
Three-Valued Paraconsistent Propositional Logics

Ofer Arieli
School of Computer Science

The Academic College of Tel-Aviv, Israel
Email: oarieli@mta.ac.il

Arnon Avron
School of Computer Science
Tel-Aviv University, Israel
Email: aa@cs.tau.ac.il

August 10, 2014

Abstract

Three-valued matrices provide the simplest semantic framework for introducing paraconsistent
logics. This paper is a comprehensive study of the main properties of propositional paraconsistent
three-valued logics in general, and of the most important such logics in particular. For each logic in
the latter group we also provide a corresponding cut-free Gentzen-type system.

1 Introduction

It is well-known that classical logic is not adequate for reasoning with inconsistent information. One of
the oldest and the most common approaches to overcome this shortcoming of classical logic is to enrich
the set of truth values with a third element other than the two classical ones t and f . Indeed, since
their introduction by  Lukasiewicz [28] (see also [29]), three-valued logics have been extensively studied
for uncertainty reasoning in general, and paraconsistent reasoning in particular (see, e.g., [4, 7, 16, 20],
which in turn contain references to many other works). The goal of this work is to study this approach
to paraconsistency in a systematic way, as well as to present what we believe to be the most important
results concerning the better accepted logics that came out from this approach. However, it should be
emphasized that the scope of the material we present is limited according to the following criteria:

1. The languages that are considered in the sequel are all propositional , as this is the heart of every
paraconsistent logic ever studied so far.

2. We confine ourselves to paraconsistent propositional logics, in which a propositional language is
equipped with a structural and non-trivial Tarskian consequence relation. In particular, no form of
non-monotonic reasoning is considered in this paper.

3. We restrict ourselves here to logics which are based on truth functional three-valued semantics.1

The rest of the paper is organized as follows: In the next section we review some general definitions and
basic concepts that are needed in the sequel. In Section 3 we define in precise terms what paraconsistent
logics are, and what additional properties they expected to have. These properties are then investigated
in the context of three-valued matrices in Section 4. The most important logics that are induced by these
matrices are considered in Section 5, and corresponding proof systems are discussed in Section 6.

1When truth functionality is not required, further approaches based on non-deterministic semantics [12] are available.
They give rise to another brand of useful three-valued logics, which includes many of the LFIs considered in [16]. We refer
the reader to [11, 13] for further information on these logics and references to related papers.
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2 Preliminaries

2.1 Propositional Logics

In what follows we denote by L a propositional language with a set Atoms(L) = {P1, P2, . . .} of atomic
formulas and use p, q, r to vary over this set. The set of the well-formed formulas of L is denoted by W(L)
and φ,ψ, ϕ, σ will vary over its elements. The set Atoms(φ) denotes the atomic formulas occurring in φ.
Sets of formulas in W(L) are called theories and are denoted by T or T ′. Finite theories are denoted by
Γ or ∆. Following the usual convention, we shall abbreviate T ∪ {ψ} by T , ψ. More generally, we shall
write T , T ′ instead of T ∪ T ′. A rule in a language L is a pair ⟨Γ, ψ⟩, where Γ ∪ {ψ} is a finite set of
formulas in L. We shall henceforth denote such a rule by Γ/ψ.

Definition 1 A (Tarskian) consequence relation for a language L (a tcr, for short) is a binary relation
⊢ between theories in W(L) and formulas in W(L), satisfying the following three conditions:

Reflexivity : if ψ ∈ T then T ⊢ ψ.

Monotonicity : if T ⊢ ψ and T ⊆ T ′, then T ′ ⊢ ψ.

Transitivity (cut) : if T ⊢ ψ and T ′, ψ ⊢ ϕ then T , T ′ ⊢ ϕ.

Let ⊢ be a tcr for L. We say that ⊢ is

• structural , if for every L-substitution θ and every T and ψ, if T ⊢ ψ then {θ(φ) | φ ∈ T } ⊢ θ(ψ).

• non-trivial , if there exist some non-empty theory T and some formula ψ such that T ̸⊢ ψ.

• finitary , if for every theory T and every formula ψ such that T ⊢ ψ there is a finite theory Γ ⊆ T
such that Γ ⊢ ψ.

Definition 2 A (propositional) logic is a pair L = ⟨L,⊢L⟩, such that L is a propositional language, and
⊢ is a structural and non-trivial2 consequence relation for L. A logic ⟨L,⊢L⟩ is finitary if so is ⊢L.

Definition 3 Let L = ⟨L,⊢⟩ be a logic, and let S be a set of rules in L. The finitary L-closure CL(S)
of S is inductively defined as follows:

• ⟨θ(Γ), θ(ψ)⟩ ∈ CL(S), whenever θ is a uniform L-substitution, Γ is a finite theory in W(L), and
either Γ ⊢ ψ or Γ/ψ ∈ S.

• If the pairs ⟨Γ1, φ⟩ and ⟨Γ2 ∪ {φ}, ψ⟩ are both in CL(S), then so is the pair ⟨Γ1 ∪ Γ2, ψ⟩.

Next we define what an extension of a logic means.

Definition 4 Let L = ⟨L,⊢⟩ be a logic, and let S be a set of rules in L.

• A logic L′ = ⟨L,⊢′⟩ is an extension of L (in the same language) if ⊢⊆⊢′. We say that L′ is a proper
extension of L, if ⊢( ⊢′.

• The extension of L by S is the pair L∗ = ⟨L,⊢∗⟩, where ⊢∗ is the binary relation between theories in
W(L) and formulas in W(L), defined by: T ⊢∗ ψ if there is a finite Γ ⊆ T such that ⟨Γ, ψ⟩ ∈ CL(S).3

• Extending L by an axiom schema φ means extending it by the rule ∅/φ.

2The condition of non-triviality is not always demanded in the literature, but we find it very convenient (and natural)
to include it here.

3Note that L∗ is a propositional logic unless CL(S) contains all the pairs of finite theories in W(L) and formulas in
W(L). Moreover, L∗ is in that case the minimal extension of L such that Γ ⊢∗ φ whenever Γ/φ ∈ S.
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The usefulness of a logic strongly depends on the question what kind of connectives are available in
it. Three particularly important types of connectives are defined next.

Definition 5 Let L = ⟨L,⊢L⟩ be a propositional logic.

• – A binary connective ⊃ of L is called an implication for L if the classical deduction theorem
holds for ⊃ and ⊢L:

T , φ ⊢L ψ iff T ⊢L φ ⊃ ψ.

– A binary connective ∧ of L is called a conjunction for L if it satisfies the following condition:

T ⊢L ψ ∧ φ iff T ⊢L ψ and T ⊢L φ.

– A binary connective ∨ of L is called a disjunction for L if it satisfies the following condition:

T , ψ ∨ φ ⊢L σ iff T , ψ ⊢L σ and T , φ ⊢L σ.

• We say that L is semi-normal if it has (at least) one of the three basic connectives defined above.
We say that L is normal if it has all these three connectives.

The following lemma is easily verified:

Lemma 6 Let L = ⟨L,⊢L⟩ be a propositional logic.

1. If ⊃ is an implication for L then the following three conditions hold for every ψ,φ ∈ W(L):

(a) φ,φ ⊃ ψ ⊢L ψ

(b) ⊢L ψ ⊃ ψ

(c) ψ ⊢L φ ⊃ ψ

2. ∧ is a conjunction for L iff the following three conditions hold for every ψ,φ ∈ W(L):

(a) ψ ∧ φ ⊢L ψ

(b) ψ ∧ φ ⊢L φ

(c) ψ,φ ⊢L ψ ∧ φ

3. If ∨ is a disjunction for L then the following three conditions hold for every ψ,φ ∈ W(L):

(a) ψ ⊢L ψ ∨ φ
(b) φ ⊢L ψ ∨ φ
(c) φ ∨ φ ⊢L φ

2.2 Many-Valued Matrices

The most standard semantic way of defining logics is by using the following type of structures (see,
e.g., [26, 30, 39]).

Definition 7 A (multi-valued) matrix for a language L is a triple M = ⟨V,D,O⟩, where

• V is a non-empty set of truth values,

• D is a non-empty proper subset of V, called the designated elements of V, and
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• O is a function that associates an n-ary function ⋄̃M : Vn → V with every n-ary connective ⋄ of L.

Definition 8 Let M = ⟨V,D,O⟩ be a matrix for a language L, and let L ⊆ L′. A matrix M′ =
⟨V ′,D′,O′⟩ for L′ is called an expansion of M to L′ if V = V ′, D = D′, and O′(⋄) = O(⋄) for every
connective ⋄ of L.

In what follows, we shall denote by D the elements in V\D. The set D is used for defining satisfiability
and validity, as defined below:

Definition 9 Let M = ⟨V,D,O⟩ be a matrix for L.

• An M-valuation for L is a function ν :W(L)→V such that for every n-ary connective ⋄ of L and
every ψ1, . . . , ψn ∈ W(L), ν(⋄(ψ1, . . . , ψn)) = ⋄̃M(ν(ψ1), . . . , ν(ψn)). We denote the set of all the
M-valuations by ΛM.

• A valuation ν∈ΛM is an M-model of a formula ψ (alternatively, ν M-satisfies ψ), if it belongs to
the set modM(ψ) = {ν ∈ ΛM | ν(ψ) ∈ D}. The M-models of a theory T are the elements of the
set modM(T ) = ∩ψ∈T modM(ψ).

• A formula ψ is M-satisfiable if modM(ψ) ̸= ∅. A theory T is M-satisfiable if modM(T ) ̸= ∅.

In the sequel, we shall sometimes omit the prefix ‘M’ from the notions above. Also, when it is clear
from the context, we shall omit the subscript ‘M’ in ⋄̃M.

Definition 10 Given a matrix M, the consequence relation ⊢M that is induced by (or associated with)
M, is defined by: T ⊢M ψ if modM(T ) ⊆ modM(ψ). We denote by LM the pair ⟨L,⊢M⟩, where M is
a matrix for L and ⊢M is the consequence relation induced by M.

Proposition 11 [36, 37] For every propositional language L and a finite matrix M for L, LM = ⟨L,⊢M⟩
is a propositional logic. If M is finite, then ⊢M is also finitary.

We conclude this subsection with some simple, easily verified, results on the basic connectives (Defi-
nition 5) in the context of matrix-based logics.

Definition 12 Let M = ⟨V,D,O⟩ be a matrix for a language L and let A ⊆ V.

• An n-ary connective ⋄ of L is called A-closed , if ⋄̃(a1, . . . , an) ∈ A for every a1, . . . , an ∈ A.

• An n-ary connective ⋄ of L is called A-limited , if for every a1, . . . , an ∈ V, if ⋄̃(a1, . . . , an) ∈ A then
a1, . . . , an ∈ A.

Definition 13 Let M = ⟨V,D,O⟩ be a matrix for a language L.

• A connective ∧ in L is called an M-conjunction if it is D-closed and D-limited, i.e., for every
a, b ∈ V, a ∧ b ∈ D iff a ∈ D and b ∈ D.

• A connective ∨ in L is called an M-disjunction if it is D-closed and D-limited, i.e., for every a, b ∈ V,
a ∨ b ∈ D iff a ∈ D or b ∈ D.

• A connective ⊃ in L is called an M-implication if for every a, b ∈ V, a⊃̃b ∈ D iff either a ̸∈ D or
b ∈ D.

Proposition 14 Let M = ⟨V,D,O⟩ be a matrix for a language L.

1. A connective of L is an M-conjunction iff it is a conjunction for LM.

4



2. A connective of L which is an M-disjunction is also a disjunction for LM.

3. A connective of L which is an M-implication is also an implication for LM.

Corollary 15 Let M = ⟨V,D,O⟩ be a matrix for a language L, and let M′ be an expansion of M. Then

1. An M-conjunction (respectively: M-disjunction, M-implication) is also a conjunction (respectively:
disjunction, implication) of LM′ .

2. If M has either an M-conjunction, or an M-disjunction, or an M-implication, then LM′ is semi-
normal. If M has all of them then LM′ is normal.

3 Paraconsistent Logics

In this section we define in precise terms the notion of paraconsistency which is used in this paper, as
well some related desirable properties.

Definition 16 Let L be a language with a unary connective ¬, and let L = ⟨L,⊢L⟩ be a logic for L.

• L is called pre-¬-paraconsistent if there are atoms p, q such that p,¬p ̸⊢L q.

• L is called boldly pre-¬-paraconsistent if there are no formula σ and an atom p ̸∈ Atoms(σ) such
that p,¬p ⊢L σ while ̸⊢L σ.4

Since L is a logic, our definition of pre-¬-paraconsistency can easily be seen to be equivalent to da-
Costa’s definition of paraconsistency [19], which requires that there would be a theory T and formulas
ψ,φ in W(L) such that T ⊢L ψ, T ⊢L ¬ψ, but T ̸⊢L φ. Both of these definitions intend to capture
the idea that a contradictory set of premises should not entail every formula. However, talking about
‘contradictory set’ makes sense only if the underlying connective ¬ somehow represents a ‘negation’
operation. This is assured by the condition of ‘coherence with classical logic’, which is defined next.
Intuitively, this condition states that a logic that has such a connective should not admit entailments
that do not hold in classical logic.

Definition 17 Let L be a language with a unary connective ¬. A bivalent ¬-interpretation for L is
a function F that associates a two-valued truth-table with each connective of L, such that F(¬) is the
classical truth table for negation. We denote by MF the two-valued matrix for L induced by F, that is,
MF = ⟨{t, f}, {t},F⟩ (see Definition 7).

Definition 18 Let L = ⟨L,⊢⟩ be a propositional logic where L contains a unary connective ¬.

• Let F be a bivalent ¬-interpretation for L. L is F-contained in classical logic if the following holds
for every φ1, . . . , φn, ψ ∈ W(L): if φ1, . . . φn ⊢L ψ then φ1, . . . , φn ⊢MF

ψ.

• [3] L is ¬-contained in classical logic, if it is F-contained in it for some bivalent ¬-interpretation F.

• L is ¬-coherent with classical logic, if it has a semi-normal fragment (Definition 5) which is ¬-
contained in classical logic.

Definition 19 Let L = ⟨L,⊢⟩ be a propositional logic where L contains a unary connective ¬. We say
that ¬ is a negation of L if L is ¬-coherent with classical logic.

Note 20 If ¬ is a negation of L = ⟨L,⊢L⟩, then for every atom p it holds that p ̸⊢L ¬p and ¬p ̸⊢L p.

4This is a variant of a notion from [16].
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Definition 21 Let L be a language with a unary connective ¬, and let L = ⟨L,⊢L⟩ be a logic for L.

• L is called ¬-paraconsistent if it is pre-¬-paraconsistent and ¬ is a negation of L.

• L is called boldly ¬-paraconsistent if it is boldly pre-¬-paraconsistent, and ¬ is a negation of L.

Henceforth we shall frequently omit the ¬ sign (if it is clear from the context), and simply refer to
(boldly) (pre-) paraconsistent logics.

Note 22 It should again be emphasized that our notion of paraconsistency has two components. In
addition to the usual demand that a formula and its negation do not imply everything, we also demand
that the “negation” connective under question can indeed be taken to be a sort of negation.

Paraconsistent logics reject the principle of explosion (known as Ex Contradictione Sequitur Quodlibet :
T , ψ,¬ψ ⊢ φ). Bold paraconsistency is a stronger version of this property. An even stronger demand is
to reject explosion in all circumstances:

Definition 23 A logic ⟨L,⊢⟩ is non-exploding if for every theory T such that Atoms(T ) ̸= Atoms(L)
there is a formula ψ such that T ̸⊢ ψ.

Note 24 Obviously, every non-exploding logic which is ¬-coherent with classical logic is boldly paracon-
sistent.

There are many approaches to designing paraconsistent logics. One of the oldest and best known is
Newton da Costa’s approach, which has led to the family of Logics of Formal Inconsistency (LFIs) [16].
Now, already in the early stages of investigating this topic it has been acknowledged by da Costa (and
others) that pre-paraconsistency by itself is not sufficient. Further properties that an ‘ideal’ paraconsistent
logic is expected to have are defined in [3]. In the rest of this section we briefly recall (with some
improvements) these properties.

A. Reasonably Strong Language Clearly, any logic (including paraconsistent ones) should have a
sufficiently expressive language. The semi-normality requirement (Definition 5) assures that in addition
to negation, a useful paraconsistent logic should provide natural counterparts for all classical connectives:

Proposition 25 Let L be a logic that is F-contained in classical logic for some F, and let F(⋄) = ⋄F.
Then for every a, b ∈ {t, f} we have:

1. If ⋄ is an implication for L, then a ⋄F b = f if a = t and b = f , otherwise a ⋄F b = t.

2. If ⋄ is a conjunction for L, then a ⋄F b = t if a = t and b = t, otherwise a ⋄F b = f .

3. If ⋄ is a disjunction for L, then a ⋄F b = t if a = t or b = t, otherwise a ⋄F b = f .

Proof. Let F be a bivalent interpretation for which L is F-contained in classical logic.

1. Suppose that ⋄ is an implication for L, and let F(⋄) = ⋄F. By Item (b) of Lemma 6–1, ⊢L p ⋄ p.
Hence, ⊢MF

p ⋄ p, and so necessarily t ⋄F t = f ⋄F f = t. Next, p ⊢L q ⋄ q, and since ⋄ is an
implication for L, ⊢L p ⋄ (q ⋄ q). Hence also ⊢MF

p ⋄ (q ⋄ q). Since f ⋄F f = t, this implies that
f ⋄F t = t. Finally, by Item (a) of Lemma 6–1, p ⋄ q, p ⊢L q. Hence, also p ⋄ q, p ⊢MF

q, and so
t ⋄F f = f (otherwise ν(p) = t, ν(q) = f would be a counter-example).

2. Suppose that ⋄ is a conjunction for L, and let F(⋄) = ⋄F. By Lemma 6–2, p ⋄ q ⊢L p and so also
p⋄q ⊢MF

p. This implies that f ⋄F t = f and f ⋄Ff = f . Similarly, since p⋄q ⊢L q, also p⋄q ⊢MF
q,

and so t ⋄F f = f . Finally, by Lemma 6–2 again, p, q ⊢L p ⋄ q and so p, q ⊢MF
p ⋄ q, which implies

that t ⋄F t = t (otherwise, ν(p) = ν(q) = t would be a counter-example).
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3. Suppose that ⋄ is a disjunction for L, and let F(⋄) = ⋄F. By Lemma 6–3, p ⊢L p ⋄ q, and q ⊢L p ⋄ q.
Hence also p ⊢MF

p ⋄ q, and q ⊢MF
p ⋄ q, implying that t ⋄F t = t ⋄F f = f ⋄F t = t. Finally, by

Item (c) of Lemma 6–3 the assumption that ⋄ is a disjunction for L implies that p ⋄ p ⊢L p, and so
p ⋄ p ⊢MF

p. It follows that f ⋄F f = f (otherwise, ν(p) = f would be a counter-example). 2

Corollary 26 Let M = ⟨V,D,O⟩ be a matrix for L such that LM is F-contained in classical logic.

1. If a connective ∧ of L is an M-conjunction then F(∧) is the classical conjunction.

2. If a connective ∨ of L is an M-disjunction then F(∨) is the classical disjunction.

3. If a connective ⊃ of L is an M-implication then F(⊃) is the classical implication.

Proof. This follows from Propositions 25 and 14. 2

Note 27 Let M be a martix for L such that LM is F-contained in classical logic. Suppose that M has
a connective ⋄ of L which is either an M-conjunction, an M-disjunction, or an M-implication. The last
corollary implies that any two-valued function is then definable in terms of F(⋄) and F(¬). This shows
the adequacy of the expressive power of such matrices.

B. Maximal Paraconsistency A common requirement from a paraconsistent logic, which is already
realized in da-Costa’s seminal paper [19], is to “retain as much of classical logic as possible, while still
allowing non-trivial inconsistent theories”. As observed in [3, 4], this requirement has two different
interpretations, corresponding to the two aspects of this demand:

B-1. Absolute maximal paraconsistency Intuitively, this means that by trying to further extend
the logic (without changing the language) we lose the property of paraconsistency.

Definition 28 Let L = ⟨L,⊢⟩ be a ¬-paraconsistent logic

• We say that L is maximally paraconsistent , if every extension of L (in the sense of Definition 4)
whose set of theorems properly includes that of L, is not pre-paraconsistent.

• We say that L is strongly maximal , if every proper extension of L (in the sense of Definition 4)
is not pre-paraconsistent.

B-2. Maximality relative to classical logic The intuitive meaning of this property is that the logic
is so close to classical logic, that any attempt to further extend it should necessarily end-up with
classical logic.

Definition 29 Let F be a bivalent ¬-interpretation for a language L with a unary connective ¬.

• An L-formula ψ is a classical F-tautology , if ψ is satisfied by every two-valued valuation which
respects all the truth-tables (of the form F(⋄)) that F assigns to the connectives of L.

• A logic L = ⟨L,⊢⟩ is F-complete, if its set of theorems consists of all the classical F-tautologies.

• L is F-maximal relative to classical logic, if the following hold:

– L is F-contained in classical logic.

– If ψ is a classical F-tautology not provable in L, then by adding ψ to L as a new axiom
schema, an F-complete logic is obtained.

• L is F-maximally paraconsistent relative to classical logic, if it is pre-paraconsistent and F-
maximal relative to classical logic.
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Definition 30 Let L = ⟨L,⊢⟩ be a logic for a language with a unary connective ¬. L is maximally
paraconsistent relative to classical logic if there exists a bivalent ¬-interpretation F such that L is
F-maximally paraconsistent relative to classical logic.

The two kinds of maximality are combined in the next definition.

Definition 31 We say that a semi-normal finitary logic L is a fully maximal paraconsistent logic, if it
is both maximally paraconsistent relative to classical logic and strongly maximal.

4 Three-Valued Paraconsistent Matrices

We now turn to the three-valued case, and investigate paraconsistent logics induced by three-valued
matrices. We start with some general results.

Definition 32 Let L be a propositional language with a unary connective ¬. A matrix M for L is
(boldly, pre-) ¬-paraconsistent if so is LM (see Definitions 16 and 21).

Proposition 33 Let M = ⟨V,D,O⟩ be a matrix for a language with ¬.

1. M is pre-paraconsistent iff there is an element ⊤ ∈ D, such that ¬̃⊤ ∈ D.

2. If M is paraconsistent then there are three different elements t, f , and ⊤ in V such that f = ¬̃t,
f ̸∈ D, and {t, ¬̃f,⊤, ¬̃⊤} ⊆ D.

Proof. By its definition, M is pre-paraconsistent iff p,¬p ̸⊢M q. Obviously, this happens iff {p,¬p} has
an M-model. The latter, in turn, is possible iff there is some ⊤ ∈ D, such that ¬̃⊤ ∈ D, as indicated in
the first item of the proposition. For the second item we may assume without loss in generality that M
is ¬-contained in classical logic. We let F be a bivalent ¬-interpretation such that LM is F-contained in
classical logic. Since p,¬¬p ̸⊢MF

¬p, also p,¬¬p ̸⊢M ¬p, and so there is some t ∈ D, such that ¬̃t ̸∈ D,
while ¬̃¬̃t ∈ D. Let f = ¬̃t. Then t and f have the required properties, and together with the first item
we are done. 2

Corollary 34 Any paraconsistent matrix is boldly paraconsistent.

Proof. Suppose that M = ⟨V,D,O⟩ is a paraconsistent matrix, σ is a formula in its language such
that ̸⊢M σ, and p is an atomic formula such that p ̸∈ Atoms(σ). Then there is a valuation ν such that
ν(σ) ̸∈ D. Let ⊤ be an element of V like in the first item of Proposition 33. Define a valuation ν′ by
letting ν′(p) = ⊤, and ν′(q) = ν(q) for every atomic formula q ̸= p. Then ν′(σ) = ν(σ) ̸∈ D. Hence ν′ is
an M-model of {¬p, p} which is not an M-model of σ, and so {¬p, p} ̸⊢M σ. It follows that M is boldly
paraconsistent. 2

By the second item of Proposition 33, we have:

Corollary 35 Every paraconsistent matrix has at least two designated elements, and so no two-valued
matrix can be paraconsistent.

The last corollary vindicates the general wisdom that truth-functional semantics of a reasonable
paraconsistent logic should be based on at least three truth values. The structure of paraconsistent
matrices with exactly three values is characterized next.

Proposition 36 Let M be a three-valued paraconsistent matrix. Then M isomorphic to a matrix M′ =
⟨V,D,O⟩ in which V = {t, f,⊤}, D = {t,⊤}, ¬t = f , ¬f = t and ¬⊤ ∈ D.
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Proof. By Proposition 33 we only need to show that ¬̃f ̸= ⊤. Assume for contradiction that ¬̃f = ⊤.
This implies that ¬̃¬̃¬̃⊤ = ⊤, no matter whether ¬̃⊤ = ⊤ or ¬̃⊤ = t. This and the facts that D = {t,⊤}
and ¬̃⊤ ∈ D imply that p ⊢M ¬¬¬p, which contradicts the ¬-coherence of M with classical logic. 2

In the rest of the paper we assume that any three-valued paraconsistent matrix has the form described
in Proposition 36.

Next, we provide an effective necessary and sufficient criterion for checking which paraconsistent
matrix is also non-exploding.

Proposition 37 Let M = ⟨V,D,O⟩ be a paraconsistent three-valued matrix. Then LM is non-exploding
iff every connective ⋄ of M is {⊤}-closed (i.e., ⋄̃(⊤, . . . ,⊤) = ⊤).

Proof. Suppose that every connective of M is {⊤}-closed. Let T be a theory and q an atomic formula
such that q ̸∈ Atoms(T ). Let ν be an assignment in M such that ν(p) = ⊤ for every p ∈ Atoms(T ), while
ν(q) = f . Since every connective of M is {⊤}-closed, ν(φ) = ⊤ for every φ ∈ T . Hence ν is a model of
T which is not a model of q. It follows that T ̸⊢M q.

For the converse, assume that there is an n-ary connective ⋄ of the language of M such that ⋄̃ is not
{⊤}-closed. Then S = {P1,¬P1, ⋄(P1, . . . , P1),¬⋄(P1, . . . , P1)} has no models in M, and so S ⊢M φ for
every φ. Hence LM is not non-exploding. 2

By Proposition 36 it follows that there are exactly two possible definitions for negation connectives
in three-valued paraconsistent matrices:

• Kleene’s negation [27], in which ¬̃t = f , ¬̃f = t, ¬̃⊤ = ⊤, and

• Sette’s negation [35], in which ¬̃t = f , ¬̃f = t, ¬̃⊤ = t.

The other basic connectives are characterized by the following proposition.

Proposition 38 Let M = ⟨V,D,O⟩ be a paraconsistent three-valued matrix.

1. A connective ∧ is a conjunction for LM iff it is an M-conjunction.

2. A connective ∨ is a disjunction for LM iff it is an M-disjunction.

3. A connective ⊃ is an implication for LM iff it is an M-implication.

Proof. In all cases the ‘if’ direction is shown in Proposition 14. Below we prove the ‘only if’ directions.

1. Immediate from Proposition 14.

2. Assume that ∨ is a disjunction for LM. By Lemma 6–3, φ ⊢LM φ ∨ ψ and ψ ⊢LM φ ∨ ψ. This
implies that if either a ∈ D or b ∈ D then a ∨̃ b ∈ D. On the other hand, Item (c) of Lemma 6–3
entails that φ ∨ φ ⊢LM φ, implying that f ∨̃ f = f . It follows that ∨ is an M-disjunction.

3. Assume that ⊃ is an implication for LM. By Item (a) in Lemma 6–1, a⊃̃f = f for a ∈ D, by
Item (b) of the same lemma f⊃̃f ∈ D, and by Item (c), b⊃̃a ∈ D for a ∈ D. 2

Corollary 39 If M is a paraconsistent three-valued matrix then LM′ is paraconsistent for every ex-
pansion M′ of M. Moreover, if ⊃ (respectively, if ∨, ∧) is an implication (respectively, a disjunction,
conjunction) for LM, then it is also an implication (respectively, a disjunction, conjunction) for LM′ .

Proof. Immediate from Proposition 38 and Corollary 15. 2
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Corollary 40 If M is a paraconsistent three-valued matrix then LM is semi-normal.

Proof. By definition of paraconsistency, if M is a paraconsistent then it has a paraconsistent semi-normal
fragment. Hence the claim follows from Corollary 39. 2

We now give some general characterizations of logics which are induced by 3-valued paraconsistent
matrices, with particular emphasis on those which are actually ¬-contained in classical logic (and not
just ¬-coherent with it). Our first result is the following:

Theorem 41 Let M = ⟨V,D,O⟩ be a 3-valued ¬-paraconsistent matrix for a language L. If M is
¬-contained in classical logic then M is classically closed (i.e., {t, f}-closed).

Proof. By Proposition 36, V = {t, f,⊤}, D = {t,⊤}, f = ¬̃t, t = ¬̃f , and ¬̃⊤ ∈ {t,⊤}. Therefore, we
have two cases to consider.

¬̃M is Sette’s negation: Assume for contradiction that M is not classically closed. Then ¬̃⊤ = t and
there is a connective ⋄ and a1, . . . , an ∈ {t, f} such that ⋄̃(a1, . . . , an) = ⊤. For i = 1, . . . , n let
ri = pi if ai = t and ri = ¬pi if ai = f . Then, for every valuation ν ∈ ΛM, if ν(pi) = t for
every 1 ≤ i ≤ n then ν(⋄(r1, . . . , rn)) = ⊤. Let now S = {p1,¬¬p1, p2,¬¬p2, . . . pn,¬¬pn}. Then
v |=M S iff ν(p1) = . . . = ν(pn) = t. It follows that S ⊢M ⋄(r1, . . . , rn) and S ⊢M ¬ ⋄ (r1, . . . , rn).
Since M is ¬-contained in classical logic, S ⊢MF

⋄(r1, . . . , rn) and S ⊢MF
¬ ⋄ (r1, . . . , rn) for some

bivalent ¬-interpretation F for L. This means that S is classically unsatisfiable, but this is false.

¬̃M is Kleene’s negation: First we show that the fact that M is semi-normal (Corollary 40) entails
in this case that it has an M-disjunction. We do this by considering all the three possible cases.

• Suppose that LM has a disjunction connective ∨. Then ∨ is also an M-disjunction by Propo-
sition 38.

• Suppose that LM has a an M-implication ⊃. Then ⊃ is an M-implication by Proposition 38.
This easily implies that the connective ∨ defined by φ∨ψ = (φ ⊃ ψ) ⊃ ψ is an M-disjunction.

• Suppose that LM has a conjunction ∧. Then ∧ is an M-conjunction by Proposition 38, and
so we have: (∗) a∧̃b = f iff either a = f or b = f .

First, we prove that t∧̃t = t. Assume otherwise. Then t∧̃t = ⊤ by (∗) above. Hence, if
ν ∈ ΛM then ν(¬(p∧ p)) ∈ D in case ν(p) = t. By (∗) again, this implies that ν(¬(p∧ p)) ∈ D
in case ν(p) ∈ {t, f}. On the other hand, if ν(p) = ⊤ then ν(p) = ν(¬p), and so ν(¬(p∧ p)) =
ν(¬(p∧¬p)). It follows that ¬(p∧¬p) ⊢M ¬(p∧ p). Since M is ¬-contained in classical logic,
¬(p ∧ ¬p) ⊢MF

¬(p ∧ p), which is false.

Next, we show that using ¬ and ∧, it is possible to define in L an M-disjunction ∨. We have
two cases to consider:

– ⊤∧̃⊤ = t:
In this case we take φ ∨ ψ =Df ¬(¬(φ ∧ φ) ∧ ¬(ψ ∧ ψ)). The fact that t∧̃t = ⊤∧̃⊤ = t
and (*) easily imply that this formula has the required property.

– ⊤∧̃⊤ = ⊤:
In this case we first let tφ,ψ abbreviate ¬(φ∧¬φ∧ψ∧¬ψ) (where association of conjunction
is taken to the right,). Then ν(tφ,ψ) = ⊤ in case that ν(φ) = ν(ψ) = ⊤, and ν(tφ,ψ) = t
otherwise. Now, we take:

φ ∨ ψ =Df ¬(¬(tφ,ψ ∧ φ ∧ tφ,ψ) ∧ ¬(tφ,ψ ∧ ψ ∧ tφ,ψ)).

We show that this formula has in this case the required property:
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∗ Suppose first that ν(φ) = ν(ψ) = f . Since for every x, x∧̃f = f ∧̃x = f , we have that
ν(tφ,ψ ∧ φ ∧ tφ,ψ) = ν(tφ,ψ ∧ ψ ∧ tφ,ψ) = f . Since ¬̃f = t, t∧̃t = t, and ¬̃t = f , it
follows that in this case ν(φ ∨ ψ) = f .

∗ Suppose that ν(φ) = t. Then ν(tφ,ψ) = t. Since t∧̃t = t, ν(tφ,ψ∧φ∧tφ,ψ) = t. Again,
since ¬̃t = f , f ∧̃x = f , and ¬̃f = t, we conclude that in this case ν(φ ∨ ψ) = t.

∗ Suppose that ν(ψ) = t. Then again ν(tφ,ψ) = t. Like in the previous case, this implies
that ν(φ ∨ ψ) = t.

∗ Suppose that ν(φ) = ν(ψ) = ⊤. Then ν(tφ,ψ) = ⊤. Since ¬̃⊤ = ⊤ and ⊤∧̃⊤ = ⊤,
ν(σ) = ⊤ for every sub-formula σ of φ ∨ ψ. Hence ν(φ ∨ ψ) = ⊤ as well.

∗ Suppose that ν(φ) = f , ν(ψ) = ⊤. Then ν(tφ,ψ) = t, and so we haver that ν(φ∨ψ) =
¬̃(t ∧̃ ¬̃((t ∧̃⊤) ∧̃ t)). If (t ∧̃⊤) ∧̃ t) = t (which is the case if either t ∧̃⊤ = t or ⊤∧̃ t = t)
then ν((φ ∨ ψ) = t, and if (t ∧̃ ⊤) ∧̃ t) = ⊤ (which is the case if t ∧̃ ⊤ = ⊤ ∧̃ t = ⊤)
then ν((φ ∨ ψ) = ⊤. In both cases we are done.

∗ The case where ν(φ) = ⊤ and ν(ψ) = f is similar to the previous case.

We therefore have shown that M has an M-disjunction. We show that this implies that M
is classically closed. Assume for contradiction that it is not. Then there is a connective ⋄
and elements a1, . . . , an ∈ {t, f}, such that ⋄̃(a1, . . . , an) = ⊤. For i = 1, . . . , n let ri = pi if
ai = t, ri = ¬pi if ai = f . Then for every ν ∈ ΛM, if ν(pi) = t for every 1 ≤ i ≤ n then
ν(⋄(r1, . . . , rn)) = ⋄̃(a1, . . . , an) = ⊤. Hence ¬̃⋄̃(a1, . . . , an) is in {t,⊤}. These two facts imply:

p1, . . . , pn ⊢M ¬p1 ∨ . . . ∨ ¬pn ∨ ⋄(r1, . . . , rn)

p1, . . . , pn ⊢M ¬p1 ∨ . . . ∨ ¬pn ∨ ¬ ⋄ (r1, . . . , rn)

Indeed, let ν be a model of {p1, . . . , pn}. If ν(pi) ̸= t for some i then ν(¬pi) ∈ D, and so ν
is a model of the disjunctions on the right hand sides. If ν(pi) = t for all i then ν is a model
of both ⋄̃(r1, . . . , rn) and ¬̃⋄̃(r1, . . . , rn), and so again ν is a model of both right hand sides.
Now, since M is ¬-contained in classical logic, Corollary 26 entails that the above two facts
remain true if we replace ⊢M by ⊢MF

and interpret ∨ and ¬ as the classical disjunction and
negation (respectively). However, this is impossible for any two-valued interpretation of ⋄. 2

The next theorems characterize all the three-valued matrices which induce paraconsistent logics that
are ¬-contained in classical logic and show how to construct all such matrices which induce (semi-)normal
logics in a language that contains an implication ⊃, a conjunction ∧, and a disjunction ∨.

Theorem 42 There are exactly 213 (8192) distinct normal paraconsistent logics in the language LCL =
{¬,∧,∨,⊃} which are ¬-contained in classical logic, induced by three-valued matrices, and in which ⊃
is an implication, ∧ – a conjunction, and ∨ – a disjunction. The corresponding matrices are those that
belong to the following family 8Kb of matrices from [16]5 (where the notation ‘x ≀ y’ means that x and y
are two optional values):

∧̃ t f ⊤
t t f t ≀ ⊤
f f f f
⊤ t ≀ ⊤ f t ≀ ⊤

∨̃ t f ⊤
t t t t ≀ ⊤
f t f t ≀ ⊤
⊤ t ≀ ⊤ t ≀ ⊤ t ≀ ⊤

⊃̃ t f ⊤
t t f t ≀ ⊤
f t t t ≀ ⊤
⊤ t ≀ ⊤ f t ≀ ⊤

¬̃
t f
f t
⊤ t ≀ ⊤

Proof. That the matrices above indeed exhaust all the possible cases follows from Propositions 36, 38,
and Theorem 41. That all of them induce paraconsistent logics which are ¬-contained in classical logic

5In [16] the language is extended with a consistency operator ◦, defined by ◦̃t = t, ◦̃f = t, and ◦̃⊤ = f .
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easily follows from Propositions 33 (second part) and the fact that the {t, f}-reductions of the connectives
yield bivalent ¬-interpretations. That they are all normal follows from Proposition 14.

It is also not difficult to show that all of the logics in 8Kb are indeed different. For instance, suppose
that ⊢1 and ⊢2 are two consequence relations induced by matrices with different interpretations for a
disjunction. Below we check the possible cases for such different interpretations and show that in each
case the logics that are obtained are indeed different. First, note that by Theorem 41 and Corollary 26,
the two matrices coincide on a∨̃b whenever a ∈ {t, f} and b ∈ {t, f}. Now,

1. Suppose that ⊤∨̃1⊤ = ⊤ while ⊤∨̃2⊤ = t.
In this case p,¬p, q,¬q ⊢1 ¬(p∨ q), but this is not true for ⊢2 (since in both cases all the models of
the right-hand side assign ⊤ to p and q).

2. Suppose that ⊤∨̃1⊤ = ⊤∨̃2⊤ ∈ {t,⊤} and that f ∨̃1⊤ = ⊤ while f ∨̃2⊤ = t.
Then q,¬q,¬(p∨ q) ⊢2 p (a model of the right-hand side must assign ⊤ to q, and since f ∨̃2⊤ = t it
cannot assign f to p), while this is not true for ⊢1 (a counter-model in this case assigns f to p and
⊤ to q).

3. The remaining cases are dual to the ones in the previous cases. 2

Theorem 43 Let M be a three-valued matrix for a language with a unary connective ¬.

1. M induces a ¬-paraconsistent logic which is ¬-contained in classical logic iff it is isomorphic to a
matrix of the form ⟨{t, f,⊤}, {t,⊤},O⟩ which satisfies the following conditions:

(a) It has as its interpretation of ¬ one of the two tables for ¬ given in Theorem 42;

(b) It has a (possibly definable) connective whose interpretation is either one of the 23 possible
interpretations for conjunction (∧) given in Theorem 42, or one of the 25 interpretations for
disjunction (∨) given there, or one of the 24 interpretations for implication (⊃) given there;

(c) All its connectives are classically closed: ⋄̃(a1, . . . , an) ∈ {t, f} for all a1, . . . , an ∈ {t, f}.

2. M induces a ¬-paraconsistent logic iff it is isomorphic to a matrix of the form ⟨{t, f,⊤}, {t,⊤},O⟩
which satisfies Conditions (a) and (b) above.

3. M induces a normal ¬-paraconsistent logic which is ¬-contained in classical logic iff it is isomorphic
to a matrix of the form ⟨{t, f,⊤}, {t,⊤},O⟩ which satisfies the following conditions:

(a) It has as its interpretation of ¬ one of the two tables for ¬ given in Theorem 42;

(b) It has a (possibly definable) connective whose interpretation is one of the 23 possible inter-
pretations for ∧ given in Theorem 42, and a connective whose interpretation is one of the
25 interpretations for ∨ given there, and a connective whose interpretation is one of the 24

interpretations for ⊃ given there;

(c) All its connectives are classically closed (i.e., {t, f}-closed).

Proof. That the conditions in Parts 1 and 3 are necessary again follows from Propositions 36, 38, and
Theorem 41. That they are sufficient again follows from Propositions 33 (second part), the fact that the
{t, f}-reductions of the connectives yield bivalent ¬-interpretations and Proposition 14. Part 2 follows
from Part 1 and Corollary 39.

Note 44 Although all the logics which are induced by the matrices in the family 8Kb are different from
each other, some of them have the same expressive power. For instance, consider any paraconsistent
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matrix for the language of {¬,⊃} in which ¬̃⊤ = ⊤ and ⊃̃ is D’Ottaviano and da-Costa’s implication [19,
21], defined as follows:

a ⊃ b =

{
b if a ̸= f,
t if a = f .

In this language, the formulas ¬(φ ⊃ ¬ψ) and ¬(ψ ⊃ ¬φ) define two different conjunctions. Hence the
corresponding matrices in the family 8Kb are equivalent in their expressive power.

We conclude this section with a theorem about the desirable maximal paraconsistency properties
(Section 3) that three-valued ¬-paraconsistent logics enjoy:

Theorem 45 Let M be a three-valued paraconsistent matrix. Then:

1. LM is strongly maximal.

2. If M is ¬-contained in classical logic then it is also maximally paraconsistent relative to classical
logic (and so it is fully maximal).

Note 46 The first part of Theorem 45 is a generalization of [3, Theorem 2] (see also [4, Theorem 3.2])
and the second part of the theorem is a generalization of [3, Theorem 1]. In both cases the proofs given
below are similar to the ones given in [3]. To keep this paper complete, we repeat those proofs and adjust
them to the more general case considered here.

Proof. Let M be a three-valued paraconsistent matrix for a language L. To see the first item of the
theorem, note first that Theorem 43 implies that M has a classically closed binary connective ⋄ (from
those listed in Theorem 42), which is either an M-disjunction, or an M-conjunction, or an M-implication.
Let Ψ(p) be ¬p ⋄ p in the first case, ¬(¬p ⋄ p) in the second one, and p ⋄ p in the third case. Then for all
ν ∈ ΛM, ν(Ψ) = t if ν(p) ̸= ⊤.

Now let ⟨L,⊢⟩ be a proper extension of LM by some set of rules. We show that ⟨L,⊢⟩ is not pre-
paraconsistent. Let Γ be a finite theory and ψ a formula in L such that Γ ⊢ ψ but Γ ̸⊢M ψ. In particular,
there is a valuation ν ∈ modM(Γ) such that ν(ψ) = f . Consider the substitution θ, defined for every
p ∈ Atoms(Γ ∪ {ψ}) by

θ(p) =

 q0 if ν(p) = t,
¬q0 if ν(p) = f ,
p0 if ν(p) = ⊤,

where p0 and q0 are two different atoms in L. Note that θ(Γ) and θ(ψ) contain (at most) the variables
p0, q0, and that for every valuation µ ∈ ΛM where µ(p0) = ⊤ and µ(q0) = t it holds that µ(θ(ϕ)) = ν(ϕ)
for every formula ϕ such that Atoms({ϕ}) ⊆ Atoms(Γ ∪ {ψ}). Thus,

(⋆) any µ ∈ ΛM such that µ(p0) = ⊤ and µ(q0) = t is an M-model of θ(Γ) but not of θ(ψ).

Now, consider the following two cases:

Case I. There is a formula ϕ(p, q) (i.e. Atoms(ϕ) = {p, q}, where p ̸= q) such that for every µ ∈ ΛM,
µ(ϕ) ̸= ⊤ if µ(p) = µ(q) = ⊤.

In this case, let tt = Ψ(ϕ(p0, p0)). Note that µ(tt) = t for every µ ∈ ΛM such that µ(p0) = ⊤. Now, as
⊢ is structural, Γ ⊢ ψ implies that

θ(Γ) [tt/q0] ⊢ θ(ψ) [tt/q0]. (1)

Also, by the above property of tt and by (⋆), any µ ∈ ΛM for which µ(p0) = ⊤ is a model of θ(Γ) [tt/q0]
but does not M-satisfy θ(ψ) [tt/q0]. Thus,
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• p0,¬p0 ⊢M θ(γ) [tt/q0] for every γ ∈ Γ. As ⟨L,⊢⟩ is stronger than ⟨L,⊢M⟩, this implies that

p0,¬p0 ⊢ θ(γ) [tt/q0] for every γ ∈ Γ. (2)

• The set {p0, ¬p0, θ(ψ)[tt/q0]} is not M-satisfiable, thus p0,¬p0, θ(ψ)[tt/q0] ⊢M q0. Again, as ⟨L,⊢⟩
is stronger than ⟨L,⊢M⟩, we have that

p0, ¬p0, θ(ψ) [tt/q0] ⊢ q0. (3)

By (1)–(3) p0,¬p0 ⊢ q0, thus ⟨L,⊢⟩ is not pre-paraconsistent.

Case II. For every formula ϕ(p, q) and for every µ ∈ ΛM, if µ(p) = µ(q) = ⊤ then µ(ϕ) = ⊤.

Again, as ⊢ is structural, and since Γ ⊢ ψ,

θ(Γ) [Ψ(q0)/q0] ⊢ θ(ψ) [Ψ(q0)/q0]. (4)

In addition, (⋆) above entails that any valuation µ ∈ ΛM such that µ(p0) = ⊤ and µ(q0) ∈ {t, f}
is a model of θ(Γ) [Ψ(q0)/q0] which is not a model of θ(ψ) [Ψ(q0)/q0]. Thus, the only M-model of
{p0,¬p0, θ(ψ) [Ψ(q0)/q0]} is the one in which both of p0 and q0 are assigned the value ⊤. It follows that
p0,¬p0, θ(ψ) [Ψ(q0)/q0] ⊢M q0. Thus,

p0,¬p0, θ(ψ) [Ψ(q0)/q0] ⊢ q0. (5)

By using (⋆) again (for µ(q0) ∈ {t, f}) and the condition of Case II (for µ(q0) = ⊤), we have:

p0,¬p0 ⊢ θ(γ) [Ψ(q0)/q0] for every γ ∈ Γ. (6)

Again, by (4)–(6) above we have that p0,¬p0 ⊢ q0, and so ⟨L,⊢⟩ is not pre-paraconsistent in this case
either.

For the second part of the theorem we need the following lemma.

Lemma 47 Let M be a paraconsistent three-valued matrix, and suppose that there is some bivalent ¬-
interpretation F such that LM is F-contained in classical logic, but LM is not F-maximal relative to
classical logic. Then M is classically closed.

Proof. The assumption about F implies that there is some classical F-tautology (Definition 29) ψ0 which
is not provable in LM, and by adding it as an axiom to LM we get a logic L∗ that is not F-complete.
Since LM is strongly maximal by the first part of this theorem (and L∗ is an extension by a rule of LM),
φ,¬φ ⊢L∗ ϕ for every φ, ϕ. It follows that

S∗, φ,¬φ ⊢M ϕ for every φ, ϕ (7)

where S∗ is the set of all substitution instances of ψ0. Now, let σ be some classical F-tautology not
provable in L∗. So ̸⊢L∗ σ, and so S∗ ̸⊢M σ. Hence there is a valuation ν ∈ ΛM which is a model of S∗,
but ν(σ) = f . We show that there is no formula ψ for which ν(ψ) = ⊤. Assume for contradiction that
this is not the case for some ψ. Since ν is a model of S∗, it is also a model of S∗ ∪ {ψ,¬ψ}, and so it is
a model of σ by (7) above. This contradicts the fact that ν(σ) = f . It follows that ν(ψ) ∈ {t, f} for all
ψ. We show that this implies that all the operations of M are classically closed. Let ⋄ be some n-ary
connective of L and let a1, . . . , an ∈ {t, f}. For i = 1, . . . , n, define φi = Pi if ν(pi) = ai, and φi = ¬Pi
otherwise. Thus ν(φi) = ai, and ⋄̃(a1, . . . , an) = ⋄̃(ν(φ1), . . . , ν(φn)) = ν(⋄(φ1, . . . , φn)) ∈ {t, f}. 2
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Now we can show the second part of Theorem 45. The assumption that M is ¬-contained in classical
logic entails that it is F-contained in classical logic for some F. If LM is F–maximal relative to classical
logic, then we are done. Otherwise, M is classically closed by Lemma 47, and so we can consider the
bivalent ¬-interpretation induced by M, defined by FM(⋄) = ⋄̃M/{t, f}n (where n is the arity of ⋄, and
⋄̃M/{t, f}n is the reduction of ⋄̃M to {t, f}n). As the next lemma shows, F must be identical to this
interpretation.

Lemma 48 F = FM

Proof. Otherwise, there is some n-ary connective ⋄ of L such that ⋄̃/{t, f} = FM(⋄) ̸= F(⋄). Hence there
are some elements a1, . . . , an ∈ {t, f} such that ⋄̃(a1, . . . , an) ̸= F(⋄)(a1, . . . , an). Because F and FM
are both bivalent ¬-interpretations, we may assume without loss of generality that F(⋄)(a1, . . . , an) = t
and ⋄̃(a1, . . . , an) = f (otherwise we consider ¬⋄ instead of ⋄). Next, for i = 1, . . . , n we define φi = p
if ai = t and φi = ¬p otherwise, and so p, ⋄(φ1, . . . , φn) ⊢M ¬p, while p, ⋄(φ1, . . . , φn) ̸⊢MF

¬p (because
ν(p) = t provides a counterexample). This contradicts the F-containment of LM in classical logic. 2

Now, by the lemma above, LM is FM-contained in classical logic. We end by showing that LM is
FM-maximal relative to classical logic. The proof of this is very similar to the proof of Lemma 47: Let ψ′

be a classical FM-tautology not provable in LM, and let S ′∗ be the set of all of its substitution instances.
Let L′∗ be the logic obtained by adding ψ′ as a new axiom to LM. Then for every theory T we have
that T ⊢L′∗ ϕ iff T ,S ′∗ ⊢M ϕ. In particular, since LM is strongly maximal, Condition (7) from the
proof of Lemma 47 holds for S ′∗. Suppose for contradiction that there is some classical FM-tautology
σ not provable in L′∗. Since ̸⊢L′∗ σ, also S ′∗ ̸⊢M σ. Hence, there is a valuation ν ∈ ΛM which is a
model of S ′∗, but ν(σ) = f . If there is some ψ such that ν(ψ) = ⊤, then since ν is a model of S ′∗,
it is also a model of S ′∗ ∪ {ψ,¬ψ}, and so by (7) it is a model of σ, in contradiction to the fact that
ν(σ) = f . Otherwise, ν(ψ) ∈ {t, f} for all ψ, and so ν is an MFM -valuation, which assigns f to σ. This
contradicts the fact that ⊢MFM

σ. Hence, all classical FM-tautologies are provable in L′∗, and so LM is
FM-maximal relative to classical logic. 2

Note 49 Suppose that M is a three-valued paraconsistent matrix which is ¬-contained in classical logic.
Then any three-valued expansion of it which is obtained by enriching the language of M with extra
classically closed connectives necessarily has the same properties (see Theorem 43). It follows that not
only is LM fully maximal, but so must be also all the logics induced by its expansions that are so obtained.

5 The Most Important Paraconsistent Three-Valued Logics

As shown in the previous section, there are exactly eight ways of defining conjunctions in three-valued
paraconsistent matrices. Of these eight operations, only four are symmetric. Of these four, only two
are {⊤}-closed, and to the best of our knowledge, only three (including these two) have been seriously
investigated in the literature. In this section we examine in greater detail the properties of the most
important (and famous) three-valued paraconsistent logics that are based on these three symmetric
conjunctions and the two possible negations. Then in the next section we shall show that each of these
logics has a corresponding cut-free Gentzen-type system, which is very close to the classical one.

Our main criterion here for “importance” of three-valued paraconsistent matrices is having a natural
set of connectives that can be characterized by a combination of potentially desirable properties. The most
important such property is of course {t, f}-closure, which by Theorem 43 is equivalent to ¬-containment
in classical logic. Another important property is {⊤}-closure, which by Proposition 37 is equivalent to
being non-exploding. Other properties are introduced and used in the sequel.
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5.1 The Logic P1

Sette’s logic P1 = ⟨LP1 ,⊢P1⟩ [35] is induced by the matrix P1 = ⟨{t, f,⊤}, {t,⊤}, {∧̃, ¬̃}⟩,6 where the
operations are defined as follows:

∧̃ t f ⊤
t t f t
f f f f
⊤ t f t

¬̃
t f
f t
⊤ t

Proposition 50 P1 is boldly paraconsistent, normal, ¬-contained in classical logic, and fully maximal.

Proof. Define ψ ∨ ϕ = ¬(¬(ψ ∧ ψ) ∧ ¬(ϕ ∧ ϕ)) and ψ ⊃ ϕ = ¬((ψ ∧ ψ) ∧ ¬(ϕ ∧ ϕ)). The corresponding
interpretations are the following:

∨̃ t f ⊤
t t t t
f t f t
⊤ t t t

⊃̃ t f ⊤
t t f t
f t t t
⊤ t f t

Therefore, Item 3 of Theorem 43 implies that P1 is a normal paraconsistent logic, which is ¬-contained
in classical logic. The other properties follow from Corollary 34 and Theorem 45. 2

Note 51 As far as we know, P1 was the first paraconsistent logic for which a maximality property has
been stated and proved (in [35]). Therefore, it is frequently referred to as “Sette maximal paraconsistent
logic”. However, the results in Section 4 show that there is nothing special about P1 in this respect. Its
maximality is just one (out of thousands) instances of Theorem 45.

The next theorem characterizes the expressive power of the language of P1.

Theorem 52 A function g : {t, f,⊤}n → {t, f,⊤} is representable in LP1 iff its range is {t, f}.

Proof. Obviously, the condition is necessary. To show that it is also sufficient, define:

ψa(p) =

 p ∧ ¬¬p if a = t
¬(p ∧ p) if a = f
p ∧ ¬p if a = ⊤

It is easy to check that if ν is a valuation in P1, then ν |=P1 ψa(p) iff ν(p) = a. Now, given a function
g : {t, f,⊤}n → {t, f}, it is not difficult to see that g is represented in LP1 by the disjunction (as defined
in the proof of Proposition 50) of all the formulas of the form ψa1(P1)∧ψa2(P2)∧ · · ·∧ψan(Pn) such that
g(a1, a2, . . . , an) = t (and by the formula ¬¬P1 ∧ ¬P1 if no such a1, a2, . . . , an exist). 2

Corollary 53 The connectives defined in the proof of Proposition 50 are the only disjunction and impli-
cation definable in P1.

Proof. This easily follows from Theorems 42 and 52. 2

Note 54 As noted previously, the Logic P1 has all the desirable properties mentioned in the previous
section. Nevertheless, P1 also has the following two severe drawbacks:

• It is paraconsistent only with respect to atomic formulas (that is, for a non-atomic formula ψ we
have that ψ,¬ψ ⊢P1 φ, since non-atomic formulas get only values in {t, f}).

6Note that in our notations P1 is also denoted LP1
.
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• The conjunction-negation combination does not always behave as expected, e.g., ¬p ̸⊢P1 ¬(p ∧ q).

The main source of these problematic features is the fact that Sette’s negation (which is the negation
used in P1) has the following drawbacks in comparison to Kleene’s negation:

• It is explosive with respect to negated data: ¬φ,¬¬φ ⊢P1 ψ for every φ and ψ.

• It is not right involutive: p ̸⊢P1 ¬¬p.

These drawbacks should be the reason why P1 is (to the best of our knowledge) the only three-valued
paraconsistent logic considered in the literature whose negation is Sette’s negation. Accordingly, all the
other logics described in this section use Kleene’s negation.

5.2 The Logic SRM∼→

Another conjunction of the eight possible conjunctions listed in Section 4 has (implicitly) been used by
Sobociński in his three-valued matrix ([38]). This is the matrix A1 = ⟨{t, f,⊤}, {t,⊤}, {⊗̃, ¬̃}⟩ for the
language IL = {¬,⊗} in which ¬̃ is Kleene’s negation, and ⊗̃ is Sobociński’s conjunction, defined below:

⊗̃ t f ⊤
t t f t
f f f f
⊤ t f ⊤

¬̃
t f
f t
⊤ ⊤

We denote by SRM∼→ (or SRMI1∼→
) the logic that is induced by A1.

Note 55 The official language that was used in [38] (as well as in the literature on relevance logic) is
{¬,→}, and the interpretation of → there was the following Sobociński’s implication:

a→S b =


⊤ if a = b = ⊤,

f if a = t and b ̸= t, or b = f and a ̸= f ,

t otherwise.

It is easy to see that a →S b = ¬̃(a ⊗̃ ¬̃b), while a ⊗̃ b = ¬̃(a →S ¬̃b). Hence, IL and A1 are equivalent
to Sobociński’s original language and matrix (respectively).

Note 56 It should be emphasized that SRM∼→ is not identical to the logic introduced by Sobociński
in [38]. That logic has only been motivated by the matrix A1. What Sobociński actually did in [38] is
to axiomatize the set of valid formulas of A1 using a Hilbert-type system with Modus Ponens for → as
the single rule of inference. In other words: his system is only weakly complete for A1. Thus, one cannot
derived in it φ from φ⊗ ψ, even though φ⊗ ψ ⊢SRM∼→

φ.7

The connective → of SRM∼→ is not an implication for that logic (since φ → (ψ → φ) is not valid in
A1). Despite this we have:

Proposition 57 SRM∼→ is non-exploding, normal, ¬-contained in classical logic, and fully maximal.

Proof. Define φ ⊃ ψ = φ → (φ ⊗ ψ), where (as above) φ → ψ = ¬(φ ⊗ ¬ψ). Then ⊃ has in A1 the
following interpretation:

⊃̃ t f ⊤
t t f t
f t t t
⊤ t f ⊤

7Meyer has shown (see [1]) that Sobociński’s system induces the {¬,→,⊗}-fragment of the semi-relevant logic RM.

17



It follows that ⊃ is an A1-implication. This implies that the connective ∨, defined by ψ∨φ = (ψ ⊃ φ) ⊃ φ,
is an A1-disjunction. Finally, ⊗ is an A1-conjunction. Therefore, Item 3 of Theorem 43 implies that
SRM∼→ is a normal paraconsistent logic which is ¬-contained in classical logic. The other properties
follow from Theorem 45 and Proposition 37. 2

The following theorem characterizes the expressive power of the language of SRM∼→:

Theorem 58 [9] The connectives that are definable in the language of SRM∼→ are those that are both
{⊤}-closed and {⊤}-limited (Definition 12).

Note that by the last theorem it follows that Kleene’s conjunction (see next subsection) is not definable
in the language of SRM∼→ (since Kleene’s conjunction is not {⊤}-limited)

5.3 The Logic LP and Its Main Monotonic Expansions

The most popular conjunction used in three-valued paraconsistent logics and three-valued logics in general
is Kleene’s (strong) conjunction (see the truth-table below), and the most basic paraconsistent logic which
is based on it is Asenjo-Priest’s three-valued logic LP [5, 31, 32, 33]. This is the logic induced by the
three-valued matrix LP = ⟨{t, f,⊤}, {t,⊤}, {∧̃, ¬̃}⟩, where the truth tables for ¬ and ∧ are the following:

∧̃ t f ⊤
t t f ⊤
f f f f
⊤ ⊤ f ⊤

¬̃
t f
f t
⊤ ⊤

The matrix LP also has a disjunction, defined by ψ ∨ φ = ¬(¬ψ ∧ ¬φ). What is obtained is one of the
possible interpretations of disjunction given in Theorem 43: the strong Kleene’s disjunction, whose truth
table is the following:

∨̃ t f ⊤
t t t t
f t f ⊤
⊤ t ⊤ ⊤

Note 59 A common way of defining and understanding the disjunction, conjunction and negation of LP
is with respect to total order ≤t on {t, f,⊤}, in which t is the maximal element and f is the minimal
one. This order may be intuitively understood as reflecting differences in the amount of truth that each
element exhibits. Here, ∧̃ and ∨̃ are the meet and the join (respectively) of ≤t, and ¬̃ is order reversing
with respect to ≤t.

Next, we introduce the simplest expansions of LP: those that are obtained by adding to its language
the propositional constants which correspond to the truth-values that are used. We shall denote by f the
one for which ∀ν ∈ Λ ν(f) = f and by ⊤ the constant for which ∀ν ∈ Λ ν(⊤) = ⊤. (There is no need to
consider also a constant for t, because such a constant and f are definable in terms of each other and ¬.)

Definition 60

LPf is the logic induced by the expansion of the matrix LP to the language {¬,∧,∨, f} (or just {¬,∧, f}).

LP⊤ is the logic induced by the expansion of the matrix LP to the language {¬,∧,∨,⊤}.

LPf,⊤ is the logic induced by the expansion of the matrix LP to the language {¬,∧,∨, f,⊤}
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For characterizing the expressive power of the languages of LP and its above expansions, it is con-
venient to order the truth-values in a partial order ≤k that intuitively reflects differences in the amount
of knowledge (or information) that the truth values convey. According to this relation ⊤ is the maximal
element, while neither of the remaining truth-values is greater than the other. Therefore, ⟨V,≤k⟩ is an
upper semi-lattice. A Double-Hasse diagram representing the structure T HREE which is induced by ≤k

and ≤t (Note 59) is given in Figure 1. In this diagram b is an immediate ≤t-successor of a iff b is on the
right-hand side of a, and there is an edge between them; Similarly, b is an immediate ≤k-successor of a
iff b is above a, and there is an edge between them.8

6≤k

-≤t

uf u t

u⊤

�
�
�
�

�
�@

@
@

@
@
@

Figure 1: T HREE

Definition 61 A function g : {t, f,⊤}n → {t, f,⊤} is ≤k-monotonic if g(a1, . . . , an) ≤k g(b1, . . . , bn) in
case ai ≤k bi for every 1 ≤ i ≤ n.

Now we are able to characterize the expressive power of LP and its expansions:

Theorem 62 [8] Let g : {t, f,⊤}n → {t, f,⊤}.

1. g is representable in the language of LPf,⊤ iff it is ≤k-monotonic.

2. g is representable in the language of LP⊤ iff it is ≤k-monotonic and {⊤}-closed.

3. g is representable in the language of LPf iff it is ≤k-monotonic and classically (i.e. {t, f}-) closed.

4. g is representable in the language of LP iff it is ≤k-monotonic, {⊤}-closed , and classically closed.

Next we turn to the main properties of the four logics considered in Theorem 62.

Proposition 63

1. LP, LPf , LP⊤, and LP⊤,f are all boldly paraconsistent and strongly maximal paraconsistent logics.

2. LP is ¬-contained in classical logic and fully maximal. The same is true for LPf (but not for LP⊤

or LP⊤,f).

3. LP is non-exploding. The same is true for LP⊤, but not for LPf or LP⊤,f .

Proof. Immediate from Corollary 34, Theorems 62, 43, 45, and Proposition 37. 2

Perhaps the most remarkable property of LP (and LPf) is given in the next proposition.

8We refer to [2, 15, 23, 25] for further motivation and discussions on algebraic structures that combine order relations
about truth and knowledge.
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Proposition 64 [31] The tautologies of LP and LPf are the same as those of classical logic in their
languages: if ψ is a formula in the language of {¬,∧,∨} ({¬,∧,∨, f}) then ⊢LP ψ (⊢LPf ψ) iff ⊢MCL

ψ,
where MCL is the two-valued matrix for classical logic.

Proof. One direction is trivial. For the converse, suppose e.g. that ν is an LP-valuation (the proof in
the case of LPf is similar). Let µ be the MCL-valuation such that for every p ∈ Atoms, µ(p) = t iff
ν(p) ∈ {t,⊤}. It is easy to prove by induction on the complexity of ψ that if µ(ψ) = t then ν(ψ) ∈ {t,⊤},
and if µ(ψ) = f then ν(ψ) ∈ {f,⊤}. It follows that if for every MCL-valuation µ it holds that µ(ψ) = t,
then for every LP-valuation ν, ν(ψ) is designated. 2

Note 65 Despite of having the same set of valid formulas, LP is paraconsistent, while classical logic (in
the language of {¬,∧,∨}) is not. The difference between the two is due to their consequence relations.

The main drawback of LP and the other logics studied in this section is given in the next proposition.

Proposition 66 [3] Suppose that M is a three-valued paraconsistent matrix which has only ≤k-monotonic
connectives. Then LM does not have an implication connective.

Proof. Suppose for contradiction that ⊃ is a definable implication for LM. By Lemma 6 this implies
that (i) ⊢M p ⊃ p, and (ii) p, p ⊃ q ⊢M q. Now, (i) entails that ⊃̃(f, f) ∈ {t,⊤}. Therefore it follows
from the ≤k-monotonicity of ⊃ that ⊃̃(⊤, f) ∈ {t,⊤}. This contradicts (ii), since it is refuted by any
assignment ν such that ν(p) = ⊤ and ν(q) = f . 2

Corollary 67 The logics LP, LP⊤, LPf , and LPf,⊤ are not normal, but only semi-normal.

Proof. Immediate from Corollary 40, Theorem 62, and Proposition 66. 2

5.4 The Logics PAC (RM3) and Its Main Expansions

The most straightforward way to turn LP into a normal logic is to extend LP by an implication connective.
A natural candidate for this is D’Ottaviano and da-Costa’s implication [19, 21], considered in Note 44.
Because of its nice properties (to be presented below), this is the main implication connective (in the sense
of Definition 5) which has been used in three-valued paraconsistent logics. The logic that is obtained by
extending LP with ⊃ is called PAC (also known as RM3) [6, 7, 14, 20, 22, 34]. Thus, PAC is the logic
which is induced by the three-valued matrix PAC = ⟨{t, f,⊤}, {t,⊤}, {∧̃, ∨̃, ⊃̃, ¬̃}⟩, where ∧̃, ∨̃, and ¬̃ are
like in LP, while ⊃̃ is given by the following truth-table:

⊃̃ t f ⊤
t t f ⊤
f t t t
⊤ t f ⊤

Note 68 Since a →̃S b = (a ⊃̃ b) ∧̃ (¬̃b ⊃̃ ¬̃a), while a ⊃̃ b = b ∨̃ (a →̃S b), another way that leads to
PAC is to extend A1, and with it SRM∼→, with Kleene’s conjunction (which, as indicated at the end of
Section 5.2, is not definable in their language).

Again, the simplest expansions of PAC are those that are obtained by adding to its language the
propositional constants ⊤ and f.

Definition 69

J3 [20, 22] is the logic induced by the expansion of the matrix PAC to the language {¬,∧,∨,⊃, f}.
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PAC⊤ is the logic induced by the expansion of the matrix PAC to the language {¬,∧,∨,⊃,⊤}.

J⊤
3 is the logic induced by the expansion of the matrix PAC to the language {¬,∧,∨,⊃, f,⊤}

Note 70 Instead of the propositional constant f it is common in the literature on J3 to use as the
extra connective the consistency operator ◦, whose interpretation ◦̃ is given by: ◦̃(t) = ◦̃(f) = t, and
◦̃(⊤) = f . This does not make much difference, since ◦̃(a) = (a ∧̃ ¬̃a) ⊃̃ f, while f = ◦̃(a) ∧̃ ¬̃◦̃(a). As a
logic in the language of {¬,∧,∨,⊃, ◦}, J3 is the strongest logic in the family of LFIs (Logics of Formal
Inconsistency, [16]) in this language. Recently, J3 and its weaker versions have been considered also in
the context of epistemic logics, where in [17, 18] it is shown that these logics can be encoded in a simple
fragment of the modal logic KD, containing only modal formulas without nesting.

The following theorem characterizes the expressive power of the languages of PAC and its expansions:

Theorem 71 [8] Let g : {t, f,⊤}n → {t, f,⊤}.

1. g is representable in the language of J⊤
3 .

2. g is representable in the language of J3 iff it is {t, f}-closed (i.e. classically closed).

3. g is representable in the language of PAC⊤ iff it is {⊤}-closed.

4. g is representable in the language of PAC iff it is both {t, f}-closed and {⊤}-closed.

Note 72 In [8] it is also shown that by adding to PAC any classically closed connective not available in
it, we get a matrix in which exactly the classically closed connectives are available. Similarly, by adding
to PAC any {⊤}-closed connective not available in it, we get a matrix in which exactly the {⊤}-closed
connectives are available. It follows that there is no intermediate expansion of PAC between PAC and
J3, or between PAC and PAC⊤. From the results of [8] it also follows that there is no intermediate
expansion of J3 or PAC⊤ between these logics and J⊤

3 .

The main properties of the four logics discussed above are considered next.

Proposition 73

1. PAC, J3, PAC⊤, and J⊤
3 are all normal, boldly paraconsistent, and strongly maximal paraconsis-

tent logics.

2. PAC and J3 are ¬-contained in classical logic and fully maximal. This is false for PAC⊤ and J⊤
3 .

3. PAC and PAC⊤ are non-exploding. This is false for J3 and J⊤
3 .

Proof. Follows from Corollary 34, Theorems 71, 43, 45, and Proposition 37. 2

Corollary 74

1. Every three-valued paraconsistent logic can be embedded in J⊤
3 .

2. J3 is the strongest three-valued paraconsistent logic which is ¬-contained in classical logic (i.e.,
every other logic with these properties, like P1, can be embedded in it).

3. PAC⊤ is the strongest three-valued paraconsistent logic which is non-exploding.

4. PAC is the strongest three-valued paraconsistent logic which is both ¬-contained in classical logic
and non-exploding.

Proof. Immediate from Theorems 71 and 43, and from Propositions 73 and 37. 2

21



5.5 The Logic PAC¬
⊃

One more interesting paraconsistent three-valued logic is given by the {¬,⊃}-fragment of PAC. We call
this fragment PAC¬

⊃
, and it is the logic induced by the matrix PAC¬

⊃
= ⟨{t, f,⊤}, {t,⊤}, {⊃̃, ¬̃}⟩, where

⊃̃ and ¬̃ are like in PAC.

Proposition 75 [6] The matrix PAC¬
⊃

is (equivalent to) a proper expansion of A1.

Proof. The matrix PAC¬
⊃

is (equivalent to) an expansion of A1, since:

a ⊗̃ b = ¬̃(¬̃(a ⊃̃ ¬̃b) ⊃̃ (¬̃(¬̃b ⊃̃ a))).

The expansion is proper by Proposition 58 and by the fact that ⊃̃ is not {⊤}-limited. 2

Corollary 76 PAC¬
⊃

is non-exploding, normal, ¬-contained in classical logic, and fully maximal.

Proof. The normality of PAC¬
⊃

follows from Propositions 75, 57, and Corollary 39. The other properties

follow, as usual, from Theorems 43, 45, and Proposition 37. 2

Our next theorem characterizes the expressive power of the language of PAC¬
⊃

.

Theorem 77 A function g : {t, f,⊤}n → {t, f,⊤} is representable in the language of PAC¬
⊃

iff it is

{⊤}-closed, and there is 1 ≤ i ≤ n such that g(a1, . . . , an) = ⊤ only if ai = ⊤.

Proof. For a formula φ in the language of {¬,⊃}, we define φ⊤ recursively as follows: p⊤ = p if p is
atomic, (¬ψ)⊤ = ψ⊤, and (φ ⊃ ψ)⊤ = ψ⊤. It is easy to verify that for every φ, φ⊤ is an atom such
that ν(φ⊤) = ⊤ whenever ν is a valuation in PAC¬

⊃
such that ν(φ) = ⊤. This easily implies that if g

representable in the language of PAC¬
⊃

then it satisfies the condition given above. Obviously, such g is

also {⊤}-closed. This prove the “only if” part of the proposition.
For the converse, let fn = ¬P1 ⊗ P1 ⊗ ¬P2 ⊗ P2 ⊗ · · · ⊗ ¬Pn ⊗ Pn. For a ∈ {t, f,⊤} we define:

ψa(p) =

 ¬p ⊃ fn if a = t,
p ⊃ fn if a = f,
p⊗ ¬p if a = ⊤.

It is easy to check that for every valuation ν such that ν(Pj) ̸= ⊤ for some 1 ≤ j ≤ n, it holds that
ν(ψa(p)) ̸= f iff ν(p) = a. Next, for a⃗=(a1,. . ., an)∈{t, f,⊤}n we let ψa⃗ = ψa1(P1)⊗· · ·⊗ψan(Pn). Then
for every valuation ν, ν(ψa⃗) ̸= f iff ν(Pi) = ai for every 1 ≤ i ≤ n, or ν(Pi) = ⊤ for every 1 ≤ i ≤ n.

Now, suppose that g : {t, f,⊤}n → {t, f,⊤} has the above two properties, and let 1 ≤ i ≤ n have
the property that g(a1, . . . , an) = ⊤ only if ai = ⊤. It is not difficult to check that g is represented by
the ⊗-conjunction of all the formulas which either has the form ψa⃗ ⊃ fn where g(⃗a) = f , or the form
ψa⃗ ⊃ (Pi ⊃ Pi) where g(⃗a) = ⊤. (Note that since g is {⊤}-closed, there is at least one formula of the
latter form). 2

Corollary 78 PAC is a proper expansion of PAC¬
⊃
.

Proof. This follows from the previous proposition and the fact that Kleene’s conjunction does not satisfy
the second condition given there. 2

Figure 2 below shows the relative expressive power of six of the three-valued logics with Kleene’s
negation which are considered in this section (in the figure, if two logics are connected, the lower one is
the stronger).
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Figure 2: Relative strength of some logics with Kleene’s negation

6 Proof Systems

6.1 Gentzen-type Systems

In this section we provide an explicit and concise presentation of Gentzen-type systems which correspond
to the logics discussed in Section 5, as well as direct proofs of their completeness and the admissibility of
the cut rule in them.9 We start by recalling the notions of derivation and provability in a Gentzen-type
sequent calculi. Below, we denote a sequent in a language L by s, or more explicitly by Γ ⇒ ∆, where Γ
and ∆ are finite sets of formulas in L and ⇒ is a new symbol, not used in L.

Definition 79 Let G be a Gentzen-type sequent calculus.

• A proof (or derivation) in G of a sequent s from a set S of sequents is a finite sequence of sequents
which ends with s, and every element in it either belongs to S, or is an axiom of G, or is obtained
from previous elements of the sequence by one of the rules of G.

• We say that s follows from S in G (notation: S ⊢G s), if there is a proof in G of s from S.

• A sequent s is provable in G (notation: ⊢G s), if it follows in G from the empty set of sequents.

• The tcr ⊢G induced by G is defined by: T ⊢G φ, if there exists a finite Γ such that ⊢G Γ ⇒ φ, and
Γ consists only of elements of T .10

In what follows, Figure 3 presents a well-known version of Gentzen’s proof system LK+ for positive
classical logic [24], on which all the Gentzen-type calculi presented here are based. Figure 4 describes a

9In [10] a general algorithm has been given for deriving sound and complete, cut-free Gentzen-type systems for finite-
valued logics which have sufficiently expressive languages. That algorithm in fact works for all three-valued paraconsistent
logics, but we shall not describe it here.

10Although the notation ⊢G is overloaded in this definition, this should not cause any confusion in what follows.
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Gentzen-type system GP1 for Sette’s logic P1, and Figure 5 describes a Gentzen-type system GJ⊤
3

for J⊤
3 .

A Gentzen-type system GL for every L ∈ {LP,LPf ,LP⊤,LPf,⊤,PAC,J3,PAC⊤,PAC¬
⊃
} is obtained

from GJ⊤
3

by deleting from it the irrelevant rules (e.g., the rules for ⊃ and f in the case of LP⊤). Finally,
Figure 6 describes a Gentzen-type system GSRM∼→

for SRM∼→ in the primitive language of this logic.

Axioms: ψ ⇒ ψ

Structural Rules:

Weakening:
Γ ⇒ ∆

Γ,Γ′ ⇒ ∆,∆′

Cut:
Γ1 ⇒ ∆1, ψ Γ2, ψ ⇒ ∆2

Γ1,Γ2 ⇒ ∆1,∆2

Logical Rules:

[∧⇒]
Γ, ψ, φ⇒ ∆

Γ, ψ ∧ φ⇒ ∆
[⇒∧]

Γ ⇒ ∆, ψ Γ ⇒ ∆, φ

Γ ⇒ ∆, ψ ∧ φ

[∨⇒]
Γ, ψ ⇒ ∆ Γ, φ⇒ ∆

Γ, ψ ∨ φ⇒ ∆
[⇒∨]

Γ ⇒ ∆, ψ, φ

Γ ⇒ ∆, ψ ∨ φ

[⊃⇒]
Γ ⇒ ψ,∆ Γ, φ⇒ ∆

Γ, ψ ⊃ φ⇒ ∆
[⇒⊃]

Γ, ψ ⇒ φ,∆

Γ ⇒ ψ ⊃ φ,∆

Figure 3: The proof system LK+

Note 80 Here are some important remarks about the Gentzen-type systems presented in this section:

• The last four rules in Figure 4 can be combined into one rule: Infer ¬φ,Γ ⇒ ∆ from Γ ⇒ ∆, φ
(which is the rule [¬⇒], introducing negation on the left-hand side, of Gentzen’s system LK for
classical logic) with the constraint that the active formula (φ) should not be atomic.

• It is possible to take as axioms of GJ⊤
3

only p⇒ p, ¬p⇒ ¬p, and ⇒ p,¬p, where p is atomic (and

the rules for f and ⊤, which are really axioms). All other instances of the axioms are then derivable
using the logical rules of the system. The same is true for GSRM∼→

and for the various fragments
of GJ⊤

3
.

• The first rule for GP1 shown in Figure 4 (which is also the rule [⇒¬] of LK, introducing negation
on the right-hand sides of sequents) is valid for every logic which is induced by a three-valued
paraconsistent matrix, and the extra axioms of GJ⊤

3
are derivable by it from the standard identity

axioms. Therefore, we could have included this rule in the definition of GJ⊤
3

instead of its new

axioms (note that this rule is derivable from these axioms using a cut). We prefer our official
formulation in Figure 5, because all of its logical rules are invertible (see Lemma 88 below). This
is a very useful property in proof search and for other goals (as the proofs given below show).

• Actually, we could have formulated GP1 too by using only invertible rules. This can be done by
adding to it the new axioms of GJ⊤

3
, and limiting the applications of [⇒¬] to the case where the

active formula is not atomic. Again, we can have only p ⇒ p, ¬p ⇒ ¬p, and ⇒ p,¬p as axioms in
these versions of the system, where p is atomic.
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Axioms: φ⇒ φ

Rules: All the rules of LK+, and the following rules for negation:

Γ, φ⇒ ∆

Γ ⇒ ∆,¬φ

Γ, φ⇒ ∆, ψ

Γ,¬(φ ⊃ ψ) ⇒ ∆

Γ ⇒ ∆, φ, ψ

Γ,¬(φ ∨ ψ) ⇒ ∆

Γ ⇒ ∆, φ Γ ⇒ ∆, ψ

Γ,¬(φ ∧ ψ) ⇒ ∆

Γ ⇒ ∆,¬φ
Γ,¬¬φ⇒ ∆

Figure 4: The proof system GP1

Our next goal is to show the strong soundness and completeness of all these Gentzen-type systems.
Our first step towards this goal is to define the semantics of sequents in the context of matrices.

Definition 81 Let M be a matrix for L and let ν ∈ ΛM.

• We say that ν is an M-model of a sequent Γ ⇒ ∆, or that ν M-satisfies Γ ⇒ ∆ (notation:
ν |=M Γ ⇒ ∆) if ν ̸|=M φ for some φ in Γ, or ν |=M ψ for some ψ in ∆.

• We say that a sequent s M-follows from a set S of sequents (notation: S ⊢M s) if every M-model
of S is also an M-model of s.

• A sequent s is M-valid (notation: ⊢M s) if ν |=M s for every ν ∈ ΛM (i.e., if ∅ ⊢M s).

By Definition 81 and Proposition 36, we have:

Proposition 82 Let M be a three-valued paraconsistent matrix, and let ν be an assignment in M. Then
ν |=M Γ ⇒ ∆ (where Γ ⇒ ∆ is a sequent in the language of M) iff either ν(φ) = f for some φ ∈ Γ, or
ν(ψ) ̸= f (i.e. ν(ψ) ∈ {t,⊤}) for some ψ ∈ ∆.

Note 83 It is easy to see that ⊢M Γ ⇒ ψ iff Γ ⊢M ψ.

Definition 84 Let L = LM be one of the logics discussed in Section 5, and let GL be the corresponding
Gentzen-type calculus. We say that GL is (strongly) sound and complete for L if for every T and ψ it
holds that T ⊢GL

ψ (Definition 79) iff T ⊢L ψ.

To show soundness and completeness of our various systems, we first need some lemmas.

Lemma 85 Let M be a three-valued paraconsistent matrix, and let Γ ⇒ ∆ be a sequent which consists
of literals (i.e., atomic formulas or negations of atomic formulas).

1. ⊢M Γ ⇒ ∆ iff either Γ ∩ ∆ ̸= ∅, or there is an atomic formula p such that {p,¬p} ⊆ ∆, or f ∈ Γ,
or ¬f ∈ ∆, or ⊤ ∈ ∆, or ¬⊤ ∈ ∆.

2. If L is one of the logics discussed in Section 5 and ⊢L Γ ⇒ ∆, then ⊢GL
Γ ⇒ ∆.
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Axioms: φ⇒ φ ⇒ ¬φ,φ

Rules: All the rules of LK+, and the following rules for ¬, f, and ⊤:

[¬¬⇒]
Γ, φ⇒ ∆

Γ,¬¬φ⇒ ∆
[⇒¬¬]

Γ ⇒ ∆, φ

Γ ⇒ ∆,¬¬φ

[¬∧⇒]
Γ,¬φ⇒ ∆ Γ,¬ψ ⇒ ∆

Γ,¬(φ ∧ ψ) ⇒ ∆
[⇒¬∧]

Γ ⇒ ∆,¬φ,¬ψ
Γ ⇒ ∆,¬(φ ∧ ψ)

[¬∨⇒]
Γ,¬φ,¬ψ ⇒ ∆

Γ,¬(φ ∨ ψ) ⇒ ∆
[⇒¬∨]

Γ ⇒ ∆,¬φ Γ ⇒ ∆,¬ψ
Γ ⇒ ∆,¬(φ ∨ ψ)

[¬⊃⇒]
Γ, φ,¬ψ ⇒ ∆

Γ,¬(φ ⊃ ψ) ⇒ ∆
[⇒¬⊃]

Γ ⇒ φ,∆ Γ ⇒ ¬ψ,∆
Γ ⇒ ¬(φ ⊃ ψ),∆

[f⇒] Γ, f ⇒ ∆ [⇒¬f] Γ ⇒ ∆,¬f

[⇒ ⊤] Γ ⇒ ∆,⊤

[⇒¬⊤] Γ ⇒ ∆,¬⊤

Figure 5: The proof system GJ⊤
3

Proof. Suppose Γ and ∆ consist only of literals.

1. From Proposition 36 it follows that if Γ and ∆ satisfies one of the six conditions, then ⊢M Γ ⇒ ∆.
Suppose now that Γ ⇒ ∆ does not satisfy any of them. Define:

ν(p) =

 f if p ∈ ∆,
t if ¬p ∈ ∆,
⊤ otherwise.

Then ν is well-defined, and ν ̸|=M Γ ⇒ ∆. Hence ̸⊢M Γ ⇒ ∆ in this case.

2. This follows from the first part and the fact that every sequent which satisfies the condition given
in that part is obviously provable in GL (except in the case that L = P1 such a sequent is simply
an axiom of GL. In the case of P1 we use the rule for introducing negation on the right). 2

Lemma 86 Let L be one of the logics discussed in Section 5, and let M be the three-valued paraconsistent
matrix which induces L. Then every logical rule of GL is strongly sound for ⊢M: if S is the set of premises
of (an application of) such a rule, and s is its conclusion, then S ⊢M s.

Proof. Easy. As an example, we show the case of the rule ofGSRM∼→
for introducing ¬(φ⊗ψ) on the right.

So assume that ν |=A1 Γ, φ ⇒ ∆,¬ψ and ν |=A1 Γ, ψ ⇒ ∆,¬φ. We show that ν |=A1 Γ ⇒ ∆,¬(φ⊗ ψ).
If ν |=A1 Γ ⇒ ∆ we are done. Otherwise, we have that either ν(φ) = f or ν(ψ) ̸= t, and either ν(ψ) = f
or ν(φ) ̸= t. This gives us four possibilities, and it is easy to check that in all of them ν(φ⊗ ψ) ̸= t, i.e.,
ν(¬(φ⊗ ψ)) ̸= f . 2

Lemma 87 Let L be one of the logics discussed in Section 5. Then GL is strongly sound for L.
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Axioms: Γ, φ⇒ ∆, φ Γ ⇒ ∆, φ,¬φ

Rules: Exchange, Contraction, and the following logical rules:

Γ, φ⇒ ∆

Γ,¬¬φ⇒ ∆

Γ ⇒ ∆, φ

Γ ⇒ ∆,¬¬φ

Γ, φ, ψ ⇒ ∆

Γ, φ⊗ ψ ⇒ ∆

Γ ⇒ ∆, φ Γ ⇒ ∆, ψ

Γ ⇒ ∆, φ⊗ ψ

Γ ⇒ ∆, φ Γ ⇒ ∆, ψ Γ,¬φ,¬ψ ⇒ ∆

Γ,¬(φ⊗ ψ) ⇒ ∆

Γ, φ⇒ ∆,¬ψ Γ, ψ ⇒ ∆,¬φ
Γ ⇒ ∆,¬(φ⊗ ψ)

Γ ⇒ ∆, φ Γ ⇒ ∆,¬ψ Γ,¬φ,ψ ⇒ ∆

Γ, φ→ ψ ⇒ ∆

Γ, φ⇒ ∆, ψ Γ,¬ψ ⇒ ∆,¬φ
Γ ⇒ ∆, φ→ ψ

Γ, φ,¬ψ ⇒ ∆

Γ,¬(φ→ ψ) ⇒ ∆

Γ ⇒ ∆, φ Γ ⇒ ∆,¬ψ
Γ ⇒ ∆,¬(φ→ ψ)

Figure 6: The proof system GSRM∼→

Proof. By Lemma 86 we need only to check that the axioms of GL are valid in L. This is obvious. 2

Lemma 88 Let L and M be like in Lemma 86, and let r be a logical rule of GL. If r is not the rule of
GP1 for introducing ¬ on the right, then r is strongly invertible in ⊢M: If sc is the conclusion of r and
sp is any of its premises, then sc ⊢M sp. This is true also for every application of the exceptional rule in
which the active formula is not atomic (I.e., if φ is not atomic then Γ ⇒ ∆,¬φ ⊢P1 φ,Γ ⇒ ∆).

Proof. Again we do as an example the case in which r is the rule of GSRM∼→
for introducing ¬(φ⊗ ψ)

on the right. So assume that ν |=A1 Γ ⇒ ∆,¬(φ ⊗ ψ). We show, e.g., that ν |=A1 Γ, ψ ⇒ ∆,¬φ. If
ν |=A1 Γ ⇒ ∆ we are done. Otherwise ν(¬(φ ⊗ ψ)) ̸= f , and so ν(φ ⊗ ψ) ̸= t. This implies that either
ν(φ) = f , or ν(ψ) = f , or ν(φ) = ν(ψ) = ⊤, and so either ν(ψ) = f or ν(¬φ) ̸= f . In both cases we have
that ν |=A1 Γ, ψ ⇒ ∆,¬φ.

As for the exceptional rule, suppose that φ is not atomic, and ν |=P1 Γ ⇒ ∆,¬φ. We show that
ν |=P1 φ,Γ ⇒ ∆. If ν |=P1 Γ ⇒ ∆ we are done. Otherwise ν(¬φ) ̸= f , and so ν(φ) ∈ {f,⊤}. Since φ is
not atomic, ν(φ) ̸= ⊤. It follows that ν(φ) = f , and so ν |=P1 φ,Γ ⇒ ∆. 2

Lemma 89 Let L and M be like in Lemma 86, and let s be a sequent in the language of L. If ⊢M s
then s has a cut-free proof in GL.

Proof. It is easy to check that by applying the logical rules of GL backward, and using Lemma 88, we
can construct for every sequent s a finite set S(s) with the following properties:

1. Each element of S(s) is a sequent which consists only of literals.

2. s ⊢M s′ for every element s′ of S(s).

3. There is a cut-free proof of s from S(s).
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Suppose now that ⊢M s. By Lemma 88 and the second property of S(s) this implies that ⊢M s′ for every
element s′ of S(s). By Lemma 85 and the first and third properties of S(s) it follows that s has a cut-free
proof in GL. 2

Now we are ready to prove the two main results of this section.

Theorem 90 Let L be one of the logics discussed in Section 5.

1. GL is sound and complete for L.

2. T ⊢GL
ψ iff T ⊢L ψ.

Proof. The first part is immediate from Lemmas 87 and 89; The second part follows from the first part
and the fact that by Proposition 11, L is finitary. 2

Theorem 91 Let L be one of the logics discussed in Section 5. Then GL admits cut-elimination (i.e.,
every sequent that is provable in GL has a proof in which the cut rule is not used).

Proof. Suppose that ⊢GL
s. By Lemma 87, ⊢L s. By Lemma 89 this implies that s has a cut-free proof

in GL. 2

6.2 Hilbert-type Systems

To complete the picture, in this final subsection we present Hilbert-type proof systems with MP for ⊃
as the sole rule of inference for all the logics studied in Section 5 in which ⊃ is a primitive connective.11

Again, these systems are based on some sound and complete proof system of the same type for positive
classical logic (CL+). Such a system, denoted HCL+, is presented in Figure 7.12

Inference Rule: [MP]
ψ ψ ⊃ φ

φ

Axioms:

[⊃1] ψ ⊃ φ ⊃ ψ

[⊃2] (ψ ⊃ φ ⊃ τ) ⊃ (ψ ⊃ φ) ⊃ (ψ ⊃ τ)

[⊃3] ((ψ ⊃ φ) ⊃ ψ) ⊃ ψ

[∧⊃] ψ ∧ φ ⊃ ψ, ψ ∧ φ ⊃ φ

[⊃∧] ψ ⊃ φ ⊃ ψ ∧ φ
[⊃∨] ψ ⊃ ψ ∨ φ, φ ⊃ ψ ∨ φ
[∨⊃] (ψ ⊃ τ) ⊃ (φ ⊃ τ) ⊃ (ψ ∨ φ ⊃ τ)

Figure 7: The proof system HCL+

11Note that by Proposition 66, the four ≤k-monotonic expansions of LP (including LP itself) have no implication, and
so they cannot have a corresponding Hilbert-type system of the above type. In contrast, by Proposition 57 SRM∼→ can
be defined using such a system, but the resulting system does not look very natural. A natural Hilbert-type system for
SRM∼→ in its primitive language (but with two inference rules) can be found in [9].

12As usual, in the formulation of the axioms of the systems the association of nested implications is taken to the right.
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Definition 92 Figures 8 and 9 contain Hilbert-type proof systems for the logic P1 and the logics PAC
and J3, respectively. Hilbert-type proof systems HPAC⊤ and HJ⊤

3
for the logics PAC⊤ and J⊤

3 (respec-

tively) are obtained by adding to HPAC and HJ3 (respectively) the axioms ⊤ and ¬⊤. A Hilbert-type
proof system HPAC¬

⊃
for PAC¬

⊃
is obtained from HPAC by replacing [t] with either (¬φ ⊃ φ) ⊃ φ or

(ψ ⊃ φ) ⊃ (¬ψ ⊃ φ) ⊃ φ, changing [⇒¬⊃] to φ ⊃ (¬ψ ⊃ ¬(φ ⊃ ψ)), and deleting all axioms that
mention ∧ or ∨.

Inference Rule: [MP]
ψ ψ ⊃ φ

φ

Axioms: The axioms of HCL+ and:

[t] ¬ψ ∨ ψ
[¬⊃⇒] (φ ⊃ ψ) ⊃ ¬(φ ⊃ ψ) ⊃ τ

[¬∨⇒] (φ ∨ ψ) ⊃ ¬(φ ∨ ψ) ⊃ τ

[¬∧⇒] (φ ∧ ψ) ⊃ ¬(φ ∧ ψ) ⊃ τ

[¬⇒] ¬φ ⊃ ¬¬φ ⊃ τ

Figure 8: The proof system HP1

Theorem 93 Let L ∈ {P1,PAC¬
⊃
,PAC,PAC⊤,J3,J

⊤
3 }. Then ⊢HL

= ⊢GL
.

Proof. Using cuts and the fact that ⊢LK+ ψ,ψ ⊃ φ ⇒ φ, it is easy to show by induction on length of
proofs in HL that if Γ ⊢HL

φ (where Γ is finite) then Γ ⊢GL
φ. All one needs to do is to show that ⊢GL

φ
for every axiom φ of HL, and this is a straightforward exercise. It immediately follows that ⊢HL

⊆ ⊢GL
.

For the converse it would be more convenient to use the versions of the Gentzen-type systems which
employ lists of formulas rather than finite sets,13 and to treat each of the six logics separately.

L = PAC. In this case it is easy to prove (either syntactically, using the cut-elimination theorem for
GPAC, or semantically, using the soundness theorem for it) that a sequent s = φ1, . . . , φn ⇒
ψ1, . . . , ψm is provable in GPAC only if m > 0. For each such sequent s we define a translation
TrL(s) by TrL(s) = φ1∧. . .∧φn ⊃ ψ1∨. . .∨ψm (in particular: TrL(⇒ ψ1, . . . , ψm) = ψ1∨. . .∨ψm).
Obviously, to show that ⊢GL

⊆ ⊢HL
it suffices to prove that if ⊢GL

s then ⊢HL
TrL(s). We prove

this claim by induction on length of proofs in GL. This is a routine (though tedious) induction,
and here we shall do as examples three of the various possible cases that should be considered.

• Suppose s is an axiom of the form ⇒ ¬φ,φ. Then TrL(s) is an instance of the axiom [t] of L
(= PAC).

• Suppose s is inferred from s1 and s2 using [⊃⇒]. Then there are formulas φ, ψ, τ2, and
(perhaps) τ1 such that TrL(s) = τ1 ∧ (φ ⊃ ψ) ⊃ τ2, TrL(s1) = τ1 ⊃ τ2 ∨ φ, and TrL(s2) =
τ1 ∧ ψ ⊃ τ2 (the case where TrL(s) = (φ ⊃ ψ) ⊃ τ2, TrL(s1) = τ2 ∨ φ, and TrL(s2) = ψ ⊃ τ2
is similar, but easier). By induction hypothesis, ⊢HL

TrL(s1) and ⊢HL
TrL(s2). Now

P1 ⊃ P2 ∨ P3, P1 ∧ P4 ⊃ P2 ⊢CL+ P1 ∧ (P3 ⊃ P4) ⊃ P2.

13In such a case we need also the structural rules of Permutation, Contraction and Expansion, that assure that the
underlying consequence relation remains the same.
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Inference Rule: [MP]
ψ ψ ⊃ φ

φ

Axioms of HPAC: The axioms of HCL+ and:

[t] ¬ψ ∨ ψ
[¬¬⇒] ¬¬φ ⊃ φ

[⇒¬¬] φ ⊃ ¬¬φ
[¬⊃⇒1] ¬(φ ⊃ ψ) ⊃ φ

[¬⊃⇒2] ¬(φ ⊃ ψ) ⊃ ¬ψ
[⇒¬⊃] (φ ∧ ¬ψ) ⊃ ¬(φ ⊃ ψ)

[¬∨⇒1] ¬(φ ∨ ψ) ⊃ ¬φ
[¬∨⇒2] ¬(φ ∨ ψ) ⊃ ¬ψ
[⇒¬∨] (¬φ ∧ ¬ψ) ⊃ ¬(φ ∨ ψ)

[¬∧⇒] ¬(φ ∧ ψ) ⊃ (¬φ ∨ ¬ψ)

[⇒¬∧1] ¬φ ⊃ ¬(φ ∧ ψ)

[⇒¬∧2] ¬ψ ⊃ ¬(φ ∧ ψ)

Axioms of HJ3 : The axioms of HPAC and:

[f⊃] f ⊃ ψ

[⊃ f] ψ ⊃ ¬f

Figure 9: The proof systems HPAC and HJ3

Since HCL+ is complete for CL+ and HL is an extension of HCL+, it follows (by substituting
τ1 for P1, τ2 for P2, φ for P3, and ψ for P4) that TrL(s1), T rL(s2) ⊢HL

TrL(s). Hence
⊢HL

TrL(s).

• Suppose s is inferred from s1 using [¬⊃⇒]. Then there are formulas φ, ψ, τ2, and (perhaps)
τ1 such that TrL(s) = τ1 ∧ ¬(φ ⊃ ψ) ⊃ τ2, while TrL(s1) = τ1 ∧ φ ∧ ¬ψ ⊃ τ2 (again the case
where there is no τ1 is easier). By induction hypothesis, ⊢HL

TrL(s1). Now

P5 ⊃ P3, P5 ⊃ P4, P1 ∧ P3 ∧ P4 ⊃ P2 ⊢CL+ P1 ∧ P5 ⊃ P2.

Since HCL+ is complete for CL+ and HL is an extension of HCL+, it follows (by substituting
τ1 for P1, τ2 for P2, φ for P3, ¬ψ for P4, and ¬(φ ⊃ ψ) for P5) that

¬(φ ⊃ ψ) ⊃ φ, ¬(φ ⊃ ψ) ⊃ ¬ψ, TrL(s1) ⊢HL
TrL(s).

Using the axioms [¬⊃⇒ 1] and [¬⊃⇒ 2] of HL, it follows from the induction hypothesis for
s1 that ⊢HL

TrL(s).

The proofs in the other cases are similar. One should only note that in some of the cases (e.g.,
when s is inferred from s1 using weakening on the right) there are four subcases to consider (rather
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than just two as in the cases handled above): that we have both τ1 and τ2; that we have τ1 but not
τ2; that we have τ2 but not τ1; and that we have neither τ1 nor τ2.

L = PAC⊤. The proof in this case is very similar to that in the previous one, and is left to the reader.

L = J3. The proof in this case is again similar to that in case of PAC. The main difference is that
now also sequents of the form Γ ⇒ may be proved in GL, and so the translation of sequents into
formulas should be extended to these type of sequents. This is done by letting TrL(φ1, . . . , φn ⇒ )
be φ1 ∧ . . . ∧ φn ⊃ f. Details are left to the reader.

L = J⊤
3 . The proof in this case is very similar to that in the case of J3, and is left to the reader.

L = P1. The proof in this case is similar to the case L = J3, but instead of f we use ¬P1 ∧ ¬¬P1 (say).

L = PAC¬
⊃
. This time there is another problem: ∧ and ∨ are not included in the language of PAC¬

⊃
,

and so we cannot employ the translation function that was used in the case of PAC. However, we
can use the facts that φ ∨ ψ is equivalent in CL+ to (φ ⊃ ψ) ⊃ ψ and φ ∧ ψ ⊃ τ is equivalent in
CL+ to φ ⊃ ψ ⊃ τ . With the help of this fact we can transform the definition of TrPAC into an
equivalent (in CL+) definition in which ∧ and ∨ are not used:

TrPAC¬
⊃

(φ1, . . . , φn ⇒ ψ1, . . . , ψm) = φ1 ⊃ . . . φn ⊃ (. . . ((ψ1 ⊃ ψ2) ⊃ ψ2) ⊃ . . . ⊃ ψm) ⊃ ψm

With this definition, and using instead of HCL+ the Hilbert-type system consisting only of [MP],
[⊃1], [⊃2], and [⊃3] (this proof system is sound and complete with respect to the {⊃}-fragment of
classical logic), one can proceed in a way which is very similar to that used in the case L = PAC.
2

Theorem 94 For every logic L ∈ {P1,PAC¬
⊃
,PAC,PAC⊤,J3,J

⊤
3 }, the proof system HL is strongly

sound and complete for L, i.e., T ⊢HL
ψ iff T ⊢L ψ for each such L.

Proof. This is a direct corollary of Theorems 93 and 90. 2
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