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A. SUPPLEMENTARY MATERIAL FOR SECTION 5

Below, we provide a more detailed investigation on the accuracy of approximate query answering;
The main results of this analysis are given in Section 5.

A.1 Squared Queries

In this section we consider in greater details the notion of squaredness, which is fundamental for the
analysis in Section 5. Given is a satisfiable theoryΓ overσ containingDCA(σ) ∧ UNA(σ). Recall
that a queryQ(x̄) is squaredin Γ if for every d̄ in the Herbrand universeHU for σ, Γ |= Q(d̄)
implies thatQ(d̄)OΓ = t.

Squaredness can be split up in two simple unrelated concepts, called below ‘literal-based queries’
(Definition A.1) and ‘Kleene-precise queries’ (Definition A.2).

Notation A.1. We denote byLit(Γ) the first-order theory consisting ofDCA(σ) ∧ UNA(σ) and
the set of all ground literalsL entailed byΓ.

Definition A.1 Literal-based queries. We say that a queryQ(x̄) of arityn is literal-basedin Γ if
for everyd ∈ HUn, Γ |= Q(d̄) impliesLit(Γ) |= Q(d̄).

If, vice versa,Lit(Γ) |= Q(d̄), then obviously, sinceΓ |= Lit(Γ), we haveΓ |= Q(d̄). Hence, a
query is literal-based iff its certain answers underΓ and underLit(Γ) are the same.

ExampleA.1. ForΓ = {¬R(a) ∨ ¬Q(a)}, we have thatΓ entails no ground literals. The query
¬R(a)∨¬Q(a) is not literal-based inΓ, sinceΓ |= ¬R(a)∨¬Q(a) andLit(Γ) 6|= ¬R(a)∨¬Q(a).
On the other hand, every other formula of the formL ◦ L′ whereL ∈ {R(a),¬R(a)}, ◦ ∈ {∧,∨}
andL′ ∈ {Q(a),¬Q(a)} is literal-based inΓ.

Clearly, the theoryLit(Γ) and the optimal approximationOΓ of Γ are equivalent concepts, in
the sense thatP (ā)OΓ = t iff P (ā) ∈ Lit(Γ), andP (ā)OΓ = f iff ¬P (ā) ∈ Lit(Γ). Therefore,
the concept of a literal-based query can also be defined in terms ofOΓ, as shown in the following
proposition. Recall from Section 4.1 thatsvK(ϕ) denotesϕ’s supervaluation inK.

PROPOSITION A.1. Q(x̄) is literal-based inΓ iff CertΓ(Q(x̄)) = {d̄ ∈ HUn | svOΓ(Q(d̄)) =
t}.

In words, a query is literal-based in a theory iff its certain answers in that theory are its certain
answers computed with supervaluation in the optimal approximation of that theory.

PROOF. Follows from the fact thatLit(Γ) |= Q(d) iff svOΓ(Q(d̄)) = t. The latter is a con-
sequence of the fact thatM |= Lit(Γ) iff M is (isomorphic to) a Herbrand structure such that
OΓ 6pM .

1Currently at the Department of Mathematics and Computer Science, University of Antwerp, Belgium.
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Note the similarity to Proposition 29, which uses Kleene’s three-valued truth assignment while the
proposition above uses supervaluation. An interesting class of queries is when both truth assignments
coincide.

Definition A.2 Kleene-precise queries. We say that a queryQ(x̄) of arity n is Kleene-precise
in a three-valued structureK with domainDom if for each d̄ ∈ Domn, svK(Q(d)) = t implies
Q(d)K = t.

Since supervaluation is more precise than standard Kleene truth assignment, it follows that a query
is Kleene-precise iffCertK(Q(x̄)) = {d̄ ∈ Domn | svK(Q(d̄)) = t}, i.e., its certain answers under
standard Kleene truth assignment and supervaluation coincide.

ExampleA.2. The concepts of literal-based and Kleene-precise queries are unrelated. For ex-
ample,P (a)∨¬P (a) is literal-based in each theory but not Kleene-precise inK if P (a)K = u. The
queryP (a) ∨ Q(a) is not literal-based in the theory{P (a) ∨ Q(a)} but P (a) ∨ Q(a) is Kleene-
precise in everyK. The queryP (a) ∧ ¬P (a) is literal-based in every theory and Kleene-precise in
every structure.

The following proposition connects the above concepts to each other.

PROPOSITION A.2. A queryQ(x̄) is squared inΓ iff Q(x̄) is literal-based inΓ and Kleene-
precise inOΓ.

PROOF. For everyΓ andQ(x̄), the following inequalities hold:

CertΓ(Q(x̄)) ⊇ {d̄ ∈ HUn | svOΓ(Q(d̄)) = t} ⊇ CertOΓ(Q(x̄)).

If Q(x̄) is literal-based inΓ and Kleene-precise inOΓ, the inequalities turn into equalities. Con-
versely, ifQ(x̄) is squared, the three terms are equal, and it follows that the query is literal-based
and Kleene-precise.

We now present simple conditions for literal-based and Kleene-precise queries.

PROPOSITION A.3. A queryQ(x̄) is Kleene-precise inOΓ and literal-based (and hence squared)
in Γ when it is of the form∀ȳ : (C1 ∨ · · · ∨ Cn), where eachCi is a conjunction such that (i) each
non-literal conjunctCik

of Ci is build from predicates that are two-valued inOΓ and (ii) the set of
conjunctions is mutually exclusive2 with respect toOΓ.

PROOF. Let us start by observing that sinceΓ containsDCA(σ) ∧ UNA(σ), a formula∀ȳ : ϕ is
literal-based inΓ if ϕ is literal-based inΓ. Likewise, it is Kleene-precise inOΓ if ϕ is Kleene-precise
inOΓ. Hence, it suffices to prove the proposition for the case thatQ(x̄) is of the formC1∨ · · ·∨Cn.

Nothing is to be proved for thosēd such thatΓ 6|= Q(d̄). Since each pairCi[x̄], Cj [x̄] of Q(x̄) is
mutually exclusive inOΓ, Γ |= Q(d̄) implies there is exactly oneCi such thatΓ |= Ci[d̄]. For each
conjunctCik

of thisCi, we have alsoΓ |= Cik
[d̄]. WhenCik

[d̄] is a literal, it is true inOΓ; when it
is not a literal, it is two-valued inOΓ, hence it is also true inOΓ. So, all conjunctsCik

[d̄] are true in
OΓ and hence alsoCi[d̄] andQ(d̄) are true inOΓ. It follows that the query is squared.

ExampleA.3. Some trivial examples show that disjunctions or existentially closed formulas may
not be literal-based, even if their component formulas are literal-based: the queryP (a) ∨ P (b) is
not literal-based in the theory{P (a) ∨ P (b)} and ∃x : P (x) is not literal-based in the theory
{∃x : P (x)}.

ExampleA.4. Here is a query that illustrates that existential quantified formulas are not neces-
sarily Kleene-precise, even if its components are:

ϕ := ∃x : (P (x) ∧Q(a) ∨ ¬P (x) ∧ ¬Q(a))

2In the sense of Definition 20.
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Consider the structureK with domain{a, b} and such thatP (a)K = t, P (b)K = f andQK(a) = u.
SincePK is two-valued, the two disjuncts are mutually exclusive, hence the subformulaP (x) ∧
Q(a)∨¬P (x)∧¬Q(a) satisfies the condition of Proposition A.3. Still, it holds thatsvK(ϕ) = t 6=
ϕK = u.

PROPOSITION A.4. LetQ(x̄) be a query such that each predicateP that has positive and nega-
tive occurrences inQ(x̄) is two-valued inK. ThenQ(x̄) is Kleene-precise inK.

PROOF. Let d̄ be an arbitrary tuple of domain elements. We need to show that forϕ = Q(d̄),
svK(ϕ) = ϕK. SinceϕK 6p svK(ϕ), it suffices to show thatϕK = u impliessvK(ϕ) = u. Assume
thatϕK = u. We construct two-valued structuresK,K ′ >pK in the following way:

—K is the two-valued extension ofK which maps each unknown atomP (ā) of K to t if P occurs
positively inϕ and tof otherwise.

—ForK ′ the inverse strategy is followed and it maps unknown atomsP (ā) to f if P occurs posi-
tively, and tot otherwise.

To show thatsvK(ϕ) = u, we prove thatϕK′
= f andϕK = t, by induction on the structure of

ϕ. Recall thatϕK = u.

—Assume thatϕ = P (ā). Then, sinceP occurs positively,P (ā)K = t andP (ā)K′
= f .

—If ϕ = φ ∧ ψ then one conjunct is unknown and the other is true or unknown. It follows from
the induction hypothesis, that both conjuncts are true inK and at least one is false inK ′. Hence,
(φ ∧ ψ)K = t and(φ ∧ ψ)K′

= f .

—The cases of disjunction, and universal and existential quantifiers can be proved in a similar way.

—Assume thatϕ = ¬φ. In that case,φK = u andφ is a formula in which the polarities of
all predicates are switched. By switching the roles ofK andK ′ and applying the induction
hypothesis, we obtain thatφK = f andφK′

= t. Consequently,ϕK = t andϕK′
= f .

Note A.1. Observe that this proposition implies that positive formulas as well as negative for-
mulas are Kleene-precise. Also, the class of Kleene-precise formulas described in the proposition is
closed under negation. This is not the case for Kleene-precise formulas in general. E.g., the query
P (a)∧¬P (a) is Kleene-precise in every three-valued structure in whichP (a) is unknown while its
negation¬P (a) ∨ P (a) is not.

A formulaQ(x̄) which is Kleene-precise but does not satisfy the syntactical conditions of Propo-
sition A.3 can still be guaranteed to be squared ifΓ satisfies additional conditions expressed in the
following definition.

Definition A.3 Atomical theories. A theory (or formula)Γ is atomical inσ iff for each two-
valued Herbrandσ-structureI such thatOΓ 6p I, I |= Γ.

Whenσ is clear from the context we say thatΓ is atomical.

PROPOSITION A.5. Let Γ be a theory containingDCA(σ) ∧ UNA(σ). Γ is atomical inσ iff Γ
andLit(Γ) are logically equivalent.

It follows that in an atomical theory every query is literal-based. This leads to the following
straightforward proposition.

PROPOSITION A.6. If Γ is atomical, every Kleene-precise queryQ(x̄) in OΓ is squared inΓ.

The following proposition lists some common and simple cases of atomical formulas and theories.
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PROPOSITION A.7. A literal is an atomical formula. A conjunction or a set of atomical for-
mula’s is atomical. The union of a set of atomical theories is atomical. If each ground instance
ϕ[d̄] is atomical, then∀x̄ : ϕ[x̄] is atomical. IfΓ is an atomical formula that conveys CWI over
ϕ1[x̄], . . . , ϕn[x̄] and for eachd̄, ψ[d̄] is atomical inσ, thenΓ ∪ {∀x̄ : (ψ ∨ ϕ1 ∨ · · · ∨ ϕn)} is
atomical.

PROOF. All items of the proposition are straightforward with exception perhaps of the last one.
The theoryΓ ∪ {ψ[d̄] ∨ ϕ1[d̄] ∨ · · · ∨ ϕn[d̄]} is clearly equivalent withΓ if there exists ani such
thatΓ |= ϕi[d̄] , and withΓ ∪ {ψ[d̄]} otherwise, i.e., ifΓ |= ¬ϕi[d̄] for eachi. Both theories are
atomical. The union of all these theories for alld̄ is also atomical. This theory is equivalent with
Γ ∪ {∀x̄ : (ψ ∨ ϕ1 ∨ · · · ∨ ϕn)}.

A.2 Application to Locally Closed Databases

According to Theorem 6 of Section 5, a query is optimally answered by our approximate query
answering techniques, provided that one can prove (i) the squaredness of the query with respect to
D, and (ii) the optimality ofCD on the (potentially small) set of negatively occurring predicates. We
analyse each of these conditions in turn.

A.2.1 Proving squaredness of queries.Syntactic conditions for squared queries can be derived
from Proposition A.3 and Proposition A.4. However, we will be able to improve the results of these
propositions by exploiting some additional properties of locally closed databases. Recall Defini-
tion 21 where we introducedN egB(Q(x̄))(:= ≺∪{P |P ∈− Q(x̄)}), the set ofnegatively bound
predicatesof a queryQ(x̄), and its complementPosF(Q(x̄)), the set ofpositive free predicatesof
Q(x̄).

Definition A.4. Let DQ be the extension ofD = (D,L) obtained by addingLCWA(P (x̄), t) to
L, for each predicateP that is positive free inQ(x̄).

PROPOSITION A.8. OD 6pODQ . More specifically,PODQ = PD if P is positive free inQ(x̄),
andPODQ = POD otherwise.

PROOF. A positive free predicateP is a base predicate ofDQ and hence,PODQ = PD.
The databasesDQ|NegB(Q(x̄)) and D|NegB(Q(x̄)) coincide and have the same optimal approxi-
mations. SinceN egB(Q(x̄)) is ≺-downward closed, the extendibility Lemma 1 entailsPOD =
POD|NegB(Q(x̄)) = PODQ |NegB(Q(x̄)) = PODQ , for eachP ∈ N egB(Q(x̄)).

PROPOSITION A.9. If Q(x̄) is squared inDQ, thenQ(x̄) is squared inD.

PROOF. Assume thatD |= Q(d̄). Since a model ofDQ is a model ofD, we haveDQ |= Q(d̄).
The queryQ(x̄) is squared inDQ, henceQ(d̄)ODQ = t. Now, observe thatOD is an approxima-
tion of DQ that satisfies the condition onK in Proposition 30:P (ā)OD = t iff P (ā)D = t, and
POD = PODQ if P occurs negatively inQ(x̄). It follows thatCertOD

(Q(x̄)) = CertODQ
(Q(x̄)).

Consequently,Q(d̄)OD = t. Thus,Q(x̄) is squared inD.

We now have all the basic material for proving the theorem about squaredness.

PROOFOF THEOREM 7. The theorem states:
A queryQ(x̄) is squared inD when it is of the form∀ȳ : (C1 ∨ · · · ∨ Cn), where eachCi

is a conjunction such that (i) each non-literal conjunctCik
of theCi consists of predicates which

are either positive free inQ(x̄) or two-valued inOD, and (ii) the set of conjunctions is mutually
exclusive w.r.t.OD.

To prove it, observe that if a set of conjunctions is mutually exclusive with respect toOD then it is
also mutually exclusive with respect toODQ . This follows directly fromOD 6pODQ . The theorem
follows then from Proposition A.3 and Proposition A.9.
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Note A.2. Recall that sinceCD 6pOD, we can useCD to check two-valuedness of negatively
bound predicates inOD and mutual exclusiveness of the set of conjunctions inOD.

The class of queries covered by Theorem 7 comprises conjunctions of literals, positive formulas,
and more in general, decision tree-like queries in which the test formulas are two-valued inCD (e.g.,
contain only base predicates ofD) and the leaves consist of conjunctions of database literals and
formulas containing base predicates and (positive occurrences of) positive free predicates ofQ(x̄).

A.2.2 Proving atomicality.We now present conditions for the atomicality ofD andDQ and
derive a large class of squared queries in case of atomicality.

PROPOSITION A.10. For every≺-downward closed set of predicatesP, D|P is atomical if≺ is
cycle-free inP and for eachP ∈ P, D conveys CWI onΨP [x̄].

PROOF. D|P is the union of allD|≺∪ P , for all P ∈ P. By Proposition A.7,D|P is atomical if
eachD|≺∪ P is atomical. The proof is by induction on≺. Assume thatD|≺P is atomical. Since
D conveys CWI on the window of expertise ofP , it follows from Corollary 4 that so doesD|≺P .
D|≺∪ P consists ofD|≺P , all atomsP (ā) in D and

∀x̄ : (Ψ[x̄] ⊃ (P (x̄) ⊃ P (x̄) ∈ D)).

The latter formula is a disjunction consisting of two disjuncts on which there is CWI and a third
atomical disjunct. By, again, Proposition A.7,D|≺∪ P is atomical.

Although the atomicality condition is a strong condition, the above proposition shows that it may
easily arise in the context of locally closed databases. It suffices that the database has CWI on its
own windows of expertise.

ExampleA.5. The following example is based on Example 11. Consider the local closed world
assumptions:

L1 =
{
LCWA(Loc(p, l), (l = Bx ∧ ∃m, id : CarO(p,m, id))),
LCWA(CarO(p,m, id), Loc(p,Bx))

}
Take a locally closed databaseD1 consisting ofL1, the empty relation interpretingLoc andCarO,
and a domain consisting of the locationsQ,Bx, the personLD, carV and car idV 40. This database
conveys no CWI on its windows of expertise. E.g., Lien Desmet (LD) could live in the Bronx
(Loc(LD,Bx)) or not; she could have a car (CarO(LD, V, V 40)) or not. But if she lives in the
Bronx, then she cannot have the car and vice versa. This is to say thatD1 |= ¬Loc(LD,Bx) ∨
¬CarO(LD, V, V 40) whileLit(D1) is empty and does not entail this formula. This shows that this
database is not atomical.

On the other hand consider the following LCWA’s:

L2 = {LCWA(Loc(n, l), t),LCWA(CarO(n,m, id), Loc(n,Bx))}

It is easy to see that each database containingL2 conveys CWI on its windows of expertise and
hence, is atomical. For instance, the databaseD2 obtained fromD1 by substitutingL2 for L1 is
atomical.Lit(D2) contains¬Loc(LD,Bx) and entails¬Loc(LD,Bx) ∨ ¬CarO(LD, V, V 40).

The interest of the atomicality ofD lies in the fact that the large class of Kleene-precise queries
are squared in it. A sufficient reason forD to be atomical is CWI on all windows of expertise.
However, for a Kleene-precise query to be squared, it suffices that there is CWI on a potentially very
small set of windows of expertise. Below we investigate this.

THEOREM A.1 SQUAREDNESS IN ATOMICAL DATABASES. A queryQ(x̄) is squared inD if
(i) ≺ is acyclic inN egB(Q(x̄)) and D conveys CWI on the windows of expertise on eachP ∈
N egB(Q(x̄)) and (ii) all predicates with positive and negative occurrences inQ(x̄) are base pred-
icates ofD.
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PROOF. We first show thatDQ is atomical. The full dependency graph ofDQ is that ofD re-
stricted toN egB(Q(x̄)) and is acyclic. The window of expertise of each positive free predicate in
DQ is the base predicatet. SinceD conveys CWI on the windows of expertise of negatively bound
predicates, so does the stronger theoryDQ. If follows from Proposition A.10 thatDQ is atomical.

SinceQ(x̄) is Kleene-precise inODQ (Proposition A.4), it is squared in the atomical databaseDQ.
By Proposition A.9,Q(x̄) is squared inD.

ExampleA.6. By Theorem A.1, the query¬(Loc(LD,Bx) ∧ CarO(LD, V,B1)) is squared
in the atomical databaseD2 of Example A.5. This query is not squared in the databaseD1 of that
example and cannot be accurately processed in it by the approximate methods. Indeed, it is a Kleene-
precise query and is certainly entailed byD1, but this formula in unknown inOD1 andCD1 . Note
that it is true in the optimal approximation of the atomical databaseD2.

The class of queries covered by Theorem A.1 allows arbitrary quantification. SinceN egB(Q(x̄))
is empty ifQ(x̄) is a positive query, positive queries are covered by this theorem (they were covered
also by Theorem 7).

ExampleA.7. In Example 11 as inD1 of Example A.5, all predicates are positive free for
CarO(n,m, id), and none for¬CarO(n,m, id) sinceCarO depends onLoc.

A.2.3 Proving partial optimality ofCD. We say thatCD is optimal in a predicateP if P CD =
POD . For an accurate answer to a queryQ(x̄) usingCD, it does not suffice that the query is squared.
It should also hold thatP CD is optimal for eachP ∈− Q(x̄). We now present conditions for the
optimality of CD in some set of predicates. We start with a construction proposition showing how
optimality ofCD may propagate from predicates in lower levels of≺− to higher levels.

PROPOSITION A.11. For database predicateP , it holds thatP CD = POD if the following con-
ditions are satisfied:

—ΨP [x̄] is squared inD,

—for each atomP (ā) 6∈ D, if D |= ¬P (ā) thenD |= ΨP [d̄],
—for every predicateQ that occurs negatively inΨP ,QCD = QOD .

PROOF. By the soundness ofCD, it holds for everyā ∈ Domn that if P (ā)CD 6= u, then
P (ā)CD = P (ā)OD . So, let us assume thatP (ā)CD = u. Observe that, in this case,P (ā) 6∈ D.

To show thatP (ā)OD = u, we need to construct two modelsM,M ′ of D such thatM |= P (ā)
andM ′ |= ¬P (ā). SinceP (ā) 6∈ D, we can takeM ′ = D which is indeed a model ofD. Let us
now constructM . By construction ofCD, it holds thatP (ā) 6∈ D andΨP [d̄]CD 6= t. The sentence
ΨP [d̄] is squared inD and by assumption, it holds thatQCD = QOD for each negatively occurring
predicateQ in this formula. Therefore, the conditions of Theorem 6 are satisfied, so there is a model
N of D such thatN |= ¬ΨP [d̄] and this means thatD 6|= ΨP [d̄]. By contraposition of the second
assumption, it follows thatD 6|= ¬P (ā), henceD has a modelM in whichP (ā) is true.

The proposition above reduces the problem of the optimality ofP in CD to the problem of the
optimality of the negatively occurring predicates inP ’s window of expertise. Results from earlier
propositions can be used to determine whetherP ’s window of expertise is squared. For example, if
ΨP is a positive formula, or a formula in which only base predicates occur negatively, thenΨP is
squared inD.

The other condition is thatD |= ¬P (ā) should implyD |= ΨP [d̄]. Equivalently, if¬ΨP [d̄] is
satisfiable inD, then so should beP (ā). This is a condition that one would expect to be satisfied,
given that the “main” axiom ofD aboutP (ā) is as follows:

ΨP [d̄] ⊃ (P (ā) ⊃ P (ā) ∈ D)

and this formula is satisfied in any modelM in whichΨP [d̄] is false, independent of the truth value
of P (ā) in M . Yet, it is possible to engineer examples in which the condition is not satisfied. If we
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start from a modelM of such databases in whichΨP [d̄] is false and we try to updateM to make
P (ā) true, then we cause a chain of forced updates toM with the effect that ultimatelyΨP [d̄] is
made true as well. In such a case, accuracy may indeed be lost, as illustrated below.

ExampleA.8. In the databaseD = ({}, {LCWA(P (x), x = a∧P (a))}) of Example 17, preci-
sion is lost onP (a). We haveD |= ¬P (a) butD 6|= ΨP [a].

ExampleA.9. The databaseD = ({}, {LCWA(P (x),¬Q(x)),LCWA(Q(x), P (x))}) of Ex-
ample 18 is equivalent to∀x : ¬P (x), yetP (d)CD = u, for everyd ∈ HU .

In the two examples above, all conditions of Proposition A.11 are satisfied forP except for the
second condition. In both cases, precision is lost.

Below, we present a simple syntactic condition that guarantees the second condition of Proposi-
tion A.11.

PROPOSITION A.12. If P 6∈+ ΨP (i.e., P has no positive occurrence in its own window of
expertise) and for allQ ≺− P we haveP 6∈+ ΨQ, then for each atomP (ā) such thatD |= ¬P (ā)
we haveD |= ΨP [d̄].

Notice that the first condition is violated in Example 17, and the second condition in Example 18.

PROOF. We will prove the contrapositive, i.e., ifD 6|= ΨP [d̄] thenD 6|= ¬P (ā). Let M be a
model ofD such thatM |= ¬ΨP [d̄]. If P (ā) is true inM , there is nothing to prove. So assume that
P (ā) is false inM . We will modifyM inN such thatN is still a model ofD andP (ā) is true inN .

Consider the setSP = {Q ∈ Σ | P ∈+ ΨQ} ∪ {R ∈ Σ | ∃Q ∈ Σ : P ∈+ ΨQ andQ ≺− R}.
It consists of all predicates that have a positive occurrence ofP in their window of expertise and all
predicates that negatively depend on such predicates. It follows from the condition of the proposition
thatP 6∈ SP . In the windows of expertise of predicatesQ in the complement ofSP , P has only
negative occurrences and predicates ofSP have only positive occurrences.

DefineN as the structure obtained by modifyingM as follows:

—PN = PM ∪ {d̄}, i.e.,P (ā) is made true;

—QN = QD for Q ∈ SP .

This modification increasesP and decreases all predicates ofSP ; i.e.,PM ≤ PN , QN ≤ QM for
Q ∈ SP , andQN = QM otherwise. Thus, formulas with only positive occurrences ofP and only
negative occurrences of predicatesQ ∈ SP have a larger truth value inN than inM .

To verify thatN is a model ofD, it suffices to check thatN satisfies all local closed world
assumptions. Consider any instance of a local closed world assumption:

ϕ ≡ ¬ΨQ[d̄] ∨ ¬Q(d̄) ∨ (Q(d̄) ∈ D)

Each of these formulas is satisfied inM . Let us verify that it is satisfied inN as well. There are four
cases:

—Q = P andd̄ = d̄ (i.e. ΨQ isP ’s window of expertise): in this case,M |= ¬ΨP [d̄]. The formula
¬ΨP [d̄] contains only positive occurrences ofP and only negative occurrences of predicatesQ ∈
SP , hencet = (¬ΨP [d̄])M ≤ (¬ΨP [d̄])N .

—Q = P andd̄ 6= d̄: we have(¬P (d̄) ∨ (P (d̄) ∈ D))M = (¬P (d̄) ∨ (P (d̄) ∈ D))N and¬ΨP [d̄]
contains only positive occurrences ofP and only negative occurrences of predicatesQ ∈ SP ,
hence¬ΨP [d̄]M ≤ ¬ΨP [d̄]N and it follows thatt = ϕM ≤ ϕN .

—Q ∈ SP : N satisfies¬Q(d̄) ∨ (Q(d̄) ∈ D), henceϕN = t = ϕM .

—Q 6∈ SP andQ 6= P : ϕ contains only positive occurrences ofP and only negative occurrences of
predicates ofSP ; hencet = ϕM ≤ ϕN .
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Thus,P should not occur positively in its own window of expertise or of any predicate on which
P negatively depends. This condition is satisfied ifΨP is a positive formula not containingP , or if
P 6≺P , i.e., the full dependency graph has no cycle inP .

The following corollary combines the above propositions.

COROLLARY A.1. For predicateP , it holds thatP CD = POD if the following conditions are
satisfied:

—P 6∈+ ΨP ,

—for all Q ≺− P , P 6∈+ ΨQ,

—ΨP [x̄] is squared inD, and

—for every predicateQ ∈− ΨP ,QCD = QOD .

This corollary reduces the problem of proving optimality ofCD in a predicateP to the problem of
proving optimality ofCD in predicatesQ ∈− ΨP . It allows us to prove the optimality theorem.

PROOF OFTHEOREM 8. The theorem states: LetD = (D,L) be a locally closed database. It
holds thatP CD = POD if ≺- is acyclic in≺-

∪ P
3 and for eachQ ∈ ≺-

∪ P :

—Q 6∈+ ΨQ,

—for all R ≺− Q,Q 6∈+ ΨR,

—ΨQ[x̄] is squared inD.

To prove it, observe that≺− is a strict (well-founded) order on the set≺-
∪ P = {P}∪{Q | Q ≺−

P}. It is easy to see that for each predicate in this set, the first three conditions of Corollary A.1
hold. By iterated application of this corollary along≺−, we obtain thatQCD is optimal, for allQ in
this set. The theorem follows.

ExampleA.10. The windows of expertise in the database of Example 11 and also ofD1 in
Example A.5 are positive formulas. Hence, although≺ is cyclic, the predicatesLoc andCarO
have optimal interpretation inCD. Nevertheless, as shown in Example A.6, the Kleene-precise query
¬(Loc(LD,Bx)∧CarO(LD, V,B1)) can not be answered accurately by the approximate methods
becauseD1 is not atomical.

By a combination of Theorem 8 and Theorem A.1, we also have the following result.

THEOREM A.2 COMPLETENESS IN PARTIALLY ATOMIC DATABASES. It holds that
CertCD(Q(x̄)) = CertD(Q(x̄)) if (i) ≺ is acyclic inN egB(Q(x̄)) and D conveys CWI on
ΨP for eachP ∈ N egB(Q(x̄)) and (ii) only base predicates ofD occur both positively and
negatively inQ(x̄) and inΨP , for eachP ≺− Q(x̄).

PROOF. The conditions of this theorem entail those of Theorem A.1. As a consequence,DQ is
atomical andQ(x̄) is squared inD. Since≺ is acyclic inN egB(Q(x̄)), the acyclicity conditions
of Theorem 8 and Theorem 9 are trivially satisfied, and by the atomicality ofDQ, for each database
predicateP ≺− Q(x̄), ΨP is squared inD. It follows from Theorem 8 thatP CD is optimal for each
P ≺− Q(x̄), and by Theorem A.1 thatCertCD(Q(x̄)) = CertD(Q(x̄)).

B. A CIRCUMSCRIPTIVE APPROACH TO THE LCWA

In this appendix, we consider an alternative approach, based on circumscription [McCarthy 1980;
Lifschitz 1994], for representing the closed-word assumption by second-order formulas. As shown
below, this approach is equivalent to the LCWA representation in Section 2.

Consider, for instance, the expressionLCWA(CarO(x, y, z), x = MC) in the context of Ex-
ample 2. The meaning of this local closed-world assumption may be rephrased by stating that the

3Recall that this set is defined as{P} ∪ {Q|Q≺- P}.
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restriction of the predicateCarO(x, y, z) to the tuples withx = MC should beminimally satis-
fying the database, i.e., no tuples can be deleted from it without falsifying tuples fromD. This
minimization can be expressed through a circumscription-like second order axiom, as given in the
next definition. It is not surprising, therefore, that a variant of the notion of local closed-world as-
sumption presented here has already been expressed in terms of circumscription (see the discussion
on the work of Doherty et al. [2000] in Section 6.)

Definition B.1 pseudo-circumscriptive form of a LCWA. Let θ = LCWA(P (x̄),Ψ[x̄]) be a local
closed-world assumption for a database instanceD. The pseudo-circumscriptive formof θ is the
following (second-order) formula, denotedCD(θ):

∀X :
( ∧

P (d̄)∈D

X(d̄) ⊃
(
∀x̄ :

(
Ψ(x̄) ⊃

(
X(x̄) ⊃ P (x̄))

)
⊃

∀x̄ :
(

Ψ(x̄) ⊃ (P (x̄) ⊃ X(x̄))
)))

,

whereX is a predicate variable with the same arity asP .

CD(θ) is called pseudo-circumscriptive since it differs from a pure circumscription schema by in-
troducing the first-order formulaΨ into the representation. Just as in Definition 4,Ψ represents the
context in whichP should be minimal.

The axiom states that for each relationX that contains all tuples inPD, if X is smaller thanP
within the window of expertise ofP , thenP is smaller than (and hence, identical to)X within this
window. Stated in a contrapositive way, it is impossible to delete fromP a nonempty set of tuples in
P ′s window of expertise without violating the database.

Definition B.2. Let D = (D,L) be a locally closed database. DenoteC(D) the following set of
sentences:

Soundness:
∧

A∈D A

Local Completeness:
∧

θ∈L CD(θ).

Domain Closure Axiom(DCA(DomD)): ∀x : (
∨

C∈DomD x = C)

Unique Name Axiom(UNA(DomD)):
∧

C 6=C′∈DomD C 6= C ′

THEOREM B.1. For every databaseD,M(D) is equivalent toC(D).

PROOF. The two theories are identical with exception of the local completeness axioms. LetM
be any model satisfying the soundness axiom

∧
A∈D A. We will show thatM satisfies

∀x̄ :
(
Ψ(x̄) ⊃

(
P (x̄) ⊃

(
P (x̄) ∈ D

)))
(1)

iff it satisfies

forallX :
( ∧

P (d̄)∈D

X(d̄)

︸ ︷︷ ︸
(a)

⊃
(
∀x̄ :

(
Ψ(x̄) ⊃

(
X(x̄) ⊃ P (x̄)︸ ︷︷ ︸

(b)

)
⊃

∀x̄ :
(

Ψ(x̄) ⊃ (P (x̄) ⊃ X(x̄))︸ ︷︷ ︸
(c)

)))
. (2)

Indeed, suppose first thatM satisfies the formula in (1) and thatM ′ is an extension ofM with an

interpretation forX that satisfies the subformula (a) of (2). To show thatM ′ satisfies (b)⊃(c), we
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show the stronger proposition thatM ′ satisfies (c). LetM ′′ extendM ′ with an arbitrary interpre-
tation for x̄, and assume that it satisfiesΨ[x̄] andP (x̄). Then by the formula in (1),M ′′ satisfies
P (x̄) ∈ D, and by (a), it also satisfiesX(x̄). Hence,M ′ satisfies (c).
For the converse, assume thatM satisfies the formula in (2). ExtendM by interpretingX by the
relationPD. Then the formula (a) is true inM [X : PD]. Moreover, by the soundness axiom,
M [X : PD] satisfies (b), so (c) is true as well. Now, given the value ofX in M [X : PD], the
formula (c) is equivalent to the formula in (1), hence the latter is satisfied inM .

An interesting aspect of the pseudo-circumscriptive formula of Definition B.1 is that it allows to
extend the concept of LCWA to knowledge bases consisting of first-order axioms rather than atoms.
Indeed, assume that the database instanceD is an arbitrary first-order theory. UsingD[P/X] to
denote the substitution of all occurrences inD of atomsP (t̄) by X(t̄), we could then express the
LCWA LCWA(P (x̄),Ψ[x̄]) by the axiom:

∀X :
(
D[P/X] ⊃

(
∀x̄ :

(
Ψ(x̄) ⊃

(
X(x̄) ⊃ P (x̄))

)
⊃ ∀x̄ :

(
Ψ(x̄) ⊃ (P (x̄) ⊃ X(x̄))

)))
.

For instance, consider a disjunctive database withD = {P (A,C) ∨ P (B,C)}, and the assumption
LCWA(P (x, y), y = C). Intuitively, this database expresses thatP (A,C) or P (B,C) is true and
that the set of tuples(x,C) in P is minimal. This means that the only valuex for whichP (x,C) is
true is eitherA orB but not both.
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