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A. SUPPLEMENTARY MATERIAL FOR SECTION 5

Below, we provide a more detailed investigation on the accuracy of approximate query answering;
The main results of this analysis are given in Section 5.

A.1 Squared Queries

In this section we consider in greater details the notion of squaredness, which is fundamental for the
analysis in Section 5. Given is a satisfiable theBryver o containingDCA (o) A UNA(o). Recall
that a queryQ(z) is squaredin T if for every d in the Herbrand univers&U for o, I = Q(d)
implies thatQ(d)?r = t.

Squaredness can be split up in two simple unrelated concepts, called below ‘literal-based queries
(Definition A.1) and ‘Kleene-precise queries’ (Definition A.2).

Notation A.1. We denote byLit(I") the first-order theory consisting 8CA(c) A UNA(o) and
the set of all ground literals entailed byl".

Definition A.1 Literal-based queriesWe say that a quer@(z) of arity » is literal-basedin I" if
for everyd € HU™, T = Q(d) implies Lit(T") = Q(d).

If, vice versa,Lit(T") = Q(d), then obviously, sinc€ = Lit(T"), we havel' = Q(d). Hence, a
query is literal-based iff its certain answers unfieand unded it(T") are the same.

ExampleA.1. ForT' = {—R(a) V -Q(a)}, we have thal entails no ground literals. The query
—R(a)V—-Q(a) is not literal-based ift, sincel’ = ~R(a)V-Q(a) andLit(T") £ —R(a) VvV -Q(a).
On the other hand, every other formula of the fakm L’ whereL € {R(a),~R(a)}, o € {A,V}
andL’ € {Q(a),~Q(a)} is literal-based i

Clearly, the theoryLit(I") and the optimal approximatio@- of " are equivalent concepts, in
the sense thaP(a)™* = t iff P(a) € Lit(T"), andP(a)? = fiff -P(a) € Lit(I"). Therefore,
the concept of a literal-based query can also be defined in terifs,as shown in the following
proposition. Recall from Section 4.1 thatc () denotesy’s supervaluation irk.

PROPOSITION A.1. Q(7) is literal-based inl iff Certr(Q(z)) = {d € HU™ | svo.(Q(d)) =
t}.

In words, a query is literal-based in a theory iff its certain answers in that theory are its certain
answers computed with supervaluation in the optimal approximation of that theory.

PROOF. Follows from the fact thalit(T') = Q(d) iff svp.(Q(d)) = t. The latter is a con-
sequence of the fact thdtl | Lit(T") iff M is (isomorphic to) a Herbrand structure such that
o<, M. O

LCurrently at the Department of Mathematics and Computer Science, University of Antwerp, Belgium.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY, Pages 1-10.



2 . M. Denecker et al.

Note the similarity to Proposition 29, which uses Kleene’s three-valued truth assignment while the
proposition above uses supervaluation. An interesting class of queries is when both truth assignments
coincide.

Definition A.2 Kleene-precise queriesNe say that a quer®(z) of arity n is Kleene-precise
in a three-valued structur€ with domain Dom if for eachd € Dom™, svx(Q(d)) = t implies
Q(d)* =+t.

Since supervaluation is more precise than standard Kleene truth assignment, it follows that a query
is Kleene-precise if€erti (Q(z)) = {d € Dom™ | svc(Q(d)) = t}, i.e., its certain answers under
standard Kleene truth assignment and supervaluation coincide.

Example A.2. The concepts of literal-based and Kleene-precise queries are unrelated. For ex-
ample,P(a) V —P(a) is literal-based in each theory but not Kleene-precis€ i P(a)* = u. The
query P(a) V Q(a) is not literal-based in the theofyP(a) vV Q(a)} but P(a) vV Q(a) is Kleene-
precise in everyC. The queryP(a) A —P(a) is literal-based in every theory and Kleene-precise in
every structure.

The following proposition connects the above concepts to each other.

PROPOSITION A.2. A queryQ(z) is squared inl" iff Q(z) is literal-based in" and Kleene-
precise inOr.

PROOF For everyl' andQ(z), the following inequalities hold:
Certr(Q()) 2 {d € HU™ | svo.(Q(d)) = t} 2 Certo.(Q(7)).

If Q(z) is literal-based i and Kleene-precise i), the inequalities turn into equalities. Con-
versely, if Q(z) is squared, the three terms are equal, and it follows that the query is literal-based
and Kleene-precise.[]

We now present simple conditions for literal-based and Kleene-precise queries.

PrRoOPOSITION A.3. AqueryQ(z) is Kleene-precise i and literal-based (and hence squared)
in T when it is of the fornvy : (Cy Vv --- v C,,), where eactC; is a conjunction such that (i) each
non-literal conjunctC;, of C; is build from predicates that are two-valued@- and (ii) the set of
conjunctions is mutually exclus®ith respect ta)r.

PROOF Let us start by observing that sinfecontainsDCA(a) A UNA(o), a formulavy : ¢ is
literal-based i if ¢ is literal-based id". Likewise, it is Kleene-precise i@ if ¢ is Kleene-precise
in Or. Hence, it suffices to prove the proposition for the casediat) is of the formC; v - - - v C,,.

Nothing is to be proved for thosésuch thaf’ (= Q(d). Since each paif;[z], C;[z] of O(z) is

mutually exclusive irOr, T' = Q(d) implies there is exactly on€; such thaf” = C;[d]. For each

conjunctC;, of this C;, we have als@' = C;, [d]. WhenC;, [d] is aliteral, it is true inOr; when it

is not a literal, it is two-valued i, hence it is also true if-. So, all conjunctg”;, [d] are true in

Or and hence als6’;[d] and Q(d) are true inOr. It follows that the query is squared

Example A.3. Some trivial examples show that disjunctions or existentially closed formulas may
not be literal-based, even if their component formulas are literal-based: the Buery P(b) is
not literal-based in the theoryP(a) v P(b)} and3z : P(z) is not literal-based in the theory

{3z : P(x)}.
Example A.4. Here is a query that illustrates that existential quantified formulas are not neces-
sarily Kleene-precise, even if its components are:

p:=3x: (P(x) AQ(a) V -P(z) A -Q(a))

21n the sense of Definition 20.
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Consider the structur€ with domain{a, b} and such thaP(a)* = t, P(b)* = f andQ”* (a) = u.
Since P is two-valued, the two disjuncts are mutually exclusive, hence the subforRiula A
Q(a) vV =P(z) A —Q(a) satisfies the condition of Proposition A.3. Still, it holds tkat () =t #

O =

ProPOSITION A.4. Let Q(Z) be a query such that each predicd®ethat has positive and nega-
tive occurrences irR(z) is two-valued inC. ThenQ(z) is Kleene-precise if.

PROOF. Let d be an arbitrary tuple of domain elements. We need to show that fer Q(d),
suk(p) = . Sinceph <, suxc (i), it suffices to show thap® = u impliessvi(¢) = u. Assume
that™ = u. We construct two-valued structurés K’ >, K in the following way:

—K is the two-valued extension & which maps each unknown atoR(a) of K to t if P occurs
positively iny and tof otherwise.

—For K’ the inverse strategy is followed and it maps unknown atétt®) to f if P occurs posi-
tively, and tot otherwise.

To show thatsui(¢) = u, we prove thato™ = f and®X = t, by induction on the structure of
. Recall thatp* = u.

—Assume thatp = P(a). Then, sinceP occurs positivelyP(a)* =t andP(a)X" = f.

—If ¢ = ¢ A4 then one conjunct is unknown and the other is true or unknown. It follows from
the induction hypothesis, that both conjuncts are truk iand at least one is false ii’. Hence,
(@A) =tand(p A ) =

—The cases of disjunction, and universal and existential quantifiers can be proved in a similar way.

—Assume thatp = —¢. In that casep® = u and ¢ is a formula in which the polarities of
all predicates are switched. By SW|tch|ng the rolesiofand K’ and applylng the induction
hypothesis, we obtain that* = f and¢”’ = t. Consequentlyp™ = t andpX’ = f.

O

Note A.1. Observe that this proposition implies that positive formulas as well as negative for-
mulas are Kleene-precise. Also, the class of Kleene-precise formulas described in the proposition is
closed under negation. This is not the case for Kleene-precise formulas in general. E.g., the query
P(a) AN—P(a) is Kleene-precise in every three-valued structure in wiit¢h) is unknown while its
negation-P(a) V P(a) is not.

A formula Q(z) which is Kleene-precise but does not satisfy the syntactical conditions of Propo-
sition A.3 can still be guaranteed to be squarel fatisfies additional conditions expressed in the
following definition.

Definition A.3 Atomical theories A theory (or formula)l’ is atomical in¢ iff for each two-
valued Herbrand-structure! such thalOr <, I, =T.

Wheno is clear from the context we say thais atomical.

PrRoPOSITION A.5. LetT be a theory containinpCA(c) A UNA(o). T is atomical ing iff T
and Lit(T") are logically equivalent.

It follows that in an atomical theory every query is literal-based. This leads to the following
straightforward proposition.

ProPOSITION A.6. If T is atomical, every Kleene-precise qu&dyz) in Or is squared irT".

The following proposition lists some common and simple cases of atomical formulas and theories.
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PrROPOSITION A.7. A literal is an atomical formula. A conjunction or a set of atomical for-
mula’s is atomical. The union of a set of atomical theories is atomical. If each ground instance
©[d] is atomical, thervz : o[z] is atomical. IfT" is an atomical formula that conveys CWI over
©1[Z], ..., vn[Z] and for eachd, ¥[d] is atomical ing, thenT U {VZ : () V o1 V --- V @,)} is
atomical.

ProOFE All items of the proposition are straightforward with exception perhaps of the last one.
The theoryl' U {+[d] V ¢1]d] V --- V ¢, [d]} is clearly equivalent with" if there exists ani such
thatT' |= ¢;[d] , and withT' U {w[ 1]} otherwise, i.e., il |= —;[d] for eachi. Both theories are
atomical. The union of all these theories for dlis also atomical. This theory is equivalent with
TU{VZ: (Ve V-Vt O

A.2 Application to Locally Closed Databases

According to Theorem 6 of Section 5, a query is optimally answered by our approximate query
answering techniques, provided that one can prove (i) the squaredness of the query with respect to
®, and (ii) the optimality o5 on the (potentially small) set of negatively occurring predicates. We
analyse each of these conditions in turn.

A.2.1 Proving squaredness of querieSyntactic conditions for squared queries can be derived
from Proposition A.3 and Proposition A.4. However, we will be able to improve the results of these
propositions by exploiting some additional properties of locally closed databases. Recall Defini-
tion 21 where we introduce egB(Q(z))(:= <u{P|P €~ Q(Z)}), the set ohegatively bound
predicatesof a queryQ(z), and its complemer®osF (Q(Z)), the set opositive free predicatesf
().

Definition A.4. Let®g be the extension d = (D, £) obtained by addingCWA(P(Z), t) to
L, for each predicat® that is positive free irQ(z).

PROPOSITION A.8. Op <, Op,. More specificallyP®®e = PP if P is positive free inR(z),
and PP = P9 otherwise.

PROOF. A positive free predicate? is a base predicate &g and hence P9 = PP,
The database®o|reqn(0(z)) aNd D|negn(0(z)) COiNcide and have the same optimal approxi-
mations. SinceVegB(Q(z)) is <-downward closed, the extendibility Lemma 1 entdil§> =
POolnessiew) = POpelvesse@) = PO for eachP € NegB(Q(z)). O

PrRoOPOSITION A.9. If Q(Z) is squared iMg, thenQ() is squared M.

PROOF Assume tha® = Q(d). Since a model 0Dy is a model ofD, we haveDg = Q(d).
The queryQ(z) is squared iy, henceQ(d)®e = t. Now, observe tha®s is an approxma—
tion of Do that satisfies the condition oG in Proposition 30:P(a)?> = t iff P(a)” = t, and
P% = P%q f P occurs negatively iQ(z). It follows thatCerte, (Q(Z)) = Certo,, (Q()).
ConsequentlyQ(d)®> = t. Thus,Q(z) is squared irD. [

We now have all the basic material for proving the theorem about squaredness.

PROOFOF THEOREM 7. The theorem states:

A query Q(z) is squared in® when it is of the formvy : (Cy v --- Vv C,,), where eacltC;
is a conjunction such that (i) each non-literal conju@gt of the C; consists of predicates which
are either positive free iQ(z) or two-valued inOg, and (ii) the set of conjunctions is mutually
exclusive w.rtOy.

To prove it, observe that if a set of conjunctions is mutually exclusive with resp€¥s then it is
also mutually exclusive with respect @, . This follows directly fromOs <, Os,. The theorem
follows then from Proposition A.3 and Proposition A.9.]
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Note A.2. Recall that sinc&s <, Op, we can us&y to check two-valuedness of negatively
bound predicates i@, and mutual exclusiveness of the set of conjunction8dn

The class of queries covered by Theorem 7 comprises conjunctions of literals, positive formulas,
and more in general, decision tree-like queries in which the test formulas are two-valieein.,
contain only base predicates ®f and the leaves consist of conjunctions of database literals and
formulas containing base predicates and (positive occurrences of) positive free predica{es. of

A.2.2 Proving atomicality. We now present conditions for the atomicality ®fand ®5 and
derive a large class of squared queries in case of atomicality.

ProPOSITION A.10. For every<-downward closed set of predicatBs ®|» is atomical if< is
cycle-free inP and for eachP € P, © conveys CWI o p[z].

PROOF D|p is the union of al®|< | p, for all P € P. By Proposition A.7D|» is atomical if
each®|.  p is atomical. The proof is by induction or. Assume tha®|- p is atomical. Since
D conveys CWI on the window of expertise & it follows from Corollary 4 that so doe® |« p.
D|<, p consists of9| < p, all atomsP(a) in D and

vz : (Y[z] D (P(z) D P(z) € D)).

The latter formula is a disjunction consisting of two disjuncts on which there is CWI and a third
atomical disjunct. By, again, Proposition A®@|  p is atomical. [

Although the atomicality condition is a strong condition, the above proposition shows that it may
easily arise in the context of locally closed databases. It suffices that the database has CWI on its
own windows of expertise.

Example A.5. The following example is based on Example 11. Consider the local closed world
assumptions:

o LCWA(Loc(p, 1), (I = Bx A Im,id : CarO(p, m,id))),
L7 LEWA(CarO(p, m, id), Loc(p, Bx))

Take a locally closed databa®g consisting of£;, the empty relation interpretingoc andCarO,
and a domain consisting of the locatiaBs Bz, the persor. D, carV and car idi’40. This database
conveys no CWI on its windows of expertise. E.g., Lien DesnigD) could live in the Bronx
(Loc(LD, Bz)) or not; she could have a caf'¢rO(LD,V,V40)) or not. But if she lives in the
Bronx, then she cannot have the car and vice versa. This is to sa®thgt —Loc(LD, Bx) V
-CarO(LD,V,V40) while Lit(®D, ) is empty and does not entail this formula. This shows that this
database is not atomical.

On the other hand consider the following LCWA's:

Lo = {LCWA(Loc(n,l),t), LCWA(CarO(n,m,id), Loc(n, Bx))}

It is easy to see that each database contaidingonveys CWI on its windows of expertise and
hence, is atomical. For instance, the datalf®geobtained from®; by substitutingl, for L is
atomical.Lit(D2) contains-Loc(LD, Bz) and entails-Loc(LD, Bx) V =CarO(LD, V,V40).

The interest of the atomicality @D lies in the fact that the large class of Kleene-precise queries
are squared in it. A sufficient reason f@r to be atomical is CWI on all windows of expertise.
However, for a Kleene-precise query to be squared, it suffices that there is CWI on a potentially very
small set of windows of expertise. Below we investigate this.

THEOREM A.1 SQUAREDNESS IN ATOMICAL DATABASES A query Q(Z) is squared in® if
(i) < is acyclic inNegB(Q(z)) and® conveys CWI on the windows of expertise on eBck
NegB(Q(z)) and (ii) all predicates with positive and negative occurrence€ix) are base pred-
icates ofD.
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PROOF We first show tha®, is atomical. The full dependency graph©f is that of® re-
stricted toNegB(Q(z)) and is acyclic. The window of expertise of each positive free predicate in
Do is the base predicate Since® conveys CWI on the windows of expertise of negatively bound
predicates, so does the stronger theDgy If follows from Proposition A.10 thaDg is atomical.

SinceQ(z) is Kleene-precise if,, (Proposition A.4), itis squared in the atomical databigge
By Proposition A.99(z) is squared ir©. O

Example A.6. By Theorem A.1, the query:(Loc(LD, Bx) A CarO(LD,V, B1)) is squared
in the atomical databas®, of Example A.5. This query is not squared in the datalf@sef that
example and cannot be accurately processed in it by the approximate methods. Indeed, itis a Kleene-
precise query and is certainly entailed By, but this formula in unknown i, andCs,. Note
that it is true in the optimal approximation of the atomical dataliase

The class of queries covered by Theorem A.1 allows arbitrary quantification. SiagB(Q(z))
is empty ifQ(z) is a positive query, positive queries are covered by this theorem (they were covered
also by Theorem 7).

ExampleA.7. In Example 11 as ir©D, of Example A.5, all predicates are positive free for
CarO(n,m,id), and none for-CarO(n,m,id) sinceCarO depends orL.oc.

A.2.3 Proving partial optimality ofCy. We say thaCy is optimal in a predicaté® if P& =
P%» . For an accurate answer to a quélyz) usingCo, it does not suffice that the query is squared.
It should also hold thaP® is optimal for each? €~ Q(z). We now present conditions for the
optimality of Co in some set of predicates. We start with a construction proposition showing how
optimality of Co may propagate from predicates in lower levels<of to higher levels.

PROPOSITION A.11. For database predicat®, it holds thatP% = P2 if the following con-
ditions are satisfied:

—U p[z] is squared irD,
—for each atomP(a) € D, if ® = —P(a) then® = ¥p[d],
—for every predicat&) that occurs negatively i p, Q% = Q%>.

PROOF. By the soundness dfp, it holds for everya € Dom™ that if P(a)® # u, then
P(a)% = P(a)®>. So, let us assume th&a)* = u. Observe that, in this cas®(a) ¢ D.

To show thatP(@)®> = u, we need to construct two modelg, M’ of ® such thatV = P(a)
andM’ |= —P(a). SinceP(a) ¢ D, we can takel/’ = D which is indeed a model @@. Let us
now constructV/. By construction oy, it holds thatP(a) ¢ D and¥p[d]% # t. The sentence
U p[d] is squared ir® and by assumption, it holds th@‘> = Q®» for each negatively occurring
predicate? in this formula. Therefore, the conditions of Theorem 6 are satisfied, so there is a model
N of ® such thatN' = =V p[d] and this means tha [~ ¥ p[d]. By contraposition of the second
assumption, it follows tha® [~ —P(a), hence® has a modeM in which P(a) is true. [

The proposition above reduces the problem of the optimality af Co to the problem of the
optimality of the negatively occurring predicatesits window of expertise. Results from earlier
propositions can be used to determine whetAsrwindow of expertise is squared. For example, if
U p is a positive formula, or a formula in which only base predicates occur negativelythaa
squared irD.

The other condition is tha® = —P(a) should imply® = Wp[d]. Equivalently, if—=V p[d] is
satisfiable in®, then so should b&(a). This is a condition that one would expect to be satisfied,
given that the “main” axiom o aboutP(a) is as follows:

Upld] D (P(a) D P(a) € D)

and this formula is satisfied in any mod#l in which ¥ p[d] is false, independent of the truth value
of P(a) in M. Yet, it is possible to engineer examples in which the condition is not satisfied. If we
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start from a model of such databases in whichp|d] is false and we try to updaté/ to make

P(a) true, then we cause a chain of forced updatea/tavith the effect that ultimately p[d] is
made true as well. In such a case, accuracy may indeed be lost, as illustrated below.

Example A.8. In the databas® = ({}, {LCWA(P(z),z = a A P(a))}) of Example 17, preci-
sion is lost onP(a). We have® = —P(a) but® = ¥plal.

ExampleA.9. The databas® = ({}, {LCWA(P(z), ~Q(x)), LCWA(Q(x), P(x))}) of Ex-
ample 18 is equivalent téz : = P(x), yet P(d)* = u, for everyd € HU.

In the two examples above, all conditions of Proposition A.11 are satisfiel fatcept for the
second condition. In both cases, precision is lost.

Below, we present a simple syntactic condition that guarantees the second condition of Proposi-
tion A.11.

PROPOSITION A.12. If P ¢T ¥p (i.e., P has no positive occurrence in its own window of
expertise) and for al) <~ P we haveP ¢ ¥, then for each aton®(a) such thatd = —P(a)

we have® = Up[d].

Notice that the first condition is violated in Example 17, and the second condition in Example 18.

PrRooF We will prove the contrapositive, i.e., ® ¥~ ¥p[d] then® [~ —-P(a). Let M be a
model of® such thatV/ = —¥ p[d]. If P(a) is true inM, there is nothing to prove. So assume that
P(a) is false inM . We will modify M in N such thatV is still a model of© andP(a) is true inN.

Considerthesefp = {Q € X | P et UoU{Re X |3Q € X: P et UgandQ <~ R}.

It consists of all predicates that have a positive occurrendeiaftheir window of expertise and all
predicates that negatively depend on such predicates. It follows from the condition of the proposition
that P ¢ Sp. In the windows of expertise of predicat€sin the complement o8, P has only
negative occurrences and predicates$ pthave only positive occurrences.

Define N as the structure obtained by modifyiiig as follows:

—PN = pM y{d},i.e. P(a)is made true;
—QN =QPforQ e Sp.

This modification increaseB and decreases all predicatesyf; i.e., PM < PN, QN < QM for
Q € Sp, andQ"N = QM otherwise. Thus, formulas with only positive occurrence®and only
negative occurrences of predicatgs Sp have a larger truth value i than inM.

To verify that NV is a model of®, it suffices to check thalv satisfies all local closed world
assumptions. Consider any instance of a local closed world assumption:

p=Tqld] Vv -Q(d) vV (Q(d) € D)

Each of these formulas is satisfiedif. Let us verify that it is satisfied iV as well. There are four
cases:

—@Q = P andd = d (i.e. ¥ is P’s window of expertise): in this cas@/ = -V p[d]. The formula
-V p[d] contains only positive occurrencesBfand only negative occurrences of predicates
Sp, hencet = (=¥ p[d)M < (=¥ p[d])"

—Q = P andd # d: we have(-P(d) v (P(d) € D)) = (=P(d) v (P(d) € D)) and—¥ p[d]
contains only positive occurrences Bfand only negative occurrences of predicafes Sp,
hence-¥p[d]™ < —Up[d|" and it follows thatt = ™ < V.

—Q € Sp: N satisfies=Q(d) v (Q(d) € D), hencegp?¥ =t = oM.

—Q ¢ Sp and@ # P: ¢ contains only positive occurrencesBfand only negative occurrences of
predicates o8p; hencet = oM < .

O
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Thus, P should not occur positively in its own window of expertise or of any predicate on which
P negatively depends. This condition is satisfied j§ is a positive formula not containing, or if
P £ P, i.e., the full dependency graph has no cyclé’in

The following corollary combines the above propositions.

COROLLARY A.1. For predicateP, it holds thatP%® = PO if the following conditions are
satisfied:

—P &t Up,

—forall Q <~ P, P ¢t U,

—U p[Z] is squared ir®, and

—for every predicate) ¢~ ¥p, Q%@ = Q.

This corollary reduces the problem of proving optimalityCgfin a predicateP to the problem of
proving optimality ofCy in predicates) €~ Up. It allows us to prove the optimality theorem.

PROOF OFTHEOREM 8. The theorem states: L& = (D, £) be a locally closed database. It
holds thatP® = P if <~ is acyclic in<;, P* and for each € <;, P:

_Q ¢+ TQ,
—forall R <~ Q,Q ¢ Vg,
—U¥q 7] is squared irD.

To prove it, observe that~ is a strict (well-founded) order on the set, P = {P}U{Q | Q <~
P}. ltis easy to see that for each predicate in this set, the first three conditions of Corollary A.1
hold. By iterated application of this corollary alorg, we obtain that)® is optimal, for allQ in
this set. The theorem follows.[]

Example A.10. The windows of expertise in the database of Example 11 and al&, dh
Example A.5 are positive formulas. Hence, althoughs cyclic, the predicateg.oc and CarO
have optimal interpretation i, . Nevertheless, as shown in Example A.6, the Kleene-precise query
—(Loc(LD, Bx) N\CarO(LD,V, B1)) can not be answered accurately by the approximate methods
because&, is not atomical.

By a combination of Theorem 8 and Theorem A.1, we also have the following result.

THEOREM A.2 COMPLETENESS IN PARTIALLY ATOMIC DATABASES It holds that
Certe, (Q(T)) = Certn(Q(z)) if (i) < is acyclic in NegB(Q(z)) and © conveys CWI on
Up for eachP € NegB(Q(z)) and (i) only base predicates & occur both positively and
negatively inQ(z) and in p, for eachP <~ O(%).

ProoOF The conditions of this theorem entail those of Theorem A.1. As a consequ@sas,
atomical andQ(z) is squared irD. Since< is acyclic inNegB(Q(z)), the acyclicity conditions
of Theorem 8 and Theorem 9 are trivially satisfied, and by the atomicaliBeoffor each database
predicateP <~ Q(z), ¥ p is squared irD. It follows from Theorem 8 thaP® is optimal for each
P <~ 9(z), and by Theorem A.1 thatertc, (Q(Z)) = Certo(Q(Z)). O

B. A CIRCUMSCRIPTIVE APPROACH TO THE LCWA

In this appendix, we consider an alternative approach, based on circumscription [McCarthy 1980;
Lifschitz 1994], for representing the closed-word assumption by second-order formulas. As shown
below, this approach is equivalent to the LCWA representation in Section 2.

Consider, for instance, the expressi66WA(CarO(x,y,z),x = MC) in the context of Ex-
ample 2. The meaning of this local closed-world assumption may be rephrased by stating that the

3Recall that this set is defined 48} U {Q|Q <~ P}.
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restriction of the predicat€arO(z,y, z) to the tuples withc = M C should beminimally satis-

fying the database, i.e., no tuples can be deleted from it without falsifying tuples frorhis
minimization can be expressed through a circumscription-like second order axiom, as given in the
next definition. It is not surprising, therefore, that a variant of the notion of local closed-world as-
sumption presented here has already been expressed in terms of circumscription (see the discussion
on the work of Doherty et al. [2000] in Section 6.)

Definition B.1 pseudo-circumscriptive form of a LCWAetd = LCWA(P(z), [z]) be alocal
closed-world assumption for a database instaRceThe pseudo-circumscriptive forrof 6 is the
following (second-order) formula, denotéd, ():

VX : ( N\ X D(Vf: (\I/(:E) O (X(z) D P(i:))) )

P(d)eD
VT (lll(x) D (P(z) D X(x))>)>,

whereX is a predicate variable with the same arityRas

Cp(0) is called pseudo-circumscriptive since it differs from a pure circumscription schema by in-
troducing the first-order formul& into the representation. Just as in Definitionldrepresents the
context in whichP should be minimal.

The axiom states that for each relatiéihthat contains all tuples i, if X is smaller thanP
within the window of expertise oP, then P is smaller than (and hence, identical fo)within this
window. Stated in a contrapositive way, it is impossible to delete ffoennonempty set of tuples in
P’s window of expertise without violating the database.

Definition B.2. Let® = (D, £) be a locally closed database. Denét®) the following set of
sentences:

Soundness Nacp A

Local Completeness Noce Cp(0).

Domain Closure Axion{DCA(Dom®)):  Vz : (\ cepome © = C)
Unique Name AxiortlUNA(Dom™®)): Nesorepomo C# C'

THEOREM B.1. For every databas®, M (D) is equivalent taZ(D).

PrRoOOF The two theories are identical with exception of the local completeness axioma/ Let
be any model satisfying the soundness axjam. , A. We will show thatM satisfies

VI : (xm) 5 (P(E) > (P(@) € D))) @)

iff it satisfies

forallX : < N\ X()> <v:z: (xp@) O (X(7) D P(")) )

VT : (\D(x) D> (P(z) D X(x))))). 2

Indeed, suppose first thaf satisfies the formula in (1) and thaf’ is an extension of\/ with an
interpretation forX that satisfies the subformula (a) of (2). To show thét satisfies (bp(c), we
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show the stronger proposition thaf’ satisfies (c). Lef\/” extendM’ with an arbitrary interpre-
tation for z, and assume that it satisfi@§z] and P(z). Then by the formula in (1)M" satisfies
P(z) € D, and by (a), it also satisfie¥ (z). Hence, M’ satisfies (c).

For the converse, assume thidt satisfies the formula in (2). Extendd by interpretingX by the
relation PP. Then the formula (a) is true inM/[X : PP]. Moreover, by the soundness axiom,
M[X : PP] satisfies (b), so (c) is true as well. Now, given the valueXofn M[X : PP], the
formula (c) is equivalent to the formula in (1), hence the latter is satisfidd.in (I

An interesting aspect of the pseudo-circumscriptive formula of Definition B.1 is that it allows to
extend the concept of LCWA to knowledge bases consisting of first-order axioms rather than atoms.
Indeed, assume that the database instdnde an arbitrary first-order theory. UsinB[P/X] to
denote the substitution of all occurrencedlirof atomsP (%) by X (¢), we could then express the
LCWA LCWA(P(Z), ¥[z]) by the axiom:

VX : (D[P/X] ) (Va‘c: (\1/(55) o (X(z) > P(i:))) DVZ: (\I/(:Z") D (P(z) D X(a?))))).

For instance, consider a disjunctive database Witk { P(A, C) vV P(B,C)}, and the assumption
LCWA(P(z,y),y = C). Intuitively, this database expresses tidt4, C') or P(B,C) is true and
that the set of tuplege, C) in P is minimal. This means that the only valudor which P(z, C) is
true is eitherA or B but not both
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