γ2(A) − γ2(B)|.
The claim follows by combining the above two inequalities.

We can now complete the proof of Theorems 23 and 24:

Proof of Theorem 23 It is proved in [18] that for every
m × n sign matrix Z

‖Z‖∞→1 ≥ mn

KG · mc(Z)
.

We apply this to a matrix B with mc(B) = g and conclude
that ‖B‖∞→1 ≥ mn

gKG
. On the other hand, by assumption,

‖A‖∞→1 ≤ mn
2gKG

, so by Lemma 25, h(A,B) ≥ mn
4gKG

≥
mn
8g .

Proof of Theorem 24 Let A be an n×n sign matrix with
γ2(A) ≥ ε

√
n, for some constant ε. By Lemma 26 there

is a constant δ > 0 such that every sign matrix B with
h(A,B) ≤ δn2 satisfies γ2(B) ≥ ε

2n2. As observed in
the Discussion Section in [19] every n × n sign matrix B
with γ2(B) ≥ Ω(

√
n) also satisfies mc(A) ≥ Ω(

√
log n).

It follows that mcr(A, cn2) ≥ Ω(
√

log n).

5.1 Relations with rank-rigidity

We discuss relations mc-rigidity has with rank-rigidity.
First we prove the following lower bound on rank-rigidity,
which compares favorably to the best known bounds (see
e.g. [14]). This lower bound is related to mc-rigidity in that
its method of proof is the same as for the proof of Theo-
rem 23. We then prove lower bounds in terms of mc-rigidity
on a variant of rank-rigidity.

Claim 28 Every n × n sign matrix A requires at least
Ω(n2

r ) sign reversals to reach a matrix of rank r, provided

that r < n2

2KG‖A‖∞→1
.

Proof Let B̃ be a matrix of rank r obtained by changing
entries in A, and let B = sign(B̃) be its sign matrix. Then

r ≥ d(B) ≥ n2

KG‖B‖∞→1
.

The first inequality follows from the definition of d and the
latter from a general bound proved in [18]. It follows that

‖B‖∞→1 ≥ n2

rKG
.

By assumption, ‖A‖∞→1 ≤ n2

2rKG
, and so Lemma 25

implies that the sign matrices A and B differ in at least
Ω(n2

r ) places.

We turn to discuss rank-rigidity when only bounded
changes are allowed.

Definition 29 ([20]) Let A be a sign matrix, and θ ≥ 0. For
a matrix B denote by wt(B) the number of nonzero entries
in B. Define

R+
A(r, θ) = min

B
{wt(A−B) : rank(B) ≤ r, 1 ≤ |bij | ≤ θ}
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Claim 30 For every sign matrix A,

R+
A(mc2

r(A, l)/θ2, θ) ≥ l.

Proof Let A be a sign matrix, and B a real matrix with
θ ≥ |bij | ≥ 1 for all i, j, and rank(B) ≤ mc2

r(A, l)/θ2.
Denote by Ã the sign matrix of B, i.e. ãij = sign(bij),
then wt(A − Ã) ≤ wt(A − B). Also, it holds that

mc(Ã) ≤ γ2(B) ≤ ‖B‖∞
√

rank(B) ≤ mcr(A, l).

The first inequality follows from Equation 2 and the
second is since γ2 ≤ √

rank(B) for every real matrix
B (This inequality is well known to Banach spaces
theorists, see e.g. [18] for a proof). We conclude
that wt(A − B) ≥ wt(A − Ã) ≥ l. Since this is
true for every matrix B satisfying the assumptions,
R+

A(mc2
r(A, l)/θ2, θ) ≥ l.

6 Discussion and open problems

It remains a major open problem to derive lower bounds
on mc-rigidity. In particular the following conjecture seems
interesting and challenging:

Conjecture 31 For every constant c1 there are constants
c2, c3 such that every n × n sign matrix A satisfying
mc(A) ≥ c1

√
n also satisfies:

mcr(A, c2n
2) ≥ c3

√
n.

This conjecture says that every matrix with high margin
complexity has a high mc-rigidity as well. This is help-
ful since we do have general techniques for proving lower
bounds on margin complexity, e.g. [18]. In particular, an
n × n Hadamard matrix has margin complexity

√
n ([18]).

Thus, Conjecture 31 combined with Theorems 8 and 9, im-
plies that PHcc �= PSPACEcc and AM cc �= IP cc, since
Sylvester-Hadamard matrices are in IP cc ∩ AM cc. The
relation between margin complexity and discrepancy (The-
orem 5) adds another interesting angle to these statements.
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