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Abstract

We study the Boolean rank of two families of binary matrices. The first is the binary matrix
Ak,t that represents the adjacency matrix of the intersection bipartite graph of all subsets of
size t of {1, 2, ..., k}. We prove that its Boolean rank is k for every k ≥ 2t.

The second family is the family Us,m of submatrices of Ak,t that is defined as Us,m =
(Jm ⊗ Is) + (Īm ⊗ Js), where Is is the identity matrix, Js is the all-ones matrix, s = k − 2t+ 2
and m =

(
2t−2
t−1
)
. We prove that the Boolean rank of Us,m is also k for the following values of t

and s: for s = 2 and any t ≥ 2, that is k = 2t; for t = 3 and any s ≥ 2; and for any t ≥ 2 and
s > 2t− 2, that is k > 4t− 4.

Key Words— Boolean rank; cover size; intersection matrix.
Classification Codes— 05C50, 15B34, 15B99, 68Q99

1 Introduction

Computing the Boolean rank RB(A) of a binary matrix A is an important combinatorial op-
timization problem with numerous applications. The Boolean rank of A is equal to the cover
size, Cover1(A), of A, that is defined as the minimal number of monochromatic combinatorial
rectangles required to cover all of the ones of A (see [3]). It is also closely related to the non-
deterministic communication complexity, N(A), of the matrix, since N(A) = log2(Cover1(A))
(see for example, Kushilevitz and Nisan [4]). Thus, computing RB(A) for a given matrix A,
determines exactly the non-deterministic communication complexity of A.

The Boolean rank of a binary matrix A is also equivalent to the minimal number of bi-cliques
needed to cover the edges of the bipartite graph whose adjacency matrix is A. The problem
was shown to be NP-complete [6], and the cover number or Boolean rank of only a few concrete
matrices has been computed exactly.

Here we suggest to study the Boolean rank of two specific families of binary matrices. The
first is the family of binary matrices Ak,t that represent the adjacency matrix of the intersection

bipartite graph of all subsets of size t of [k]
def
= {1, 2, ..., k}. Thus, each row and column of Ak,t

is indexed by a subset of [k] having size t, the size of Ak,t is
(
k
t

)
×
(
k
t

)
, and A[x][y] = 1 if and

only if the two subsets x, y intersect.
Note that if t > k/2, then every two subsets of size t intersect. Therefore, in this case, the

matrix Ak,t is just the all-ones matrix, and its Boolean rank is one. Thus, the interesting range
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of values for t is 1 ≤ t ≤ k/2. It is interesting to note that the largest monochromatic rectangle

of ones in Ak,t is of size
(
k−1
t−1
)2

. This follows from a result of Pyber [7] that generalizes the
Erdös-Ko-Rado theorem, and states that the size of any cross intersecting family of t-uniform

subsets of [k] is bounded by
(
k−1
t−1
)2

. Moreover, there is a trivial cover of size k for Ak,t with

k monochromatic rectangles of ones, each of size
(
k−1
t−1
)2

: define the ith rectangle to contain all

pairs (x, y) ∈
(
[k]
t

)
×
(
[k]
t

)
for which i ∈ x ∩ y (note that in particular Ak,t[x][y] = 1 for every

such pair (x, y)). Thus, RB(Ak,t) ≤ k, for every 1 ≤ t ≤ k/2.
It is known that for some values of t ≤ k/2 this upper bound is in fact tight, that is, the

Boolean rank is exactly k. Specifically, these partial results are based on the work of Caen et
al. [2], who prove, using Sperner’s Theorem, the following theorem:

Theorem 1 ([2]) If the rows (columns) of a matrix B form an antichain of size n, then the
Boolean rank of B is at least σ(n), where

σ(n) = min

{
` | n ≤

(
`

b`/2c

)}
.

Since the rows of Ak,t are an antichain, because there is an equal number of 0’s in each
row, and no two rows are identical, we get that RB(Ak,t) = k for those values of k, t for which

σ(
(
k
t

)
) = k (see for example [5]). We prove in Section 2 that in fact the Boolean rank of Ak,t is

exactly k for all k ≥ 2t:

Theorem 2 The Boolean rank of Ak,t is k for 1 ≤ t ≤ k/2.

The crux of the (simple) proof is to show that RB(Ak,t) is a non-increasing function in t,
and since RB(Ak,1) = RB(Ak,k/2) = k, we get that RB(Ak,k/2) = k for all t in this range.

Next we consider the Boolean rank of a special sub-family of submatrices Us,m of Ak,t.
Denote by Īn the complement of the identity matrix In of size n × n, and by Jn the all-ones
matrix of size n× n. Then define:

Us,m = (Jm ⊗ Is) + (Īm ⊗ Js),

where the addition is the Boolean addition and ⊗ is the Kronecker product. As we prove, when
s = k− 2t+ 2 and m =

(
2t−2
t−1
)
, then Us,m is a submatrix of Ak,t, and its Boolean rank is also k

for the values of s and m specified in Theorem 3 below.
Note that RB(Jm ⊗ Is) = s and RB(Īm ⊗ Js) = σ(m). The latter follows from a result

of [2] that showed that RB(Īm) = σ(m), as Īm is the adjacency matrix of the bipartite crown
graph. Therefore, the Boolean rank of (Īm ⊗ Js) is also σ(m), and when m =

(
2t−2
t−1
)
, then

σ(m) = 2t− 2. Thus, what we prove is that for the values specified in Theorem 3, it holds that
RB(Us,m) = k = s+ 2t− 2 = RB(Jm ⊗ Is) +RB(Īm ⊗ Js). It is known that for any matrix A
for which A = B + C it holds that RB(A) ≤ RB(B) +RB(C), and therefore, it is interesting
to find families of matrices for which equality holds.

Theorem 3 The Boolean rank of Us,m is s+ σ(m) for the following values of s and m, where
in all cases, for m =

(
2t−2
t−1
)

we get that the Boolean rank is s+ 2t− 2 = k:

• For m =
(
2t−2
t−1
)
, s = 2 and any t ≥ 2, that is for k = 2t.

• For m =
(
2t−2
t−1
)
, t = 3 and any s ≥ 2.

• For any m ≥ 2 and s > σ(m), where for m =
(
2t−2
t−1
)

and t ≥ 2 this means that k =
s+ 2t− 2 > 4t− 4.
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Note that if t = 1, then Us,m = Ak,t = Ik and thus its rank is k. Also, the case of m =
(
2t−2
t−1
)
,

t = 2 and s = 2 is a special case of the first item of Theorem 3, and the case of m =
(
2t−2
t−1
)
,

t = 2 and any s > 2 is a special case of the third item. We conjecture that in fact RB(Us,m) =
s+σ(m) = k for any m =

(
2t−2
t−1
)

and all k ≥ 2t. However, although the third item of Theorem 3

proves that RB(Us,m) = s+ σ(m) also for m 6=
(
2t−2
t−1
)

and a large enough s, it does not always

hold that RB(Us,m) = s+ σ(m) for m 6=
(
2t−2
t−1
)

(as we show in Section 4).

2 The Boolean rank of Ak,t

In this section we prove Theorem 2 and show that for every 1 ≤ t ≤ k/2, the Boolean rank
of Ak,t is k. Since the Boolean rank of a matrix is equal to its cover size by monochromatic
rectangles of ones, we will alternate between these two concepts here and throughout the paper.
Also, for the sake of simplicity, we will say monochromatic rectangles instead of monochromatic
rectangles of ones.

With a slight abuse of notation, we identify subsets of [k] with their characteristic vectors.
Furthermore, we will denote a (generalized) rectangle in Ak,t by X × Y , where X is a subset of
row indices in the matrix, and Y is a subset of column indices. Thus, we say that X × Y is a
monochromatic rectangle if and only if Ak,t[x][y] = 1 for every (x, y) ∈ X × Y .

First note that when t = 1, then Ak,t = Ik, and, thus, clearly RB(Ak,1) = k. Also, when
t = bk/2c, then RB(Ak,t) = k using Theorem 1 and the fact that the rows of Ak,t are an

antichain, where in this case σ(
(
k
t

)
) = σ(

(
k
bk/2c

)
) = k.

We now prove that for every t′ > t ≥ 1, we have that RB(Ak,t′) ≤ RB(Ak,t). That is,
the Boolean rank is a non-increasing function of t. It follows that RB(Ak,k/2) ≤ RB(Ak,t) ≤
RB(Ak,1) for every 1 ≤ t ≤ k/2. Since we have that RB(Ak,1) = RB(Ak,k/2) = k, Theorem 2
follows.

Consider any cover C of the ones of Ak,t with j monochromatic rectanglesX1×Y1, . . . , Xj×Yj .
That is, for every 1 ≤ i ≤ j, the rectangle Xi × Yi is some set of pairs (x, y) ∈

(
[k]
t

)
×
(
[k]
t

)
for

which Ak,t[x][y] = 1, and the union of all these j rectangles covers exactly all the ones of
Ak,t. Using the cover C, we show how to define a cover C′ of size j for Ak,t′ , and therefore
RB(Ak,t′) ≤ RB(Ak,t).

Consider the following set of j rectangles C′ = {X ′1 × Y ′1 , ..., X ′j × Y ′j } defined over Ak,t′ as

follows: for each 1 ≤ i ≤ j, let X ′i be the set of all x′ ∈
(
[k]
t′

)
such that each x′ contains some

subset x ∈ Xi and similarly for Y ′i . That is:

X ′i =

{
x′ ∈

(
[k]

t′

) ∣∣ ∃x ∈ Xi, x ⊂ x′
}
, Y ′i =

{
y′ ∈

(
[k]

t′

) ∣∣ ∃y ∈ Yi, y ⊂ y′} .
It remains to prove that all rectangles in C′ are monochromatic, and furthermore, that they

cover all the ones in Ak,t′ , and thus C′ is a cover for Ak,t′ of size j.
First note that each rectangle X ′i×Y ′i is monochromatic and contains only ones. This follows

easily from the definition of the rectangles in C′, since if a pair (x′, y′) ∈ X ′i × Y ′i , then there
exist x ⊂ x′ and y ⊂ y′ such that x ∈ Xi and y ∈ Yi. Thus, Ak,t[x][y] = 1 because C is a cover
of the ones of Ak,t, and so x ∩ y 6= ∅. Hence, x′ ∩ y′ 6= ∅, and thus, Ak,t′ [x

′][y′] = 1 as required.
We now show that the rectangles in C′ cover all the ones of Ak,t′ . Consider a pair (x′, y′)

such that Ak,t′ [x
′][y′] = 1. Therefore, x′ ∩ y′ 6= ∅. It follows that there exists a pair of subsets

(in fact there are plenty of such pairs) x ⊂ x′ and y ⊂ y′ of size t satisfying x ∩ y 6= ∅.
Hence, (x, y) ∈ Xi × Yi for some i ∈ [j] because C is a cover of Ak,t, and thus, by definition,
(x′, y′) ∈ X ′i × Y ′i .
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3 A family of submatrices of Ak,t

Denote by Īn the complement of the identity matrix In of size n × n, and by Jn the all-ones
matrix of size n× n. Consider the matrix Us,m = (Jm ⊗ Is) + (Īm ⊗ Js), where the addition is
the Boolean addition and ⊗ is the Kronecker product. Thus, Us,m has the following structure:

Us,m =



Is Js Js Js Js Js
Js Is Js Js Js Js
Js Js Is Js Js Js
Js Js Js Is Js Js
Js Js Js Js Is Js
Js Js Js Js Js Is


We refer to each of the m2 submatrices Is or Js as a block in Us,m.

Lemma 1 Let s = k − 2t+ 2, m =
(
2t−2
t−1
)

and k ≥ 2t. The matrix Us,m is a submatrix of Ak,t

(up to a permutation of rows/columns).

Proof: Recall that we labeled each row x and column y of Ak,t with a k-bit vector with exactly
t ones and that Ak,t[x][y] = 0 if and only if x∩ y = ∅. Now consider a vector of length k, where
the first 2t− 2 coordinates contain t− 1 ones and t− 1 zeros, and the remaining s = k − 2t+ 2
coordinates include a single one and k − 2t + 1 zeros. There are m · s =

(
2t−2
t−1
)
· (k − 2t + 2)

such vectors. We next show that if we consider the submatrix whose rows and columns are both
labeled by all of these m · s vectors, then we get Us,m (up to a permutation of the rows and
columns).

We can think of these m · s vectors as pairs of binary vectors (z, e), where z is of length
2t− 2 and contains t− 1 ones, and e has k − 2t+ 2 coordinates with a single one. Also, denote
by z̄ the complement of a binary vector z, that is, the characteristic vector of the complement
subset in [2t− 2] of the subset represented by z.

Let z1, . . . , zm be the m vectors of length 2t − 2 representing the m subsets of size t − 1
of [2t − 2], and let e1, . . . , es be the s vectors of length s that have a single 1. Consider the
submatrix of Ak,t whose rows are labeled by (z1, e1), . . . (z1, es), . . . , (zm, e1), . . . , (zm, es), and
whose columns are labeled by (z̄1, e1), . . . , (z̄1, es), . . . , (z̄m, e1), . . . , (z̄m, es). This submatrix has
m2 blocks, each of size s2, where the blocks on the main diagonal are equal to Is, and all other
blocks are the all-ones matrix Js.

There are, of course, many copies of Us,m in Ak,t, depending on the position of the 2t − 2
bits that contain t−1 ones, where in the proof above we chose the first 2t−2 bits in the vectors
of length k, but any choice of positions works.

Since Us,m is a submatrix of Ak,t for the values of s,m specified in Lemma 1, then for
these values RB(Us,m) ≤ k. Moreover, a concrete possible cover of Us,m with k monochromatic
rectangles is to cover the submatrix Jm⊗Is with exactly s rectangles, and to cover the submatrix
Īm⊗Js with σ(m) = 2t−2 rectangles (see for example Figure 1). As stated in the introduction,
the latter follows from a result of [2] that showed that RB(Īm) = σ(m) = 2t− 2.

As we prove in the next sections, the Boolean rank of Us,m is s+σ(m) = s+ (2t−2) = k for
m =

(
2t−2
t−1
)

and the values of s and t specified in Theorem 3. In other words, for these values
we have that the Boolean rank of Us,m is equal to the sum of the Boolean ranks of Jm⊗ Is and
Īm ⊗ Js, and an optimal cover for Us,m is obtained by covering each one of these submatrices
separately.

The proof that RB(Us,m) = k is trivial for t = 1, since in this case Us,m = Ak,1 = Ik and,
thus, its Boolean rank is, of course, k. In Section 4 we show that RB(Us,m) = s + σ(m) = k
for s = 2, m =

(
2t−2
t−1
)

and t ≥ 2. In Section 5 we prove that RB(Us,m) = s + σ(m) = k
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J2⊗I3 =



1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

 Ī2⊗J3 =



0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1

1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0


Figure 1: A covering of the two matrices Jm ⊗ Is and Īm ⊗ Js, whose Boolean
sum equals Us,m, with k rectangles, where k = 5, t = 2, m = 2 and s = 3.
Each rectangle is represented by a different color. Note that the main diagonal
of Jm ⊗ Is, and hence the main diagonal of Us,m, is colored with exactly s = 3
colors.

for m =
(
2t−2
t−1
)
, t = 3 and any s ≥ 2. Finally, in Section 6 we provide a general proof that

RB(Us,m) = s+σ(m) for any m ≥ 2 and s > σ(m), where in the case of m =
(
2t−2
t−1
)

this implies
that RB(Us,m) = k when s > σ(m) = 2t− 2, that is, when k = s+ 2t− 2 > 4t− 4.

4 The Boolean rank of Us,m for s = 2 and any t ≥ 2

In this section we show that the Boolean rank of Us,m is 2 + σ(m) = 2 + 2t− 2 = 2t for s = 2,
m =

(
2t−2
t−1
)

and any t ≥ 2. Thus, for t = k/2 we get that the boolean rank of Us,m is k as
required.

The proof follows easily from the fact that for s = 2 the matrix Us,m is just the crown graph
with s · m = 2m rows and columns (after rearranging the rows and columns). Therefore, its
Boolean rank is σ(2m). As we show, for our value of m, it holds indeed that σ(2m) = 2 +σ(m).

Lemma 2 The Boolean rank of Us,m for s = 2 is s + σ(m) for those values of m for which
σ(2m) = 2+σ(m). In particular this is true for m =

(
2t
t

)
for any t ≥ 1, and also for m =

(
2t
t

)
−1

for t ≥ 3.

Proof: If m =
(
2t
t

)
, then

2m = 2

(
2t

t

)
=

2t+ 2

2t+ 1

(
2t+ 1

t

)
>

(
2t+ 1

t

)
.

Therefore, the minimal ` for which 2
(
2t
t

)
≤
(

`
b`/2c

)
is ` = 2t+ 2 = σ(m) + 2.

Similarly, for m =
(
2t
t

)
− 1,

2m = 2

(
2t

t

)
− 2 =

2t+ 2

2t+ 1

(
2t+ 1

t

)
− 2 >

(
2t+ 1

t

)
,

where the inequality follows from the fact that for t ≥ 3 it holds that:(
2t+ 2

2t+ 1
− 1

)(
2t+ 1

t

)
=

1

2t+ 1

(
2t+ 1

t

)
=

t∏
i=2

(
t

i
+ 1

)
> 2.

Hence, 2m >
(
2t+1

t

)
and so σ(2m) = 2t+ 2 = 2 + σ(m).
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We conclude this section by showing that not for all values of m it holds that σ(2m) =
2 + σ(m). Therefore, for m 6=

(
2t−2
t−1
)

it is not always true that the Boolean rank of Us,m is
s+ σ(m).

Claim 3 For t ≥ 3, if m = 1 + 1
2

(
2t−2
t−1
)
, then σ(2m) = 1 + σ(m).

Proof: For t ≥ 3 it holds that:(
2t− 2

t− 1

)
< 2m = 2 +

(
2t− 2

t− 1

)
≤
(

2t− 1

b(2t− 1)/2c

)
.

Therefore, the minimum ` for which 2
(
2t−2
t−1
)

+ 2 ≤
(

`
b`/2c

)
is ` = 2t− 1, and so σ(2m) = 2t− 1.

Also (
2t− 2

t− 1

)
> m = 1 +

1

2

(
2t− 2

t− 1

)
= 1 +

(
2t− 3

t− 1

)
>

(
2t− 3

t− 1

)
and so σ(m) = 2t− 2. Therefore we have that σ(2m) = σ(m) + 1.

5 The Boolean rank of Us,m for t = 3 and s ≥ 2

We can try to use a similar argument as that used for the case of s = 2 and bound below the
Boolean rank of Us,m by σ(s · m), since the s · m rows of Us,m are an antichain. However, a
simple calculation shows that for s = 3 or s = 4, m =

(
2t−2
t−1
)

and t = 3, we get only that
σ(s ·m) = s− 1 +σ(m) and not s+σ(m) as required. Therefore, a different approach is needed
in order to get a tight bound.

It will be convenient to think of the monochromatic rectangles covering the ones of the ma-
trix Us,m as having different colors. Thus, if a certain one in the matrix is covered by rectangle
i we will say it is assigned the ith color. We first define an operation that we name Reduce,
whose goal is to reduce the number of colors covering a submatrix Us−1,m of Us,m, so that we
can apply an induction argument to Us−1,m. In all that follows, when we use the term diagonal
we mean the main diagonal.



1 0 0 1 1 1 1 1 1 1 1 1
0 1 0 1 1 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1 1 1 1

1 1 1 1 0 0 1 1 1 1 1 1
1 1 1 0 1 0 1 1 1 1 1 1
1 1 1 0 0 1 1 1 1 1 1 1

1 1 1 1 1 1 1 0 0 1 1 1
1 1 1 1 1 1 0 1 0 1 1 1
1 1 1 1 1 1 0 0 1 1 1 1

1 1 1 1 1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 1 1 0 1 0
1 1 1 1 1 1 1 1 1 0 0 1





1 0 1 1 1 1 1 1
0 1 1 1 1 1 1 1

1 1 1 0 1 1 1 1
1 1 0 1 1 1 1 1

1 1 1 1 1 0 1 1
1 1 1 1 0 1 1 1

1 1 1 1 1 1 1 0
1 1 1 1 1 1 0 1


Figure 2: An illustration of the Reduce operation. On the left is the matrix
Us,m before the Reduce operation (not all entries of the green and red rect-
angles are colored), and on the right the matrix Us−1,m following the Reduce
operation on the green and red colors.

The operation Reduce: Let C be any cover of the ones of Us,m for which there exist two
colors, denoted 1 and 2, such that in each one of the m blocks on the diagonal of Us,m at least
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one of these two colors appears. Furthermore, assume without loss of generality, that the colors
in each block on the diagonal are in increasing order (therefore, in blocks on the diagonal that
contain color 2 and not color 1, color 2 appears first).

Let Us−1,m be the submatrix of Us,m obtained by deleting the first row and column of every
block in Us,m. Given C, perform the following change of colors in Us−1,m, and denote by C′ the
resulting coloring of Us−1,m after this change of colors:

• In each off-diagonal block of Us−1,m, replace color 1 with color 2.

• “Fix” the coloring in Us−1,m by adding color 2 as needed in Us−1,m, so that all entries
colored with color 2 form a legal rectangle. That is, if entries (i1, j1) and (i2, j2) in Us−1,m
are now colored by 2, then also color entries (i1, j2) and (i2, j1) by 2 (these entries may have
been covered already by other colors, but this is fine since this is a cover, and therefore, a
certain entry can be covered by several rectangles).

We next prove that C′ is a legal cover of the ones in Us−1,m and it does not contain color 1.

Claim 4 Let C be any cover of Us,m and assume that there exist two colors 1, 2 on the diagonal
of Us,m, such that in all blocks on the diagonal, at least one of these colors appears. Furthermore,
assume that the colors in each block on the diagonal are in increasing order. Suppose we perform
the operation Reduce on Us,m and C, and let C′ be the new coloring of Us−1,m after the Reduce
operation. Then the number of colors in C′ is strictly smaller than in C, C′ does not contain
color 1, and it is a legal cover of the ones of Us−1,m.

Proof: By the definition of the Reduce operation, color 1 does not appear in the coloring C′
of Us−1,m. This is true since on the diagonal of Us,m, color 1 appeared (in C) only in locations
that were removed from Us,m, and off the diagonal, all its occurrences were replaced by color
2. It remains to verify that the coloring C′ of Us−1,m is legal (i.e., corresponds to a cover of all
the ones in this matrix by generalized monochromatic rectangles). Since every color other than
color 2 corresponds to a generalized monochromatic rectangle in Us−1,m (since this was true for
the coloring C of Us,m), we only need to verify that this is the case for color 2 in the coloring C′
of Us−1,m.

In what follows, for the sake of the presentation, the numbers of rows and columns in Us−1,m
are as in Us,m. Furthermore, when we refer to colors of entries in Us−1,m it is according to C′,
and when we refer to colors of entries in Us,m it is according to C

Let (i, j) be any entry colored by 2 in Us−1,m. If it was colored by either 1 or 2 in Us,m,
then it is a one entry of the matrix, as C is a cover for Us,m. Otherwise, it was colored by 2
in the “fixing” step of the Reduce operation. This implies that there exist entries (i, j′) and
(i′, j), such that (i, j′) was already colored 2 (by C) in Us,m and (i′, j) was colored 1, but its
color was changed to 2 in the first step of Reduce (the case that (i′, j) was colored 2 and (i, j′)
was colored 1 is analogous). In what follows we show that (i, j) must belong to an off-diagonal
block, and is hence a one entry of the matrix.

For each ` ∈ [m], let R` be the subset of rows numbered (`− 1) · s+ 1, . . . ` · s in Us,m, and
similarly define the subset of columns C`. Let p, p′, q, q′ ∈ [m] be such that row i belongs to Rp,
row i′ ro Rp′ , column j to Cq and column j′ to Cq′ .

First observe that by the definition of the Reduce operation, (i′, j) belongs to an off-
diagonal block (so that p′ 6= q), and neither (i′, j) nor (i, j′) belong to the first row/column of
their respective blocks (since otherwise they would not belong to Us−1,m). This implies that the
diagonal block Rq × Cq does not contain color 1 in Us,m (otherwise, the generalized rectangle
corresponding to color 1 in Us,m would contain a zero entry).

Turning to entry (i, j′), if it belongs to a diagonal block (i.e., p = q′), then this block,
Rp × Cq′ = Rq′ × Cq′ , also contained color 1 in Us,m (recall that (i, j′) was colored 2 in Us,m

and we assumed that the colors in each diagonal block are in increasing order). Since Rq × Cq
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does not contain color 1 in Us,m, we get that q 6= q′. But then p 6= q (or else q = p = q′), so
that (i, j) belongs to an off-diagonal block, as claimed.

On the other hand, if (i, j′) belongs to an off-diagonal block, then the diagonal block Rp×Cp

does not contain color 2 in Us,m, and therefore, must contain color 1. Again, we get that p 6= q,
so that (i, j) belongs to an off-diagonal block in this case as well.

We can now prove the following lemma.

Lemma 5 Let t = 3 and m =
(
2t−2
t−1
)

= 6. The Boolean rank of Us,m is s + 4 = s + σ(m) for
any s ≥ 2.

Proof: If there are s + 4 different colors on the diagonal, then we are done. Otherwise, we
show by induction on s that the number of colors in any cover of Us,m is at least s+σ(m). The
base of the induction is s = 2, which was proved in Section 4. Assume, therefore, that s > 2.
Our goal is to prove that in all cases (except one specific case that will be handled separately in
Claim 6), we can delete one row and one column from each block, and then apply the induction
hypothesis to the matrix Us−1,m.

Let C be any cover of the ones in Us,m, and assume, without loss of generality, that the colors
in each block on the diagonal are in increasing order. If there exists a color in C, say color 1,
that appears in m = 6 or m−1 = 5 blocks on the diagonal, then we can delete the first row and
column of every block in Us,m. We get a submatrix Us−1,m in which color 1 does not appear,
and the remaining colors in Us−1,m form a legal cover C′ of all the ones in Us−1,m. Thus, by
the induction hypothesis, C′ contains at least s − 1 + σ(m) colors. Adding color 1, which we
removed, we get that the cover C of Us,m contains at least s+ σ(m) colors as claimed.

Otherwise, in C there are at least s + 1 colors and at most s + 3 colors on the diagonal of
Us,m, and each color on the diagonal appears at most 4 times (if there are exactly s colors on
the diagonal, then there is, of course, a color that appears in all blocks on the diagonal). We
consider the following cases.

• If C contains s + 1 colors on the diagonal and each color appears at most 4 times, then
together they cover at most (s+ 1) · 4 ones on the diagonal. But there are 6s ones on the
diagonal, and 4(s+ 1) = 4s+ 4 < 6s for s > 2, and so we get a contradiction.

• If there are s + 2 colors on the diagonal and each color appears only 3 times, then again
we get a contradiction since (s + 2) · 3 = 3s + 6 < 6s for s > 2. Therefore, there exists
a color, say color 1, that appears 4 times on the diagonal. But then the remaining s + 1
colors on the diagonal must cover the 2s ones in the remaining two blocks on the diagonal.
Therefore, there must exist a color that appears in both these blocks: assume it is color 2.
Thus, we have two colors 1, 2, such that in each block on the diagonal at least one of them
appears. Perform a Reduce operation on the cover C of Us,m. By Claim 4, we obtain a
legal cover C′ of Us−1,m in which color 1 does not appear. By the induction hypothesis,
C′ contains at least s − 1 + σ(m) colors. Adding color 1, we get that C contains at least
s+ σ(m) colors.

• If there are s+3 colors on the diagonal and there exists a color, say color 1, that appears 4
times, then, as before, the remaining two blocks must contain a common color, say color 2,
since s+2 colors must color 2s ones. Then, as before, we can perform a Reduce operation
and continue as in the previous case.

Otherwise, if each color appears only 3 times, then again we get a contradiction for s > 3,
since for such an s it holds that (s+3) ·3 = 3s+9 < 6s. Therefore, assume now that s = 3
and no color appears 4 times on the diagonal. Since (s + 3) · 3 = 6s for s = 3, then each
color must appear exactly 3 times. If there exist two colors, 1, 2 that appear in disjoint
blocks on the diagonal, then again we can perform a Reduce operation and continue as
before. Otherwise, the lemma follows from Claim 6, which is proved next.
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We have thus established Lemma 5.

Claim 6 Let t = 3, m =
(
2t−2
t−1
)

= 6 and s = 3, and consider a cover C of the matrix Us,m in
which the diagonal is covered with exactly 6 different colors, such that each color appears on the
diagonal exactly 3 times, and there are no two colors such that at least one of them appears in
each one of the blocks on the diagonal. Then the size of the cover C is at least s+ σ(m) = 7.

Proof: Fix C with the properties described in the lemma, and denote the colors on the diagonal
by {1, . . . , 6}. We claim that for each color i ∈ {1, . . . , 6}, there is a single color j 6= i, j ∈
{1, . . . , 6}, that appears in exactly two of the three blocks on the diagonal that i appears in,
and every other color appears exactly once in these blocks. In other words, up to renaming of
the colors, the blocks on the diagonal contain the following colors:

{1, 2, 3}, {1, 2, 4}, {3, 4, 5}, {3, 4, 6}, {5, 6, 1}, {5, 6, 2}.

To verify this, consider any i ∈ {1, . . . , 6}. There are six additional locations in the three
diagonal blocks that i appears in, while there are five additional colors other than i. Hence, at
least one color j 6= i must appear in at least two of these blocks with i. If there is a color j 6= i
that appears in all three blocks with i, then there are three remaining locations in these blocks
and four additional colors, implying that some color must appear in all three remaining blocks
on the diagonal. But this contradicts the premise of the claim that there are no two colors,
such that the union of the blocks on the diagonal that they appear in, contains all blocks on the
diagonal. Similarly, if there are two colors different from i, such that each appears twice in the
blocks of i, then there are two remaining locations in these blocks, and three remaining colors,
so that once again we get a contradiction to the premise of the claim.

Consider now the following submatrix W of U3,6, with the above coloring of the diagonal of
U3,6.

W =



1 0 0 x5
0 2 0
0 0 3

x6 1 0 0
0 2 0
0 0 4 y4 y2

y6 y3 3 0 0 x2
0 4 0
0 0 5

y1 y5 x1 3 0 0
0 4 0
0 0 6


Note that x1 and x2 should be covered by two different colors, and they cannot be covered by
any of the colors 3, 4, 5, 6. Similarly, x5 and x6 should be covered by two different colors and
cannot be covered by any of the colors 1, 2, 3, 4. Therefore, x1, x2 must be covered by colors
1, 2 and x5, x6 must be covered by colors 5, 6 (or there exists an additional color in W and we
are done). We consider the following cases, where each implies that there must be at least one
entry in W that is covered by a color not in {1, . . . , 6}.
• Case 1: x1 is covered by color 1 and x2 by 2. We have two subcases.

– Subcase 1a: x5 is covered by 5 and x6 by 6. In this subcase, y1 cannot be colored with
any of colors in {1, . . . , 6} (it cannot be colored by 1, 3, 4, 6 because of the coloring of
the diagonal, and by 2 and 5 because of the coloring of x2 and x5, respectively).
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– Subcase 1b: x5 is colored by 6 and x6 by 5. Consider locations y4 and y5. Given
the coloring of the diagonal and the colors of x1, x2, x5, x6, neither y4 nor y5 can be
covered by a color in {1, 2, 4, 5, 6}. Since they cannot be covered by the same color,
at most one of them can be covered by 3, and the other must be given a color not in
{1, . . . , 6}.

• Case 2: x1 is covered by 2 and x2 by 1. We have two subcases.

– Subcase 2a: x5 is colored by 6 and x6 by 5. In this subcase, similarly to Subcase 1a,
y6 cannot be covered by any of the colors in {1, . . . , 6}.

– Subcase 2b: x5 is covered by 5 and x6 by 6. In this subcase, similarly to Subcase 1b,
neither y2 nor y3 can be covered by any of the colors in {1, 2, 4, 5, 6}, but only one of
them can be covered by 3, implying that the other must be covered by a color not in
{1, . . . , 6}.

We have thus established Claim 6.

Unfortunately, the proof used for the case of t = 3 cannot be adapted as it is to larger values
of t, in particular since we cannot apply the operation Reduce. In the next section we show,
using a different proof technique, that if s > σ(m) then the cover size of Us,m is at least s+σ(m)
as claimed.

6 The Boolean rank of Us,m for any m ≥ 2 and s > σ(m)

In this section we prove that if m ≥ 2 and s > σ(m), then the Boolean rank of Us,m is s+σ(m).
In particular, for m =

(
2t−2
t−1
)
, t ≥ 2 and s > 2t − 2, we get that the Boolean rank of Us,m is

s + σ(m) = s + 2t − 2 = k. We first need to establish some properties regarding the Boolean
decompositions of the identity matrix Is, the all-ones matrix Js, and the adjacency matrix Īm
of the crown graph on m vertices. We will need the following theorem of Bollobás [1]:

Theorem 4 ([1]) Let (Si, Ti), 1 ≤ i ≤ m, be pairs of sets, such that Si ∩ Tj = ∅ if and only if
i = j. Then

m∑
i=1

1(|Si|+|Ti|
|Si|

) ≤ 1.

Using this theorem it is easy to prove the following:

Claim 7 Let m ≥ 2 and let Īm be the adjacency matrix of the crown graph on m vertices. Let
Īm = XY be a Boolean decomposition of Īm and denote by x1, . . . , xm the rows of X and by
y1, . . . , ym the columns of Y . Then |xi| + |yi| ≥ σ(m) for some 1 ≤ i ≤ m, where |z| is the
number of 1’s in z.

Proof: For 1 ≤ i ≤ m, let Si be the set of positions in xi, in which the bits of xi are equal to
1. Similarly, define sets T1, . . . , Tm corresponding to the vectors y1, . . . , ym. Then (Si, Ti) are
pairs of sets such that Si ∩ Tj = ∅ if and only if i = j. By Theorem 4:

m∑
i=1

1(|Si|+|Ti|
|Si|

) ≤ 1.

Let ` = σ(m). By the definition of σ(·),(
`− 1

b(`− 1)/2c

)
< m ≤

(
`

b`/2c

)
.
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Assume in contradiction that |xi|+ |yi| < σ(m) = ` for all 1 ≤ i ≤ m. Then(
|Si|+ |Ti|
|Si|

)
≤
(

`− 1

b(`− 1)/2c

)
< m ,

for every 1 ≤ i ≤ m. But then
m∑
i=1

1(|Si|+|Ti|
|Si|

) > 1 ,

and Claim 7 follows.

In what follows we use the notation x⊗ y to denote the outer product of a column vector x
and a row vector y. We now characterize the Boolean decompositions of the identity matrix Is.

Claim 8 Let XY = Is be a Boolean decomposition of the s × s identity matrix Is, where X
is an s × r matrix and Y is an r × s matrix. Denote by x1, . . . , xr the columns of X and by
y1, . . . , yr the rows of Y . Then:

1. For each i ∈ [r], either xi = yi = ej for some j ∈ [s], where ej denotes the jth standard
basis vector, or xi is the all-zeros vector, or yi is the all-zeros vector.

2. Furthermore, for each j ∈ [s], there exists some i ∈ [r] such that xi = yi = ej.

Proof: If we write the decomposition XY = Is with outer products, then Is =
∑r

i=1 xi ⊗ yi,
where each matrix xi ⊗ yi is a matrix of size s× s.

Assume first that there exists an index i∗ ∈ [r] for which Item 1 of the claim does not hold.
But then the matrix xi∗ ⊗ yi∗ contains a one that is not on the main diagonal of the matrix,
and since the addition is the Boolean addition, the sum

∑r
i=1 xi⊗ yi 6= Is. Thus, Item 1 always

holds for any decomposition XY of Is.
Now assume that there exists some j ∈ [s], such that there is no i ∈ [r] for which xi = yi = ej .

But then the jth entry on the main diagonal of
∑r

i=1 xi ⊗ yi will be a zero.

Finally, we need the following claim regarding a certain type of decompositions of the all-ones
matrix Js.

Claim 9 Let XY = Js be a Boolean decomposition of Js, where X is an s× r matrix and Y is
an r × s matrix. Assume that:

1. Each column (row) of X (Y ) is either a standard basis vector or the all-zeros vector or the
all-ones vector.

2. The columns (rows) of X (Y ) contain all s standard basis vectors e1, ..., es.

3. Denote by x1, . . . , xr the columns of X, and by y1, . . . , yr the rows of Y . There is no i
such that both xi and yi are the all-ones vector.

Then r ≥ 2s− 1.

Proof: Similarly to the proof of Claim 8, we can write the decomposition XY = Js as the sum
of outer products:

∑r
i=1 xi ⊗ yi = Js. By the third assumption in Claim 9, there is no i such

that both xi and yi are the all-ones vector. Thus, each of the matrices xi ⊗ yi either contains
a single 1, or a single row of ones or a single column of ones, or it is the all-zeros matrix. (We
note that the same basis vector may appear more than once as a column of X and/or a row of
Y .) This implies that for these r matrices to sum up to Js, one of the following must occur:

1. For every j ∈ [s] there is an i ∈ [r] such that xi = ej and yi is the all-ones vector (so that
in xi ⊗ yi, the jth row is all ones and all other entries in xi ⊗ yi are 0). But the rows of Y
contain all s standard basis vectors as well. Thus, r ≥ 2s.
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2. There exists at least one j ∈ [s] for which the above does not hold. Assume, without loss
of generality that j = 1. Since Js[1][`] = 1 for every ` ∈ [s] and there is no i such that
both xi = e1 and yi is the all-ones vector, we must have the following (so as to “cover”
the first row of Js). For each ` ∈ [s] there is an i ∈ [r] such that yi = e` and xi is either e1
or the all-ones (column) vector. But e2, e3, . . . , es also appear as columns of X, and hence
r ≥ 2s− 1.

We have thus established Claim 9.

We can now prove that the Boolean rank of Us,m is s+ σ(m) for any m ≥ 2 and s > σ(m).
From this it follows directly that for m =

(
2t−2
t−1
)
, t ≥ 2 and s > 2t−2, the Boolean rank of Us,m

is k, that is, when k = s+ 2t− 2 > 4t− 4.

Lemma 10 The Boolean rank of Us,m is s+ σ(m) for any s > σ(m) and m ≥ 2.

Proof: Let XY = Us,m be any Boolean decomposition of Us,m, where X is an ms× r matrix
and Y is an r×ms matrix. Break X (Y ) into m blocks of s rows (columns) each. Denote these
m blocks of rows in X by X1, . . . , Xm and denote by Y1, . . . , Ym the blocks of columns in Y .
Note that XpYq = Is if p = q, and otherwise XpYq = Js.

For each p ∈ [m], consider the columns of Xp, denoted by xp,1, . . . , xp,r and the rows of Yp,
denoted by yp,1, . . . , yp,r. Since XpYp = Is, then by Claim 8, the columns of Xp and the rows
of Yp satisfy the following: For each i ∈ [r], either xp,i = yp,i = ej for some j ∈ [s], or xp,i is
the all-zeros vector, or yp,i is the all-zeros vector. Therefore, we can assume, without loss of
generality, that each block of rows Xp (block of columns Yp) has exactly three types of columns
(rows): standard basis vectors, all-zeros vectors, and all-ones vector. To verify this, assume that
one of the vectors, denoted xp,i∗ , is not one of these three types of vectors. Then we claim that
we can replace it with the all-ones vector, and still get a decomposition of Us,m of the same size.
Since xp,i∗ is not a standard basis vector nor the all-zeros vector, then by Claim 8, yp,i∗ must
be the all-zeros vector. Therefore, by replacing xp,i∗ with the all-ones vector, we still get that
XpYp =

∑r
i=1 xp,i ⊗ yp,i = Is. Since the other blocks in Us,m are Js, adding ones to xp,i∗ still

gives us that XpYq =
∑r

i=1 xp,i ⊗ yq,i = Js for every p 6= q.
Now, nullify the standard basis (column) vectors in all blocks of rows Xp and the standard

basis (row) vectors in all blocks of columns Yp, and denote the resulting blocks by X̃p and

Ỹp, respectively. The remaining columns (rows) in each X̃p (Ỹp) are either all-ones vectors or

all-zeros vectors, and therefore, each block X̃p (Ỹp) now has identical rows (columns). We can,

thus, remove duplicate rows (columns) from each X̃p (Ỹp), so that for each we get a single row
(column) vector of length r.

Denote by X ′ and Y ′ the resulting matrices that are obtained from X and Y (respectively)

after nullifying the standard basis vectors in all Xp and Yp, and removing duplicates from X̃p

and Ỹp as described above. Therefore, X ′ is an m×r Boolean matrix and Y ′ is an r×m Boolean
matrix. We next show that r ≥ s + σ(m) and this will complete the proof. We consider two
cases.

Case 1: X ′Y ′ is a Boolean decomposition of the m ×m crown graph. Denote the rows of X ′

by x′1, . . . , x
′
m and the columns of Y ′ by y′1, . . . , y

′
m. The decomposition X ′Y ′ has an additional

property as a result of nullifying the standard basis vectors: for each 1 ≤ p ≤ m, the vectors x′p
and y′p have (at least) s coordinates where both are zero.

To verify this, recall that by Claim 8, since XpYp = Is for each p ∈ [m], then for each j ∈ [s],
there exists some i ∈ [r] such that xp,i = yp,i = ej . Thus, when we nullified the standard basis
vectors in both Xp and Yp, we got at least s indices i ∈ [r] such that both the ith column of
Xp and the ith row of Yp were nullified (there can be several occurrences of each standard basis
vector in Xp, Yp, and therefore, there are at least s such coordinates and not exactly s).
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Also, by Claim 7, there must exist an index p ∈ [m] such that |x′p| + |y′p| ≥ σ(m). But by
Claim 8, x′p · y′p = 0, and thus, the positions in which x′p is one are disjoint from those in which
y′p is one. Hence, we get that r ≥ s+ σ(m).

Case 2: X ′Y ′ is not a Boolean decomposition of the m×m crown graph. This means that there
are some p 6= q, such that after we nullified the standard basis vectors in Xp and Yq, we have

that X̃pỸq is the all-zeros s× s matrix. Therefore, before we nullified the standard basis vectors
and removed the duplicate rows (columns) from Xp and Yq, we necessarily had:

1. XpYq = Js.

2. Each column (row) of Xp (Yq) is either a standard basis vector or the all-zeros vector or
the all-ones-vector.

3. The columns (rows) of Xp (Yq) contain all s standard basis vectors (by Claim 8).

4. There is no i such that both xp,i and yq,i are the all-ones vector (for otherwise X̃pỸq = Js
also after we nullified the standard basis vectors in Xp, Yq).

Thus, by Claim 9 and our assumption that s > σ(m), we have that r ≥ 2s− 1 ≥ s+ σ(m).

7 Conclusion and Open Problems

We provided a simple proof showing that the Boolean rank of Ak,t is k for k ≥ 2t. Furthermore,
we defined the family Us,m = (Jm⊗Is)+(Īm⊗Js), which is a family of submatrices of Ak,t, and
showed that its Boolean rank is s + σ(m) for those values of s and m specified in Theorem 3.
For m =

(
2t−2
t−1
)

and the values of s, t specified in the theorem, this implies that the Boolean
rank of Us,m is k.

The main open problem is, of course, to prove that the Boolean rank of Us,m is k for all
m =

(
2t−2
t−1
)

and all k ≥ 2t. But there are other interesting open problems that remain.
First, as we proved in Section 6, the Boolean rank of Us,m is s + σ(m) for any m ≥ 2 and

s > σ(m), and not only for m of the form
(
2t−2
t−1
)
. However, as we showed in Section 4, for s = 2

and m 6=
(
2t−2
t−1
)

it does not hold in general that the Boolean rank of U2,m is 2 + σ(m). It would
be interesting to understand for which values of s and m it holds that the Boolean rank of Us,m

is s+ σ(m).
Also, as we noted, a cover of size s + σ(m) for Us,m is achieved by covering separately the

diagonal of the matrix with exactly s rectangles, and covering Īm ⊗ Js with σ(m) colors (see
Figure 1). A natural question that arises is whether in every optimal cover of Us,m the diagonal
of Us,m must be covered with exactly s rectangles? This is not true for small values of s and m,
such as s = 2 and m = 2, since in this case the matrix U2,2 is of size 4× 4, its Boolean rank is
4, and it can be covered also by 4 rectangles, such that each covers all the ones in a row of U2,2.
It is also not true in general for m 6=

(
2t−2
t−1
)
. But is this true for m =

(
2t−2
t−1
)
, for large enough s

and t?
Another interesting question is whether, for m =

(
2t−2
t−1
)
, the matrix Us,m is essentially the

smallest (up to constant factors) submatrix of Ak,t that has Boolean rank k. We, thus, suggest
also the following open problem: what is the smallest submatrix of Ak,t whose Boolean rank is
k?
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