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Abstract

Discrepancy is a versatile bound in communication com-

plexity which can be used to show lower bounds in ran-

domized, quantum, and even weakly-unbounded error mod-

els of communication. We show an optimal product theo-

rem for discrepancy, namely that for any two Boolean func-

tions f, g, disc(f ⊕ g) = Θ(disc(f)disc(g)). As a conse-

quence we obtain a strong direct product theorem for distri-

butional complexity, and direct sum theorems for worst-case

complexity, for bounds shown by the discrepancy method.

Our results resolve an open problem of Shaltiel (2003)

who showed a weaker product theorem for discrepancy

with respect to the uniform distribution, discU⊗k(f⊗k) =
O(discU (f))k/3. The main tool for our results is semidefi-

nite programming, in particular a recent characterization of

discrepancy in terms of a semidefinite programming quan-

tity by Linial and Shraibman (2006).
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while at LRI, Université Paris-Sud, and while visiting the University of

California, Berkeley.
†Work conducted while at the University of California, Berkeley, sup-

ported by NSF Grant CCF-0524837 and ARO Grant DAAD 19-03-1-0082.

1 Introduction

A basic question in complexity theory is how the diffi-

culty of computing k independent instances of a function f
scales with the difficulty of computing f . If a randomized

algorithm for f uses c units of resources and is correct with

probability p, then an obvious approach to computing k in-

dependent instances of f would be to independently run the

algorithm on each instance. This approach uses kc many

resources and achieves success probability pk. A strong

direct product theorem states that this naive algorithm is

essentially the best possible—any algorithm using O(kc)
many resources will succeed in correctly computing k in-

dependent instances of f with probability at most pk. One

may also consider a variant of this problem where instead

of computing the vector of solutions (f(x1), . . . , f(xk)),
we just want to know f(x1)⊕· · ·⊕f(xk). Notice that here

one can always succeed with probability at least 1/2. Here

one ideally wishes to show that if to compute f with suc-

cess probability 1/2 + ǫ/2 requires c resources, then even

with O(kr) resources any algorithm computing the parity

of k independent copies of f will have success probability

at most 1/2 + ǫk/2. Such a result is known as a strong

XOR lemma. Taking a somewhat dual view, a direct sum

theorem shows that Ω(kc) resources are required to achieve

the same success probability in computing k independent

instances of a function as can be done with c resources on

one copy of f .

Besides being a very natural question, such product the-

orems have many applications in complexity theory: as an

approach to hardness amplification useful in the construc-

tion of pseudorandom generators and relating worst-case

hardness to average-case hardness; to improving the sound-

ness parameter of an interactive proof system via parallel

repetition [21]; to time-space tradeoffs [10, 2]; and even as

an approach to separating complexity classes [8].
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Strong direct product theorems are known for certain

models of computation and functions, for example for the

quantum query complexity of symmetric functions [10, 2].

For other models like circuit complexity, however, we only

have much weaker results. Probably the most famous prod-

uct theorem is Yao’s XOR lemma, which states that if any

circuit of size s errs with non-negligible probability when

computing f , then any circuit of some smaller size s′ < s
will have very small advantage over random guessing when

computing F (x1, . . . , xk) =
⊕

i f(xi). Notice that here

the algorithm actually gets fewer resources to compute k-

copies of f than it did for a single instance.

While proving strong product results for Boolean circuits

seems quite far off, a good testing grounds for our intuition

about such theorems is communication complexity. Such a

project was initiated in a systematic way by Shaltiel [24].

Shaltiel showed a general counterexample where a strong

direct product theorem does not hold for average-case com-

plexity. He further showed that bounds by the discrepancy

method under the uniform distribution, a common way to

show lower bounds on average-case communication com-

plexity, do obey a XOR lemma. He left as an open question

if an XOR lemma or direct product theorem also holds for

discrepancy under arbitrary distributions.

We answer this question here and tighten Shaltiel’s re-

sult to give a product theorem optimal up to a constant mul-

tiplicative factor. Namely, we show that disc(f ⊕ g) =
Θ(disc(f)disc(g)) for any Boolean functions f, g. Further-

more, we show that for functions of the form f ⊕ g, the

discrepancy bound is realized, up to a constant multiplica-

tive factor, by a distribution of the form P ⊗ Q, where P is

a distribution over f and Q is a distribution over g, and ⊗
denotes tensor product.

As a consequence, we obtain a strong XOR lemma for

distributional complexity bounds shown by the discrepancy

method—If a c-bit protocol has correlation at most w with

f , as shown by the discrepancy method, then a kc-bit pro-

tocol will have correlation at most O(wk) with the parity

of k independent copies of f . Via a reduction of Viola and

Wigderson which shows quite generally that XOR lemmas

imply direct product theorems, we also obtain a strong di-

rect product theorem for bounds shown by the discrepancy

method—If a c-bit protocol has success at most w on f , as

shown by the discrepancy method, then a kc/3-bit proto-

col will have success at most O(wk) correctly computing k
independent instances of f .

Klauck [9] has shown that the discrepancy bound charac-

terizes the model of weakly-unbounded error complexity, a

communication complexity version of the complexity class

PP (formal definition given below in Section 2.2). As dis-

crepancy characterizes this class, here we are able to obtain

an unconditional direct sum theorem for this model of com-

putation.

The main tool for our results is semidefinite program-

ming, in particular a recent characterization of discrepancy

in terms of a semidefinite quantity γ∞2 by Linial and Shraib-

man [16]. Linial and Shraibman also introduce a bounded-

error version of the same semidefinite quantity, known as

γα
2 , which can be used to show lower bounds on bounded-

error randomized and quantum communication complexity.

It remains an interesting open question if a product theo-

rem also holds for this quantity. As γα
2 is able to prove an

Ω(
√

n) lower bound on the quantum communication com-

plexity of disjointness, such a theorem would reprove a re-

sult of Klauck, Špalek, and de Wolf [10].

2 Preliminaries

In this section we will introduce some basic matrix nota-

tion, our main quantity of interest i.e. the discrepancy and

its relation to communication complexity. We also intro-

duce the γ2 norm and its variants which we use to prove our

main result.

2.1 Matrix preliminaries

We restrict ourselves to matrices over the real numbers.

We use AT to denote the transpose of the matrix A. For real

matrices A,B we use ≤ to refer to entrywise comparison of

matrices, that is A ≤ B iff A[i, j] ≤ B[i, j] for all (i, j).
For a scalar c, we sometimes use the shorthand A ≥ c to

indicate that all entries of A are at least as large as c. Besides

entry-wise comparison we will also make use of the positive

semidefinite partial ordering, where we say A � B if A−B
is symmetric and xT (A − B)x ≥ 0 for all vectors x. We

denote tensor product by ⊗, Hadamard (entrywise) product

by ◦ and inner product by 〈·, ·〉. We let ‖A‖1 be the sum of

the absolute values of the entries of A.

For a symmetric matrix A, let λ1(A) ≥ λ2(A) ≥
. . . ≥ λn(A) denote the eigenvalues of A. Let σi(A) =
√

λi(AT A) be the ith singular value of A. We make use

of a few matrix norms. The Frobenius norm of A is the ℓ2
norm of A thought of as a vector—that is

‖A‖F =

√

∑

i,j

A[i, j]2 .

Notice also that ‖A‖2
F = Tr(AT A) =

∑

i σ2
i (A). We also

use the trace norm, ‖A‖tr =
∑

i σi(A). Finally, we denote

the spectral norm as ‖A‖ = σ1(A).
Since the singular values of the matrix A ⊗ B are

σi(A)σj(B) where σi(A), σj(B) range over the singular

values of A and B respectively, all three of these matrix

norms are multiplicative under tensor products.

Finally, we make use of the following simple fact
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Fact 1. For any matrices A,B,C,D, where A,C are of the

same dimension and B,D are of the same dimension,

(A ⊗ B) ◦ (C ⊗ D) = (A ◦ C) ⊗ (B ◦ D) .

2.2 Communication complexity and dis-
crepancy

Let X,Y be finite sets and f : X × Y → {0, 1} be a

Boolean function. We associate with f a |X|-by-|Y | sign

matrix Mf known as the communication matrix. Mf is the

|X|-by-|Y | matrix where

Mf [x, y] = (−1)f(x,y).

We will identify the communication matrix with the func-

tion, and use them interchangeably.

Discrepancy is defined as follows:

Definition 2 (Discrepancy with respect to P ). Let P be a

probability distribution on the entries of Mf . Discrepancy

with respect to the distribution P is defined as:

discP (Mf ) = max
x∈{0,1}|X|

y∈{0,1}|Y |

∣

∣xT (Mf ◦ P )y
∣

∣ .

The maximum absolute value of a bilinear form over

Boolean vectors is known as the cut norm, ‖ · ‖C , thus it

can be equivalently stated that discP (A) = ‖A ◦ P‖C . We

will sometimes use this view in our proofs as our product

results hold more generally for the cut norm, and not just

discrepancy.

For showing lower bounds in communication complex-

ity, one wishes to show that the discrepancy is small. We

will let disc(A) without a subscript refer to discP (A) under

the “hardest” distribution P .

Definition 3 (General discrepancy). The discrepancy of a

sign matrix Mf is defined as

disc(Mf ) = min
P

discP (Mf ) ,

where the minimum is taken over all probability distribu-

tions P .

We will first see how discrepancy can be applied to com-

munication complexity in the distributional model. The cost

in this model is defined as follows:

Definition 4 (Distributional complexity). Let f : X×Y →
{0, 1} be a Boolean function and P a probability distribu-

tion over the inputs X ×Y . For a fixed error rate ǫ ≥ 0, we

define Dǫ
P (f) to be the minimum communication of a deter-

ministic protocol R where E(x,y)←P [R(x, y) 6= f(x, y)] ≤
ǫ.

The connection to discrepancy comes from the well

known fact that a deterministic c-bit communication proto-

col partitions the communication matrix into 2c many com-

binatorial rectangles. (See Kushilevitz and Nisan [12] for

this and other background on communication complexity.)

Let P be a probability distribution, R be a deterministic pro-

tocol, and let R[x, y] ∈ {−1, 1} be the output of R on input

(x, y). The correlation of R with f under the distribution P
is

CorrP (Mf , R) = E(x,y)←P [R[x, y]Mf [x, y]] .

We then define the correlation with c-bit protocols as

Corrc,P (Mf ) = max
R

CorrP (Mf , R) ,

where the max is taken over all deterministic c-bit proto-

cols. With these definitions, it is straightforward to show

the following:

Fact 5.

Corrc,P (Mf ) ≤ 2cdiscP (Mf )

We can turn this equation around to get a lower bound

on Dǫ
P (f). A protocol which has probability of error

at most ǫ has correlation at least 1 − 2ǫ with f , thus

Dǫ
P (f) ≥ log 1/((1− 2ǫ)discP (Mf )). This, in turn, shows

how discrepancy can be used to lower bound randomized

communication complexity. Let Rǫ(f) be the minimum

communication cost of a randomized protocol R such that

Pr[R[x, y] 6= f(x, y)] ≤ ǫ for all x, y. Then, as by

Yao’s principle [28] Rǫ(f) = maxP Dǫ
P (f), we find that

Rǫ(f) ≥ log 1/((1 − 2ǫ)disc(Mf )).
Discrepancy is even more widely applicable to prov-

ing lower bounds on worst-case complexity. Kremer [11]

shows that discrepancy can be used to lower bound quantum

communication with bounded-error, and Linial and Shraib-

man [16] extend this to show the discrepancy bound is

valid even when the communicating parties share entangle-

ment. Klauck [9] shows that discrepancy characterizes, up

to a small multiplicative factor, the communication cost of

weakly unbounded-error protocols. We state this latter re-

sult for future use.

Definition 6 (Weakly unbounded-error). Consider a c-bit

randomized communication protocol R for a function f ,

and denote ǫ(R) = minx,y (Pr[R(x, y) = f(x, y)] − 1/2).
The weakly unbounded-error cost of R is UPCR(f) =
c + log(1/ǫ(R)). The weakly unbounded-error cost of f ,

denoted UPC(f), is the minimal weakly unbounded-error

cost of a randomized protocol for f .

Theorem 7 (Klauck). Let f : {0, 1}n × {0, 1}n → {0, 1}
be a Boolean function. Then

UPC(f) ≥ log(1/disc(f)) − O(1)

UPC(f) ≤ 3 log(1/disc(f)) + log n + O(1) .
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The lower bound can be seen immediately from Fact 5,

while the upper bound requires more work. Forster et al.

[7] show a similar result characterizing UPC complexity in

terms of a notion from learning theory known as the max-

imal margin complexity. Linial and Shraibman later show

that discrepancy and maximal margin complexity are equiv-

alent up to a constant factor.

2.3 Definitions of γ2

The quantity γ2 was introduced in [14] in a study of com-

plexity measures of sign matrices. We give here a leisurely

introduction to this quantity, its relatives, and their many

equivalent forms.

2.3.1 Motivation

Matrix rank plays a fundamental role in communication

complexity. Many different models of communication com-

plexity have an associated rank bound which is usually the

best technique available for showing lower bounds. For

deterministic complexity, D(f) ≥ log rk(Mf ), and the

long-standing log rank conjecture asserts that this bound is

tight up to polynomial factors. For randomized and quan-

tum communication complexity, one becomes concerned

not with the rank of the communication matrix, but of ma-

trices close to the communication matrix. For 0/1-valued

matrices the usual notion of “closeness” here is ℓ∞ norm,

but as we are working with sign matrices we take the fol-

lowing notion of approximation rank:

rkα(Mf ) = min{rk(M) : 1 ≤ M ◦ Mf ≤ α} .

Then one has Rǫ(f) ≥ Qǫ(f) ≥ 1
2 log rkα(Mf ) for

ǫ = α−1
2α and where Rǫ(f) is the private coin randomized

complexity of f and Qǫ(f) the quantum complexity of f
without shared entanglement [3]. As ǫ → 1/2 one obtains

unbounded-error complexity, where one simply has to ob-

tain the correct answer with probability strictly greater than

1/2. This class is characterized up to one bit by the log of

sign rank, the minimum rank of a matrix which agrees in

sign everywhere with Mf [20].

In the case of approximation rank and sign rank, a diffi-

culty arises as such rank minimization problems are difficult

to solve. While we do not know if approximation rank it-

self is NP-hard, one can show this for closely related rank

minimization problems. A (now) common approach to deal

with NP-hard problems is to consider a semidefinite pro-

gramming relaxation of the problem. The quantity γ2(Mf )
can very naturally be viewed as a semidefinite relaxation of

rank.

As the rank of a matrix is equal to the number of non-

zero singular values, it follows from the Cauchy-Schwarz

inequality that
‖A‖2

tr

‖A‖2
F

≤ rk(A) .

A problem with this bound as a complexity measure is

that it is not monotone—the bound can be larger on a sub-

matrix of A than on A itself. As taking the Hadamard prod-

uct of a matrix with a rank one matrix does not increase its

rank, a way to fix this problem is to consider instead:

max
u,v

‖u‖=‖v‖=1

‖A ◦ vuT ‖2
tr

‖A ◦ vuT ‖2
F

≤ rk(A) .

When A is a sign matrix, this bound simplifies nicely—for

then, ‖A ◦ vuT ‖F = ‖u‖‖v‖ = 1, and we are left with

max
u,v

‖u‖=‖v‖=1

‖A ◦ vuT ‖2
tr ≤ rk(A) .

This quantity turns out to be exactly γ2(A), as we shall now

see.

2.3.2 The many faces of γ2

The primary definition of γ2 given in [14] is

Definition 8.

γ2(A) = min
X,Y :XY =A

r(X) c(Y ) ,

where r(X) is the largest ℓ2 norm of a row of X and

similarly c(Y ) is the largest ℓ2 norm of a column of Y .

We now see that this quantity is the same as the one just

discussed. Note that this equivalence holds for any matrix

A, not just a sign matrix.

Theorem 9. Let A be an m-by-n matrix. Then

γ2(A) = max
Q:‖Q‖≤1

‖A ◦ Q‖ = max
u,v

‖u‖=‖v‖=1

‖A ◦ vuT ‖tr .

Proof. We obtain this by writing γ2 as a semidefinite pro-

gram and dualizing. For semidefinite programming we nec-

essarily need to work with matrices which are symmetric,

yet the matrix A might not even be square. Fortunately,

there is a simple trick to deal with this. This trick is so use-

ful that we devote some notation to it. For an m-by-n matrix

M , we let M̂ be the (m + n)-by-(m + n) be a symmetric

matrix which is the “bipartite version” of M . Namely,

M̂ =

[

0 M
MT 0

]

,

We will also need an auxiliary matrix F = Ĵm,n where

Jm,n is the m-by-n matrix all of whose entries are equal to

one.
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With these definitions in hand, one can see that γ2 is

equivalent to the following program:

min η

X[i, i] ≤ η for all i

X � 0

X ◦ F = Â

Here X � 0 means the X is positive semidefinite. Dual-

izing this program we obtain:

max 〈Q, Â〉 (1)

‖α‖1 = 1 (2)

diag(α) � Q (3)

Q ◦ F = Q (4)

α ≥ 0 (5)

As diag(α) − Q � 0, it follows that if any entry αi = 0
then the corresponding row and column of Q must be all

zero. As we can then simply delete this row and column

without changing the value of the program, we may assume

without loss of generality that α > 0.

In light of this observation, we can bring this program

into a particularly nice form by letting β[i] = 1/
√

α[i], and

Q′ = Q ◦ ββT . Then the condition α � Q can be rewritten

as I � Q′. As Q′◦F = Q′, the spectrum of Q′ is symmetric

about zero and so we can in fact conclude I ±Q′ � 0. This

can be nicely rewritten as ‖Q′‖ ≤ 1. Letting γ[i] =
√

α[i],
the objective function then becomes

〈Q, Â〉 = 〈Q′ ◦ γγT , Â〉 = γT (Q′ ◦ Â)γ .

The condition Tr(α) = 1 means that γ is a unit vector. As γ
is otherwise unconstrained, we obtain the first equivalence

of the theorem:

γ2(A) = max
Q

‖Q ◦ A‖
‖Q‖

This shows that γ2 is equivalent to a quantity known in

the matrix analysis literature as the Hadamard product op-

erator norm [18]. The duality of the spectral norm and trace

norm easily gives that this is equivalent to the Hadamard

product trace norm:

γ2(A) = max
Q

‖Q ◦ A‖tr

‖Q‖tr

One can further show that the maximum in this expression

will be obtained for a rank-one matrix Q:

γ2(A) = max
u,v:‖u‖=‖v‖=1

‖A ◦ vuT ‖tr

The fact that (γ2(A))2 ≤ rk(A) implies its usefulness

for communication complexity:

Theorem 10 (Linial-Shraibman [16]). Let f be a Boolean

function and Mf [x, y] = (−1)f(x,y). Then

2 log γ2(Mf ) ≤ D(f) .

2.3.3 Dual norm of γ2

The norm dual to γ2 will also play a key role in our study of

discrepancy. By definition of a dual norm, we have

γ2(A) = max
B:γ∗

2
(B)≤1

〈A,B〉 .

Since the dual norm is uniquely defined, we can read off

the conditions for γ∗2 (B) ≤ 1 from Equations (2)–(5) in the

formulation of γ2(A). This tells us

γ∗2 (B) = min
α:α≥0

{

1

2
(1T α) : diag(α) − B̂ � 0

}

(6)

We can interpret the value of this program as follows:

Theorem 11.

γ∗2 (B) = min
X,Y

XT Y =B

1

2

(

‖X‖2
F + ‖Y ‖2

F

)

= min
X,Y

XT Y =B

‖X‖F ‖Y ‖F ,

where the min is taken over X,Y with orthogonal columns.

Proof. Let α be the optimal solution to (6). As diag(α) −
B̂ � 0, we have a factorization diag(α) − B̂ = MT M .

Write M as

M =
[

X Y
]

.

Then we see that XT Y = −B and the columns of X,Y
are orthogonal as B̂ is block anti-diagonal. The value of the

program is simply (1/2)(‖X‖2
F + ‖Y ‖2

F ).
In the other direction, for X,Y such that XT Y = −B,

we define the vector α as α[i] = ‖XT
i ‖2 if i ≤ m and

α[i] = ‖Yi−m‖2 otherwise. A similar argument to the

above shows that diag(α)− B̂ � 0, and the objective func-

tion is 1
2

(

‖X‖2
F + ‖Y ‖2

F

)

.

To see the equivalence between the additive and multi-

plicative forms of the bound, notice that if X,Y is a feasi-

ble solution, then so is cX, (1/c)Y for a constant c. Thus

we see that in the additive form of the bound, the optimum

can be achieved with ‖X‖2
F = ‖Y ‖2

F , and similarly for the

multiplicative form. The equivalence follows.

2.3.4 Approximate versions of γ2

To talk about randomized communication models, we need

to go to an approximate version of γ2. Linial and Shraibman

[16] define
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Authorized licensed use limited to: IEEE Xplore. Downloaded on February 1, 2009 at 07:57 from IEEE Xplore.  Restrictions apply.



Definition 12. Let A be a sign matrix, and α ≥ 1.

γα
2 (A) = min

X,Y :α≥(XY ◦A)≥1
r(X) c(Y ) .

An interesting limiting case is where XY simply has every-

where the same sign as A.

γ∞2 (A) = min
X,Y :(XY ◦A)≥1

r(X) c(Y )

As we did with γ2, we can represent γα
2 and γ∞2 as

semidefinite programs and dualize to obtain equivalent max

formulations, which are more useful for proving lower

bounds. We start with γ∞2 as it is simpler.

Theorem 13. Let A be a sign matrix.

γ∞2 (A) = max
Q:Q◦A≥0

‖A ◦ Q‖
‖Q‖ .

Notice that this is the same as the definition of γ2(A)
except for the restriction that Q ◦ A ≥ 0. We similarly

obtain the following max formulation of γα
2 .

Theorem 14. Let A be a sign matrix and ǫ ≥ 0.

γ1+ǫ
2 (A) = max

Q

‖(1 + ǫ/2)Q ◦ A − (ǫ/2)|Q|‖
‖Q‖ , (7)

where |Q| denotes the matrix whose (x, y) entry is |Q[x, y]|.

Proof. The theorem is obtained by writing the definition of

γα
2 as a semidefinite programming and dualizing. The pri-

mal problem can be written as

min η

X[i, i] ≤ η

X � 0

αF ≥ X ◦ Â ≥ F

Again in a straightforward way we can form the dual of

this program:

max 〈Q1 − Q2, F 〉 − (α − 1)〈Q2, F 〉
Tr(β) = 1

β � (Q1 − Q2) ◦ Â

β,Q1, Q2 ≥ 0 ,

where β is a diagonal matrix. Notice that as α → ∞ in

the optimal solution Q2 → 0 and so we recover the dual

program for γ∞2 .

We can argue that in the optimal solution to this program,

Q1, Q2 will be disjoint. For if Q1[x, y]−Q2[x, y] = a ≥ 0
then we set Q′1[x, y] = a and Q′2[x, y] = 0 and increase the

objective function. Similarly, if Q1[x, y] − Q2[x, y] = a <
0 we set Q′1[x, y] = 0 and Q′2[x, y] = −a ≤ Q2[x, y] and

increase the objective function.

Let ǫ = α − 1. In light of this observation, we can let

Q = Q1 − Q2 be unconstrained and our objective function

becomes 〈(1 + ǫ/2)Q − (ǫ/2)|Q|, F 〉, as the entrywise ab-

solute value of Q in our case is |Q| = Q1 + Q2. As with

γ2 above, we can reformulate γα
2 (A) in terms of spectral

norms.

Linial and Shraibman [16] show that γα
2 can be used to

lower bound quantum communication complexity with en-

tanglement.

Theorem 15 (Linial and Shraibman). Let A be a sign ma-

trix, and ǫ ≥ 0. Then

Q∗ǫ (A) ≥ log γαǫ

2 (A) − log αǫ − 2 ,

where αǫ = 1
1−2ǫ

In his seminal result showing an Ω(
√

n) lower bound

on the quantum communication complexity of disjointness,

Razborov [23] essentially used a “uniform” version of γα
2 .

Namely, if A is an |X|-by-|Y | matrix, we can in particular

lower bound the spectral norm in the numerator of Equa-

tion (7) by considering uniform unit vectors x of length

|X| and y of length |Y | where x[i] = 1/
√

|X| and y[i] =

1/
√

|Y |. Then we have

‖(1 + ǫ/2)Q ◦ A − (ǫ/2)|Q|‖
≥ xT ((1 + ǫ/2)Q ◦ A − (ǫ/2)|Q|)y

=
〈(1 + ǫ/2)Q,A〉 − (ǫ/2)‖Q‖1

√

|X||Y |
,

and so

γ1+ǫ
2 (A) ≥ max

Q:‖Q‖1=1

〈(1 + ǫ/2)Q,A〉 − ǫ/2

‖Q‖
√

|X||Y |
.

Sherstov [25] also uses the same bound in simplifying

Razborov’s proof, giving an extremely elegant way to

choose the matrix Q for a wide class of sign matrices A.

3 Relation of γ2 to discrepancy

In looking at the definition of discP (A), we see that it is

a quadratic program with quadratic constraints. Such prob-

lems are in general NP-hard to compute. A (now) common

approach for dealing with NP-hard problems is to consider

a semidefinite relaxation of the problem. In fact, Alon and

Naor [1] do exactly this in developing a constant factor ap-

proximation algorithm for the cut norm. While we do not

need the fact that semidefinite programs can be solved in
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polynomial time, we do want to take advantage of the fact

that semidefinite programs often have the property of be-

having nicely under product of instances. While not always

the case, this property has been used many times in com-

puter science, for example [17, 6, 5].

As shown by Linial and Shraibman [15], it turns out

that the natural semidefinite relaxations of discP (A) and

disc(A) are given by γ∗2 (A◦P ) and 1/γ∞2 (A), respectively.

Theorem 16 (Linial and Shraibman). Let A be a sign ma-

trix, and P a probability distribution. Then

1

8
γ∗2(A ◦ P ) ≤ discP (A) ≤ γ∗2(A ◦ P )

1

8

1

γ∞2 (A)
≤ disc(A) ≤ 1

γ∞2 (A)
.

4 Product theorems for γ2

In this section, we show that γ2, γ
∗
2 , and γ∞2 all behave

nicely under the tensor product of their arguments. This,

together with Theorem 16, will immediately give our main

results.

Theorem 17. Let A,B be real matrices. Then

1. γ2(A ⊗ B) = γ2(A) γ2(B),

2. γ∞2 (A ⊗ B) = γ∞2 (A) γ∞2 (B),

3. γ∗2(A ⊗ B) = γ∗2(A) γ∗2 (B).

Item (3) has been previously shown by [5]. The follow-

ing easy lemma will be useful in the proof of the theorem.

Lemma 18. Let ‖ · ‖ be a norm on Euclidean space. If for

every x ∈ R
m, y ∈ R

n

‖x ⊗ y‖ ≤ ‖x‖ · ‖y‖ ,

then, for every α ∈ R
m and β ∈ R

n

‖α ⊗ β‖∗ ≥ ‖α‖∗‖β‖∗ ,

where ‖ · ‖∗ is the dual norm of ‖ · ‖.

Proof. For a vector γ denote by xγ a vector satisfying

‖xγ‖ = 1 and

〈γ, xγ〉 = max
x∈Rn,‖x‖=1

〈γ, x〉 = ‖γ‖∗ .

Then, for every α ∈ R
m and β ∈ R

n

‖α ⊗ β‖∗ = max
x∈Rmn,‖x‖=1

〈α ⊗ β, x〉

≥ 〈α ⊗ β, xα ⊗ xβ〉
= 〈α, xα〉〈β, xβ〉
= ‖α‖∗‖β‖∗ .

For the first inequality recall that ‖xα⊗xβ‖ ≤ ‖xα‖‖xβ‖ =
1.

Now we are ready for the proof of Theorem 17.

Proof of Theorem 17. We will first show items 1 and 2.

To see γ2(A ⊗ B) ≥ γ2(A)γ2(B), let QA be a matrix

with ‖QA‖ = 1, such that γ2(A) = ‖A◦QA‖, and similarly

let QB satisfy ‖QB‖ = 1 and γ2(B) = ‖B ◦ QB‖. Now

consider the matrix QA⊗QB . Notice that ‖QA⊗QB‖ = 1.

Thus

γ2(A ⊗ B) ≥ ‖(A ⊗ B) ◦ (QA ⊗ QB)‖
= ‖(A ◦ QA) ⊗ (B ◦ QB)‖
= ‖A ◦ QA‖ · ‖B ◦ QB‖ .

Furthermore, the same proof shows that γ∞2 (A ⊗ B) ≥
γ∞2 (A)γ∞2 (B) with the additional observation that if QA ◦
A ≥ 0 and QB ◦ B ≥ 0 then (QA ⊗ QB) ◦ (A ⊗ B) ≥ 0.

For the other direction, γ2(A ⊗ B) ≤ γ2(A)γ2(B), we

use the min formulation of γ2. Let XA, YA be two ma-

trices such that XAYA = A and γ2(A) = r(XA)c(YA)
and similarly let XB , YB be such that XBYB = B and

γ2(B) = r(XB)c(YB). Then

(XA ⊗ XB)(YA ⊗ YB) = A ⊗ B

gives a factorization of A ⊗ B, and r(XA ⊗ XB) =
r(XA)r(XB) and similarly c(YA ⊗ YB) = c(YA)c(YB).

Furthermore, the same proof also shows that γ∞2 (A ⊗
B) ≤ γ∞2 (A)γ∞2 (B) with the additional observation that if

XAYA ◦A ≥ 1 and XBYB ◦B ≥ 1 then (XA ⊗XB)(YA ⊗
YB) ◦ (A ⊗ B) ≥ 1.

We now turn to item 3. As we have already shown

γ2(A⊗B) ≤ γ2(A)γ2(B), thus by Lemma 18 it suffices to

show that γ∗2(A ⊗ B) ≤ γ∗2(A)γ∗2 (B).
To this end, let XA, YA be an optimal factorization

for A and similarly XB , YB for B. That is, XT
AYA =

A,XT
BYB = B, the columns of XA, YA,XB , YB are or-

thogonal, and γ∗2 (A) = ‖XA‖F ‖YA‖F and γ∗2(B) =
‖XB‖F ‖YB‖F .

Now consider the factorization (XT
A ⊗XT

B)(YA⊗YB) =
A ⊗ B. It is easy to check that the columns of XA ⊗ XB

and YA ⊗ YB remain orthogonal, and so

γ∗2 (A ⊗ B) ≤ ‖XA ⊗ XB‖F ‖YA ⊗ YB‖F

= ‖XA‖F ‖YA‖F ‖XB‖F ‖YB‖F

= γ∗2(A)γ∗2 (B) .

5 Direct product theorem for discrepancy

Shaltiel showed a direct product theorem for discrepancy

under the uniform distribution as follows:

discU⊗k(A⊗k) = O(discU (A)k/3)
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Our first result generalizes and improves Shaltiel’s result to

give an optimal product theorem, up to constant factors.

Theorem 19. For any sign matrices A,B and probability

distributions on their entries P,Q

discP (A) discQ(B) ≤ discP⊗Q(A ⊗ B)

≤ 64 discP (A) discQ(B)

Proof. It follows directly from the definition of discrepancy

that

discP (A)discQ(B) ≤ discP⊗Q(A ⊗ B) .

For the other inequality, we have

discP⊗Q(A ⊗ B) ≤ γ∗2 ((A ⊗ B) ◦ (P ⊗ Q))

= γ∗2 ((A ◦ P ) ⊗ (B ◦ Q))

= γ∗2 (A ◦ P )γ∗2(B ◦ Q)

≤ 64 discP (A)discQ(B) .

A simple example shows that we cannot expect a perfect

product theorem. Let H be the 2-by-2 Hadamard matrix

H =

[

1 1
1 −1

]

,

which also represents the communication problem inner

product on one bit. It is not too difficult to verify disc(H) =
discU (H) = 1/2, where U represents the uniform distri-

bution. On the other hand discU⊗U (H ⊗ H) ≥ 5/16 as

witnessed by the vector x = [1, 1, 1, 0].
Shaltiel also asked whether a direct product theorem

holds for general discrepancy disc(A) = minP discP (A).
The function inner product can also be used here to show we

cannot expect a perfect product theorem. As stated above,

for the inner product function on one bit, disc(H) = 1/2.

Thus if discrepancy obeyed a perfect product theorem, then,

disc(H⊗k) = 2−k. On the other hand, γ∞2 (H⊗k) =
2k/2—for the upper bound look at the trivial factorization

IH⊗k, and for the lower bound take the matrix Q to be

H⊗k itself. Thus we obtain a contradiction for sufficiently

large k as γ∞2 (A) and 1/disc(A) differ by at most a multi-

plicative factor of 8.

Our next theorem shows that this example is nearly the

largest violation possible.

Theorem 20. Let A,B be sign matrices. Then

1

8
disc(A) disc(B) ≤ disc(A⊗B) ≤ 64 disc(A) disc(B) .

Proof. By Theorem 16 and Theorem 17 we have

disc(A ⊗ B) ≤ 1

γ∞2 (A ⊗ B)
=

1

γ∞2 (A)γ∞2 (B)

≤ 64 disc(A)disc(B) .

Similarly,

disc(A ⊗ B) ≥ 1

8

1

γ∞2 (A ⊗ B)
=

1

8

1

γ∞2 (A)γ∞2 (B)

≥ 1

8
disc(A)disc(B) .

These two theorems taken together mean that for a tensor

product A⊗B there is a tensor product distribution P ⊗Q
that gives a nearly optimal bound for discrepancy. We state

this as a corollary:

Corollary 21. Let A,B be sign matrices. Then

1

512
discP⊗Q(A ⊗ B) ≤ disc(A ⊗ B)

≤ 64 discP⊗Q(A ⊗ B) ,

where P is the optimal distribution for disc(A) and Q is the

optimal distribution for disc(B).

5.1 Applications

Now we discuss some applications of our product theo-

rem for discrepancy. We first show how our results give a

strong XOR lemma in distributional complexity, for bounds

shown by the discrepancy method.

Theorem 22. Let f : X × Y → {0, 1}n be a Boolean

function and P a probability distribution over X × Y . If

Corrc,P (Mf ) ≤ w is proved by the discrepancy method

(Fact 5), then

Corrkc,P⊗k(M⊗k
f ) ≤ (8w)k .

Proof. By generalizing Theorem 19 to tensor products of

more matrices,

Corrkc,P⊗k(M⊗k
f ) ≤ 2kcdiscP⊗k(M⊗k

f )

≤ 2kc(8 · discP (Mf ))k

≤ (8 · 2cdiscP (Mf ))k .

Viola and Wigderson (Proposition 1.1 in [27]) show

quite generally that upper bounds on the correlation an algo-

rithm obtains with f⊗k imply upper bounds on the success

probability an algorithm obtains in computing the vector of

solutions f (k). This gives us the following corollary.

787878

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 1, 2009 at 07:57 from IEEE Xplore.  Restrictions apply.



Corollary 23. Let f : X × Y → {0, 1}n be a Boolean

function and P a probability distribution over X × Y . If

Corrc,P (Mf ) ≤ w is proved by the discrepancy method

(Fact 5), then the success probability under distribution

P (k) of any kc/3 bit protocol computing the vector of so-

lutions f (k) satisfies

Succkc/3,P⊗k(f (k)) ≤ (8w)k .

This is a strong direct product theorem as even with k/3
times the original amount c of communication, the success

probability still decreases exponentially. Note, however,

that we can only show this for bounds shown by the discrep-

ancy method. Indeed, Shaltiel’s counter-example shows

that some assumptions on the function f are necessary in

order to show a strong direct product theorem for the distri-

butional complexity of f .

For weakly-unbounded error protocols, on the other

hand, we can show an unconditional direct sum theorem.

This follows from our product theorem plus results of

Klauck (stated in our Theorem 7) which show that discrep-

ancy captures the complexity of weakly-unbounded error

protocols.

Theorem 24. Let fi : {0, 1}n × {0, 1}n → {0, 1} be

Boolean functions, for 1 ≤ i ≤ k. Then

UPC

(

k
⊕

i=1

fi

)

≥ 1

3

(

k
∑

i=1

UPC(fi)

)

− k

3
log n−O(1) .

Similarly one also obtains direct sum results for lower

bounds on randomized or quantum communication com-

plexity with entanglement that are shown via the discrep-

ancy method.

5.2 Connections to recent work

There have been several recent papers which discuss is-

sues related to those here. We now explain some of the

connections between our work and these results.

Viola and Wigderson [27] study direct product theorems

for, among other things, multi-party communication com-

plexity. For the two-party case, they are able to recover

Shaltiel’s result, with a slightly worse constant in the ex-

ponent. The quantity which they bound is correlation with

two-bit protocols, which they remark is equal to discrep-

ancy, up to a constant factor. One may compare this with

the infinity-to-one norm, as the maximum correlation of a

sign matrix A with a two-bit simultaneous protocol under

distribution P is exactly ‖A ◦ P‖∞→1.

The infinity-to-one norm also plays an important role in

a special class of two-prover games known as XOR games.

Here the verifier wants to evaluate some function f : X ×
Y → {−1, 1}, and with probability P [x, y], sends question

x to Alice and question y to Bob. The provers Alice and Bob

are all powerful, but cannot communicate. Alice and Bob

send responses ax, by ∈ {−1, 1} back to the verifier who

checks if ax · by = f(x, y). Here we see that a strategy of

Alice is given by a sign vector a of length |X|, and similarly

for Bob. Thus the maximum correlation the provers can

achieve with f is

max
a∈{−1,1}|X|,b∈{−1,1}|Y |

aT (Mf ◦ P )b ,

which is exactly ‖Mf ◦ P‖∞→1.

Two-prover XOR games have also been studied where

the provers are allowed to share entanglement. In this

case, results of Tsirelson [26] show that the best correla-

tion achievable can be described by a semidefinite program

[4]. In fact, the best correlation achievable by entangled

provers under distribution P turns out to be given exactly

by γ∗2 (Mf ◦P ). In studying a parallel repetition theorem for

XOR games with entanglement, [5] have already shown, in

our language, that γ∗2 (A ⊗ B) = γ∗2(A)γ∗2 (B).
This connection to XOR games also gives another pos-

sible interpretation of the quantity γ∞2 (A). The best corre-

lation the provers can achieve with Mf under the “hardest”

probability distribution P is given by 1/γ∞2 (A).
Finally, inspired by the work of [5], Mittal and Szegedy

[19] began to develop a general theory of when semidefi-

nite programs obey a product theorem. They give a general

condition which captures many instances of semidefinite

progam product theorems in the literature, including γ2 and

γ∗2 , but that does not handle programs with non-negativity

constraints like γ∞2 . Lee and Mittal [13] extend this work to

also include programs with non-negativity constraints like

γ∞2 and the semidefinite relaxation of two-prover games

due to Feige and Lovász [6].

6 Conclusion

We have shown a tight product theorem for discrepancy

by looking at semidefinite relaxation of discrepancy which

gives a constant factor approximation, and which composes

perfectly under tensor product. With the great success of

semidefinite programming in approximation algorithms we

feel that such an approach should find further applications.

Many open questions remain. Can one show a product

theorem for γα
2 ? We have only been able to show a very

weak result in this direction:

γ
1+ǫ2/(2(1+ǫ))
2 (A ⊗ A) ≥ γ1+ǫ

2 (A)γ1+ǫ
2 (A)

Finally, an outstanding open question which remains is if

a direct product theorem holds for the randomized commu-

nication complexity of disjointness. Razborov’s [22] proof

of the Ω(n) lower bound for disjointness uses a one-sided
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version of discrepancy under a non-product distribution.

Could a similar proof technique apply by first characteriz-

ing one sided discrepancy as a semidefinite program?

References

[1] N. Alon and A. Naor. Approximating the cut-norm via

Grothendieck’s inequality. SIAM Journal on Computing,

35(4):787–803, 2006.
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