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ABSTRACT: The goal of the matrix completion problem is to retrieve an unknown real matrix from
a small subset of its entries. This problem comes up in many application areas, and has received a
great deal of attention in the context of the Netflix challenge. This setup usually represents our partial
knowledge of some information domain. Unknown entries may be due to the unavailability of some
relevant experimental data.

One approach to this problem starts by selecting a complexity measure of matrices, such as rank or
trace norm. The corresponding algorithm outputs a matrix of lowest possible complexity that agrees
with the partially specified matrix. The performance of the above algorithm under the assumption
that the revealed entries are sampled randomly has received considerable attention (e.g., Refs. Srebro
et al., 2005; COLT, 2005; Foygel and Srebro, 2011; Candes and Tao, 2010; Recht, 2009; Keshavan
et al., 2010; Koltchinskii et al., 2010). Here we ask what can be said if the observed entries are
chosen deterministically. We prove generalization error bounds for such deterministic algorithms,
that resemble the results of Refs. Srebro et al. (2005); COLT (2005); Foygel and Srebro (2011) for
the randomized algorithms.

We still do not understand which sets of entries in a given matrix can be used to properly reconstruct
it. Our hope is that the present work sheds some light on this problem. © 2013 Wiley Periodicals, Inc.
Random Struct. Alg., 00, 000–000, 2013
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tic guarantees
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1. INTRODUCTION

Consider the problem of approximating a partially observed target matrix Y with another
matrix X. This problem, known as the matrix completion problem, arises often in practice.
A well known instance of this problem is the famous Netflix challenge in which we seek to
predict people’s preferences in films based on their past choices in viewing films. Say yij

is the score given by viewer i to film j. These numbers can be considered as a very sparse
sample of the matrix Y which we seek to reconstruct.

More formally, we have oracle access to a real n × n matrix Y = (yij). Namely, given
a pair of indices (i, j) the oracle returns yij. We consider an algorithm that is given such
access to Y and an error parameter ε. The algorithm should use a small number of calls
to the oracle and return a real matrix X such that

∑
i,j(xij − yij)

2 ≤ ε. Clearly, the number
of oracle calls that we require depends on the properties of Y . Without any assumption (or
restriction) on Y , the above question is meaningless.

A common general scheme for solving such problems is to select a matrix X that min-
imizes some combination of the complexity of X and the distance between X and Y on
the observed part. In particular, one can insist that X agrees with Y on the queried entries.
This general scheme follows the principle of Occam’s razor, namely that the “simplest”
solution yields the best performance on new instances. The heart of the matter is therefore
our interpretation of “simplicity,” namely our choice of the complexity measure for X.

The most commonly used notion of complexity in such tasks is matrix rank. For example,
it is not hard to see why small rank makes sense in the Netflix example. It stands to reason
that users’ preferences depend on a small set of parameters. More recently, the trace-norm
and γ2 were suggested as alternative measures of complexity [5, 16]. Whereas the search
for minimal rank usually results in NP-hard problems, the problems of minimizing the
trace-norm and γ2 can be solved in polynomial time using convex programming. Figure 1
describes the outline of the algorithm with γ2 as the complexity measure.

The γ2 norm originated in the study of factorization norms in Banach space theory, and
is defined for a real matrix X as:

γ2(X) = min
UV=X

‖U‖�2→�m∞ ‖V‖�n
1→�2 .

For a more detailed expository of the γ2 norm, see Section 2.2.
The γ2 norm was first utilized in the context of matrix completion by Srebro et al. [16]1.

They analyzed the algorithm of Figure (1) when the initial set S is chosen at random, and
proved the following bound on the generalization error 2:

Theorem 1 ([16]). Let Y be an n × n real matrix, δ > 0, and P a probability distribution
on pairs (i, j) ∈ [n]2. Choose a sample S of |S| > n log n entries according to P. Then, with
probability at least 1 − δ over the sample selection, the following holds:

∑
i,j

pij|xij − yij| ≤ cγ2(X)

√
n − log δ

|S| .

Where X is the output of the algorithm with sample S, and c is a universal constant.

1Note that in Refs. [6, 16, 17] the γ2 norm is referred to as “the max norm.”
2Their result is more general than stated here and applies to every Lipschitz loss function. We opted for this
simplified statement for ease of comparison. For most purposes this simplified version is not less powerful.
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1. Choose a subset S ⊂ [n]2 and query the oracle for the value of Y, on S.
2. Return a matrix X of smallest possible γ2(X) under the condition that

xij = yij for all (i, j) ∈ S.

Fig. 1. The basic scheme.

The statement and proof of Theorem 1 in Ref. [16] only deal with the case of sampling
from the uniform distribution. The general statement is from [17].

Papers studying the performance of the algorithm of Fig. 1 can be divided in two cate-
gories. The first family of papers (e.g., [3,4,9,15]) study conditions under which this simple
approach for matrix completion retrieves the underlying matrix, exactly. In this family of
papers the trace norm is used as a complexity measure. It is an interesting open problem
whether this kind of result holds also for γ2.

In the second family of papers no conditions are posed on the matrix, but the output of
the algorithm is an approximation of the underlying matrix. Upper bounds on the degree
of approximation are proved, as in Theorem 1. Our work continue this line of results, in
particular that of [16,17] and related papers. In these papers the sample is chosen at random,
but in practice we are typically limited in our choice of sampled entries. As suggested above,
it may require some experimental work to reveal an entry of Y , and some entries are harder
to determine than others. It is therefore of practical interest to have a good estimate for the
level of approximation that a given set of samples is guaranteed to yield. This issue is the
motivating force of our study.

In addition, studying deterministic versions of randomized algorithms usually shed new
light on the underlying structure, especially when explicit constructions are involved. We
consider the following (deterministic) choice of the initial set S that is specified in terms
of an expander graph G. We examine an entry (i, j) iff it is an edge in G. We prove the
following bound on the generalization error of our basic algorithm in this case.

Theorem 2. Let S be the set of edges of a d-regular graph with second eigenvalue 3 bound
λ. For every n × n real matrix Y, if X is the output of our algorithm with initial subset S,
then

1

n2

∑
i,j

(xij − yij)
2 ≤ cγ2(Y)2 λ

d
,

where c is a small universal constant.

It is known that λ can be made as small as O(
√

d) (e.g., a Ramanujan graph). In this case
Theorem 2 yields an error bound of

1

n2

∑
i,j

(xij − yij)
2 ≤ c′γ2(Y)2 1√

d

= c′γ2(Y)2

(
n

|S|
)1/2

3The eigenvalues are eigenvalues of the adjacency matrix of the graph.
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We recall that d-regular graphs with λ = O(
√

d) can be constructed in linear time using
e.g. the well-known LPS Ramanujan graphs [13].

Our generalization error bounds are not as strong as the bounds proved for randomized
sampling [16] and we believe that better bounds can be proved using only the properties of
expander graphs. Namely we suggest the following conjecture:

Conjecture 3. Let S be the set of edges of a d-regular graph with λ = O(
√

d). For every
n × n real matrix Y, if X the output of our algorithm when S is picked in the first step, then

1

n2

∑
i,j

|xij − yij| ≤ cγ2(Y)
λ

d
,

for some constant c.

1.1. Non-Uniform Weights

As mentioned, Theorem 1 holds when the initial sample is drawn from any probability
distribution. Our construction, based on expander graphs, is good only when entries are
chosen uniformly. Obviously, we cannot expect a deterministic construction to work well
with an arbitrary distribution. And indeed, expander graphs need not yield good samples
for matrix completion against non-uniform distributions. Nevertheless, for any probability
distribution, we provide explicit constructions of an initial sample, that work well against that
probability distribution. These explicit constructions are based on other graph sparsifiers,
such as the ones given by Refs. [1, 2]. Formally:

Theorem 4. Let P be a probability distribution on pairs (i, j) ∈ [n]2, and d > 1. There
is an efficiently constructed set S ⊂ [n]2 of size at most dn, such that for every n × n real
target matrix Y, if X is the output of our algorithm with initial subset S, then

∑
i,j

pij(xij − yij)
2 ≤ cγ2(Y)2 1√

d
.

The efficiency of constructing the initial set of queries, and the generalization bounds in
Theorem 4 depend on the notion of graph sparsifiers (Section 4). We require cut preserving
or quadratic form preserving sparsifiers. There are several possible sparsifiers which may be
used and different applications call for different choices. For example, the above statement
assumes the sparsifiers of Ref. [1] which provide very good guarantees, but are not extremely
efficient. For better efficiency but slightly worse guarantees the sparsifiers of Ref. [2] can
be invoked.

2. BACKGROUND

2.1. Expander Graphs

Let G = (V , E) be a d-regular graph on n vertices, and d = λ1 ≥ λ2 ≥ . . . ≥ λn

its eigenvalues (i.e., eigenvalues of the adjacency matrix of G). We denote the second
eigenvalue bound λ = λ (G) = max2≤i≤n |λi|. We often use a shorthand and say that G is a
(d, λ) graph in this case. As usual, a family of d-regular graphs {Gt} on nt → ∞ vertices

Random Structures and Algorithms DOI 10.1002/rsa
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is called a family of expander graphs if their spectral gap d − λ is bounded from below
when t → ∞. It is known that λ ≥ 2

√
d − 1 − o(1). When λ ≤ 2

√
d − 1 we say that G is

a Ramanujan graph.
One important property of expander graphs is the expander mixing lemma, which states

that the number of edges between every two sets of vertices in an expander graph is close
to what we expect in a random graph. More formally, for every A, B ⊂ V

∣∣∣∣ |A||B|
n2

− E(A, B)

|E|
∣∣∣∣ ≤ λ

d

√ |A||B|
n2

Here E(A, B) is the number of edges between A and B. For more details on expander graphs
see Ref. [7].

2.2. γ2 and Grothendieck’s Inequality

As mentioned in the introduction, the γ2 norm originated in the study of factorization norms
in Banach space theory. The γ2 norm of a real matrix X is defined as follows:

γ2(X) = min
UV=X

‖U‖�2→�m∞ ‖V‖�n
1→�2 . (1)

Here are a few comments that may add some insight regarding the intuition underlying
this definition. Recall the following definition for rank of a real matrix X

rank(X) = min
UV=X

√
dimR(U) · √

dimC(V),

where dimR(U) is the number of columns in U (i.e., the dimension of the row space of U).
Similarly dimC(V) is the dimension of V ’s column space.

We can informally describe the γ2 norm as a semi-definite relaxation of matrix rank. To
see this, note the following two simple facts: the operator norm ‖V‖�n

1→�2 is the largest �2

norm of a column of V . Likewise, ‖U‖�2→�m∞ is the largest �2 norm of a row of U. Thus γ2 is
defined by modifying the definition of rank, where length substitutes dimension. One useful
feature of this definition is that γ2 can be viewed as the optimum of an optimization problem
that is solvable by semi-definite programming. Specifically, variations on this definition that
involve various linear restrictions can (unlike matrix rank) be still conveniently characterized
and efficiently computed.

The relation between γ2 and rank is also expressed in the following inequality: for every
real matrix X it holds

γ2(X) ≤ √
rank(X)‖X‖∞

This inequality is tight, e.g., for a Hadamard matrix. Also it is tight up to a constant for a
random n × n sign matrix.

There is no matching lower bound though. Consider the n × n identity matrix In, then
γ2(In) = 1 while rank(In) = n. If we allow some slackness and ask for the minimal rank
(res. γ2) in an �∞ environment then the two notions do become strongly related [11].

The γ2 norm has many other interesting properties of which we mention Grothendieck’s
inequality (e.g., Refs. [14, pg. 64] and [18]).

Random Structures and Algorithms DOI 10.1002/rsa
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Theorem 5 (Grothendieck’s inequality). There is a universal constant 1.5 ≤ KG ≤ 1.8
such that for every real m × n matrix X

max
∑

ij

xij〈ui, vj〉 ≤ KG max
∑

ij

xijεiδj. (2)

Here u1, . . . , um, v1, . . . , vn are arbitrary unit vectors in �2 and ε1, . . . , εm, δ1, . . . , δn take
values in {±1}.

Grothendieck’s inequality can be stated in terms of γ2 and the nuclear norm.

Definition 6 (Nuclear norm). Let X be a real matrix. The (�1 to �∞) nuclear norm is
defined as

ν(X) = min
αi∈R

{∑
i

|αi| : X =
∑

i

αiεiδ
t
i , for sign vectors εi, δi

}

Grothendieck’s inequality states that the dual norms of γ2 and ν are equivalent up to a
small constant, KG. Alternatively:

Theorem 7. For every real matrix X:

γ2(X) ≤ ν(X) ≤ KGγ2(X).

Nuclear norms are dual to operator norms. Specifically, ν is the nuclear norm from �1 to
�∞ [8]. Observe that the unit ball of ν is the convex polytope whose vertices are rank one
sign matrices. Thus, Grothendieck’s inequality says that the unit ball of γ2 coincides, up to
a factor of KG, with the convex hull of rank one sign matrices.

3. PROOF OF THEOREM 2

We start by proving the following theorem, which might be of independent interest. It says
that the average of all entries of a matrix is approximated by the average over the edges of
an expander graph. The degree of approximation depends on the nuclear (equivalently γ2)
norm of the matrix.

Theorem 8. For every real n × n matrix R, and (d, λ) graph G = (V , E)∣∣∣∣∣∣
1

n2

∑
i,j

rij − 1

|E|
∑

(i,j)∈E

rij

∣∣∣∣∣∣ ≤ 2ν(R)
λ

d
.

By Grothendieck’s inequality (Theorem 7), this implies:

Corollary 9. For every real n × n matrix R, and (d, λ) graph G = (V , E)∣∣∣∣∣∣
1

n2

∑
i,j

rij − 1

|E|
∑

(i,j)∈E

rij

∣∣∣∣∣∣ ≤ 2KGγ2(R)
λ

d

where KG is the Grothendieck’s constant.
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Proof. First we prove the theorem for a rank-1 sign-matrix S. For every sign-matrix S we
define the corresponding (0, 1)-matrix S′ = 1

2 (S+J), where J is the all-ones matrix. Clearly
S′ = 1A × 1B + 1Ac × 1Bc for some subsets A, B ⊂ V = [n], where 1Z is the characteristic
vector of the set Z . We rewrite the error expression in these terms

∣∣∣∣∣∣
1

n2

∑
i,j

sij − 1

|E|
∑

(i,j)∈E

sij

∣∣∣∣∣∣ =
∣∣∣∣∣∣

1

n2

∑
i,j

(2s′
ij − 1) − 1

|E|
∑

(i,j)∈E

(2s′
ij − 1)

∣∣∣∣∣∣
= 2

∣∣∣∣∣∣
1

n2

∑
i,j

s′
ij − 1

|E|
∑

(i,j)∈E

s′
ij

∣∣∣∣∣∣
= 2

∣∣∣∣ |A||B| + |Ac||Bc|
n2

− E(A, B) + E(Ac, Bc)

|E|
∣∣∣∣

≤ 2

∣∣∣∣ |A||B|
n2

− E(A, B)

|E|
∣∣∣∣ + 2

∣∣∣∣ |Ac||Bc|
n2

− E(Ac, Bc)

|E|
∣∣∣∣

By applying the expander mixing lemma we get

∣∣∣∣∣∣
1

n2

∑
i,j

sij − 1

|E|
∑

(i,j)∈E

sij

∣∣∣∣∣∣ ≤ 2

∣∣∣∣ |A||B|
n2

− E(A, B)

|E|
∣∣∣∣ + 2

∣∣∣∣ |Ac||Bc|
n2

− E(Ac, Bc)

|E|
∣∣∣∣

≤ 2λ

d

(√ |A||B|
n2

+
√ |Ac||Bc|

n2

)

≤ 2λ

d
.

In the last inequality we use the fact that f (x, y) = √
xy + √

(1 − x)(1 − y) ≤ 1 for
0 ≤ x, y ≤ 1 with equality when x = y.

In the general case we represent a real matrix R as a linear combination of rank-1 sign
matrices R = ∑

k αkSk , with ν(R) = ∑
k |αk|. This yields

∣∣∣∣∣∣
1

n2

∑
i,j

rij − 1

|E|
∑

(i,j)∈E

rij

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑

k

αk

⎛
⎝ 1

n2

∑
i,j

sk
ij − 1

|E|
∑

(i,j)∈E

sk
ij

⎞
⎠

∣∣∣∣∣∣
≤

∑
k

|αk|
∣∣∣∣∣∣

1

n2

∑
i,j

sk
ij − 1

|E|
∑

(i,j)∈E

sk
ij

∣∣∣∣∣∣
≤ 2

∑
k

|αk|λ
d

= 2ν(R)
λ

d

Random Structures and Algorithms DOI 10.1002/rsa
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Consider the matrix R = (X − Y) ◦ (X − Y), where ◦ is the Hadamard (or entry-wise)
product, namely rij = (xij −yij)

2. Theorem 2 follows by applying Corollary 9 to this matrix:∣∣∣∣∣∣
1

n2

∑
i,j

(xij − yij)
2 − 1

|E|
∑

(i,j)∈E

(xij − yij)
2

∣∣∣∣∣∣ ≤ 2Kgγ2(R)
λ

d
.

But γ2 is multiplicative under Hadamard product [12], so that

γ2(R) ≤ γ2(X − Y)2 ≤ (γ2(X) + γ2(Y))2.

For the last inequality recall that γ2 is a norm. Since the matrix X is the output of our
algorithm we have that γ2(X) ≤ γ2(Y). Therefore

γ2(R) ≤ 4γ2(Y)2.

We conclude that∣∣∣∣∣∣
1

n2

∑
i,j

(xij − yij)
2 − 1

|E|
∑

(i,j)∈E

(xij − yij)
2

∣∣∣∣∣∣ ≤ 8Kgγ2(Y)2 λ

d
.

The theorem now follows, since our algorithm satisfies (see Fig. 1)

1

|E|
∑

(i,j)∈E

(xij − yij)
2 = 0.

4. PROOF OF THEOREM 4

So far we considered a sample S which is the edge set of a d-regular expander G. We
derived for this case an upper bound on the generalization error with respect to the uniform
distribution in terms of γ2(Y), d and λ(G). The proof is based on Theorem 8, which uses
properties of expander graphs. A good sample w.r.t. non-uniform distributions requires
slightly different graphs, called sparsifiers.

A sparsifier of a graph G = (V , E, w) is a sparse graph H that is similar to G in some
useful manner. For example, expander graphs are sparsifiers of the complete graph. They
are similar to the complete graph in the fraction of edges they contain in every cut. Or, as
we saw, they are also similar in estimating the average over the entries of a matrix with low
γ2 norm.

Batson et al. [1] consider a spectral notion of similarity. They prove

Theorem 10 ([1]). For every d > 1, every undirected weighted graph G = (V , E, w) on
n vertices contains a weighted subgraph H = (V , F, w̃) with d(n − 1) edges that satisfies:

∑
(i,j)∈E

wij(xi − xj)
2 ≤

∑
(i,j)∈F

w̃ij(xi − xj)
2 ≤ d + 1 + 2

√
d

d + 1 − 2
√

d

∑
(i,j)∈E

wij(xi − xj)
2, (3)

for every vector of real numbers (x1, x2, . . . , xn).

Random Structures and Algorithms DOI 10.1002/rsa
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Notice that Eq. (3) implies∣∣∣∣∣∣
∑

(i,j)∈E

wij(xi − xj)
2 −

∑
(i,j)∈F

w̃ij(xi − xj)
2

∣∣∣∣∣∣ ≤ 4
√

d

d + 1 − 2
√

d

∑
(i,j)∈E

wij(xi − xj)
2

= 	(
1√
d

)
∑

(i,j)∈E

wij(xi − xj)
2.

We use the sparsifiers of Batson et al. to query a matrix that we wish to complete. Instead
of Theorem 8 we use:

Theorem 11. Let P be a probability distribution on pairs (i, j) ∈ [n]2, and d > 1. There
is an efficiently constructed set S ⊂ [n]2 of cardinality at most dn, and a weight function
w : S → R

+, such that for every n × n real matrix R:∣∣∣∣∣∣
∑

i,j

pijrij −
∑
(i,j)∈S

wijrij

∣∣∣∣∣∣ ≤ O

(
ν(R)√

d

)
.

Like before, Grothendieck’s inequality implies the corollary:

Corollary 12. Let P be a probability distribution on pairs (i, j) ∈ [n]2, and d > 1.
There is an efficiently constructed set S ⊂ [n]2 of size at most dn, and a weight function
w : S → R

+, such that for every n × n real matrix R:∣∣∣∣∣∣
∑

i,j

pijrij −
∑
(i,j)∈S

wijrij

∣∣∣∣∣∣ ≤ O

(
γ2(R)√

d

)
.

4.1. Constructing the Sample

Before we prove Theorem 11 let us describe the construction of the initial sample: let P be
a probability distribution on pairs (i, j) ∈ [n]2, and d > 1. Let V = [2n], and G = (V , E, P)

be the complete bipartite graph having n vertices in each side, with weights given by P. That
is, pij is the weight assigned to the edge (i, j). The left[right] set of vertices of G correspond
to the rows[columns] of the matrix that we want to recover, respectively. Let H = (V , F, w)

be the subgraph of G guaranteed by Theorem 10. Then, the sample is taken as S = F, the
set of edges of H. By Theorem 10∣∣∣∣∣∣

∑
i,j

pij(xi − yj)
2 −

∑
(i,j)∈S

wij(xi − yj)
2

∣∣∣∣∣∣ = 	(
1√
d

)
∑

i,j

pij(xi − yj)
2, (4)

for every vector of real numbers (x1, x2, . . . , xn, y1, y2, . . . , yn).

Remark 13. In the construction of S, we have considered G as the complete bipartite
graph. We can instead take the bipartite graph with n vertices in each side, and edge set
that corresponds to the support of P. This way we avoid any dependence on entries (i, j)
for which pij = 0.

Random Structures and Algorithms DOI 10.1002/rsa



10 HEIMAN, SCHECHTMAN, AND SHRAIBMAN

Proof of Theorem 11. As in the proof of Theorem 8, it is enough to prove the theorem
for a rank-1 sign matrix xyt . The general theorem then follows from basic properties of the
nuclear norm.

Thus, let xyt be a rank-1 sign matrix. By plugging the vector (x1, x2, . . . , xn, y1, y2, . . . , yn)

in Eq. (4), we get∣∣∣∣∣∣
∑

i,j

pij(xi − yj)
2 −

∑
(i,j)∈S

wij(xi − yj)
2

∣∣∣∣∣∣ = 	(
1√
d

)
∑

i,j

pij(xi − yj)
2, (5)

By plugging the vector (x1, x2, . . . , xn, −y1, −y2, . . . , −yn) again in Eq. (4), we get∣∣∣∣∣∣
∑

i,j

pij(xi + yj)
2 −

∑
(i,j)∈S

wij(xi + yj)
2

∣∣∣∣∣∣ = 	(
1√
d

)
∑

i,j

pij(xi + yj)
2, (6)

Notice that

|xi − yj| =
{

0 if xi = yj

−2xiyj if xi �= yj

and

|xi + yj| =
{

2xiyj if xi = yj

0 if xi �= yj

Therefore∣∣∣∣∣∣
∑

i,j

pijxiyj −
∑
(i,j)∈S

wijxiyj

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣

∑
i,j:xi=yj

pijxiyj −
∑

(i,j)∈S:xi=yj

wijxiyj

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

i,j:xi �=yj

pijxiyj −
∑

(i,j)∈S:xi �=yj

wijxiyj

∣∣∣∣∣∣
= 1

4

∣∣∣∣∣∣
∑

i,j

pij(xi − yj)
2 −

∑
(i,j)∈S

wij(xi − yj)
2

∣∣∣∣∣∣
+ 1

4

∣∣∣∣∣∣
∑

i,j

pij(xi + yj)
2 −

∑
(i,j)∈S

wij(xi + yj)
2

∣∣∣∣∣∣
≤ 	(

1√
d

)
∑

i,j

pij(xi − yj)
2

+ 	(
1√
d

)
∑

i,j

pij(xi + yj)
2

≤ 	(
1√
d

).

For the last inequality recall that P is a probability distribution. Also, xi − yj and xi + yj

have disjoint support and are at most two in absolute value.

Random Structures and Algorithms DOI 10.1002/rsa
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This completes the proof for Rank 1 sign matrices. The case of a general real matrix is
now proved as in Theorem 8.

The last step of the proof is similar to the proof of Theorem 2, with Theorem 11 replacing
Theorem 8. We choose our sample as explained in the proof of Theorem 11 and apply the
statement of the theorem with the matrix rij = (xij − yij)

2. We get∣∣∣∣∣∣
∑

i,j

pijrij −
∑
(i,j)∈S

wijrij

∣∣∣∣∣∣ ≤ O

(
γ2(R)√

d

)
.

Since by definition of our algorithm rij = 0 for (i, j) ∈ S. And since, as explained before
γ2(R) ≤ 4γ2(Y)2. We conclude that

∑
i,j

pij(xij − yij)
2 ≤ O

(
γ2(Y)2

√
d

)
.
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