
Logical Argumentation by Dynamic Proof Systems

Ofer Arieli Christian Straßer

School of Computer Science Institute of Philosophy II
Tel-Aviv Academic College, Israel Ruhr University Bochum, Germany

Abstract

In this paper we provide a proof theoretical investigation of logical argumentation, where arguments
are represented by sequents, conflicts between arguments are represented by sequent elimination rules,
and deductions are made by dynamic proof systems extending standard sequent calculi. The idea is to
imitate argumentative movements in which certain claims are introduced or withdrawn in the presence
of counter-claims. This is done by a dynamic evaluation of sequences of sequents, in which the latter
are considered ‘derived’ or ‘not derived’ according to the content of the sequence. We show that decisive
conclusions of such a process correspond to well-accepted consequences of the underlying argumentation
framework. The outcome is therefore a general and modular proof-theoretical approach for paraconsistent
and non-monotonic reasoning with argumentation systems.

Keywords: logical argumentation, sequent calculi, dynamic derivations.

1. Introduction

Logical argumentation (sometimes called deductive or structured argumentation) is a logic-based
approach for formalizing debates, disagreements, and entailment relations for drawing conclusions from
argumentation-based settings. Early works on this subject, in the form of defeasible reasoning, may be
traced back to the 1990’s (see [36, 39, 42]). Following Dung’s seminal work on semantics for abstract
argumentation [19] many follow-up studies have emerged in an attempt to deductively formalize Dung’s
and related approaches (see, e.g., [1, 2, 13, 14, 15, 22, 25, 32, 33, 40]). The basic entities in this context are
called arguments. An argument is a pair of a finite set of formulas (Γ, the support set) and a formula (ψ,
the conclusion), expressed in an arbitrary (usually propositional) language, such that the latter follows,
according to some underlying logic, from the former. As indicated in [3] and [6], this gives rise to the
association of arguments with Gentzen’s notion of sequents [24], where an argument is expressed by a
sequent of the form Γ⇒ψ. Accordingly, logical argumentation boils down to the exposition of formalized
methods for reasoning with these syntactical objects.

A first step towards a proof theoretical investigation of sequent-based logical argumentation is done
in [5, 7]. The idea is to consider a generic method of drawing conclusions from a given set of sequent-based
arguments, which is tolerant to different logics, languages, and attack relations among the arguments.
For this, standard Gentzen-style rules that allow to infer new arguments (sequents) from existing ones
are augmented with new rules that allow to exclude arguments that were already derived, in the presence
of derived, opposing arguments. This gives rise to the notion of dynamic proofs (or dynamic derivations),
which are intended for explicating actual non-monotonic flavor of reasoning processes in an argumentation
framework. The main idea behind these formalisms is that, unlike ‘standard’ proof methods, an argument
can be challenged (and possibly withdrawn) by a counter-argument, and so a certain sequent may be
considered as not derived at a certain stage of the proof, even if it were considered derived in an earlier
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stage of the proof. It is only when an argument is ‘finally derived’ (in the sense that will be explained
later on) that it can be safely concluded by the dynamic proof.

In this paper we revise, extend, and improve the work in [5] and [7] (see also Note 4 below).1 To the
best of our knowledge this is the first (archival) paper that provides a comprehensive study on the use of
(extended) Gentzen-type sequent calculi for giving semantics to argumentation theory, and for reasoning
with argumentation frameworks by dynamic Gentzen-style proof systems. Particular attention is payed to
the study of the basic properties and the general theory of these proof systems. Among others, it is shown
that despite of their non-monotonic nature, one may still draw solid conclusions from dynamic derivations,
which are faithful to the intended semantics of the logical argumentation framework at hand. It is also
shown that these derivations preserve some restricted forms of reflexivity, monotonicity, and properly
maintain inconsistent information. In particular, this implies that the entailment relations induced by
the dynamic proof systems for a large class of frameworks are cumulative in the sense of [23, 31]. Finally,
like ‘standard’ proof systems, it is shown that in many cases dynamic proof systems are proof invariant ,
in the sense that if a certain assertion is finally derived by a specific derivation, any dynamic derivation
can be extended to obtain a new derivation in which that assertion is finally derived.

The rest of this paper is organized as follows. In the next section we recall the notion of sequent-based
argumentation and review some related semantic concepts that are used in the context of argumentation
frameworks. Then, in Section 3 we define dynamic proofs and consider some of their basic characteristics.
Examples of such proofs together with some discussion are given in Section 4, and in Section 5 we consider
several properties of the entailment relations that are induced by the dynamic proofs systems. In Section 6
we refer to related work and conclude. Proof invariance and some rationality postulates are shown in the
appendices due to the length of their proofs.

2. Preliminaries

We start by reviewing the notion of sequent-based argumentation. First, we recall the more general
notion of abstract argumentation frameworks.

2.1. Argumentation Frameworks and Their Semantics

Abstract argumentation frameworks are directed graphs, where the nodes represent (abstract) argu-
ments and the arrows represent attacks between arguments, as defined next.

Definition 1. An (abstract) argumentation framework [19] is a pair AF = 〈Args,Attack〉, where Args is
an enumerable set of elements, called arguments, and Attack is a binary relation on Args, whose instances
are called attacks.

Given an argumentation framework, a key issue in its understanding is to determine what combinations
of arguments (called extensions) can be collectively accepted from it. For this we recall the notions of
conflict-freeness and defense [19].

Definition 2. Let AF = 〈Args,Attack〉 be an argumentation framework, A ∈ Args an argument, and
E ⊆ Args a set of arguments.

• We say that E attacks A if there is an argument B ∈ E that attacks A (i.e., (B,A) ∈ Attack). The
set of arguments that are attacked by E is denoted E+.

1In this paper we provide further discussions, examples, and full proofs to the results in [5, 7]. Also, Section 4.2 and
some parts of Section 5, on the properties of the derivation systems and of the induced entailment relations, have not been
presented before.
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• We say that E defends A if E attacks every argument that attacks A. We denote by Def(E) the set
of all the elements that are defended by E .

• The set E is called conflict-free if it does not attack any of its elements (i.e., E+∩E = ∅), E is called
admissible if it is conflict-free and defends all of its elements (i.e., E ⊆ Def(E)), and E is complete
if it is admissible and contains all the arguments that it defends (i.e., E = Def(E)).

The requirements defined above express basic properties that every plausible extension of a framework
should have. Intuitively, a set of arguments is conflict-free if all of its elements ‘can stand together’ (since
they do not attack each other), and admissibility guarantees that such elements ‘can stand on their own’,
i.e., they are able to respond to any attack by their own attack (see also [9, 11]).

Next, we recall some acceptability semantics for an argumentation framework.

Definition 3. Let AF = 〈Args,Attack〉 be an argumentation framework.

• The minimal complete subset of Args is called the grounded extension of AF .

• A maximal complete subset of Args is called a preferred extension of AF .

• A complete subset E of Args that attacks every argument in Args − E is a stable extension of AF .

We denote by Cmpl(AF) (respectively, Grnd(AF), Prf(AF), Stbl(AF)) the set of all the complete (re-
spectively, all the grounded, preferred, stable) extensions of AF .2

Example 1. Consider the following argumentation framework:

A B C 

D 

E 

Here ∅, {A}, {B} and {B,D} are admissible sets, and except of {B} all of them are also complete. The
grounded extension is ∅, the preferred extensions are {A} and {B,D}, and the stable extension is {B,D}.

2.2. Sequent-Based Argumentation Frameworks

As indicated previously, in this paper we consider structured argumentation, a specific kind of argu-
mentation framework, in which the arguments are not just abstract entities, but represent some assertions
(in a given language) that are obtained by a logical correspondence between a set of formulas (the as-
sumptions, or the support set) and a formula (the conclusion). Clearly, this requires the availability of
some underlying logic for determining those correspondences. This is what we do next.

In what follows, we shall denote by L an arbitrary propositional language. Atomic formulas in L are
denoted by p, q, r, arbitrary sets of formulas in L are denoted by S, T , and finite sets of formulas are
denoted by Γ, ∆.

Definition 4. A (propositional) logic for a language L is a pair L = 〈L,`〉, where ` is a (Tarskian)
consequence relation for L, that is, a binary relation between sets of formulas and formulas in L, satisfying
the following conditions:

2Properties of these extensions can be found in [19]. Further extensions are considered, e.g., in [9, 10, 11].
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Reflexivity : {ψ} ` ψ.

Monotonicity : if S ` ψ and S ⊆ S ′, then S ′ ` ψ.

Transitivity : if S ` ψ and S ′, ψ ` φ then S,S ′ ` φ.

In addition, we shall assume that L satisfies the following (standard) conditions:

Structurality : if S ` ψ then θ(S) ` θ(ψ) for every L-substitution θ.

Non-triviality : there are a non-empty set S and a formula ψ such that S 6` ψ.

Finiteness:: if S ` ψ then there is a finite set Γ ⊆ S such that Γ ` ψ.

Structurality assures that inferences are closed under substitutions. Non-triviality excludes trivial
logics and (together with structurality) prevents some anomalies, like the inference of an atom q from
a distinct atom p. Finiteness is essential for practical reasoning and is satisfied by any logic that has a
decent proof system. Its usefulness is demonstrated, e.g., in Note 1 below.

In what follows we shall assume that the language L contains at least the following connectives:

• a `-negation ¬, satisfying: p 6` ¬p and ¬p 6` p (for every atomic p), and

• a `-conjunction ∧, satisfying: S ` ψ ∧ φ iff S ` ψ and S ` φ.

For a finite set of formulas Γ we denote by
∧

Γ the conjunction of all the formulas in Γ.

The Tarskian properties impose reasonable constraints on rational reasoners and how they are ex-
pected to support their claims (For instance, the arguments in the proofs of most of the papers, including
this one, are based on classical logic). Thus, in Section 2.2.1 we use the base (Tarskian) logic at hand
for constructing arguments. Then, on top of this, in Sections 2.2.2 and 2.2.3 we define non-monotonic
(argumentation-based) entailments that allow to revise conclusions and reason in the presence of conflicts.

2.2.1. Arguments as Sequents

Logical arguments may be defined in different ways. Following the discussions in [3] and [6], arguments
are represented here by the well-known proof-theoretical notion of sequents [24].3

Definition 5. Let L = 〈L,`〉 be a propositional logic and S a set of L-formulas.

• An L-sequent (a sequent, for short) is an expression of the form Γ⇒ ∆, where Γ and ∆ are finite
sets of L-formulas, and ⇒ is a new symbol (not in the language L).

• An L-argument (an argument, for short) is an L-sequent of the form Γ⇒ ψ, where Γ ` ψ.

• An L-argument based on S is an L-argument Γ ⇒ ψ, where Γ ⊆ S. We say that Γ is the support
set of Γ ⇒ ψ, and that ψ is its conclusion. The set of all the L-arguments that are based on S is
denoted ArgL(S).

An argument Γ⇒ ψ is tautological (for L) if Γ = ∅, and it is contradictory (for L) if ψ ` ¬ψ.

3As explained in [3, 6], this allows us to consider arguments in an abstract and modular way, where, for instance,
the consistency and minimality restrictions that are posed in some other formalisms on the arguments’ supports (see,
e.g., [13, 14]) can be lifted, non-classical logics may serve as the underlying formalisms, and known methodologies and
techniques from proof theory may be incorporated.
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Note 1. Clearly, Γ⇒ ψ ∈ ArgL(S) for some (finite) Γ ⊆ S, iff S ` ψ.

Proof systems that operate on sequents (and so on arguments) are called sequent calculi [24]. The
sequent calculi considered here consist of inference rules of the form

Γ1 ⇒ ∆1 . . . Γn ⇒ ∆n

Γ⇒ ∆
. (1)

In what follows we shall say that the sequents Γi ⇒ ∆i (i = 1, . . . , n) are the conditions (or the prereq-
uisits) of the rule above, and that Γ⇒ ∆ is its conclusion.4

In the sequel we shall usually assume that the underlying logic has a sound and complete sequent
calculus, that is, a sequent-based proof system C, such that Γ ` ψ iff the sequent Γ⇒ ψ is provable in C.

Example 2. In this paper we shall mostly use classical logic (CL) for our demonstrations. Gentzen’s
well-known sequent calculus LK, which is sound and complete for CL, is represented in Figure 1.

Axioms: ψ ⇒ ψ

Structural Rules:

Weakening:
Γ⇒ ∆

Γ,Γ′ ⇒ ∆,∆′

Cut:
Γ1 ⇒ ∆1, ψ Γ2, ψ ⇒ ∆2

Γ1,Γ2 ⇒ ∆1,∆2

Logical Rules:

[∧⇒]
Γ, ψ, ϕ⇒ ∆

Γ, ψ ∧ ϕ⇒ ∆
[⇒∧]

Γ⇒ ∆, ψ Γ⇒ ∆, ϕ

Γ⇒ ∆, ψ ∧ ϕ

[∨⇒]
Γ, ψ ⇒ ∆ Γ, ϕ⇒ ∆

Γ, ψ ∨ ϕ⇒ ∆
[⇒∨]

Γ⇒ ∆, ψ, ϕ

Γ⇒ ∆, ψ ∨ ϕ

[⊃⇒]
Γ⇒ ψ,∆ Γ, ϕ⇒ ∆

Γ, ψ ⊃ ϕ⇒ ∆
[⇒⊃]

Γ, ψ ⇒ ϕ,∆

Γ⇒ ψ ⊃ ϕ,∆

[¬⇒]
Γ⇒ ∆, ψ

Γ,¬ψ ⇒ ∆
[⇒¬]

Γ, ψ ⇒ ∆

Γ⇒ ∆,¬ψ

Figure 1: The proof system LK

Thus, when CL is the underlying logic, one may derive (e.g., by LK) any argument that corresponds
to a classically valid entailment, like CL-tautological arguments obtained by the rule of excluded middle
(⇒ ψ ∨ ¬ψ), arguments that correspond to the Disjunctive Syllogism (ψ,¬ψ ∨ φ⇒ φ), and so on.

2.2.2. Attacks as Elimination Rules

Different attack relations have been considered in the literature for logical argumentation frameworks
(see, e.g., [13, 25, 36]). In our case, attacks allow for the elimination (or, the discharging) of sequents.

4As usual, axioms are treated as inference rules without conditions, i.e., they are rules of the form
Γ⇒∆

.
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We shall denote by Γ 6⇒ ψ the elimination of the sequent Γ⇒ψ. Alternatively, s denotes the elimination
of s. Now, a sequent elimination rule (or attack rule) has a similar form as an inference rule, expect that
its conclusion is a renouncing of one of its conditions (For clarity, the renounced sequent will be the last
condition of the rule). Thus, elimination rules are of the following form:

Γ1 ⇒ ∆1 . . . Γn ⇒ ∆n

Γn 6⇒ ∆n
. (2)

The prerequisites of attack rules usually consist of three ingredients. We shall usually say that the first
sequent in the rule’s prerequisites is the “attacking” sequent, the last sequent in the rule’s prerequisites
is the “attacked” sequent, and the other prerequisites are the conditions for the attack. In this view,
conclusions of sequent elimination rules are the eliminations of the attacked arguments.

Example 3. Figure 2 lists some elimination rules in the context of logical argumentation systems (see
also [6]). Other attack rules, e.g. for deontic logics and normative reasoning, can be found in [44, 45].
Relations between these rules and a study of some of their properties are given in [6] and [25].

2.2.3. Argumentation Settings and the Induced Logical Frameworks

We now combine sequents and elimination rules for defining corresponding argumentation frameworks.
For this, we need the following definition.

Definition 6. An argumentation setting (a setting, for short) is a triple S= 〈L,C,A〉, where L= 〈L,`〉
is a propositional logic, C is a sound and complete sequent calculus for L, and A is a set of attack rules
expressed in terms of L-sequents.

Definition 7. Let S = 〈L,C,A〉 be a setting, S a set of formulas, and θ an L-substitution (i.e., a function
representing replacements, in L-formulas, of atomic formulas by L-formulas).

• An inference rule R of the form of (1) above is applicable (for S, with respect to θ), if for every
1 ≤ i ≤ n, θ(Γi)⇒ θ(∆i) is C-provable.

• An elimination rule R of the form of (2) above is ArgL(S)-applicable (for S, with respect to θ),
if θ(Γ1) ⇒ θ(∆1) and θ(Γn) ⇒ θ(∆n) are in ArgL(S) and for each 1 < i < n, θ(Γi) ⇒ θ(∆i) is
C-provable.

In the second case above we shall say that θ(Γ1) ⇒ θ(∆1) R-attacks θ(Γn) ⇒ θ(∆n). Note that the
attacker and the attacked sequents must be elements of ArgL(S) (in order to prevent ‘irrelevant attacks’
by arguments whose support sets do not belong to S).

Example 4. Suppose that {p,¬p} ⊆ S. When CL is the underlying logic, the sequents p ⇒ p and
¬p⇒ ¬p attack each other according to Undercut (as well as according to other rules in Figure 2), while
the tautological sequent ⇒ ψ ∨ ¬ψ is not Undercut-attacked by any sequent in ArgCL(S), since it has an
empty support set.

The induced argumentation framework is now defined as follows:

Definition 8. Let S = 〈L,C,A〉 be an argumentation setting and let S be a set of formulas. The
sequent-based (logical) argumentation framework for S (induced by S) is the argumentation framework
AFS(S) = 〈ArgL(S),Attack〉, where (s1, s2) ∈ Attack iff there is an R ∈ A such that s1 R-attacks s2.

In what follows, somewhat abusing the notations, we shall sometimes identify Attack with A.
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Defeat: [Def]
Γ1 ⇒ ψ1 ψ1 ⇒ ¬

∧
Γ2 Γ2 ⇒ ψ2

Γ2 6⇒ ψ2

Compact Defeat: [C-Def]
Γ1 ⇒ ¬

∧
Γ2 Γ2 ⇒ ψ2

Γ2 6⇒ ψ2

Direct Defeat: [D-Def]
Γ1 ⇒ ψ1 ψ1 ⇒ ¬φ Γ2, φ⇒ ψ2

Γ2, φ 6⇒ ψ2

Indirect Defeat: [I-Def]
Γ1 ⇒ ψ1 ψ1 ⇒ ¬

∧
Γ2 Γ2,Γ

′
2 ⇒ ψ2

Γ2,Γ′2 6⇒ ψ2

Compact Direct Defeat: [CD-Def]
Γ1 ⇒ ¬φ Γ2, φ⇒ ψ2

Γ2, φ 6⇒ ψ2

Compact Indirect Defeat: [CI-Def]
Γ1 ⇒ ¬

∧
Γ2 Γ2,Γ

′
2 ⇒ ψ2

Γ2,Γ′2 6⇒ ψ2

Undercut: [Ucut]
Γ1 ⇒ ψ1 ψ1 ⇒ ¬

∧
Γ2 ¬

∧
Γ2 ⇒ ψ1 Γ2,Γ

′
2 ⇒ ψ2

Γ2,Γ′2 6⇒ ψ2

Compact Undercut: [C-Ucut]
Γ1 ⇒ ¬

∧
Γ2 Γ2,Γ

′
2 ⇒ ψ2

Γ2,Γ′2 6⇒ ψ2

Direct Undercut: [D-Ucut]
Γ1 ⇒ ψ1 ψ1 ⇒ ¬γ2 ¬γ2 ⇒ ψ1 Γ2, γ2 ⇒ ψ2

Γ2, γ2 6⇒ ψ2

Compact Direct Undercut: [CD-Ucut]
Γ1 ⇒ ¬γ2 Γ2, γ2 ⇒ ψ2

Γ2, γ2 6⇒ ψ2

Canonical Undercut: [Ca-Ucut]
Γ1 ⇒ ψ1 ψ1 ⇒ ¬

∧
Γ2 ¬

∧
Γ2 ⇒ ψ1 Γ2 ⇒ ψ2

Γ2 6⇒ ψ2

Rebuttal: [Reb]
Γ1 ⇒ ψ1 ψ1 ⇒ ¬ψ2 ¬ψ2 ⇒ ψ1 Γ2 ⇒ ψ2

Γ2 6⇒ ψ2

Compact Rebuttal 1: [C-Reb-1]
Γ1 ⇒ ¬ψ2 Γ2 ⇒ ψ2

Γ2 6⇒ ψ2

Compact Rebuttal 2: [C-Reb-2]
Γ1 ⇒ ψ2 Γ2 ⇒ ¬ψ2

Γ2 6⇒ ¬ψ2

Defeating Rebuttal: [D-Reb]
Γ1 ⇒ ψ1 ψ1 ⇒ ¬ψ2 Γ2 ⇒ ψ2

Γ2 6⇒ ψ2

Reductio Defeating Rebuttal: [RD-Reb]
Γ1 ⇒ ψ1 ψ2 ⇒ ¬ψ1 Γ2 ⇒ ψ2

Γ2 6⇒ ψ2

Indirect Rebuttal: [I-Reb]
Γ1 ⇒ ψ1 ψ1 ⇒ ϕ ψ2 ⇒ ¬ϕ Γ2 ⇒ ψ2

Γ2 6⇒ ψ2

Figure 2: Sequent elimination rules
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Example 5. Consider the argumentation setting S = 〈CL, LK,Ucut〉, based on classical logic CL, its
sequent calculus LK (Figure 1), and Undercut as the sole attack rule (Figure 2). Let S1 = {p,¬p, q}.
The figure below is part of the graphic representation of AFS(S1). Here, nodes represent arguments (in
ArgCL(S)), and a directed edge from node n1 to node n2 indicates that the argument that is represented
by node n1 Ucut-attacks the argument that us represented by node n2.

p pp  p

p,pq  ppq  q

We conclude this section with a definition of some useful properties that a sequent-based argumenta-
tion framework AFS(S) = 〈ArgL(S),Attack〉 may have. Some of these properties will be needed in the
sequel for considering (and proving) different characteristics of dynamic derivations and the entailment
relations induced by them (see, for instance, Definition 20, Proposition 6, and its proof in Appendix A.

Definition 9. Let AFS(S) = 〈ArgL(S),Attack〉 be a (sequent-based) argumentation framework, ∼ an
equivalence relation on ArgL(S), and ≡ an equivalence relation on L. We define the following properties
of AFS(S):

• Preservation of tautological arguments: {⇒ψ | ⇒ψ ∈ ArgL(S)} ⊆ ArgL(S)− ArgL(S)+.

• Irreflexivity : Attack is irreflexive.

• Acyclicity : There is no odd-length cycle of attacks in Attack : if (s1, s2), (s2, s3), . . . , (s2n, s2n+1) ∈
Attack for some n ∈ N, then (s2n+1, s1) 6∈ Attack .

• Non-transitivity: Attack is non-transitive.

• Symmetry : Attack is symmetric.

• Symmetry modulo ∼: If (s1, s2) ∈ Attack then (s′2, s
′
1) ∈ Attack for some s′1 ∼ s1 and s′2 ∼ s2.

• Left invariance modulo ∼: If (s1, s2) ∈ Attack then (s′1, s2) ∈ Attack for every s′1 ∼ s1.

• Right invariance modulo ∼: If (s1, s2) ∈ Attack then (s1, s
′
2) ∈ Attack for every s′2 ∼ s2.

• Support invariance modulo ≡: If (Γ1 ⇒ ψ1,Γ2 ⇒ ψ2) ∈ Attack , then

a) (Γ′1 ⇒ ψ1,Γ2 ⇒ ψ2) ∈ Attack for every Γ′1 ⊆ S such that
∧

Γ′1 ≡
∧

Γ1, and

b) (Γ1 ⇒ ψ1,Γ
′
2 ⇒ ψ2) ∈ Attack for every Γ′2 ⊆ S such that

∧
Γ′2 ≡

∧
Γ2.

• Conclusion invariance modulo ≡: If (Γ1 ⇒ ψ1,Γ2 ⇒ ψ2) ∈ Attack , then

a) (Γ1 ⇒ ψ′1,Γ2 ⇒ ψ2) ∈ Attack for every ψ′1 ≡ ψ1, and

b) (Γ1 ⇒ ψ1,Γ2 ⇒ ψ′2) ∈ Attack for every ψ′2 ≡ ψ2.

Note 2. Concerning the properties in Definition 9, we note that:
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1. Preservation of tautological arguments means that tautological arguments are not attacked, Acyclic-
ity generalizes Irreflexivity to any cycle of attacks whose length is odd, Non-transitivity assures that
no sequent attacks and defends another sequent at the same time, Symmetry modulo ∼ is weaker
than symmetry, as it allows to exchange the attacking and the attacked arguments only by some of
their ∼-equivalent arguments.

2. When AFS(S) is left [right] invariant modulo ∼ we shall say that ∼ is left [right ] congruent on
AFS(S).5 Indeed, this notion can be expressed in terms of invariance relations (see [34]), where
for every s ∈ ArgL(S) and Rs = {t ∈ ArgL(S) | (t, s) ∈ Attack}, ∼ is a right congruence on
(ArgL(S),Attack) iff ∼ is invariant on {Rs | s ∈ ArgL(S)}.

3. A common way to define ≡ is by logical equivalence. The relation ∼ may be defined in some cases
by logical equivalence on the arguments’ support sets (see, e.g., the next example and Example 15).

Example 6. Let AFS(S) = 〈ArgL(S),Attack〉 be an argumentation framework induced by a setting S
in which A consists of any of the attack rules in Figure 2, except the rebuttals and the direct attacks.
Let ∼ be an equivalence relation on ArgL(S), defined by Γ1⇒ψ1 ∼ Γ2⇒ψ2 iff Γ1 = Γ2. Then AFS(S)
is right invariant modulo ∼ (alternatively, ∼ is a right congruence on (ArgL(S),Attack)).

The above properties of argumentation frameworks may be attached to specific attack rules as follows.

Definition 10. An elimination rule R is irreflexive (respectively: tautology preserving , acyclic, non-
transitive, symmetric, etc.) with respect to a logic L = 〈L,`〉, if for every set S of L-formulas and
for every calculus C which is sound and complete for L, the argumentation framework AFS(S) for
S = 〈L,C, {R}〉 is irreflexive (respectively: tautology preserving , acyclic, non-transitive, symmetric,
etc.).

3. Dynamic Proofs

We now consider the notions of proofs (or derivations) for argumentation settings. Such proofs are
meant to indicate what assertions may be concluded from a given argumentation framework. Intuitively,
the idea is that, given an argumentation framework AFS(S) where S = 〈L,C,A〉, dynamic proofs are
sequences of tuples constructed by applications of inference rules from C and eliminating rules from A.
This allows to provide derivations for sequents of the form Γ ⇒ ψ for some Γ ⊆ S, in which case ψ is
regarded an argumentative consequence of S (with respect to the setting S).

In what follows we fix a given setting S= 〈L,C,A〉, thus the underlying logic, a Gentzen-type proof
system for it, and the elimination rules, are pre-determined.

Definition 11. A (proof) tuple (also called derivation step or proof step) is a quadruple 〈i, s, J,A〉, where
i (the tuple’s index) is a natural number, s (the tuple’s sequent) is either a sequent or an eliminated
sequent, J (the tuple’s justification) is a string, and A (the tuple’s attacker) is the emptyset or a singleton
of a sequent.6

As noted previously, unlike ‘standard’ Gentzen-type systems, dynamic proofs may consist not only of
applications of rules for introducing new sequents, but also applications of rules for eliminating sequents.
This is defined next.

5In the terminology of Yeh ([47, p.10]) this means that ∼ is a weak congruence of type III on the graph
(ArgL(S),AttackT ), where AttackT = {(s, t) | (t, s) ∈ Attack}.

6In what follows we shall sometimes omit the last component of a tuple in case that it is the emptyset, and omit the set
signs (the parentheses) in case that it is a singleton.
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Definition 12. Let S=〈L,C,A〉 be a setting and S a set of formulas in L. A simple (dynamic) derivation
(with respect to S and S) is a finite sequence D = 〈T1, . . . Tm〉 of proof tuples, where each Ti ∈ D is of
one of the following forms:

• Ti = 〈i, θ(Γ)⇒ θ(∆), J, ∅〉, where there is an inference rule R ∈ C of the form of (1) above that is
applicable for some L-substitution θ, and for every 1 ≤ k ≤ n there is a proof tuple 〈ik, sk, Jk, ∅〉 in
which ik < i and sk is the sequent θ(Γk)⇒ θ(∆k). In this case, J =“R; i1, . . . , in”. In what follows
we shall call Ti an introducing tuple.

• Ti = 〈i, θ(Γn) 6⇒ θ(∆n), J, θ(Γ1)⇒ θ(∆1)〉, where there is an elimination rule R ∈ A of the form
of (2) above that is ArgL(S)-applicable for some L-substitution θ,7 and for every 1 ≤ k ≤ n there is
a proof tuple 〈ik, sk, Jk, ∅〉, in which ik < i and sk = θ(Γk)⇒ θ(∆k). In this case, J =“R; i1, . . . , in”.
In what follows we shall call Ti an eliminating tuple.

In the sequel we shall sometimes identify introducing tuples with their derived sequents and eliminating
tuples with their eliminated sequents.

Example 7. Consider again the argumentation framework AFS(S1) from Example 5, in which S =
〈CL, LK,Ucut〉 and S1 = {p,¬p, q}. Below is a simple derivation with respect to S and S1. To simplify
the reading, in this and other derivations in the rest of the paper we shall sometimes use abbreviations
or omit some details, e.g. the tuple signs in proof steps.

1. p⇒ p Axiom

2. ⇒ p,¬p [⇒¬], 1

3. ⇒ p ∨ ¬p [⇒∨], 2

4. p ∨ ¬p⇒ ¬(p ∧ ¬p) . . .

5. ¬(p ∧ ¬p)⇒ p ∨ ¬p . . .

6. q ⇒ q Axiom

7. ¬p⇒ ¬p Axiom

8. p 6⇒ p Ucut, 7, 7, 7, 1 ¬p⇒ ¬p
9. p⇒ ¬¬p . . .

10. ¬¬p⇒ p . . .

11. ¬p 6⇒ ¬p Ucut, 1, 9, 10, 7 p⇒ p

Note that in this derivation Tuples 8 and 11 are eliminating while the other tuples are introducing.

Given a simple derivation D, we shall denote by Top(D) the tuple with the highest index in D and
by Tail(D) the simple derivation D without Top(D). Also, we shall denote by D′ = D ⊕ 〈T1, . . . , Tn〉 the
simple derivation whose prefix is D and whose suffix is 〈T1, . . . , Tn〉 (Thus, for instance, when n = 1 we
have that T = Top(D ⊕ T ) and D = Tail(D ⊕ T )). We call D′ the extension of D by 〈T1, . . . , Tn〉.

To indicate that the validity of a derived sequent (in a simple derivation) is in question due to attacks
on it, we need the following evaluation process.

7Remember that this means, in particular, that the attacking sequent θ(Γ1)⇒ θ(∆1) and the attacked sequent θ(Γn)⇒
θ(∆n) are both in ArgL(S). This prevents situations in which, e.g., ¬p⇒ ¬p attacks p⇒ p, although S = {p}.
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Definition 13. Given a simple derivation D, the iterative top-down function Evaluate(D) given in Fig-
ure 3, computes the following three sets: Elim(D) – the sequents that (at least once in D) are attacked
by an attacker which is not already attacked, Attack(D) – the sequents that attack a sequent in Elim(D),
and Accept(D) – the derived sequents in D that are not in Elim(D).

function Evaluate(D) /* D – a simple derivation */

Attack := ∅; Elim := ∅; Derived := ∅;
while (D is not empty) do {

if (Top(D) = 〈i, s, J, ∅〉) then /* Top(D) is an introducing tuple */

Derived := Derived ∪ {s};

if (Top(D) = 〈i, s, J, r〉) then /* Top(D) is an attacking tuple */

if (r 6∈ Elim) then Elim := Elim ∪ {s} and Attack := Attack ∪ {r};

D := Tail(D); }

Accept := Derived − Elim;

return (Attack, Elim, Accept)

Figure 3: Evaluation of a simple derivation

Example 8. Consider the simple derivation in Example 7.

• After Step 6 of the derivation we have that q ⇒ q and p ⇒ p are in Derived and no sequent is in
Elim, thus both of these sequents are also in Accept.

• After Step 8 of the derivation we still have that q ⇒ q ∈ Accept, and now also ¬p⇒ ¬p ∈ Accept.
However, p⇒ p is in Elim (since it is attacked by ¬p⇒ ¬p ∈ Attack).

• After Step 11 of the derivation q ⇒ q remains in Accept, while the statuses of the other two sequents
are reversed: p⇒ p ∈ Accept while ¬p⇒ ¬p ∈ Elim.

Using the sets in the last definition (and algorithm), we can now specify a condition for the coherence
of a derivation. Intuitively, it assures that eliminating tuples represent ‘firm’ attacks: there is no sequent
in the underlying derivation that eliminates another sequent, and later on is eliminated itself.

Definition 14. A simple derivation D is coherent , if Attack(D) ∩ Elim(D) = ∅.

Example 9. The simple derivation in Example 7 is coherent.

Next, we show that the evaluation process (in Figure 3) for a derivation D is adequate in terms of the
argumentation framework that is induced by D.

Definition 15. LetD be a simple derivation. The sequent-based argumentation framework that is induced
by D is the graph AF(D) = 〈Derived(D),Attack(D)〉, where s ∈ Derived(D) if there is an introducing
tuple 〈i, s, J, ∅〉 in D, and (r, s) ∈ Attack(D) if there is an eliminating tuple 〈i, s, J, r〉 in D.8

8Note that while Derived(D) is the same as the set Derived(D) produced by the function Evaluate(D) (in Figure 3),
Attack(D) is not the same as the set Attack(D) produced by that function, since here just the existence of an eliminating
tuple merits a directed edge from the attacker to the attacked sequent, no matter whether the attacker is counter-attacked.
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Proposition 1. For every simple derivation D the set Accept(D) is conflict-free in AF(D). If D is
coherent, Accept(D) is a stable extension of AF(D).

Proof. If Accept(D) is not conflict-free in AF(D) then there are s, t ∈ Accept(D) such that 〈i, s, J, t〉 ∈ D
for some i ∈ N and some justification J. Since t is accepted, it is not eliminated, and so by the evaluation
algorithm s is eliminated, in a contradiction to the assumption that s is also accepted.

Suppose now that D is coherent. We have to show that Accept(D) is admissible, complete, and stable
(that is, Accept(D) ∪ Accept(D)+ = Derived(D)).

(I) Accept(D) is admissible: Suppose that there is some s ∈ Accept(D) that is attacked by t, i.e.,
there is Ti = 〈i, s, J, t〉 ∈ D. Since s 6∈ Elim(D) (because it is accepted), t must be in Elim(D). This
means that there is some j > i such that Tj = 〈j, t, J, r〉 ∈ D for some r 6∈ Elim(D). It follows that
r ∈ Attack(D) and since D is coherent, r is not eliminated later on (i.e., in the remaining j iterations
of the evaluation algorithm). Thus, r ∈ Accept(D), which means that the attacker (t) of s is attacked
by an element (r) of Accept(D). Thus s ∈ Def(Accept(D)), and so Accept(D) ⊆ Def(Accept(D)).

(II) Accept(D) is complete: Suppose that s ∈ Def(Accept(D)). Then for every proof tuple Ti =
〈i, s, J, t〉 ∈ D there is a proof tuple Tj = 〈j, t, J, r〉 ∈ D and r ∈ Accept(D). Now,

– If j > i then since r 6∈ Elim(D) we have that t ∈ Elim(D), and so s is not eliminated.

– If i > j then either t ∈ Elim(D) and again s is not eliminated, or t 6∈ Elim(D), thus t ∈ Attack(D)
(because of Ti) and t ∈ Elim(D) (because of Tj), and so D is not coherent, in contradiction to
our assumption.

By the two items above, if s is attacked in D, its attacker must be in Elim(D), and so s ∈ Accept(D).
Thus, Def(Accept(D)) ⊆ Accept(D), and by the admissibility of Accept(D), Def(Accept(D)) =
Accept(D).

(II) Accept(D) is stable: In other words, Accept(D) ∪ Accept(D)+ = Derived(D). Since Derived(D) =
Accept(D) ∪ Elim(D), it is enough to show that Accept(D)+ coincides with Elim(D). Indeed,

– To see that Elim(D) ⊆ Accept(D)+, let s ∈ Elim(D). Hence, there is an attacking tuple
T = 〈i, s, J, t〉 ∈ D and when the algorithm reaches T , we have that t 6∈ Elim(D). Thus
t ∈ Attack(D), and since D is coherent, t 6∈ Elim(D) also when the algorithm terminates. It
follows that t ∈ Accept(D), and so s ∈ Accept(D)+.

– To see that Accept(D)+ ⊆ Elim(D), let s ∈ Accept(D)+. Then there is a tuple T = 〈i, s, J, t〉 ∈
D such that t ∈ Accept(D). Since D is coherent, at the end of the execution of the algorithm
t 6∈ Elim(D). Thus, since Elim(D) grows monotonically during the execution, in particular
t 6∈ Elim(D) when the algorithm reaches the tuple T . It follows that s ∈ Elim(D). 2

Interestingly, the following proposition also holds:

Proposition 2. Let D be a simple derivation. If E is a stable extension of AF(D) then there is a
coherent simple derivation D′ such that AF(D′) = AF(D) and E = Accept(D′).

Proof. Let D be a simple derivation and E a stable extension of the sequent-based argumentation
framework AF(D) = 〈Derived(D),Attack(D)〉 that is induced by D. Consider a simple derivation D′
which is a concatenation of the following sequences D′1⊕D′2⊕D′3, where D′1 contains the tuples introducing
the sequents in Derived(D), D′3 consists of tuples of the form 〈i, s, J, t〉 where t ∈ E and s ∈ E+, and D′2
consists of the attacking tuples for the other elements in Attack(D) (the order of the elements in D′2 and
in D′3 may be arbitrary, and some of these sequences may be empty for some D′). Now, by the definition
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of D′, clearly AF(D′) = AF(D). Also, since E is stable, E+ = Derived(D) − E = Derived(D′) − E , and
so when the algorithm completes its pass over D′3 it holds that Attack = E and Elim = Derived(D′)− E .
Clearly, the other tuples will not affect these sets, thus D′ is coherent (since Accept(D′) ∩ Elim(D′) = ∅)
and Accept(D′) = Derived(D)− Elim(D) = E . 2

Together, Propositions 1 and 2 show a correspondence between the accepted sets of coherent simple
derivations and the stable models of the sequent-based argumentation frameworks that are induced by
those derivations.

Now we are ready to define derivations in a dynamic proof system.

Definition 16. Let S = 〈L,C,A〉 be an argumentation setting and let S be a set of formulas in L. A
(dynamic) derivation (for S, based on S) is a simple derivation D (with respect to S and S) of one of
the following forms:

a) D = 〈T 〉, where T = 〈1, s, J, ∅〉 is a proof tuple.

b) D is an extension of a dynamic derivation by a sequence 〈T1, . . . , Tn〉 of introducing tuples (of the
form 〈i, s, J, ∅〉), whose derived sequents (the s’s) are not in Elim(D).

c) D is an extension of a dynamic derivation by a sequence 〈T1, . . . , Tn〉 of eliminating tuples (of the
form 〈i, s, J, r〉), such that:

(i) D is coherent: Attack(D) ∩ Elim(D) = ∅, and

(ii) the new attacking sequents (the r’s) are not A-attacked by sequents in Accept(D) ∩ ArgL(S),
where the attack is based on prerequisit conditions in D.

Note 3. Conditions (i) and (ii) of Definition 16(c) assure that the attacks of the derivation are ‘sound’:
by coherence neither of the attacking sequents of the additional elimination tuples is in Elim(D), and by
Condition (ii) they are not attacked by an accepted S-based sequent. As we show below (see Footnote 13),
these two conditions are not dependent.

Dynamic derivations are therefore simple derivations that are progressed (i.e., extended) in a restricted
manner. Accordingly, after each extension the status of the derived sequents is updated. Thus, derived
sequents may be eliminated (“marked as unreliable”) in light of new proof tuples, but also the other
way around is possible: an eliminated sequent may be ‘restored’ if its attacking tuple is counter-attacked
by a new eliminating tuple. It follows that previously derived data may not be derived anymore (and
vice-versa) until and unless new derived information revises the state of affairs.

Example 10. It is easy to verify that the simple derivation given in Example 7 satisfies the conditions
in Definition 16, and so it is also a dynamic derivation. Example 8 demonstrates the dynamic nature of
this derivation. For instance, although the sequent ¬p ⇒ ¬p is derived in Step 7 of the derivation, it is
eliminated in Step 11 of the derivation as a consequence of an Undercut attack, initiated by p⇒ p.

Further examples of dynamic derivations are considered in Section 4.

The following property of dynamic derivations immediately follows from their definition.

Proposition 3. Every dynamic derivation is coherent.

The next definition, of the outcomes of a dynamic derivation, states that we can safely (or ’finally’)
derive a derived sequent only when we are sure that there is no scenario in which it will be eliminated in
some extension of the derivation.
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Definition 17. Let S=〈L,C,A〉 be a setting and let S be a set of formulas in L. A sequent s is finally
derived (or safely derived) in a dynamic derivation D (for S, based on S), if s ∈ Accept(D), and D cannot
be extended to a dynamic derivation D′ (for S, based on S) such that s ∈ Elim(D′).

A few notes are in order here. The concept of final derivability resembles a similar concept used in the
context of adaptive logics for representing an irreversible acceptance of formulas by a derivation process
(see, e.g., [12, 43]). The non-monotonic nature of the formalisms in both cases dictates the introduction
of external considerations (i.e., which are not expressible in the proofs themselves, see the examples in the
next section) for assuring that derived data will not be refuted during the progressing of the derivation.
It follows that the two kinds of derivations (the standard one and the final one) are inherently different:
derived sequents may be eliminated (as a consequence of an application of eliminating tuples in which
derived sequents are attacked), while finally derived sequents are non-eliminated derived objects. It
follows that final derivability, unlike standard derivability, is monotonic in the length of the dynamic
derivations. Indeed,

Proposition 4. If s is finally derived in D then it is finally derived in any extension of D.

Proof. Suppose that s is finally derived in D but it is not finally derived in some extension D′ of D.
This means that there is some extension D′′ of D′ in which s ∈ Elim(D′′). Since D′′ is also an extension
of D, we get a contradiction to the final derivability of s in D. 2

Another notable difference between ordinary and final derivability is related to their consistency.
Consider the argumentation system in Example 5 with S1 = {p,¬p, q}. As shown in Example 7, it might
happen that the set of sequents derived from this framework contain contradictory conclusions (see, e.g.,
Tuples 1 and 7 in the dynamic derivation of Example 7). This cannot happen as far as final derivation is
concerned. In fact, as shown in [4], the set of conclusions of the sequents that are finally derived in the
setting S of Example 5 from a finite set S of formulas, is equal to the transitive closure of the intersection
of all the maximally consistent subsets of S (See [4] for the exact details and definitions). We refer to the
next section for a further discussion on this distinction (e.g., Proposition 8) and other general properties
of final derivability.

The induced entailment is now defined as follows:

Definition 18. Given an argumentation setting S = 〈L,C,A〉 and a set S of formulas, we denote by
S |∼S ψ that there is an S-based dynamic derivation for S, in which Γ ⇒ ψ is finally derived for some
finite Γ ⊆ S.

When the underlying argumentation setting is clear from the context we shall sometimes abbreviate
|∼S by |∼. Some basic properties of this entailment are considered in Section 5.

4. Examples and Discussion

To get some more insight on dynamic proofs and their constructions we first examine in this section
a few particular derivations and then consider some general properties of dynamic proofs.

4.1. Some Simple Case Studies

Example 11. Consider again the simple derivation of Example 7, for the setting S = 〈CL, LK,Ucut〉,
based on the set of formulas S1 = {p,¬p, q}. By Example 10 this is a dynamic derivation.

Note that after Step 6 of the derivation, the sequent q ⇒ q is finally derived. Indeed, the only sequents
in ArgCL(S1) that can potentially attack q ⇒ q are of the form p,¬p ⇒ ψ or p,¬p, q ⇒ ψ, where ψ is
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logically equivalent to ¬q. However, those sequents are counter-attacked by ⇒ p ∨ ¬p (which is derived
in Tuple 3), using the justifications in Tuples 4 and 5.9 Hence, this derivation cannot be extended to a
derivation in which q ⇒ q is eliminated, and so S1 |∼ q.

The situation is completely different as far as p⇒p is concerned. This is due to the fact that although
this sequent is derived by Tuple 1, after Step 8 of the derivation p⇒p is eliminated, and after the extension
with Tuples 9–11 ¬p⇒¬p is eliminated due to the Ucut-attack on it by the eliminating tuple 11. At
this point of the derivation, p ⇒ p is not eliminated anymore (see also Example 8). Nevertheless, p⇒p
can be re-attacked by the sequent ¬p⇒¬p,10 thus reproducing p 6⇒ p, and so forth. As a consequence,
neither of p⇒ p nor ¬p⇒ ¬p is finally derived by the derivation of Example 7. In an analogous way any
dynamic derivation based on S1 can always be extended in such a way that all the sequents in ArgL(S1)
whose conclusion is p (respectively, ¬p) are eliminated, and so S1 6|∼ p (respectively, S1 6|∼ ¬p).

This state of affairs is intuitively justified by the fact that while q is not related to the inconsistency
in S1 and so it may safely follow from S1, the information in S1 about p is contradictory, and so neither
p nor ¬p may be safely inferred from S1.

Example 12. Let us consider the following variation of Example 7. The underlying setting is the same
as in that example: S= 〈CL, LK,Ucut〉, but now we take the conjunction of p and q: S ′1 = {p ∧ q,¬p}.
Again, although both of p ∧ q⇒ p and ¬p⇒¬p are LK-derivable, neither p nor ¬p follows according
to S from S ′1, because, e.g., the first sequent Ucut-attacks the other sequent and is Ucut-attacked by
the sequent ¬p ⇒ ¬(p ∧ q) (the details are quite similar to those in Examples 7 and 11). This time,
however, q is not S-derivable from S ′1, because both the sequents p ∧ q ⇒ q and ¬p, p ∧ q ⇒ q are
also Ucut-attacked by the LK-derivable sequent ¬p⇒ ¬(p ∧ q) and cannot be permanently defended by
sequents in ArgCL(S ′1).11

This example shows in particular that |∼S is sensitive to the syntactic form of the premises: although
S1 and S ′1 are CL-equivalent, their S-conclusions are not the same. In our case this may be intuitively
justified by the fact that in S ′1, unlike in S1, q is not neutral with respect to the inconsistency of the set of
premises and it is ‘linked’ to p by the conjunction (as is also reflected by the above Ucut-attack on p∧ q).
Indeed, syntax sensitivity is not unusual in non-monotonic reasoning and this what one expects when,
e.g., maximally consistent subsets of premises are taken into account (see [41]), or when inconsistency
measurements are incorporated (see [27]).12

Example 13. Consider a logic with a negation ¬ (i.e., p 6` ¬p and¬p 6` p), which doesn’t respect the
introduction of double-negation (i.e., p 6` ¬¬p), and suppose that Direct Defeat (D-Def; See Figure 2) is
the only attack rule. Let S2 = {p,¬p,¬¬p,¬¬¬p,¬¬¬¬p}. We write si (i ∈ N) for the sequent ¬ip⇒ ¬ip
(where ¬ip is the formula in which p is preceded by i negations. In particular, s0 = p⇒ p). Note that by
reflexivity si is provable in any complete calculus for the base logic. Now, consider the following sequence
D of proof tuples:

9In is important to note that Ucut-attackers of q ⇒ q like p,¬p, q ⇒ ¬q may still be derived in an extension of D,
however, they cannot be used for eliminating q ⇒ q. Any attempt to introduce an eliminating tuple with q 6⇒ q will fail
due to Condition (ii) in Definition 16(c) because, as noted above, the attacker of q ⇒ q is counter-attacked by the sequent
⇒ p ∨ ¬p in Tuple 3 of D.

10Alternatively, p⇒p may be re-attacked by any sequent of the form ¬p⇒ ψ, where ψ is equivalent to ¬p (for instance,
ψ = ¬2n+1p, where ¬np denotes the atom p preceded by n negations).

11Note that the ArgCL(S′1)-sequent p ∧ q ⇒ p does not prevent the Ucut-attack on p ∧ q ⇒ q by the ArgCL(S′1)-sequent
¬p ⇒ ¬(p ∧ q), because the latter attacks both of them. This situation is different from the one in Example 7 (and
Example 11), where⇒ p∨¬p ‘blocks’ any potential Ucut-attack on q ⇒ q, since in Example 7⇒ p∨¬p couldn’t be counter
Ucut-attacked.

12Syntax dependency ceases to hold when S1 (or S′1) is consistent. This follows from Proposition 10 below.
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1. s0 Axiom

2. s1 Axiom

3. s2 Axiom

4. s1 D-Def, 3, 3, 2 s2

5. s3 Axiom

6. s0 D-Def, 2, 2, 1 s1

7. s2 D-Def, 5, 5, 3 s3

8. s4 Axiom

It is easy to verify that D is a valid dynamic derivation. Extending it only with the tuple

9. s3 D-Def, 8, 8, 5 s4

yields a simple derivationD′, in which the attacker (s4) is not counter-attacked by an accepted sequent,
yet D′ is not coherent since s1 ∈ Attack(D′) ∩ Elim(D′).13 Note, however, that D may be extended to a
coherent derivation containing Tuple 9, provided that the latter is introduced together with the following
eliminating tuple:

10. s1 D-Def, 3, 3, 2 s2

Indeed, the extension of D with the sequence 〈T9, T10〉 is a valid dynamic derivation. This demon-
strates the need in Definition 16 to allow the addition of more than one elimination tuple at a time.14

Let us now check what can be finally derived from S2. First, the sequent s4 is attacked according to
D-Def only by sequents whose right-hand side is ¬5p, but since double-negation introduction does not
hold, such sequents cannot be in ArgL(S2). It follows that s4 is finally derived by the above derivation,
and so S2 |∼ ¬4p. Also, s3 cannot be finally derived, since any derivation in which it is derived can be
extended by a tuple of the form 〈i, s3, D-Def, s4〉, which causes the elimination of s3. Thus S2 6|∼ ¬3p.
In turn, since the attacker (s3) of s2 is eliminated and cannot be recovered, s2 is finally derived, thus
S2 |∼ ¬¬p. Similar considerations show that in this case S2 6|∼ ¬p and that S2 |∼ p.

Note 4. The last example emphasizes the basic difference between the derivation process introduced
here and the one considered in [5]. While the process in [5] allows to reintroduce sequents irrespective of
whether they are attacked, here the way sequents can be introduced in a proof is restricted and it depends
on the already introduced elimination sequents. Thus, e.g., while according to the approach in [5] the
sequent ¬p⇒ ¬p may be reintroduced in an extension of the dynamic derivation of Example 13, this is
not possible according to the present formalism. Hence, according to [5] only s4 is finally derivable in
Example 13, while in our case both s2 and s0 are also finally derivable, although they are attacked at

13 This shows, in particular, that the two conditions in Definition 16(c) are not dependent.
14This example also demonstrates the fact that while introducing tuples need to be produced only once in a derivation,

elimination tuples may be repeated several times (modulo their index), as in the case of Tuples 4 and 10 in the last derivation.
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a certain point. This allows for a better ‘diffusion of attacks’ and it is in line with standard extensions
of the corresponding argumentation frameworks (see [19]): although s2 is attacked by s3, that attack is
counter-attacked by s4, and so s2 is ‘defended’ or ‘reinstated’ by s4 (see also Proposition 1).

Example 14. Consider again the setting of Example 13. Figure 4 represents the relevant arguments
with their notations (for instance, t1 denotes the argument ¬4p∧¬q ⇒ ¬4p∧¬q), and the corresponding
attacks among them. Consider now the following derivation (we use below the arguments’ names as

4p  q  2q


4p  q  2q

4p  q


4p  q

3p  q  2q


3p  q  2q

3p  q


3p  q

2p  r  2r


2p  r  2r

2p  r


2p  r

p p p  p

S1 S2 S3

t1 t2 t3

u v

Figure 4: The argumentation framework of Example 14

specified in Figure 4, and instead of deriving the justifications of the attacks, we just mention them in
the justification components of the attacking tuples):

1. s1 Axiom

2. t1 Axiom

3. t2 Axiom

4. s3 Axiom

5. u Axiom

6. v Axiom

7. t1 D-Def (since ¬4p ∧ q ∧ ¬2q ⇒ ¬2q) s1

8. t2 D-Def (since ¬4p ∧ q ∧ ¬2q ⇒ ¬4p) s1

9. u D-Def (since ¬2p ∧ r ∧ ¬2r ⇒ ¬2p) s3

Note that in this derivation v is finally derived. Indeed, its only attacker, u, is eliminated. Any attempt
to re-accept u (in order to initiate an attack on v) by attacking u’s attacker (s3) in some extension of this
derivation will necessarily fail, since the defenders of u (namely s2 and t2) are attacked by the accepted
sequent s1 (and all the attackers of the latter are also eliminated and cannot be re-accepted).
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4.2. Useful Properties of Dynamic Derivations

In what follows we give some general observations regarding dynamic proofs and their properties.
We show these properties for argumentation frameworks that satisfy a common normalization property,
called weak symmetry. For this, we first need the following definition (and notations).

Definition 19. Given a sequent-based argumentation framework AFS(S) = 〈ArgL(S),Attack〉, induced
by a setting S = 〈L,C,A〉, we consider the following sets:

• Root(AFS(S)) = ArgL(S)− ArgL(S)+

• Arg∗L(S) = ArgL(S)−
(
Root(AFS(S)) ∪ Root(AFS(S))+

)
• Attack∗ = Attack ∩

(
Arg∗L(S)× Arg∗L(S)

)
Thus, the set Root(AFS(S)) consists of the non-attacked arguments in AFS(S). The argumentation

framework AF∗S(S) = 〈Arg∗L(S),Attack∗〉 is the sub-graph of AFS(S) that excludes the arguments in
Root(AFS(S))∪Root(AFS(S))+ (and so Arg∗L(S) is ArgL(S) without these arguments). We call AF∗S(S)
the inner framework of AFS(S).

Definition 20. Let AFS(S) = 〈ArgL(S),Attack〉 be a (sequent-based) argumentation framework and
let ∼ be a right congruent relation on AFS(S).15 We say that AFS(S) is ∼-weakly symmetric, if it’s
inner framework, AF∗S(S), is irreflexive and symmetric modulo ∼.

As the next example and proposition show, ∼-weakly symmetric frameworks are quite common.

Example 15. The argumentation framework that is induced by the setting S = 〈CL, LK,Ucut〉, con-
sidered in Example 5, where ∼ is defined by Γ1 ⇒ ψ1 ∼ Γ2 ⇒ ψ2 iff Γ1 = Γ2, and the argumentation
frameworks AFS considered in Example 6, are ∼-weakly symmetric.

The framework of the last example are particular cases of the following class of frameworks

Definition 21. A setting S = 〈L,C,A〉 is called SAC (support attacking, contrapositive), if the following
conditions are satisfied:

1. The sequent calculus C of the core logic L admits Contraposition:

If the sequent ∆ ⇒ ¬
∧

Θ is C-derivable, then for every Θ′ ⊆ Θ and ∆′ ⊆ ∆, the sequent
(∆−∆′) ∪Θ′ ⇒ ¬

∧
(Θ−Θ′) ∪∆′ is also C-derivable.

2. The set A consists of any attack rules in Figure 2 except rebuttals and direct attacks. (Note that the
common property of these rulers is that the attack is on the support set of the attacked sequent.)

An argumentation framework induced by a SAC setting is called SAC framework.

Next we show that the fact that the argumentation frameworks considered in Example 15 are ∼-weakly
symmetric, is not a coincidence.

Proposition 5. Every SAC argumentation framework is ∼-weakly symmetric, where ∼ is defined by:
Γ1 ⇒ ψ1 ∼ Γ2 ⇒ ψ2 iff Γ1 = Γ2.

15Recall by Item 2 of Note 2 that this means that for every s, s′, t ∈ ArgL(S), if s ∼ s′ then (t, s) ∈ Attack implies that
(t, s′) ∈ Attack as well.
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Proof. We show the proposition for Indirect Defeat.
For symmetry, suppose that there are ∆⇒ φ′ and Θ⇒ ψ′ in Arg∗L(S) such that (∆⇒ φ′,Θ⇒ ψ′) ∈

Attack . Hence φ′ ⇒ ¬
∧

Θ′ is C-derivable for some Θ′ ⊆ Θ. Thus, by contraposition, Θ′ ⇒ ¬φ′ and
¬φ′ ⇒ ¬

∧
∆ are also C-derivable,16 and so by monotonicity and cut, also Θ ⇒ ¬

∧
∆ is in Arg∗L(S). It

follows that (Θ⇒ ¬
∧

∆,∆⇒ φ) ∈ Attack .
For irreflexivity, suppose that there are ψ and ψ′ such that (∆ ⇒ ψ,∆ ⇒ ψ′) ∈ Attack . Thus

ψ ⇒ ¬
∧

∆′ is C-derivable for some ∆′ ⊆ ∆. By cut, ∆⇒ ¬
∧

∆′ is C-derivable, and so, by contraposition,
⇒ ¬

∧
∆ is in ArgL(S). Now, since (⇒ ¬

∧
∆,∆⇒ φ) ∈ Attack and ⇒ ¬

∧
∆ ∈ Root(AFS(S)), it follows

that ∆⇒ φ ∈ Root(AFS(S))+. In particular, (∆⇒ φ,∆⇒ φ) 6∈ Attack∗. 2

In what follows we show some interesting and useful properties of dynamic derivations for weakly
symmetric frameworks. The first property is that final derivability is invariant of particular patterns of
dynamic derivations.

Proposition 6. Let AFS(S) = 〈ArgL(S),Attack〉 be a ∼-weakly symmetric argumentation framework
for some right congruent relation ∼ on AFS(S). If a sequent s is finally derived in a dynamic derivation
for S that is based on S, then every dynamic derivation (for S that is based on S) can be extended to a
dynamic derivation (for S that is based on S) in which s is finally derived.

Proof. See Appendix A. 2

Example 16. By Example 15, final derivability for the setting S = 〈CL, LK,Ucut〉 (or for any SAC
framework) is invariant of particular patterns of dynamic derivations.

An interesting corollary of (the proof of) Proposition 6 is that for proving entailment of the form
S |∼ ψ, induced by weakly symmetric frameworks, dynamic derivations with only introducing tuples
suffice. Eliminating tuples are required for providing constructive refutations (that is, they are needed
for showing that S 6|∼ ψ).

Proposition 7. Let AFS(S) = 〈ArgL(S),Attack〉 be a ∼-weakly symmetric argumentation framework
for some right congruent relation ∼ on AFS(S). A sequent is finally derived in a derivation (for S that
is based on S) iff it is finally derived in a derivation (for S that is based on S) that consists only of
introducing tuples.

Proof. One direction is trivial. For the other direction, suppose that s is finally derived in a dynamic
derivation D. By Lemma 4 in the proof of Proposition 6 (see Appendix A), all the attackers of s
are attacked by elements in Root(AFS(S)) ∩ D. Let {t1, . . . , tn} be the set of these attackers and let
{s1, . . . , sn} ⊆ Root(AFS(S)) be sequents such that (si, ti) ∈ Attack (for i = 1, . . . , n). Let now D′ be
the dynamic derivation in which s is derived, and for each i = 1, . . . , n, ti and si are derived. Note that
D′ is coherent since it doesn’t contain any elimination tuples. Furthermore,

1. all the attackers of s are present in D′, and

2. according to Condition c-(ii) in Definition 16, no elimination tuple of the form (k, s, J, ti) can
be added in any extension D′′ of D′, because (si, ti) ∈ Attack , and since si ∈ Root(AFS(S)),
necessarily s ∈ Accept(D′′).

By the two facts above, s is finally derived in D′ (in a derivation consisting only of introducing tuples).
2

16Note that ∆ 6= ∅ since ∆⇒ φ /∈ Root(AFS(S)).
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Note 5. Some remarks concerning the implications of Proposition 7 are in order here.

1. Clearly, Proposition 7 is useful since it allows to considerably reduce the search space of proofs of
finally derived sequents in weakly symmetric frameworks.

2. Although elimination rules are not required for final derivations in weakly symmetric frameworks,
in general the presence of such rules may enable the final derivation of certain arguments that could
not be finally derived otherwise. In other words, if S1 = 〈L,C,A1〉 and S2 = 〈L,C,A2〉 are two
settings (and even SAC settings) such that A1 ⊂ A2, it is not necessarily the case that |∼S2

⊆ |∼S1
.

This is demonstrated in the next example.

Example 17. Let Weak Rebuttal (WReb) be the same attack rule as Rebuttal (Figure 2), but with
the requirement that the support set of the attacked sequent should not be empty (Γ2 6= ∅).17 Consider
now the setting S1 = 〈CL, LK, {WReb}〉 and S = {p,¬p, q}. Then S 6|∼S1

q, since every sequent of the
form Γ ⇒ q in ArgCL(S) is attacked by p,¬p ⇒ ¬q. Now, if we add Undercut to the attack rules of the
setting, i.e., if S2 =〈CL, LK, {WReb,Ucut}〉, we have that this time S |∼S2

q, since ⇒ ¬(p ∧ ¬p) attacks
p,¬p⇒ ¬q and is not attacked itself (due to the restriction of WReb).

Another interesting property of dynamic proof systems (obtained by SAC and some other settings) is
that no complementary conclusions are allowed by them even when the set of premises is contradictory.
This is shown next.

Proposition 8. Let S = 〈L,C,A〉 be an argumentation setting and let S be a set of formulas in the
underlying language. If S is either a SAC setting or is a ∼-weakly symmetric setting in which A contains
one of the rebuttal attacks in Figure 2, then there is no formula ψ for which both S |∼S ψ and S |∼S ¬ψ.

Proof. Suppose for a contradiction that S |∼S ψ and S |∼S ¬ψ. Then, there is a dynamic derivation D
in which a sequent s = Γ⇒ ψ is finally derived for some Γ ⊆ S, and there is a dynamic derivation D′ in
which s′ = Γ′ ⇒ ¬ψ is finally derived for some Γ′ ⊆ S. By Lemma 4 in the proof of Proposition 6 (see
Appendix A),

(†) all attackers of s and s′ are attacked by elements in Root(AFS(S)) and s, s′ /∈ Root(AFS(S))+.

Now, if there is a rebuttal attack in A we have (s′, s) ∈ Attack , in contradiction to (†). Alternatively, if
S is a SAC setting, C admits of contraposition, thus by cut Γ ⇒ ¬

∧
Γ′ attacks s′. Hence, Γ ⇒ ¬

∧
Γ′ ∈

Root(AFS(S))+, and so there is a t = Θ⇒ ¬
∧

Γ′′ ∈ Root(AFS(S)) that attacks Γ⇒ ¬
∧

Γ′. Note that
Θ = ∅ since otherwise Γ,Γ′ ⇒ ¬

∧
Θ attacks t (By contraposition and monotonicity we have Γ,Γ′ ` ¬

∧
Θ).

In this case t also attacks s, which is a contradiction to (†). 2

5. Some Properties of |∼

In this section we consider some properties of the entailment relations that are induced by dynamic
proof systems according to Definition 18.

5.1. Relations between |∼ and `
We start with some results concerning the relations between the base consequence relation and the

entailments induced by the corresponding argumentation setting. In these propositions we refer to an
entailment |∼ that is induced by an argumentation setting S = 〈L,C,A〉 with a base logic L = 〈L,`〉.

First, we show that Tarskian consequence relations may be viewed as particular S-entailments:

17In particular, WReb is tautology preserving in the sense of Definition 10.
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Proposition 9. If A = ∅ then |∼ and ` coincide.

Proof. If there are no attack rules, dynamic derivations are in fact standard C-proofs in which every
derived sequent is finally derived. Thus, S |∼S ψ iff there is a derivation of Γ ⇒ ψ in C for some finite
Γ ⊆ S. Since C is sound and complete for L, the latter is a necessary and sufficient condition for S ` ψ.
2

Another case where |∼ and ` correlate is the following:

Proposition 10. If S is conflict-free with respect to S (that is, there are no A-attacks between the
elements in ArgL(S)) then S |∼ ψ iff S ` ψ.

Proof. If there are no attacks between arguments in ArgL(S) then no attack rule in A is applicable, and
so the proof is similar to that of Proposition 9. 2

In general, however, |∼ is weaker than `.

Proposition 11. If S |∼ ψ then S ` ψ.

Proof. If S |∼ψ then there is an S-based dynamic derivation for S, in which Γ⇒ψ is finally derived for
some finite Γ ⊆ S. In particular, there is a proof in C for Γ⇒ ψ. Since C is complete for L, this implies
that Γ ` ψ, and by the monotonicity of L we have that S ` ψ. 2

The converse of Proposition 11 holds for `-theorems and rules that preserve tautological arguments
(see Definition 10).

Proposition 12. If A consists only of tautology preserving rules, then ` ψ implies that |∼ ψ.

Proof. If ` ψ then the sequent ⇒ ψ is provable in C. Since there are only tautology-preserving rules
in A, this sequent cannot be attacked, and so any C-proof of ⇒ψ is also a dynamic derivation for S, in
which ⇒ψ is finally derived. 2

Corollary 1. If A consists only of theorem-preserving rules, then

1. ` ψ iff |∼ ψ, and

2. C is sound and weakly complete for |∼ (that is, |∼ ψ iff ⇒ψ is C-derivable).

Proof. By Propositions 11 and 12. 2

Finally, the next proposition shows that for a large class of argumentation settings the corresponding
entailment is closed under the consequence relation of the core logic.

Proposition 13. If |∼ is induced by a SAC setting (Definition 21) then for every finite set S of formulas,
S |∼ φ iff {ψ | S |∼ ψ} ` φ.

Proof. See Appendix B. 2

Note 6. A strengthening of the base logic may not have the same effect on the induced entailment: If
S1 = 〈L1,C,A〉 and S2 = 〈L2,C,A〉 are two argumentation settings where L1 = 〈L,`1〉 and L2 = 〈L,`2〉
are two logics (for the same language) such that `1 ⊂`2, it is not necessarily the case that |∼S1

⊆ |∼S2
.

To see this, consider e.g. S = {p,¬p}, the logic L1 induced by LK without the negation introduction
rule ([⇒¬], see Figure 1), and Rebuttal as the sole attack rule. Then, for instance, S |∼S1

¬p (since
¬p⇒ ¬p cannot be attacked by Rebuttal in L1), but when one switches to classical logic, neither p nor
¬p is finally derivable, because the strengthening of the core logic yields additional attacks.
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5.2. Cautious Reflexivity

As the examples in Section 4 show, in general |∼ is not reflexive: a formula ψ does not necessarily
follow from S even if ψ ∈ S. Yet, the next proposition and corollary show that |∼ is cautiously reflexive.

Proposition 14. If S is conflict-free then S |∼ ψ for all ψ ∈ S.

Proof. This is a direct corollary of Proposition 10 and the fact that S ` ψ for every ψ ∈ S (since ` is
reflexive). 2

Corollary 2.

1. For every formula ψ such that {ψ} is conflict-free in S, we have that ψ |∼ ψ.

2. For every atom p it holds that p |∼ p.

Note 7. The condition in the last proposition and corollary is indeed required. For instance, if |∼ is the
entailment relation that is induced by S = 〈CL, LK, {Ucut}〉 (Example 7) then p ∧ ¬p 6|∼ p ∧ ¬p.

5.3. Restricted Monotonicity

Clearly, |∼ is not monotonic. For instance, by Corollary 2 p |∼ p, while Example 7 shows a case in
which p,¬p, q 6|∼ p. Like reflexivity, monotonicity can be guaranteed in particular cases. For instance, as
Proposition 15 below shows, when adding unrelated information to a SAC framework, this information
should not disturb previous inferences. For this proposition we first define in precise terms what ‘unrelated
information’ means and then recall the known notion of uniformity.

Definition 22. Let S be a set of formulas and ψ a formula in a language L. We denote by Atoms(S)
the set of atomic formulas that appear (in some subformula of a formula) in S. We say that S is relevant
to ψ, if Atoms(S)∩Atoms({ψ}) = ∅ implies that S = ∅. A nonempty set S is irrelevant to a (nonempty)
set T if S is not relevant to any formula in T , i.e.: Atoms(S) ∩ Atoms(T ) = ∅.

Definition 23. Let L = 〈L,`〉 be a propositional logic. A set S of formulas (in L) is called `-consistent ,
if there exists a formula ψ (in L) such that S 6` ψ. We say that L is uniform, if S1 ` ψ when S1,S2 ` ψ
and S2 is `-consistent and irrelevant to S1 ∪ {ψ}.

Note 8. By  Los-Suzsko Theorem [30], a finitary propositional logic 〈L,`〉 is uniform iff it has a single
characteristic matrix (see also [46]). Thus, classical logic as well as many other logics are uniform.

Proposition 15. Let S = 〈L,C,A〉 be a SAC settings whose base logic L is uniform and let |∼ be the
induced entailment. Suppose that S1∪S2 is a finite set of formulas in the underlying language. If S1∪{φ}
is irrelevant to S2 then S1 |∼ φ iff S1,S2 |∼ φ.

A few notes concerning the last proposition are in order prior to its proof. Proposition 15 shows that
entailments induced by SAC settings satisfy the property of non-interference [17] with respect to finite
sets of assumptions. One direction of it (if S1 |∼φ then S1,S2 |∼φ) is a restricted form of monotonicity to
irrelevant premise sets. Note that non-interference is more than a bi-directional version of uniformity for
non-monotonic entailments (or of the basic relevance criterion [8]), since here S2 may not be consistent.

Proof of Proposition 15. We show the claim for the case that Undercut is an attack rule. We will
indicate in the proof (see Footnote 18) what changes are necessary for Canonical Undercut. The cases of
Defeat attacks and other forms of Undercut are shown in a very similar way and are left to the reader.

In what follows we will denote by D the set of all the sequents that occur in the proof tuples of a
(simple) derivation D.
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Suppose that S1 |∼φ. Then, there is a dynamic derivation D1, in which some Γ⇒ φ is finally derived
where Γ ⊆ S1. By Proposition 7 we can assume that D1 does not contain any eliminating tuples. Let D?

1

be the extension of D1 in which for each Ω ⊆ S1 ∪S2 which is inconsistent, ⇒ ¬
∧

Ω is added to D1. Note
that since S is a SAC setting, for every inconsistent Ω, it holds that ` ¬

∧
Ω and so ⇒ ¬

∧
Ω is derivable

in C. Also, since S1 ∪ S2 is finite, there are only finitely many such sequents.
Assume now for a contradiction that S1,S2 6|∼ φ. Note that D?

1 is also a dynamic derivation based
on S1 ∪ S2. Let D⊥1 be the extension of D?

1 by the eliminating tuples 〈k,Ω 6⇒ δ, Jk,⇒ ¬
∧

Ω〉 for all the
inconsistent subsets Ω ⊆ S1 ∪ S2. By our assumption, there is an extension D2 of D⊥1 , in which Γ⇒ φ is
eliminated by some eliminating tuple Tk = 〈k,Γ 6⇒ φ, Jk,Θ⇒ ψ〉. Thus, ψ ⇒ ¬

∧
Γ′ is derivable in C for

some non-empty Γ′ ⊆ Γ.
By cut, Θ ⇒ ¬

∧
Γ′ is also derivable in C. Note that Θ is consistent (otherwise it would be attacked

by ⇒ ¬
∧

Θ′ for some Θ′ ⊆ Θ in D?
1 , in which case Tk cannot be added to the proof in view of Defini-

tion 16 c.ii). Thus, Θ∩S2 is consistent as well. Thus, by the uniformity of L, Θ−S2 ⇒ ¬
∧

Γ′ is derivable
in C.

Note that, again in view of the uniformity of L,

(†) for every attacker Θ′ ⇒ ψ′ ∈ Accept(D2) ∩ Arg(S1 ∪ S2) of some Ω⇒ δ ∈ ArgL(S1)
there is a Θ′ − S2 ⇒ ¬

∧
Ω′ (for some Ω′ ⊆ Ω) that also attacks Ω⇒ δ.

Let (Θ′1 − S2 ⇒ ¬
∧

Ω′1, Ω1 ⇒ δ1), . . . , (Θ′n − S2 ⇒ ¬
∧

Ω′n, Ωn ⇒ δn) ∈ Attack be a list of all such pairs
(including (Θ− S2 ⇒ ¬

∧
Γ′, Γ⇒ φ)).

We now show that Γ ⇒ φ is not finally derived in D1, which is a contradiction. For this, we extend
D1 to D′1 with a proof of the sequents Θ′i−S2 ⇒ ¬

∧
Ω′i for every i = 1, . . . , n. Subsequently we also add,

for every i = 1, . . . , n for which Ωi ⇒ δi ∈ D′1, an eliminating tuple for Ωi 6⇒ δi, based on the attack by
Θ′i − S2 ⇒ ¬

∧
Ω′i.

We now show that D′1 is coherent. For this we have to show that there are no 1 ≤ i, j ≤ n for which
Θ′i − S2 ⇒ ¬

∧
Ω′i is Ωj ⇒ δj . Assume for a contradiction that there are such i and j. But this implies

that Θ′i is inconsistent, which contradicts that Θ′i ⇒ ψ′i ∈ Accept(D2), since ⇒ ¬
∧

Θ′i ∈ D⊥1 .
Note also that the extension of D1 by the eliminating tuples is in accordance with Definition 16 c.ii.

To show this suppose some Θ′i − S2 ⇒ ¬
∧

Ω′i is attacked by some Λ ⇒ σ ∈ D′1 ∩ Arg(S1). Then
Λ ⇒ σ also attacks Θ′i ⇒ ψ′i ∈ Accept(D2), and so Λ ⇒ σ ∈ Elim(D2). Thus, there is an attacker
Θ′j ⇒ ψ′j ∈ Accept(D2) of Λ ⇒ σ. In view of (†), then, 〈k,Λ 6⇒ σ, Jk,Θ

′
j − S2 ⇒ ¬

∧
Λ〉 was one of the

eliminating tuples added to D′1, and hence Λ⇒ σ ∈ Elim(D′1).
The considerations above show that D′1 is a valid dynamic derivation. This derivation is based on S1,

extends D1, and in which Γ⇒ φ ∈ Elim(D′1). This is a contradiction to the final derivability of Γ⇒ φ.

Suppose now that S1,S2 |∼φ. Again, by Proposition 7 there is a dynamic derivation D that is based on
S1∪S2, in which some Γ⇒ φ is finally derived for Γ ⊆ S1∪S2, and which doesn’t contain any eliminating
tuples. Note that Γ is consistent since otherwise we can extend D with⇒ ¬

∧
Γ and subsequently eliminate

Γ⇒ φ. So Γ ∩ S2 is consistent as well. Hence, by the uniformity of L, also Γ− S2 ` φ.
We now extend D to D′ (with line numbers l+ 1, . . . , l′) by deriving Ω−S2 ⇒ ψ for each Ω⇒ ψ ∈ D

for which Ω− S2 ` ψ. Thus, Γ− S2 ⇒ φ is in Accept(D′). Note that in D′ we have that

(†) for every attacker s ∈ D′ of some t ∈ ArgL(S1) there is a s′ ∈ ArgL(S1) ∩ D′ that attacks t.

This is warranted in view of the uniformity of L: if some Ω ⇒ ψ ∈ D′ attacks some Θ ⇒ δ ∈ ArgL(S1)
then ψ ` ¬

∧
Θ′ for some Θ′ ⊆ Θ ⊆ S1, and by cut and uniformity, Ω− S2 ⇒ ¬

∧
Θ′ ∈ ArgL(S1) attacks

Θ⇒ δ. (If Θ is inconsistent, ⇒ ¬
∧

Θ ∈ ArgL(S1) attacks Θ⇒ δ.)
Let Atoms(S2) = {p1, . . . , pn} and let {p′1, . . . , p′n} be a set of atoms for which (Atoms(S1) ∪

Atoms(S2)) ∩ {p′1, . . . , p′n} = ∅. We denote by D′[p1, . . . , pn/p′1, . . . , p′n] the result of simultaneously
replacing all occurrences of pi by p′i for i = 1, . . . , n in each t ∈ D′. Let now D′′ be the result of con-
catenating D′ and D′[p1, . . . , pn/p′1, . . . , p′n] (after changing the line numbers 1, . . . , l′ of the tuples in
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D′[p1, . . . , pn/p′1, . . . , p′n] to l′+ 1, . . . , l′+ l′+ 1, respectively). Note that D′′ is still a dynamic derivation
that is based on S1 ∪ S2, and which extends D′. Thus, Γ⇒ φ is finally derived in D′′.

Note that Γ − S2 ⇒ φ is also finally derived in D′′, since every attacker of Γ − S2 ⇒ φ is also an
attacker of Γ⇒ φ, and the latter is finally derived in D′′.18 Since D′′ doesn’t contain eliminating tuples,
D′′ is also a dynamic derivation based on S1.

Assume now for a contradiction that S1 6|∼ φ. Then D′′ can be extended to D′′′ in such a way that
Γ− S2 ⇒ φ is eliminated. Let D? be the result of replacing each proof tuple 〈l, s, J, t〉 which was added
in D′′′ to D′′ by 〈l, s[p1, . . . , pn/p′1, . . . , p′n], J ′, t[p1, . . . , pn/p

′
1, . . . , p

′
n]〉, where s[p1, . . . , pn/p

′
1, . . . , p

′
n] and

t[p1, . . . , pn/p
′
1, . . . , p

′
n] are the results of simultaneously replacing each pi with p′i (for i = 1, . . . , n) in

s and t, and J ′ is the result of replacing each line number in J which refers to a line in D′ with the
corresponding line number in l′ + 1, . . . , l′ + l′ + 1. Since D′′′ is a dynamic derivation based on S1 it is
easy to see that also D? is a dynamic derivation based on S1. Note that:

(‡) every Θ⇒ ψ ∈ D? for which Θ ∩ S2 6= ∅ is in D′.

Let now D‡ be the result of adding after each eliminating tuple 〈k,Θ 6⇒ ψ, J, t〉 in D? eliminating
tuples 〈k′,Θ′ 6⇒ ψ′, J ′, t〉 for every Θ′ ⇒ ψ′ ∈ D′ for which Θ ⊂ Θ′ ⊆ (S1 ∪ S2) and Θ′ ∩ S2 6= ∅ (where
the line numbers and the justifications are adjusted accordingly). Thus,

(?) whenever Θ⇒ ψ ∈ Elim(D‡), also Θ′ ⇒ ψ′ ∈ Elim(D‡).

Note that D‡ is also a coherent simple derivation based on S1∪S2, since D? is coherent, Attack(D‡) =
Attack(D?) ⊆ ArgL(S1), and Elim(D‡) − Elim(D?) ⊆ ArgL(S1 ∪ S2) − ArgL(S1). By (†), (‡), and (?),
Requirement (c.ii) of Definition 16 also holds for D‡. To see this let Θ ⇒ ψ ∈ Attack(D‡) and suppose

that t = Ω ⇒ σ ∈ D‡ attacks Θ ⇒ ψ. If t ∈ Arg(S1) we know that t ∈ Elim(D?) ⊆ Elim(D‡)
since D? is coherent. Suppose then that t ∈ Arg(S1 ∪ S2) − Arg(S1). By (‡), t ∈ D′. Then, by (†)
t′ = Ω− S2 ⇒ σ ∈ D′′ also attacks Θ⇒ ψ. Since D? is a dynamic derivation, t′ ∈ Elim(D?) ⊆ Elim(D‡),
and by (?), t ∈ Elim(D‡).

We have shown that D‡ is also a dynamic derivation based on S1 ∪ S2. However, since Γ−S2 ⇒ φ is
eliminated in D‡, this contradicts the final derivability of Γ− S2 ⇒ φ in D′′. 2

Note 9. The assumption that the sets of premises are finite is necessary for Proposition 15. Indeed, let
L = 〈L,`〉 be a logic with a `-conjunction ∧ and a `-negation ¬, satisfying the following rules:

Γ⇒ ¬ψ,¬φ
Γ⇒ ¬(ψ ∧ φ)

,
Γ⇒ ¬(ψ ∧ φ)

Γ⇒ ¬ψ,¬φ
. (3)

We denote by |∼ the entailment relation (according to Definition 18) for an argumentation setting whose
base logic is L and whose sole attack rule is Canonical Undercut.

Let S1 = {p1,¬p1,¬¬p1} and S2 = {pi | i ≥ 2}. Clearly, S2 is `-consistent and irrelevant to S1. Yet,
we show that: (a) S1 |∼ p1 while: (b) S1,S2 6|∼ p1.

A derivation for proving Claim (a) may be the following:

18 Note that that Γ−S2 ⇒ φ is finally derived in D′′ also when Canonical Undercut is incorporated. To see this, assume
for a contradiction that Γ−S2 ⇒ φ is not finally derived in D′′ in this case. Then there is an extension D′′′ of D′′ in which
Γ − S2 ⇒ φ is eliminated due to some eliminating tuple 〈k,Γ− S2 6⇒ φ,Θ⇒ ¬

∧
(Γ− S2)〉. However, for every canonical

undercutter Θ ⇒ ¬
∧

(Γ − S2) of Γ − S2 ⇒ φ, the sequent Θ ⇒ ¬
∧

Γ is also C-derivable (indeed, by contraposition and
monotonicity, Θ ` ¬

∧
Γ since Θ ` ¬

∧
(Γ−S2)) and this sequent is a canonical undercutter of Γ⇒ φ. Thus, we can further

extend D′′′ by deriving 〈k′,Γ 6⇒ φ,Θ⇒ ¬
∧

Γ〉 so that Γ⇒ φ is eliminated. This contradicts that Γ⇒ φ is finally derived
in D′′.
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1. p1 ⇒ p1 Axiom

2. ¬p1 ⇒ ¬p1 Axiom

3. ¬¬p1 ⇒ ¬¬p1 Axiom

4. ¬p1 ; ¬p1 Can-Ucut, 3, 3, 3, 2 ¬¬p1 ⇒ ¬¬p1

The only potential attacker of Tuple 1 is Tuple 2, but the latter is eliminated and there is no way to
attack its attacker, Tuple 3. Thus p1 ⇒ p1 is finally derived here.

For Claim (b), note that once S2 is available, we can for instance extend the previous derivation by:

5. ¬p1, p2 ⇒ ¬p1 Weakening, 2

6. p1 ; p1 Can-Ucut, 5, 2, 2, 1 ¬p1, p2 ⇒ ¬p1 19

Tuple 1 can still be defended by eliminating ¬p1, p2 ⇒ ¬p1 (using the rules 3 above), but then it may
be re-attacked, e.g., by ¬p1, p3 ⇒ ¬p1 (a weakening of Tuple 2), and so on. It follows that Tuple 1 is never
finally derived. A similar argument applies to other ways of deriving p1, such as by using p1, p2 ⇒ p1.

5.4. Cumulativity

In the previous sections we have shown that although |∼ is not a Tarskian consequence relation (being,
e.g., non-monotonic), it still satisfies some cautious versions of the properties listed in Definition 4.
This suggests that entailments induced by argumentation settings may satisfy the rationality postulates
for non-monotonic reasoning (NMR), introduced by Makinson and Gärdenfors [23, 31], and by Kraus,
Lehmann, and Magidor [29]. In this section we consider these postulates.

Definition 24. An entailment |∼ is called `-cumulative if the following conditions are satisfied:

Cautious Reflexivity (CR): If ψ ⇒ ψ is not contradictory20 then ψ |∼ ψ.

Cautious Monotonicity (CM): If S |∼ φ and S |∼ ψ then S, φ |∼ ψ.

Cautious Cut (CC): If S |∼ φ and S, φ |∼ ψ then S |∼ ψ.21

Left Logical Equivalence (LLE): If φ ` ψ and ψ ` φ then S, φ |∼ ρ iff S, ψ |∼ ρ.

Right Weakening (RW): If φ ` ψ and S |∼ φ then S |∼ ψ.

A cumulative entailment is called preferential if it satisfies the following condition:

Disjunction Property (OR): If S, φ |∼ ρ and S, ψ |∼ ρ then S, φ ∨ ψ |∼ ρ.

In what follows we shall restrict ourselves to cases where the set S in the rules above is finite.

Proposition 16. Every entailment |∼ that is induced by a SAC setting S = 〈L,C,A〉 where L = 〈L,`〉,
is `-cumulative.

19Note that with Ucut the extension of Lines 1–5 by Line 6 would not be allowed, since Tuple 5 is Ucut-attacked by
Tuple 3.

20Recall Definition 5.
21The combination of CM and CC is sometimes called cumulativity [23, 31]: If S |∼ φ then S |∼ ψ iff S, φ |∼ ψ.
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Proof. Since ψ ⇒ ψ is not contradictory, {ψ} is conflict free, and since ψ ` ψ, by Proposition 10, ψ |∼ψ
as well. This shows (CR). For (RW) assume that S |∼φ. By Proposition 13, {ρ | S |∼ρ} ` φ, and if φ ` ψ,
by cut we get that {ρ | S |∼ ρ} ` ψ. By Proposition 13 again, S |∼ ψ.

The proofs of the three other conditions are longer and rather technical, so we moved them to Ap-
pendix B. Note that LLE is shown there for a larger class of entailment relations than that of the
proposition. 2

Note 10. The following example shows that |∼ is not preferential even for SAC settings. Consider the
setting S = 〈CL, LK,Ucut〉 and the set S = {p ∧ ¬q, p ∧ ¬r}. We show that S, q |∼ p and S, r |∼ p, but
S, q ∨ r 6|∼ p. Indeed, here is a dynamic derivation that is based on S ∪ {r} and in which p ∧ ¬q ⇒ p is
finally derived (thus S, r |∼ p).22

1. p ∧ ¬q ⇒ p ∧ ¬q Ax

2. p ∧ ¬q ⇒ p LK

3. ⇒ ¬((p ∧ ¬r) ∧ r) LK

4. ⇒ ¬((p ∧ ¬r) ∧ r ∧ (p ∧ ¬q)) LK

5. p ∧ ¬r, r ⇒ ¬(p ∧ ¬q) LK

6. p ∧ ¬r, r, p ∧ ¬q ⇒ ¬(p ∧ ¬q) LK

7. ¬((p ∧ ¬r) ∧ r)⇒ ¬((p ∧ ¬r) ∧ r) Ax

8. p ∧ ¬r, r 6⇒ ¬(p ∧ ¬q) Def, 3, 7, 7, 5

9. ¬((p ∧ ¬r) ∧ r ∧ (p ∧ ¬q))⇒ ¬((p ∧ ¬r) ∧ r ∧ (p ∧ ¬q)) Ax

10. p ∧ ¬r, r, p ∧ ¬q 6⇒ ¬(p ∧ ¬q) Def, 4, 9, 9, 6

Here, not only that p ∧ ¬q ⇒ p is derived in Tuple 2 (based on Tuple 1), it is also finally derived,
because the (non-attacked) sequents in Tuples 3 and 4 block (i.e., counter Ucut-attack) any attempt to
Ucut-attack p ∧ ¬q ⇒ p . Indeed, the potential attacker of Tuple 5 is counter-attacked in Tuple 8 and
the potential attacker of Tuple 6 is counter-attacked in Tuple 10.

Similar considerations show that S, q |∼p. However, S, q∨r 6|∼p. The reason is the following: Given the
premise set S ∪{r∨q} there are essentially two ways to conclude p: either by deriving s1 = p∧¬q ⇒ p or
by deriving s2 = p∧¬r ⇒ p. In contrast to the proof above, we can construct non-tautological attackers
to each of these two sequents, namely: p ∧ ¬q, r ∨ q ⇒ ¬(p ∧ ¬r) and p ∧ ¬r, r ∨ q ⇒ ¬(p ∧ ¬q). This
makes it impossible to finally derive neither s1 nor s2. It follows that the OR postulate does not hold in
this case, and so |∼ is not a preferential entailment.

5.5. Paraconsistency and Crash Resistance

We conclude this section by considering two properties of |∼ that are related to the handling of
inconsistent information. The first one, called ¬-paraconsistency [18], may be inherited from the base
logic `:

Proposition 17. If ` is ¬-paraconsistent (that is, there are atoms p, q such that p,¬p 6` q) then so is
|∼.

22The fourth components of the tuples as well as some derivation steps are omitted (in which case LK is mentioned in
the justification part).
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Proof. Since ` is paraconsistent, p,¬p 6` q. Thus, by Proposition 11, p,¬p 6|∼ q. 2

Proposition 15 allows us to show another interesting property regarding inconsistency maintenance:
crash resistance [17] of dynamic proofs systems for SAC settings.

Definition 25. Let S be a set of L-formulas such that Atoms(S) ( Atoms(L) (that is, there is at least
one atomic formula that is not mentioned in S), and let |∼ be an entailment relation on L.

• We say that S is contaminating for |∼, if for every set T of L-formulas that is irrelevant to S (in
the sense of Definition 22), and for every L-formula ψ, it holds that S |∼ ψ iff S, T |∼ ψ.

• We say that |∼ is crash-resistant , if there is no set of L-formulas that is contaminating for |∼.

Proposition 18. Let S = 〈L,C,A〉 be a SAC setting whose base logic L is uniform. Then |∼S is crash
resistant.

Proof. If S = 〈L,C,A〉 is a SAC setting whose base logic L is uniform then by Proposition 15 there is
no set of L-formulas that is contaminating for |∼S, and so the latter is crash-resistant. 2

6. Conclusion

Several different approaches to logical argumentation have been introduced in the literature. This
includes formalisms that are based on classical logic [13, 14], defeasible reasoning [26, 35, 37, 42] the
ASPIC+ system [33, 40], assumption-based argumentation [20], default logic [38], situation calculus [16],
and so forth. Like ASPIC+, our approach provides a very flexible environment for logical argumentation,
as it leaves open the choices of the underlying language, the core logic, and the adequate calculus.
This flexibility carries on to the representation of arguments that avoids the minimality and consistency
constraints posed on the premises of arguments in, e.g., [13].

The rationality behind our approach is to synthesize proof theoretical and argumentation-based meth-
ods.23. On one hand arguments need to be logically justified and constructed by means of formal proofs,
but on the other hand the existence of such proofs is not sufficient for accepting the underlying arguments
in the presence of counter-arguments. In a sense, then, dynamic derivations resemble dialogues or dis-
putes that are meant to resolve disagreements, and in which conclusions are accepted upon the inability
to provide counter-arguments. The main contribution of this paper is therefore the providing of non-
monotonic extensions for Gentzen-style proof systems in terms of argumentation-based considerations.
In particular, standard argumentation semantics are related to proof theoretic aspects of reasoning.

Our proof format is closely related to dynamic proofs in adaptive logics [12, 43], which so far have
used Hilbert-style proofs. Our choice of using Gentzen-type systems is motivated by the understanding
that in a Hilbert systems finding a derivation for a formula may be a tricky business, as one has to
guess which axiom and which inference rule to use without systematic reliance on the syntax of the given
formula. In sequent calculi there is less of this kind of guesswork, and derivations are largely syntax-
directed. Another major difference from the original proof methods used in the context of adaptive logic
is that the progressing of dynamic derivations is uni-directional: the statuses of tuples (derived, accepted,
attacked, etc) are determined only in view of tuples that are derived later in the proof, in contrast to
bi-directional marking in dynamic proofs of adaptive logic, where a proof line may be marked in view

23The incorporation of proof theoretical methods in general, and sequent calculi in particular, in the context of argument-
based dialectical processes may be traced back (at least) to Dunne and Bench-Capon’s 2003 paper [21]. Their motivation
for considering sequent calculi in this context is quite different, though: the complexity of proofs in a cut-free Gentzen-type
sequent calculus is analyzed in order to obtain some results concerning the computational complexity of argument games.
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of a previously derived line. By this, we keep the resemblances to standard proof procedures that are
progressing in one direction only.

In future work we plan to incorporate more expressive languages involving priorities and, in the
longer run, first-order arguments. Also, we hope to develop mechanisms for automatically detecting
finally derived sequents in particular scenarios. Another issue to be investigated is considered in the
following note.

Note 11. Given a sequent calculus C, the induced consequence relation we have used in the paper for
the dynamic derivations is defined by T `C ψ if there exists a finite Γ ⊆ T such that Γ⇒ ψ is derivable
in C (Recall that we used here only sound and complete calculi C, that is, for which `C coincides with
the consequence relations ` of the base logic). Yet, there is another common way to define C-based
consequence relations: T C ψ if the sequent ⇒ψ follows from the set of sequents {⇒φ | ψ ∈ T }. Note
that even in cases where `C coincides with C (e.g., when C = LK), still the induced argumentation-
based entailment relations (and so the dynamic proof systems) may be different. To see this consider, for
instance, the setting S = 〈CL, LK,Ucut〉 of Example 7, and define S ||∼Sψ if ⇒ψ is finally derived in
a dynamic derivation that may contain introducing tuples for sequents of the form ⇒φ for some φ ∈ S.
Clearly, ||∼S is the counterpart of |∼S (Definition 18), where C , instead of `C , is the underlying relation
for C-proofs. Now, ||∼S is reflexive (since ⇒φ for any φ ∈ S cannot be attacked by Ucut), while |∼S is
not reflexive (recall, e.g., Example 11). On the other hand, |∼S has the property of Proposition 8, while
||∼S does not have it (Indeed, by reflexivity, when S = {p,¬p} we have that S ||∼S p and S ||∼S ¬p).
A detailed analysis of the argumentation-based entailments of the form ||∼S and their dynamic proof
systems is beyond the scope of this paper, and it is left for future work.
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Appendix A. Proof Invariance Under Weak Symmetry

The purpose of this appendix is to show that (final) provability in dynamic systems for frameworks
that are weakly symmetric is proof invariant: if a certain argument s is finally derivable, then any
dynamic derivation for the same setting can be extended in such a way that s will be finally derived
in that derivation (see Proposition 6 and Proposition 23 below). For the proof, we first consider some
notations and lemmas.

Given a sequent-based (logical) argumentation framework AFS(S) = 〈ArgL(S),Attack〉 for a set of
formulas S (induced by setting S), we define a corresponding framework, for the same setting and set of
formulas, but whose arguments are equivalence classes of arguments in ArgL(S). This is defined next.

Definition 26. Let AFS(S) = 〈ArgL(S),Attack〉 be a sequent-based argumentation framework and let
∼ be an equivalence relation on ArgL(S).

• The ∼-equivalence class of s ∈ ArgL(S) is the set [s] = {s′ ∈ ArgL(S) | s′ ∼ s}. The corresponding
set of arguments is the quotient set of ArgL(S), namely: ArgL(S)/∼ = {[s] | s ∈ ArgL(S)}.

• We write AF∼S(S) for the quotient graph24 of AFS(S), i.e.: AF∼S(S) = 〈ArgL(S)/∼,Attack/∼〉,
where Attack/∼ = {([s], [t]) | (s, t) ∈ Attack}. In what follows we shall refer to AF∼S(S) as the
quotient framework of AFS(S).

In terms of the definition above we recall that AFS(S) is ∼-weakly symmetric (Definition 20) iff ∼
is a right congruence25 on AFS(S) and (Attack/∼)∗ is symmetric and irreflexive, where:

• Arg∗L(S)/∼ = ArgL(S)/∼ −
(
Root(AF∼S(S)) ∪ (Root(AF∼S(S)))+

)
, 26

• (Attack/∼)∗ = Attack/∼ ∩
(
Arg∗L(S)/∼ × Arg∗L(S)/∼

)
.

Using the notations above, we can show proof invariance (under ∼-weak symmetry). First, since the
proof in what follows is rather long and technical, we give an outline of it.

Outline of the proof: Suppose that D is a dynamic derivation in which s is finally derived from S and
that D′ is an arbitrary dynamic derivation (for the same setting) which is also based on S.

1. In view of Proposition 19 below we can extend D′ to D′′ in such a way that every t ∈ D is added,
where D denotes the set of all sequents that occur in the derivation D.

2. In Lemma 4 we then show that every attacker in ArgS(S) of s is in D ∩ Root(AFS(S))+ and that
s /∈ Root(AFS(S))+. Hence, every attacker t ∈ ArgS(S) of s is in D′′ ∩ Root(AFS(S))+.

3. Let RD′′ be a set that contains for each t ∈ D′′ ∩ Root(AFS(S))+ a t′ ∈ Root(AFS(S)) for which
(t′, t) ∈ Attack .

4. In Proposition 21 below we show that there is a stable extension E of AF∼S(S)↓(D′′/∼ ∪ RD′′/∼),

where the latter is the restriction of AF∼S(S) to the arguments in D′′/∼∪RD′′/∼, such that [s] ∈ E .

5. In Lemma 2 we then show that D′′ can be extended to D∗ in such a way that RD′′ ⊆ D∗ and
s ∈ Accepted(D∗). Since all attackers of s are attacked by elements in RD′′ ⊆ D∗ ∩Root(AFS(S)),
s is finally derived in D∗.

24See, e.g., [28, Definition 2.8].
25Recall Item 2 in Note 2.
26Recall the definition of Root in Definition 19.
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6. Since D∗ is an extension of D′ and D′ is a dynamic derivation based on S, this suffices to prove
proof invariance.

We now provide the detailes of the proof outlined above.

Proposition 19. Let D be a dynamic derivation for S, and denote by D the set of sequents that appear
in the derivation D. For every s ∈ ArgL(S)−D there is an extension D′ of D such that s ∈ Accept(D′).

Proof. Since s ∈ ArgL(S), there is a proof of s in the underlying calculus C. We therefore extend D to
D′ by adding each sequent t in such a proof which is not already in D. Clearly, Elim(D) = Elim(D′) and
Attack(D) = Attack(D′), hence D′ is coherent, and s ∈ Accept(D′). 2

Next we extend D′ of the last proposition in such a way that s is finally derived in the derivation that
is obtained. For this we first relate in the next proposition an argumentation framework with its quotient
argumentation framework (for a given equivalence relation ∼).

Proposition 20. AFS(S) = 〈ArgL(S),Attack〉 be an argumentation framework and ∼ a right congru-
ence on ArgL(S).

1. s ∈ Root(AFS(S)) iff [s] ∈ Root(AF∼S (S)).

2. s ∈ Root(AFS(S))+ iff [s] ∈ Root(AF∼S (S))+.

3. Let
⋃
E =

⋃
{[s] | [s] ∈ E}. If E ∈ Stbl(AF∼S (S)) then

⋃
E ∈ Stbl(AFS(S)).

Proof.

1. (⇒) Suppose that [s] 6∈ Root(AF∼S (S)). Then there is a [t] ∈ ArgL(S)/∼ for which ([t], [s]) ∈
Attack/∼. Thus, there are t′ ∈ [t] and s′ ∈ [s] such that (t′, s′) ∈ Attack . Since ∼ is a right
congruence and s ∼ s′ also (t′, s) ∈ Attack . Hence, s 6∈ Root(AFS(S)).
(⇐) Suppose that s 6∈ Root(AFS(S)). Then there is a t ∈ ArgL(S) for which (t, s) ∈ Attack . Hence,
([t], [s]) ∈ Attack/∼, and so [s] 6∈ Root(AF∼S (S)).

2. (⇒) Suppose that s ∈ Root(AFS(S))+. Then, there is a t ∈ Root(AFS(S)) for which (t, s) ∈
Attack . Hence, ([t], [s]) ∈ Attack/∼. Since by Item 1 [t] ∈ Root(AF∼S (S)), we have that [s] ∈
Root(AF∼S (S))+.
(⇐) Suppose that [s] ∈ Root(AF∼S (S))+. Then there is a [t] ∈ Root(AF∼S (S)) for which ([t], [s]) ∈
Attack/∼. Thus, there are t′ ∈ [t] and s′ ∈ [s] for which (t′, s′) ∈ Attack . Since ∼ is a right
congruence and s ∼ s′ also (t′, s) ∈ Attack . By Item 1 again, t′ ∈ Root(AFS(S)), and so s ∈
Root(AFS(S))+.

3. Suppose that E ∈ Stbl(AF∼S (S)), and let s, t ∈
⋃
E . Then (s, t) 6∈ Attack , otherwise ([s], [t]) ∈

Attack/∼, in which case E is not conflict-free (and so not stable). Thus
⋃
E is conflict-free. Let

now t ∈ ArgL(S)−
⋃
E . Then [t] ∈ (ArgL(S)/∼)− E . Since E is stable, there is a [s] ∈ E such that

([s], [t]) ∈ Attack/∼. Thus, there is are s′ ∈ [s] and t′ ∈ [t] such that (s′, t′) ∈ Attack . Since ∼ is a
right congruence, also (s′, t) ∈ Attack . In particular, there is a s′ ∈

⋃
E such that (s′, t) ∈ Attack .

It follows that
⋃
E is a stable extension of AFS(S). 2

Definition 27. Let AFS(S) = 〈ArgL(S),Attack〉 and A ⊆ ArgL(S). We denote by RA an arbitrary
hitting set of

{
{s ∈ Root(AFS(S)) | (s, t) ∈ Attack} | t ∈ A

}
.27

27Recall that ∆ is a hitting set of a set of sets Ξ = {∆i | i ∈ I} iff for all i ∈ I, ∆ ∩∆i 6= ∅.
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Intuitively, RA consists of elements in Root(AFS(S)) that attack elements in A (at least one attacker
for each element in A).

Note 12. In case that the set A in Definition 27 is finite, there is a finite set RA.

Definition 28. Given AFS(S) = 〈ArgL(S),Attack〉 and A ⊆ ArgL(S), we denote by AFS(S) ↓ A the
framework that is obtained by restricting AFS(S) to the elements in A. That is: AFS(S) ↓ A =
〈A, Attack ∩ (A×A)〉.

Note 13. In terms of Definition 28, the inner framework of AFS(S) = 〈ArgL(S),Attack〉 (considered in
the paragraph below Definition 19) is AF∗S(S) = AFS(S)↓Arg∗L(S).

In what follows we suppose that AFS(S) = 〈ArgL(S),Attack〉 is a ∼-weakly symmetric framework,
where ∼ is a right congruence on ArgL(S) and AF∼S (S) is the corresponding quotient framework.

The next proposition shows that for any subset of arguments A ⊆ ArgS(S) that contains for each
t ∈ A ∩ Root(AFS(S))+ an st ∈ A ∩ Root(AFS(S)) for which (st, t) ∈ Attack and for each s ∈
A− Root(AFS↓A), there is a stable extension E of AF∼S(S)↓(A/∼) such that [s] ∈ E .

Proposition 21. Let A ⊆ ArgS(S) and let RA be any hitting set as considered in Definition 27. We
denote: A∼ =df {[s] ∈ ArgL(S)/∼ | s ∈ A ∪ RA}. Then:

1. if [s] ∈ A∼ − Root(AF∼S(S)↓A∼)+, [s] is an element of some stable extension E of AF∼S(S)↓A∼
for which Root(AF∼S(S)↓A∼) ⊆ E,

2. Root(AF∼S(S)↓A∼)+ ⊆ Root(AF∼S(S))+,

3. Stbl(AF∼S(S)↓A∼) 6= ∅.

Proof. Item 1. Let {[s1], [s2], . . .} be an enumeration of A∼ − Root(AF∼S(S)↓A∼)+ such that s1 = s.
We consider the set E =

⋃
i≥1 Ei, where E1 = {[s1]}, and for every i ≥ 1

Ei+1 =

{
Ei ∪ {[si+1]} ∀[s′] ∈ Ei, ([s′], [si+1]) /∈ (Attack/∼) ∩ (A∼ ×A∼),

Ei otherwise.

We claim that E is a stable extension of AF∼S(S)↓A∼, containing the argument [s].

Note first that Root(AF∼S(S)↓A∼) ⊆ E . To see this, let [s] ∈ Root(AF∼S(S)↓A∼). Then [s] = [si] for
some i ≥ 1. Clearly, [si] ∈ Ei since there is no [t] ∈ A∼ for which ([t], [si]) ∈ (Attack/∼).

To show that E is stable, we first show that E is conflict-free. For this we show the following lemma:

Lemma 1. Let Attack∼ =
(
(Attack/∼) ∩ (A∼)2

)
−
(
Root(AF∼S(S)↓A∼) ∪ (Root(AF∼S(S)↓A∼))+

)2
.

Then Attack∼ ⊆ (Attack/∼)∗ ∩ (A∼)2.

To see this note that (†) A∼ ∩ Root(AF∼S(S)) ⊆ Root(AF∼S(S)↓A∼) and thus also (‡) A∼ ∩
Root(AF∼S(S))+ ⊆ (Root(AF∼S(S)↓A∼))+. We have: (Attack/∼)∗ ∩ (A∼)2 = ((Attack/∼) ∩ (A∼)2) −(
(Root(AF∼S(S)) ∩ A∼) ∪ ((Root(AF∼S(S)))+ ∩ A∼)

)2
. By (†) and (‡), (Attack/∼)∗ ∩ (A∼)2 ⊇

((Attack/∼) ∩ (A∼)2)−
(
Root(AF∼S(S)↓A∼) ∪ (Root(AF∼S(S))↓A∼)+

)2
= Attack∼. 2

From this, the definition of Attack∼, and since AFS(S) is ∼-weakly symmetric, it immediately follows
that Attack∼ is both symmetric and irreflexive.
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Now, to prove the conflict-freeness of E , let [si], [sj ] ∈ E and assume for a contradiction that ([si], [sj ]) ∈
((Attack/∼)∩A∼)2. By the construction, i > j. Since Root(AF∼S(S)↓A∼)+∩E = ∅, ([si], [sj ]) ∈ Attack∼.
By the symmetry of Attack∼ also ([sj ], [si]) ∈ Attack∼, which is a contradiction, since then [si] /∈ E by
the construction of Ei. Altogether, this shows that E is conflict-free.

Suppose that [t] ∈ A∼ − E . In case that [t] ∈ Root(AFS(S)↓A∼)+, we have [t] ∈ E+, since
Root(AFS(S)↓A∼) ⊆ E . Otherwise, [t] = [sj ] for some j ≥ 1. Hence, there is a [si] ∈ E with 1 ≤ i < j
such that ([si, sj ]) ∈ Attack/∼. Again, [t] ∈ E+. Altogether, this shows that E is a stable extension of
AFS(S)↓A∼.

Item 2. Suppose that [t] ∈ Root(AF∼S(S)↓A∼)+ and assume for a contradiction that [t] /∈
Root(AF∼S(S))+. Thus, there is an [s] ∈ Root(AF∼S(S)↓A∼), for which ([s], [t]) ∈ Attack/∼. By
the supposition, [s] /∈ Root(AF∼S(S)). Assume now that [s] ∈ Root(AF∼S(S))+. Thus, there is a
s′ ∈ [s] ∩ A. By Proposition 20 (item 2), s′ ∈ Root(AFS(S))+. Hence, there is a ts′ ∈ RA for which
(ts′ , s

′) ∈ Attack . Thus, ([ts′ ], [s]) ∈ Attack/∼ and hence, [s] ∈ Root(AF∼S(S)↓A∼)+. This contradicts
that [s] ∈ Root(AF∼S(S)↓A∼). Thus, [s] /∈ Root(AF∼S(S))+.

Since {[s], [t]} ∩ (Root(AF∼S(S) ∪ Root(AF∼S(S))+)) = ∅ and since (Attack/∼)∗ is symmetric, also
([t], [s]) ∈ Attack/∼. But then [s] /∈ Root(AF∼S(S)↓A∼), a contradiction. Hence, [t] ∈ Root(AF∼S(S))+.

Item 3. In case that A∼ = ∅ the claim is trivial. Suppose that A∼ 6= ∅. If Root(AF∼S(S)↓A∼) 6= ∅,
then A∼−Root(AF∼S(S)↓A∼)+ 6= ∅. Otherwise, also A∼−Root(AF∼S(S)↓A∼)+ = A∼ 6= ∅. By Item 1,
AFS(S)↓A∼ has a stable model. 2

Proposition 22. Every argumentation framework AFS(S) that is ∼-weakly symmetric (where ∼ is
some right congruence on the set of arguments) has a stable model.

Proof. By Item 3 of Proposition 21 (where A = ArgS(S)), we have Stbl(AF∼S(S)) 6= ∅. Thus, by Item 3
of Proposition 20, Stbl(AFS(S)) 6= ∅. 2

Recall that proof invariance basically means that if a sequent s is finally derived in a certain derivation,
then every derivation in the same setting and which is based on the same formulas, can be extended in
such a way that s will be finally derived in the extended derivation. The next three lemmas show how
such an extension may be constructed.

Lemma 2. Let D be a dynamic derivation for S that is based on S, let RD be a finite hitting set as in
Definition 27 and Note 12,28 let D∼ = {[s] ∈ ArgL(S)/∼ | s ∈ D∪RD}, and let E ∈ Stbl(AF∼S (S)↓D∼).29

We denote: D[E ] = {s ∈ D | [s] ∈ E}. There is an extension D′ of D such that

1. D[E ] = Accept(D′),

2. Elim(D′) = D −D[E ], and

3. for every s ∈ D ∩ Root(AFS(S))+ there is a ts ∈ D′ ∩ Root(AFS(S)) such that D′ contains an
eliminating tuple in which ts attacks s, and s ∈ Elim(D′).

Proof. Let E = {[s1], . . . , [sn]} be a stable extension of AF∼S (S) ↓D∼. We construct the derivation D′
as follows:

• Suppose that s ∈ (D −D[E ])− Root(AFS(S))+ attacks some t ∈ D[E ]. Then ([s], [t]) ∈ Attack/∼.
Hence, there is a [t′] ∈ E such that ([t′], [s]) ∈ Attack/∼. Thus, there are s′ ∈ [s] and ts ∈ [t′] such
that (ts, s

′) ∈ Attack . Since ∼ is a right congruence, (ts, s) ∈ Attack . Since ts ∼ t′, [ts] = [t′] ∈ E .

28Recall that D denotes the set of all sequents that occur in the derivation D.
29By Proposition 21 (Item 3), Stbl(AF∼S (S)↓D∼) 6= ∅.
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• Suppose that s ∈ (D − D[E ]) ∩ Root(AFS(S))+. Hence, (†) there is a ts ∈ RD for which (ts, s) ∈
Attack . By Proposition 20 (item 1) [ts] ∈ Root(AF∼S(S)) and thus [ts] ∈ E .

• Thus, for each s ∈ D − D[E ], we have found a ts ∈
⋃
E such that (ts, s) ∈ Attack . We introduce

each such ts (which is not already in D), denote the resulting derivation by D′′, and suppose that
the indices of the new tuples are l + 1, . . . , l +m′′.

• For every s ∈ D−D[E ] there is now a sequent ts ∈ D′′ such that (ts, s) ∈ Attack , where the attack is
obtained by an application of some elimination rule R under some condition. As in Proposition 19,
we add to D′′ proofs of all the conditions of these rules, which are not already occurring in D′′. Let
the indices of the new tuples be l+m′′ + 1, . . . , l+m′′′ and let the resulting derivation be denoted
by D′′′.

• Now, (‡) we add elimination tuples in which ts attacks s for every ts ∈ D′′ and every s ∈ D−D[E ],
for which (ts, s) ∈ Attack . We denote the resulting derivation by D′ and suppose that the indices
of the new tuples are l +m′′′ + 1, . . . , l +m′.

It is not difficult to verify that the resulting derivation is valid. Coherence follows since sequents
are added to Elim only until the top-down evaluation algorithm of Figure 3 reaches line l + m′′′ + 1.
The reason for this is that all other elimination tuples τ = 〈l′, s, . . . , t〉 in D′ in which t attacks s and
l′ < l + m′′′ + 1, are such that either t ∈ D − D[E ] or t ∈ D[E ]. In the former case, t has already been
added to Elim (in one of the lines l +m′′′ + 1, . . . , l +m′) and so no new element is added to Elim when
τ is reached in the algorithm. In the latter case the attacked sequent (s) is already in Elim, since its
attacker ts already attacked it in one of the lines l+m′′′+ 1, . . . , l+m′. Hence, Attack(D′) ⊆

⋃
E . Since⋃

E is conflict-free, Attack(D′) ∩ Elim(D′) ⊆
⋃
E ∩ Elim(D′) = ∅, which shows that D′ is coherent, that

D[E ] = Accept(D′), and that Elim(D′) = D −D[E ]. The last item of the proposition immediately follows
from the construction (by (†) and (‡)). 2

Lemma 3. Let D be a dynamic derivation for S that is based on S and let s ∈ D be a sequent such that
for all t ∈ ArgL(S) for which (t, s) ∈ Attack, it holds that t ∈ Root(AFS(S))+. If there is a sequent t 6∈ D
such that (t, s) ∈ Attack, then there is an extension D′ of D such that s ∈ Elim(D′) and t ∈ Accept(D′).

Proof. We construct D′ as follows: Let E be a stable extension of AF∼S (S)↓D∼ where D∼ is defined as
in Lemma 2. (Again, by Item 3 of Proposition 21 such a stable extension exists). We extend D to D′′
as in Lemma 2. Suppose that the indices of the new tuples are l + 1, . . . , l + n. By Item 2 of Lemma 2,
t /∈ Elim(D′′), since t 6∈ D.

We now add the proof of t (as in Proposition 19) and an eliminating tuple in which t attacks s,
resulting in a derivation D′. To see that D′ is a valid derivation we have to show coherence. For this we
first show that (†) all sequents s′ which are eliminated by s in D′′ are also eliminated by some ts′ ∈ RD ⊆
D′′∩Root(AFS(S)) in one of the lines l+ 1, . . . , l+n. With (†) we know that Elim(D′) = Elim(D′′)∪{s}
and Attack(D′) = (Attackers(D′′) ∪ {t}) − {s}. Since t /∈ Elim(D′) the coherence of D′ follows from the
coherence of D′′.

To show (†), suppose that s′ is a sequent eliminated by s in D′′. Then (s, s′) ∈ Attack and hence
s′ /∈ Root(AFS(S)). Since (t, s′) ∈ Attack , s /∈ Root(AFS(S)). Also, since every attacker of s is
attacked by an element in Root(AFS(S)), s /∈ Root(AFS(S))+. Assume for a contradiction that s′ /∈
Root(AFS(S))+. By Proposition 20, ([s], [s′]) ∈ (Attack/∼)?. Then, ([s′], [s]) ∈ Attack/∼ by the
symmetry of (Attack/∼)?. Hence, for some s′′ ∈ [s′], (s′′, s) ∈ Attack since ∼ is a right congruence. So,
s′′ is attacked by some sequent in Root(AFS(S)) and by Proposition 20 so is s′. This contradicts the
assumption that s′ /∈ Root(AFS(S))+. Thus, s′ ∈ Root(AFS(S))+. and by the definition of RA there is
a ts′ ∈ RA for which (ts′ , s

′) ∈ Attack . 2
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Lemma 4. Let D be a dynamic derivation for S that is based on S. If s is finally derived in D then (i)
all the attackers t ∈ ArgL(S) of s are in D ∩ Root(AFS(S))+ and (ii) s /∈ Root(AFS(S))+.

Proof. Assume for a contradiction that there is a sequent t ∈ ArgL(S)−Root(AFS(S))+ such that (t, s) ∈
Attack . We distinguish two cases, (a) t ∈ D and (b) t /∈ D. In case (a) let D∗ = D. In case (b) we extend
D to D∗ with a derivation of t (as in Proposition 19). By Item 2 of Proposition 20, [t] ∈ (ArgL(S)/∼)−
(Root(AF∼S (S))+). Where RD∗ is a finite hitting set as in Definition 27 and Note 12, let D∗∼ = {[s] ∈
ArgL(S)/∼ | s ∈ D∗ ∪ RD∗}. By Item 2 of Proposition 21, [t] ∈ D∗∼ − Root(AF∼S(S)↓D∗∼)+. By Item
1 of Proposition 21, [t] is an element of some stable extension of E of AF∼S (S) ↓ (D∗∼). By Lemma 2,
there is an extension D′ of D∗ such that t ∈ Accept(D′) and s ∈ Elim(D′), which is a contradiction to the
assumption that s is finally derived in D. Hence, (†) any attacker t of s is in Root(AFS(S))+.

Finally, by (†) and Lemma 3, every attacker t of s is in D. This completes the proof for (i). Now, (ii)
follows immediately in view of (i). 2

Now we are ready to show the main result of the appendix (which is a slight reformulation of Propo-
sition 6):

Proposition 23. Let AFS(S) = 〈ArgL(S),Attack〉 be a ∼-weakly symmetric framework. Let D and D′
be two dynamic derivations for S that are based on S. If s is finally derived in D, there is an extension
of D′ such that s is also finally derived in that extension.

Proof. Let D, D′ and s be as in the proposition. We construct the required extension of D′ as follows.

• Let D′′ be the result of extending D′ by adding to the latter (the proofs of) every t ∈ D − D′ (as
in Proposition 19).

• By Lemma 4, all the attackers t ∈ ArgL(S) of s are in D ∩ Root(AFS(S))+. Thus, by Item 1 of
Proposition 20, (†) every attacker [t] ∈ ArgL(S)/∼ of [s] is in Root(AF∼S (S))+ ∩D/∼.

• Let D′′∼ = {[t] ∈ ArgL(S)/∼ | s ∈ D′′ ∪ RD′′}, where RD′′ is a finite hitting set as in Definition 27
and Note 12. We now show that [s] ∈ D′′∼−Root(AF∼S(S)↓D′′∼)+. Assume for a contradiction that
[s] ∈ Root(AF∼S(S)↓D′′∼)+. Thus, there is a [t] ∈ Root(AF∼S(S)↓D′′∼) such that ([t], [s]) ∈ Attack/∼.
By (†), also [t] ∈ Root(AF∼S(S))+ ∩ D/∼. This implies that there are t′ ∈ RD′′ and t′′ ∈ [t] for
which (t′, t′′) ∈ Attack . Thus, ([t′], [t]) ∈ Attack/∼ which contradicts [t] ∈ Root(AF∼S(S)↓D′′∼).

• By Item 1 of Proposition 21, there is a E ∈ Stbl(AF∼S(S)↓D′′∼) for which [s] ∈ E .

• By Lemma 2, there is an extension D∗ of D′′ (based on the hitting set RD′′) for which D′′[E ] =
Accepted(D∗) and hence s ∈ Accepted(D∗).

• We have that s is finally derived in D∗ since all of its attackers t are eliminated in D∗ by some
ts ∈ RD′′ ⊆ Root(AFS(S))∩D∗ which cannot itself be eliminated in any extension of the proof. 2

Appendix B. Rationality Postulates for Non-Monotonic Reasoning

In this appendix we prove some NMR postulates satisfied by |∼, as claimed in Propositions 13 and 16.
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Closure with respect to the Base Logic

First, we show Proposition 13: If |∼ is induced by a SAC setting (Definition 21) then for every finite
set S of formulas, S |∼ φ iff {ψ | S |∼ ψ} ` φ.

For this, in what follows we assume that S is finite, and show the claim for Indirect Defeat attacks.

Lemma 5. If s = ∆ ⇒ φ ∈ ArgL(S) and for every t ∈ ArgL(S) for which (t, s) ∈ Attack it holds that
t ∈ Root(AFS(S))+, then s is finally derivable and S |∼ φ.

Proof. We construct a proof in which s is finally derived as follows. We start with a derivation of s.
Let now {t1, . . . , tn} be the set of all attackers of s in ArgL(S). Since S is finite, this set is finite as well.
We now derive each of these attackers. By our supposition, for each ti there is an si ∈ Root(AFS(S))
for which (si, ti) ∈ Attack . We now derive each si. Finally, we add ti for each i ∈ I with the attacker
si. Let the resulting dynamic derivation be D. Note that D is coherent since Attack(D) = {s1, . . . , sn},
Elim(D) = {t1, . . . , tn} and {s1, . . . , sn} ∩ {t1, . . . , tn} = ∅. Now, s is finally derived in D since every
attacker ti of s is eliminated by an argument without attackers. 2

Lemma 6. If s = ∆ ⇒ φ ∈ Root(AFS(S)) and there is a t ∈ ArgL(S) for which (s, t) ∈ Attack, then
∆ = ∅.

Proof. Assume for a contradiction that ∆ 6= ∅ and let t = Λ ⇒ ψ. Then φ ⇒ ¬
∧

Λ′ is derivable for
some Λ′ ⊆ Λ. By Contraposition and Cut, Λ′ ⇒ ¬

∧
∆ ∈ ArgL(S), thus t attacks s. This contradicts the

assumption that s ∈ Root(AFS(S)). 2

Lemma 7. If ∆ ⇒ φ and ∆′ ⇒ φ′ are finally derivable from S, also Γ ⇒ ψ is finally derivable from S
for any Γ for which Γ ` ψ and Γ ⊆ ∆ ∪∆′.

Proof. By Lemma 5, we need to show that every attacker t ∈ ArgL(S) of s = Γ ⇒ ψ is attacked by
some st ∈ Root(AFS(S)). Suppose that s is attacked by some Λ ⇒ σ ∈ ArgL(S). Then σ ⇒ ¬

∧
Γ′

is derivable for some Γ′ ⊆ Γ and thus, where ∆′′ = ∆ ∩ Γ′ and ∆′′′ ⊆ ∆′ ∩ Γ′, σ ⇒ ¬
∧

(∆′′ ∪ ∆′′′) is
derivable. By Contraposition and Cut, Λ,∆′′ ⇒ ¬

∧
∆′′′ ∈ ArgS(S) attacks ∆′ ⇒ φ′. By Lemma 4,

Λ,∆′′ ⇒ ¬
∧

∆′′′ is attacked by some Ω⇒ ¬
∧

(Λ′ ∪∆′′′′) ∈ Root(AFS(S)) where Λ′ ⊆ Λ and ∆′′′′ ⊆ ∆′′.
By Lemma 6, Ω = ∅ (note for this that Ω ⇒ ¬

∧
(Λ′ ∪ ∆′′′′) is attacked by Λ′,∆′′′′ ⇒ ¬

∧
Ω). Hence,

∅ ⇒ ¬
∧

(Λ′ ∪ ∆′′′′) ∈ Root(AFS(S)) and by contraposition we obtain Λ′ ⇒ ¬
∧

∆′′′′ which attacks
∆ ⇒ φ. Again, by Lemmas 4 and 6, Λ′ ⇒ ¬

∧
∆′′′′ is attacked by some ∅ ⇒ ¬

∧
Λ′′ ∈ Root(AFS(S))

where Λ′′ ⊆ Λ′. Thus, ∅ ⇒ ¬
∧

Λ′′ attacks Λ⇒ σ. 2

Closure: S |∼ φ iff {ψ | S |∼ ψ} ` φ.

Proof. The left-to-right direction is trivial. Suppose that {ψ | S |∼ ψ} ` φ. Since L is finitary, there are
φ1, . . . , φn for which S |∼ φ1, . . . , S |∼ φn and φ1, . . . , φn ` φ. Hence, there are ∆1 ⇒ φ1, . . . , ∆n ⇒ φn
that are finally derivable from S. Note that s = ∆1, . . . ,∆n ⇒ φ ∈ ArgL(S). In view of Lemma 7, s is
finally derivable. Thus, S |∼ φ. 2

Cautious Monotonicity and Cautious Cut

Next, we consider cautious versions of monotonicity and cut.

Cautious Cut (CC): If S |∼ φ and S, φ |∼ ψ then S |∼ ψ.
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Proof. Suppose that S |∼ φ and S, φ |∼ ψ. Then there are sequents ∆⇒ φ and Γ⇒ ψ there are finally
derivable, respectively, from S and from S ∪ {φ}.

Suppose first that φ /∈ Γ and hence Γ ⊆ S. Suppose also that a sequent Λ ⇒ ¬
∧

Γ′ ∈ ArgL(S)
attacks Γ⇒ ψ where Γ′ ⊆ Γ. By Lemmas 4 and 6, Λ⇒ ¬

∧
Γ′ is attacked by some tautological sequent

⇒ ¬
∧

Λ′ ∈ Root(AFS(S ∪ {φ})) where Λ′ ⊆ Λ. Note that ⇒ ¬
∧

Λ′ ∈ Root(AFS(S)). Thus, by
Lemma 5, Γ⇒ ψ is finally derivable from S, and so S |∼ ψ.

Suppose now that φ ∈ Γ. By Cut, ∆,Γ \ {φ} ⇒ ψ is derivable, and so it is in ArgL(S). Suppose
that Λ ⇒ ¬

∧
(∆′ ∪ Γ′) ∈ ArgL(S) attacks ∆,Γ \ {φ} ⇒ ψ, where ∆′ ⊆ ∆ and Γ′ ⊆ Γ \ {φ}. By

Contraposition, Λ,Γ′ ⇒ ¬
∧

∆′ ∈ ArgL(S), and it attacks ∆⇒ φ. By Lemmas 4 and 6 some tautological
sequent ⇒ ¬

∧
(Λ′ ∪ Γ′′) ∈ Root(AFS(S)) attacks Λ,Γ′ ⇒ ¬

∧
∆′, where Λ′ ⊆ Λ and Γ′′ ⊆ Γ′. By

Contraposition, Λ′ ⇒ ¬
∧

Γ′′ ∈ ArgL(S), and it attacks Γ ⇒ ψ in AFS(S ∪ {φ}). By Lemmas 4 and 6,
there is a tautological sequent ⇒ ¬

∧
Λ′′ ∈ Root(AFS(S ∪ {φ})) that attacks Λ′ ⇒ ¬

∧
Γ′′ for some

Λ′′ ⊆ Λ′. Note that ⇒ ¬
∧

Λ′′ ∈ Root(AFS(S)) and it also attacks Λ ⇒ ¬
∧

(∆′ ∪ Γ′). By Lemma 5,
∆,Γ \ {φ} ⇒ ψ is finally derivable from S, and so S |∼ ψ in this case as well. 2

Cautious Monotonicity (CM): If S |∼ φ and S |∼ ψ then S, φ |∼ ψ.

Proof. Suppose that S |∼φ and S |∼ψ. Hence, there is a sequent Γ⇒ ψ that is finally derivable from S for
some Γ ⊆ S. Suppose that some sequent Λ⇒ ¬

∧
Γ′ ∈ ArgL(S ∪{φ}) attacks Γ⇒ ψ. We now distinguish

the two cases φ ∈ Λ and φ /∈ Λ and show that in each case there is a ⇒ ¬
∧

Λ′ ∈ Root(AFS(S ∪ {φ))
for some Λ′ ⊆ Λ that attacks Λ ⇒ ¬

∧
Γ′. Thus, by Lemma 5, Γ ⇒ ψ is finally derivable from S ∪ {φ}.

Hence S, φ |∼ ψ.
If φ /∈ Λ, by Lemmas 4 and 6, Λ ⇒ ¬

∧
Γ′ is attacked by some tautological sequent ⇒ ¬

∧
Λ′ ∈

Root(AFS(S)). Note that ⇒ ¬
∧

Λ′ ∈ Root(AFS(S ∪ {φ})) as well.
Suppose now that φ ∈ Λ. We know that there is a ∆ ⇒ φ that is finally derivable from S. By Cut,

Λ \ {φ},∆ ⇒ ¬
∧

Γ′ ∈ ArgL(S). By Lemmas 4 and 6, there is a tautological sequent ⇒ ¬
∧

(Λ′ ∪∆′) ∈
Root(AFS(S)) that attacks Λ \ {φ},∆ ⇒ ¬

∧
Γ′ where Λ′ ⊆ Λ \ {φ} and ∆′ ⊆ ∆. By Contraposition,

Λ′ ⇒ ¬
∧

∆′ ∈ ArgL(S), and it attacks ∆⇒ φ. By Lemmas 4 and 6 again, there is a tautological sequent
⇒ ¬

∧
Λ′′ ∈ Root(AFS(S)) for some Λ′′ ⊆ Λ′ that attacks Λ′ ⇒ ¬

∧
∆′ and thus also attacks Λ⇒ ¬

∧
Γ′.

Note that ⇒ ¬
∧

Λ′′ is also in Root(AFS(S ∪ {φ})). 2

Left Logical Equivalence

Let σ[φ/ψ] be the result of uniformly substituting subformulas φ in σ with ψ. Let ∆[φ/ψ] = {δ[φ/ψ] |
δ ∈ ∆}, (Γ⇒ ∆)[φ/ψ] = Γ[φ/ψ]⇒ ∆[φ/ψ] and (Γ 6⇒ ∆)[φ/ψ] = Γ[φ/ψ] 6⇒ ∆[φ/ψ]. Finally, given a set
Ξ of sequents and eliminated sequents, we denote Ξ[φ/ψ] = {s[φ/ψ] | s ∈ Ξ} ∪ {s[φ/ψ] | s ∈ Ξ}.

Definition 29. A (sequent-based) argumentation framework AFS(S) = 〈ArgL(S),Attack〉 is invariant
under replacement of `-equivalents, if for every ψ and φ such that φ ` ψ and ψ ` φ, and for every
s1, s2 ∈ ArgL(S), if (s1, s2) ∈ Attack then also (s1[φ/ψ], s2[φ/ψ]) ∈ Attack .

An elimination rule R is invariant under replacement of `-equivalents, if for every set S of L-formulas
and for every calculus C which is sound and complete for L, the argumentation framework AFS(S) for
S = 〈L,C, {R}〉 is invariant under replacement of `-equivalents.30

In the remainder of this section we suppose that R is invariant under replacement of equivalents.

Definition 30. A dynamic derivation D can be written as a sequence 〈D1, . . . ,Dn〉 of sequences Di of
tuples, where for each odd index i the sequence Di consists only of introducing tuples and for each even

30Cf. Definitions 9 and 10.

38



index i the sequence Di consists only of eliminating tuples (see also the paragraph that proceeds Note 3).
We write D[φ/ψ] for the derivation represented by the sequence 〈D′1, . . . ,D′n〉, where D′i (1 ≤ i ≤ n) is
defined as follows:

• if i is an odd index and Di = 〈〈l1, s1, J1, t1〉, . . . , 〈lm, sm, Jm, tm〉〉, then D′i is the result of sequentially
adding to D′i−1 the derivations of si[φ/ψ] (i = 1, . . . ,m)31, possibly by using previously derived
sequents in D′i and D′j for j < i.

• if i is an odd index and Di = 〈〈l1, s1, J1, t1〉, . . . , 〈lm, sm, Jm, tm〉〉, then D′i is the result of
adding to D′i−1 the sequence 〈〈l′1, s1[φ/ψ], J′1, t1[φ/ψ]〉, . . . , 〈l′m, sm[φ/ψ], J′m, tm[φ/ψ]〉〉, where l′1 =
1 + |

⋃
1≤j<iD′j | and l′k = j′1 + k− 1 for each 1 < k ≤ m, and for each 1 ≤ j ≤ m, Jj is the adjusted

justification in terms of tuple indexes.

Lemma 8. Suppose that φ ` ψ and ψ ` φ, and let D = 〈D1, . . . ,Dn〉 be a dynamic proof based on
S ∪{φ}. Then D[φ/ψ] = 〈D′1, . . . ,D′n〉 is a dynamic proof based on S ∪{ψ}, such that for each 1 ≤ i ≤ n,
Elim(D[φ/ψ]) = Elim(D)[φ/ψ] and Attack(D[φ/ψ]) = Attack(D)[φ/ψ].

Proof. We show this inductively for each i ≥ 1.

• The case i = 1 is trivial: Elim(D1) = Elim(D1)[φ/ψ] = Elim(D′1) = ∅. Similarly, Attack(D1) =
Attack(D1)[φ/ψ] = Attack(D′1) = ∅. Moreover, D′1 is coherent since so is D1.

• Induction step: The inductive hypothesis is that Elim(〈D1, . . . ,Di〉)[φ/ψ] = Elim(〈D′1, . . . ,D′i〉), that
Attack(〈D1, . . . ,Di〉)[φ/ψ] = Attack(〈D′1, . . . ,D′i〉, and that 〈D′1, . . . ,D′i〉 is coherent. We consider
two cases:

– If i+ 1 is odd, then by the induction hypothesis, Elim(〈D1, . . . ,Di+1〉) = Elim(〈D1, . . . ,Di〉 =
Elim(〈D′1, . . . ,D′i〉 = Elim(〈D′1, . . . ,D′i+1〉) and Attack(〈D1, . . . ,Di+1〉)=Attack(〈D1, . . . ,Di〉)=
Attack(〈D′1, . . . ,D′i〉 = Attack(〈D′1, . . . ,D′i+1〉). The coherence of 〈D′1, . . . ,D′i+1〉 follows from
the coherence of 〈D1, . . . ,Di+1〉.

– If i+ 1 is even, then the fact that Elim(〈D1, . . . ,Di+1〉)[φ/ψ] = Elim(〈D′1, . . . ,D′i+1〉) and that
Attack(〈D1, . . . ,Di+1〉)[φ/ψ] = Attack(〈D′1, . . . ,D′i+1〉) follows from Item 2 in Definition 30 and
the inductive hypothesis. The coherence of 〈D′1, . . . ,D′i+1〉 follows then from the coherence of
〈D1, . . . ,Di+1〉. 2

Lemma 9. Suppose that φ ` ψ and ψ ` φ and let D be a dynamic derivation based on S ∪ {φ}. If s is
finally derived from in D (based on S ∪ {φ}) then s[φ/ψ] is finally derived in D[φ/ψ] (based on S ∪ {ψ}).

Proof. Let D = 〈D1, . . . ,Dn〉 and let s ∈ D. In the following we suppose that n is even (for the other
case the proof can easily be adjusted). Suppose that s[φ/ψ] is not finally derived from S ∪{ψ} in D[φ/ψ].
Then there is an extension D? = 〈D′1, . . . ,D′n,D?

1 , . . . ,D?
m〉 of D[φ/ψ], in which s[φ/ψ] is eliminated. We

now show that then s is not finally derived in D from S ∪{φ}. For this we extend D in the following way:

• For each odd i for which D?
i = 〈〈l1, s1, J1〉, . . . , 〈lm, sm, Jm〉〉, we let D†i be the result of adding to

Di+1 derivations of s1[ψ/φ], . . . sm[ψ/φ] (without introducing sequents that were previously used in

D or in some D†j for j ≤ i).

• For each even i for which D?
i = 〈〈l1, s1, J1, t1〉, . . . , 〈lm, sm, Jm, tm〉〉, we let

D†i = 〈〈l′1, s1[ψ/φ], J1, t1[ψ/φ]〉, . . . , 〈l′m, sm[ψ/φ], J′m, tm[ψ/φ]〉〉,

where Jk (for 1 ≤ k ≤ m) is the adjusted justification Jk with respect to the tuple indexes.

31We let D′0 = ∅.
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Denote the resulting proof by D†. In a similar way as in Lemma 8 it can be shown that Elim(D†) =
Elim(D?)[ψ/φ] and Attack(D†) = Attack(D?)[ψ/φ]. From this it immediately follows that D† is coherent
and that s ∈ Elim(D†). 2

Left Logical Equivalence (LLE): If φ ` ψ and ψ ` φ then S, φ |∼ σ iff S, ψ |∼ σ.

Proof. Suppose that S, φ |∼ σ. Then there is a dynamic derivation D in which some sequent s = ∆⇒ σ
is finally derived from S ∪ {φ}. By Lemma 9, s[φ/ψ] is finally derived in D[φ/ψ] from S ∪ {ψ}. Thus
S, ψ |∼ σ. The other direction is analogous. 2
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