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During the last sixty years several philosophers, including Jaskowski, Nelson, Anderson, Belnap, da-
Costa, and others, have questioned the validity of classical logic with regard to the principle of ez
contradictione (sequitur) quodlibet (ECQ). According to this principle, any proposition can be inferred
from a single contradiction. Recently, also many computer scientists have realized that classical logic
fails to capture the fact that information systems which contain some inconsistent pieces of information
may produce useful answers. The following text, given in [18], is a typical argument in favor of a more
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Abstract

Maximality is a desirable property of paraconsistent logics, motivated by the aspiration to
tolerate inconsistencies, but at the same time retain from classical logic as much as possible. In this
paper we introduce the strongest possible notion of mazimal paraconsistency, and investigate it in
the context of logics that are based on deterministic or non-deterministic three-valued matrices.
We show that all reasonable paraconsistent logics based on three-valued deterministic matrices
are maximal in our strong sense. This applies to practically all three-valued paraconsistent logics
that have been considered in the literature, including a large family of logics which were developed
by da Costa’s school. Then we show that in contrast, paraconsistent logics based on three-valued
properly non-deterministic matrices are not maximal, except for a few special cases (which are fully
characterized). However, these non-deterministic matrices are useful for representing in a clear and
concise way the vast variety of the (deterministic) three-valued maximally paraconsistent matrices.
The corresponding weaker notion of maximality, called premazimal paraconsistency, captures
the “core” of maximal paraconsistency of all possible paraconsistent determinizations of a non-
deterministic matrix, thus representing what is really essential for their maximal paraconsistency.

Introduction

appropriate logic:

Informally speaking, paraconsistency is the paradigm of reasoning in the presence of in-
consistency. Classical logic intolerantly invalidates any useful reasoning if there is any
inconsistency, no matter how irrelevant it may be. However, inconsistencies, as unpleasant
and dangerous as they can be, are ubiquitous in information systems. For novel technol-
ogy which often is not sufficiently mature before being launched on the market, the risk
of inconsistencies is even higher. Hence, a thoroughly revised inconsistency-tolerant logic



fundament is needed for databases and information systems, also because many future ap-
plications (e.g., the self-organizing cognitive evolution of networked information systems,
involving negotiation, argumentation, diagnosis, learning, etc.) are likely to deal directly
with inconsistencies as inherent constituents of real-life situations.

Thus, to handle inconsistent information one needs a logic that, unlike classical logic, allows
contradictory yet non-trivial theories. Logics of this sort are called paraconsistent.

There are many approaches to designing paraconsistent logics. One of the oldest and best known is
Newton da Costa’s approach, which has led to the family of Logics of Formal Inconsistency (LFIs) [15].
Now, already in the early stages of investigating this topic it has been acknowledged by da Costa
(and others) that paraconsistency by itself is not sufficient. A wuseful paraconsistent logic should
be mazimal: it should retain as much of classical logic as possible, while still allowing non-trivial
inconsistent theories. da Costa formulated this property in his seminal paper [17], but admitted that
the precise notion of “maximal paraconsistency” remained somewhat vague. Later, many three-valued
paraconsistent logics (such as Sette’s logic Py [31], Jaskowski-D’ottaviano’s Js [19] and other logics
in the family of LFIs [15, 27]) have indeed been shown to be maximally paraconsistent with respect
to classical logic in the following sense: any proper extension of their set of logically valid sentences
yields classical logic (see also [16, 23, 27]).

In this paper, we propose a stronger (and more natural) notion of maximal paraconsistency, with
respect to a very weak notion of “negation”. Our notion differs from previous notions of maximal
paraconsistency considered in the literature in two aspects. First, it is absolute in the sense that it
is not defined with respect to some other given logic (like classical logic, which is often taken as a
reference logic for maximality). Second, it takes into account any possible extension of the underlying
consequence relation of a logic, not just its set of logically valid sentences. To show that our notion of
maximal paraconsistency is indeed stronger in the used so far in the literature, we provide an example
of a paraconsistent logic such that any extension in the same language of its set of theorems results
in either classical logic or a trivial logic, yet it is not maximally paraconsistent in our sense.

Strong maximality of paraconsistent logics is investigated in this paper with respect to three-valued
deterministic and non-deterministic matrices. The former are one of the oldest and most common
ways of defining a paraconsistent logic. The latter are a recent natural generalization of the former,
introduced in [10], in which non-deterministic interpretations of connectives are allowed. We show that
in the deterministic case, all reasonably expressive three-valued paraconsistent logics are maximal in
the strong sense. Our result applies to all three-valued paraconsistent logics that have been considered
in the literature (including all the examples mentioned above, as well as any extension of one of them
obtained by enriching its language with extra three-valued connectives).

In the non-deterministic case things are quite different. We show that paraconsistent logics induced
by properly three-valued non-deterministic matrices (Nmatrices in short) are usually not maximal,
except for a few special cases (which are fully characterized in the paper).! Nevertheless, we show
that three-valued Nmatrices provide concise representations of the “core” of the maximal paraconsis-
tency of the three-valued deterministic matrices . For this purpose, we introduce a weaker notion of
maximality: We call an Nmatrix M premazimally paraconsistent, if every paraconsistent logic which
is induced by a “determinization” of M, is maximally paraconsistent. Premaximal three-valued Nma-
trices are a convenient tool for a systematization of the vast majority of the available maximally
paraconsistent three-valued logics. As an example we consider a family of 22° three-valued paracon-
sistent logics (which includes all the 2'3 three-valued paraconsistent LFIs shown in [15, 26] to be
maximal in the weak sense). All of these maximally paraconsistent logics can be represented by a

IEven these exceptional cases are redundant, as we show that any maximally paraconsistent logic defined by a
three-valued Nmatrix can be characterized also by a three-valued deterministic matrix.



single premaximal Nmatrix. This Nmatrix (which corresponds to a well-known paraconsistent logic
from da Costa’s school, called C,,;,) underlies all these logics, and captures the “core” of their maxi-
mal paraconsistency. We believe that this representation is faithful to da Costa’s original motivations
and intuitions concerning maximal paraconsistency, replaced by “maximal paraconsistency up to the

point in which choices based on other considerations should be made”.?

2 Preliminaries

2.1 Maximally Paraconsistent Logics

In the sequel, £ denotes a propositional language with a set A, of atomic formulas and a set W, of
well-formed formulas. We denote the elements of Az by p,q,r (possibly with subscripted indexes),
and the elements of W, by 1, ¢, 0. Sets of formulas in W, are called theories and are denoted by I'
or A. Following the usual convention, we shall abbreviate I' U {1} by T',%. More generally, we shall
write ', A instead of I' U A.

Definition 2.1 A (Tarskian) consequence relation for a language £ (a tcr, for short) is a binary
relation F between theories in W, and formulas in W,, satisfying the following three conditions:

Reflexivity: if ¢ € I' then I' F .
Monotonicity: if ' and ' C TV, then IV I .
Transitivity: if'F and IV,9 F ¢ then I, TV I ¢.

Let F be a ter for L.

e We say that - is structural, if for every uniform L-substitution 6 and every I' and ¢, if ' - o
then (') F 0(v). (Where (') = {0(v) | v € T'}).

e We say that F is consistent (or non-trivial), if there exist some non-empty theory I' and some
formula v such that T t/ ).

o We say that I is finitary, if for every theory I' and every formula 1 such that " - 1) there is a
finite theory IV C I" such that I F 1.

Definition 2.2 A (propositional) logic is a pair (£,}), so that £ is a propositional language, and -
is a structural, consistent, and finitary consequence relation for L.

Note 2.3 The conditions of being consistent and finitary are usually not required in the definitions
of propositional logics. However, consistency is convenient for excluding trivial logics (those in which
every formula follows from every theory, or every formula follows from every non-empty theory).
The other property is assumed since we believe that it is essential for practical reasoning, where a
conclusion is always derived from a finite set of premises. In particular, every logic that has a decent
proof system is finitary.

A useful property of a propositional logic is that it admits the following stronger version of Tran-
sitivity (referring to a cut on multiple formulas):

Lemma 2.4 Let (L,F) be a propositional logic. If T+ ; for every ¢; € T', and T',T' F ¢, then
Tk .

2This paper is a corrected and expanded version of [2].



Proof. In case that TV is finite, this follows from Transitivity using an induction on the number of
formulas in IV. The case in which I is not finite is reducible to the finite case by the finitariness
assumption on the logic. (I

Next we define the notion of paraconsistency in precise terms:

Definition 2.5 [17, 22] A logic (L,F), where £ is a language with a unary connective -, and + is a
ter for £, is called —-paraconsistent, if there are formulas 1, ¢ in W,, such that ¢, = I/ ¢.

¢ 9

In what follows, when it is clear from the context, we shall sometimes omit the ‘=’ symbol and
simply refer to paraconsistent logics.

Note 2.6 As F is structural, it is enough to require in Definition 2.5 that there are atoms p, g such
that p, —p I/ q. The original definition is adequate also for non-structural consequence relations.

While paraconsistency is characterized by a ‘negation connective’, there is no general agreement
about the properties that such a connective should satisfy.? Below, we assume some very minimal
requirements that a negation connective should satisfy.*

Definition 2.7 Let L = (£,}) be a propositional logic for a language £ with a unary connective —.
e We say that — is a pre-negation (for L), if p I/ —p for atomic p.
e A pre-negation — is a weak negation (for L), if —p t/ p for atomic p.
In what follows, when referring to —-paraconsistency we shall assume that — is a pre-negation.

Definition 2.8 Let L = (£,}) be a —-paraconsistent logic (where — is a pre-negation for L).

e We say that L is mazimally paraconsistent in the weak sense, if every logic (£,IF) that extends
L without changing the language (i.e., - ClIF), and whose set of theorems properly includes that
of L, is not —-paraconsistent.

e We say that L is mazimally paraconsistent in the strong sense, if every logic (L, ) that properly
extends L without changing the language (i.e., - CIF) is not —-paraconsistent.

Both of the notions of maximal paraconsistency given in Definition 2.8 are absolute in the sense that
they are not defined with respect to some particular logic. This is in contrast to the relative notion of
maximal paraconsistency (in the weak sense), considered so far in the literature. For instance, in [16]
and in [23] it is noted, respectively, that Jaskowski-D’ottaviano three-valued logic J3 [19] and Sette’s
three-valued logic P; [31] are maximally paraconsistent with respect to classical logic, in the sense that
any proper extension of their set of logically valid sentences yields classical logic. Now it is not too
difficult to show that for any paraconsistent three-valued logic which is contained in classical logic, the
fact that it is maximally paraconsistent in the weak sense according to Definition 2.8 implies that this
logic is also maximally paraconsistent relative to classical logic. To the best of our knowledge, both of
the stronger absolute notions of maximal paraconsistency in Definition 2.8 have not been considered
before, and the notion of strong paraconsistency was not considered so far even in its relative form.

Clearly, maximal paraconsistency in the strong sense implies maximal paraconsistency in the weak
sense. As we show next, the converse is not true: the notion of maximal paraconsistency in the weak
sense, which is based only on extending the underlying set of theorems, is indeed weaker than the

3See, e.g., the papers collection in [20] that is devoted to this issue.
4Similar properties are considered, e.g., in [28].



notion of maximal paraconsistency in the strong sense, that is based on extending the underlying
consequence relation.’

Example 2.9 What is usually known as Sobocinski’s “three-valued logic” [34] has been motivated by
the matrix (see Definition 2.10) S = ({¢, f, T}, {¢t, T}, {=,7}), where =t = f, 5f =¢, 5T = T, and
the implication is interpreted as follows:

T ifa=b=T,
a=b = f ifa>yb (wheret > T > f),
t otherwise.

In [34], the set of valid sentences of S was axiomatized by a Hilbert-type system Hs with Modus
Ponens as the single inference rule. The corresponding logic (£, ) has the following properties:

e Weak completeness theorem [34]: 1 is provable in Fpg iff 4 is valid in S,

e Equivalence to the purely multiplicative fragment of the semi-relevance logic RM~ (see [1, pages
148-149] and [29]). In particular, the following version of the relevant deduction theorem obtains
for Hs: I',¢ Fug ¢ if either I' Fyg ¢ or I' Fpg ¢ — ¢

In [4] it is shown that (£, Fng) is maximally paraconsistent in the weak sense. In fact, it is shown that
this logic is paraconsistent, but any extension of the set of theorems of Hs by a non-provable axiom
yields either classical logic or a trivial logic. On the other hand, the logic (£,tng) is not maximally
—-paraconsistent in the strong sense, as ks (see Definition 2.12 below) is a proper extension of .
Indeed, it holds that
“(p—q)ksp but =(p—q) Fus p

(Had —(p — ¢) Fug p, then by the relevant deduction theorem mentioned above we would have that
either ks p or Fpg =(p — ¢) — p. This is impossible by the weak completeness of Hg, since neither
p nor =(p — ¢q) — p is valid in S).°

In what follows, when referring to ‘maximal paraconsistency’ we shall mean the strong sense of
this notion. Also, when saying that a certain (paraconsistent) logic is ‘maximal’, we shall mean that
it is maximally paraconsistent (in the strong sense).

2.2 Matrices and Their Consequence Relations

The most standard semantic (model-theoretical) way of defining a consequence relation (and so a
logic) is by using the following type of structures (see, e.g., [21, 25, 35]).

Definition 2.10 A (multi-valued) matriz for a language L is a triple M = (V, D, O), where
e V is a non-empty set of truth values,
e D is a non-empty proper subset of V, called the designated elements of V, and

e O includes an n-ary function S : V* — V for every n-ary connective ¢ of L.

5Take note that the weak and the strong notions of maximal paraconsistency do not necessarily coincide even in
case that the underlying logic has an implication connective which satisfies the standard deduction theorem, since this
theorem migt not hold anymore after the addition of new rules.

6This also implies that (£,Fs) is not equivalent to RM~ . In [7] it was shown that the former can be obtained from
the latter by adding the inference rule: from ¢ ® 1 infer ¢ (where the intensional conjunction ® is defined, as usual, by

PR =—(p — —)).



The set D is used for defining satisfiability and validity, as defined below:

Definition 2.11 Let M = (V,D,0) be a matrix for L.

e An M-valuation for L is a function v: W, —V such that for every n-ary connective ¢ of £ and
every ¥1,...,0n € We, v(o(¥1,...,%n)) =Spm(v(¥1),...,v(¢y)). We denote the set of all the
M-valuations by Apg.

e A valuation v € Ay is an M-model of a formula 1 (alternatively, v M-satisfies 1), if it belongs
to the set modaq(v) = {v € Apq | v(¥) € D}. The M-models of a theory I' are the elements of
the set mod(T') = Nyer moda (V).

o A formula v is M-satisfiable if moda(v)) # 0. A theory T' is M-satisfiable (or M-consistent)
if mod (') # 0.

In what follows we shall sometimes omit the prefix ‘M’ from the notions above. Also, when it is clear
from the context, we shall omit the subscript ‘M’ in Sa.

Definition 2.12 Given a matrix M, the relation - that is induced by (or associated with) M, is
defined by: T' Faq ¥ if moda (T') € moda(v0). We denote by Ly the pair (£,Faq), where M is a
matrix for £ and F, is the relation induced by M.

Henceforth we shall say that M is (maximally) paraconsistent, if so is L.

Example 2.13 Propositional classical logic is induced by the two-valued matrix ({t, f}, {t}, {A,=})
with the standard two-valued interpretations for A and —.

The following proposition has been proven in [32, 33].

Proposition 2.14 For every propositional language £ and a finite matric M for L, Ly = (L, F )
is a propositional logic.”

The next propositions are straightforward:
Proposition 2.15 A matriz (V, D, Q) is —-paraconsistent iff there is x € D such that -z € D.

Proposition 2.16 Let Ly = (£, ) be a logic induced by a matric M = (V,D,O) for a language

L with a unary connective =. Denote D =V \ D. Then:
a) — is a pre-negation for Ly, iff there is an element x € D such that >z € D.

b) — is a weak negation for L, iff it is a pre-negation for Larg and there is an element x € D such
that ~x € D.8

Corollary 2.17 There is no two-valued paraconsistent matriz for a language L with a pre-negation.

Proof. Let M = (V, D, O) be such as matrix. By Propositions 2.15 and 2.16, D contains at least two

elements. Since D is non-empty, V has at least three elements. (]

"The non-trivial part in this result is that 4 is finitary; It is easy to see that for every matrix M (not necessarily
finite), F aq is a structural and consistent tcr.
8See also a related discussion in [28].



2.3 Non-Deterministic Matrices

Next, we consider a generalization of the standard matrix semantics, obtained by relaxing the principle
of truth-functionality. According to this principle, the truth-value of a complex formula is uniquely
determined by the truth-values of its subformulas. However, real-world information is sometimes
incomplete, uncertain, vague, imprecise or inconsistent, and these phenomena are related to non-
deterministic behavior, which cannot be captured by a truth-functional semantics. This leads to
the concept of non-deterministic matrices (Nmatrices), introduced in [10], according to which the
truth-value of a formula is chosen non-deterministically from some set of options. Nmatrices have
important applications in reasoning under uncertainty, proof theory, etc. This includes modeling of
non-deterministic computations, analysis of non-deterministic behavior of various elements of electrical
circuits, handling linguistic ambiguity, and representing incomplete and inconsistent information. For
instance, in [9] Nmatrices are utilized for knowledge-base integration, and in [3] they are used in the
context of distance-based reasoning.

In [8, 11] Nmatrices have been used to provide a simple and modular non-deterministic semantics
for LFTs [15]. Although the syntactic formulations of the propositional LFIs are relatively simple, the
previously known semantic interpretations were more complicated: the vast majority of LFIs cannot
be characterized by means of finite deterministic matrices. Now, the first systems of da-Costa have
been introduced only proof-theoretically, and only some years later bivaluations semantics and possible
translations semantics have been proposed for their interpretation (see [15]). The framework of Nma-
trices provides an alternative for these types of semantics. It has several attractive properties which
the other frameworks lake. First of all, the semantics provided by Nmatrices is modular: the main
effect of each of the rules of a proof system is to reduce the degree of non-determinism of operations,
by forbidding some options. The semantics of a proof system is obtained by combining the semantic
constraints imposed by its rules in a rather straightforward way. As a result, the semantic effect of
each syntactic rule can be analyzed separately. This is impossible in standard multi-valued matrices,
where the semantics of a system can only be presented as a whole. We demonstrate this modularity
property in the context of LFIs in Example 4.8 below. Secondly, the non-deterministic semantics is
analytic (or effective), i.e., any partial valuation closed under subformulas can be extended to a full
valuation. Having this property is a crucial condition for a practical use of semantics, in particular
for decision procedures and for constructing counterexamples.’ Finally, the use of finite Nmatrices
has all the benefits of the usual multi-valued semantics, such as decidability and compactness.'®

In this paper, we demonstrate another appealing utilization of Nmatrices. We use premaximal
Nmatrices (see Definition 4.6) for representing the “core” of maximality of different kinds of maximally
paraconsistent logic, thus ‘extracting’ what is really essential for their maximal paraconsistency.

Below, we shortly reproduce the basic definitions of Nmatrices and prove some basic properties
related to paraconsistency.

Definition 2.18 A non-deterministic matriz (Nmatrix) for a language £ is a triple M = (V, D, O),
where

e V is a non-empty set (of truth values),
e D is a non-empty proper subset of V (the designated elements of V),

e O includes an n-ary function Spq : V* — 2V \ {} for every n-ary connective ¢ of L.

9No general theorem concerning this extremely important property is known at present for the semantics of bivalua-
tions or for the possible translations semantics described in [15]. Hence it has to be proven from scratch for any instance
of these types of semantics which actually has it.

10See [12] for a comprehensive survey on Nmatrices and their further applications.



We say that an n-ary connective ¢ is non-deterministic in M, if there are some z1,...,z, € V, such
that &(x1,...,2,) is not a singleton. An Nmatrix M for £ is called deterministic if no connective
of £ is non-deterministic in M. Clearly, the matrices considered in the previous section may be
associated with corresponding deterministic Nmatrices. We shall say that a matrix M is properly
non-deterministic if at least one of the connectives of £ is non-deterministic in M.

Definition 2.19 Let M = (V, D, O) be an Nmatrix for £. An M-valuation v is a function v : Wy —
V such that for every n-ary connective ¢ of £ and every v1,...,%, € W,,

v((W1s- -y n)) € SW(¥n), - v(¥n))-

As before, we denote the set of all M-valuations by Axq. The notions of a model of a formula v and
of a theory I" are defined just as in the deterministic case (see Definition 2.11). Similarly, the relation
Faq that is induced by M is defined exactly as before (see Definition 2.12).

As in the deterministic case (see Proposition 2.14), we have the following result:

Proposition 2.20 [10] For every propositional language L and a finite Nmatrix M for L, Ly =
(L,F ) is a propositional logic.

Henceforth we shall say that M is (maximally) paraconsistent, if so is L a4.

Example 2.21 Let My = ({t, f}, {t}, O) be an Nmatrix for the language L of classical logic, where
af = {t}, 5t = {t, f}, and the rest of the connectives are interpreted classically. In [10] it is shown
that Ly, is the same as the paraconsistent adaptive logic CLuN [14], however it is not induced
by any finite deterministic matrix. Moreover, it is also shown that none of the two-valued proper
Nmatrices can be characterized by a finite (deterministic) matrix.

Next we describe some operations on Nmatrices which will be useful in what follows.

Definition 2.22 Let My = (V;, D1, 01) and My = (Vs, Dy, O3) be Nmatrices for a language £. M,
is a simple refinement of Ma, if Vi C Vs, D1 = DN Vi, and Sy, (T) C Saq,(T) for every connective o
of £ and every n-tuple T € Vi*. We say that M, is a determinization of Ma, if M is a deterministic
Nmatrix that is a simple refinement of My in which V; = V.

Note 2.23 Let M = (V,D,0) be an Nmatrix for £. A determinization of M is any (deterministic)
matrix (V, D, O*), where O* is obtained by choosing one element from each set $,((Z) (where ¢ is a
connective in £, and T € V™).

Proposition 2.24 [8] If My is a simple refinement of My then a1, Chag, -

Example 2.25 The two-valued (deterministic) matrix M., = ({t, f}, {t}, O) with ordinary interpre-
tations for the connectives of the standard propositional language L., is a simple refinement of the
matrix My considered in Example 2.21. By Proposition 2.24 and the fact that L, is paraconsistent
while classical logic is not, we have that Ly, is strictly weaker than classical logic.

Definition 2.26 Let M = (V,D,0) be an Nmatrix for £ and let F' be a function that assigns to
each € V a non-empty set F'(z), such that F(z1) N F(x2) = 0 if 21 # x2. The F-expansion of M
is the Nmatrix M = (Vr, Dp, OF), where Vp = |,y F(2), Dr = U,cp F(z), and for every n-ary
connective ¢ of L,
Spmp (W1, Yn) = U F(2)
z2€0Mm (1., 0)

for every x; € V and y; € F(x;) (i = 1,...,n). We say that M; is an expansion of My if M is an
F-expansion of My for some function F'.



Example 2.27 The F-expansion of the positive part of the classical two-valued matrix, where F(t) =
{t, T} and F(f) = {f}, is the three-valued Nmatrix M = ({t, f, T}, {t, T},{A,V,D}), in which:

Tob — D if either a € D or b € D,
WMb =V 0f ifa=b=f
Aub — D if a,b €D,
WIME = {f} if either a = f or b= f.

50— D if either a = f or b € D,
=m0 = {f} ifaeDandb=f.

Proposition 2.28 If M, is an expansion of My, then Ly, and Laq, are identical.

Proof. Let M; be an F-expansion of My for some F. Suppose first that I' Faq, ¢ but I' Faq, 9.
Then there is an May-model v of T' that is not an My-model of 1. Define a valuation v/ as fol-
lows: for every ¢ € We, let v/(¢) = zy for some zy, € F(v(y)). Then for ¢ = o(¢1,...,¥,),
V() € F(v(yy)) for all 1 < i <n, and v(¢) € dp, (v (¢1),...,v(1)). By definition of F-expansion,
V() € F(v(y)) C om, (V' (31),- .., (¥n)). Hence v' € Apq,. Moreover, Dy, = U, ep, F(7), and
so, for every formula ¢, v/ is an Mj-model of ¢ iff v is an My-model of ¢. This implies that v’ is an
M i-model of I' that does not M-satisfy 1, in contradiction to I' Faq, 9. The proof for the other
direction is similar. O

The next propositions are the analogue for the non-deterministic case of Propositions 2.15 and 2.16:

Proposition 2.29 An Nmatrix M = (V,D,O) is paraconsistent iff there is some x € D such that
Sz ND £,

Proof. Suppose that =z ND # () and let y € =z N'D. Let v € Ay be a valuation such that v(p) = =z,
v(—=p) = y and v(q) € D. Then v is an M-model of {p, ~p} but not an M-model of q. Hence M is
—-paraconsistent. Conversely, if M is —-paraconsistent, then p, —p /x4 ¢ for some p,q in A., and so
mod ({p, ~p}) # 0. It follows that there is an M-valuation v and some z,y € D such that z = v(p),
and y € “v(p). Thus, y € "z N D, and so =z ND # (). O

Proposition 2.30 Let Ly = (L£,F ) be alogic induced by an Nmatric M = (V, D, O) for a language
L with a unary connective =. Then:

o — is a pre-negation for L iff there is x € D such that “z ND # 0.

o — is a weak negation for Lag iff it is a pre-negation for Ly and there is an element x € D such
that =z N'D # 0.

Note, however, that the analogue of Corollary 2.17 does not hold in the non-deterministic case,
as there are paraconsistent two-valued Nmatrices for languages with a pre-negation (consider, for
instance, the Nmatrix My from Example 2.21). However, the following theorem shows that no two-
valued paraconsistent logic is maximal:

Theorem 2.31 Let M = (V,D,0) be an Nmatriz for a language L with a pre-negation —. If D is a
singleton then M is not mazimally —-paraconsistent.

Proof. Suppose that D = {x} for some z € V, and that M is paraconsistent. By Proposition 2.29,
x € Sz, and since — is a pre-negation, by Proposition 2.30, =z N D # ). Let M’ be an expansion of



M, in which z is duplicated to two elements ¢ and T (that is, M’ is an F-expansion of M for some
F, such that F(z) = {t,T}). Let M* be a simple refinement of M’ that is identical to M’, except
that ST = {t} and Syt = Sy ND. Then M* is still ~-paraconsistent, — is still a pre-negation
in M*, and by Proposition 2.24, 5 C Faq+. Moreover, we have that p, —p, =—p Fa+ ¢ (since the
set {p, —p, 7—p} has no model in M*), while p, =p, =—p g (let v(p) = v(—p) = v(——p) = x and
v(q) € D). Thus M is not maximally paraconsistent. |

3 All Reasonable Three-Valued Paraconsistent Logics Induced
by Deterministic Matrices are Maximal

In this section, we investigate maximal paraconsistency of logics induced by three-valued deterministic
matrices. In what follows M = (V, D, O) denotes such a matrix for a language £ with a pre-negation
—. We start by specifying sufficient and necessary conditions for M to be paraconsistent.

Proposition 3.1 A three-valued matriz M with a pre-negation — is —-paraconsistent iff it is isomor-
phic to a matriz (V,D,0) in which V ={t,T,f}, D={t, T}, 5t = f, and =T # f.

Proof. Suppose that M is isomorphic to a matrix (V, D, O) satisfying the conditions in the proposition.
Since =t = f, by Item (a) in Proposition 2.16, — is a pre-negation. Also, v = {p : T,q : f} is an
M-model of {p, ~p} that does not M-satisfy ¢, thus p, —p /s ¢, and so L is —-paraconsistent.
For the converse, suppose that L, is —-paraconsistent. Since — is a pre-negation for L4, by
Item (a) in Proposition 2.16 again, there is an element in D, denote it ¢, such that =t ¢ D. So
let f € D such that =t = f. Also, since L is —-paraconsistent, we have that p,—p /a4 ¢ for
some p,q € A, and so mod({p,—p}) # 0. In this case ¢ cannot be the only designated element,
since otherwise for v € modam({p, 7p}) necessarily v(p) = t. But v(—p) = =t = f & D, and so
v & moda ({p,—p}). Tt follows that V = {¢, T, f}, where T € D, and f is the only non-designated
element. Also, by the discussion above, for v € moda ({p, ~p}) necessarily v(p) = T. This implies
that v(—p) = 5T € D, and so =T # f. O

From now on whenever we refer to a three-valued paraconsistent matrixc M we assume that it has
the form described in Proposition 3.1 (i.e., M = (V,D,0), where V = {t,T,f}, D={t, T}, 5t = f,
and =T # f).

Now we turn to the main result of this section.

Theorem 3.2 Let M be a three-valued paraconsistent matriz for a language L with a pre-negation
—. Suppose that there is a formula V(p,q) in L such that for all v € Ay, v(¥) =t if either v(p) # T
orv(q) # T. Then M is mazimally —-paraconsistent for L.

Proof. Let (L£,F) be a (finitary) propositional logic that is strictly stronger than (L£,Faq). Then
there is a finite theory I'" and a formula % in £, such that ' - ¢ but I' ¥y 9. In particular, there
is a valuation v € moda(T) such that v(¢) = f. Consider the substitution 0, defined for every
p € Atoms(T" U {¢}) by

q0 if v(p) =t¢,
O(p) =4 —q ifv(p) ="/,
Po if V(p) = T7

where py and ¢g are two different atoms in £. Note that 6(T") and 6(1)) contain (at most) the variables
Do, qo, and that for every valuation p € A g where pu(pg) = T and p(qo) = t it holds that u(6(¢)) = v(¢)
for every formula ¢ such that Atoms({¢}) C Atoms(I" U {¢}). Thus,
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(%) any p € Aaq such that p(po) = T, u(ge) = t is an M-model of (') that does not
M-satisfy 6(¢).

Now, consider the following two cases:

Case I. There is a formula ¢(p, q) such that for every p € A, p(¢) # T if p(p) = p(g) =T.

In this case, let tt = ¥(qo, ®(po,qo)). Note that p(tt) = ¢ for every u € Apq such that u(pg) = T.
Now, as I is structural, I' - ¢ implies that

O(T) [tt/qo] - 0(¢)) [tt/qo]- (1)

Also, by the property of tt and by (%), any u € A for which p(pg) = T is a model of (T') [tt/qo] but
does not M-satisfy (1)) [tt/qo]. Thus,

e po, po Fa O(7) [tt/qo] for every v € . As (L,F) is stronger than (£,Faq), this implies that
Po, —po F O(7) [tt/qo] for every v € T. (2)

e The set {po, —po, O(¢)[tt/qo]} is not M-satisfiable, thus po, —po, 0(¢) [tt/qo] Fam go. Again, as
(L,F) is stronger than (L, aq), we have that

Po, —po, O(¥) [tt/qo] - qo- (3)

By (1)—(3) and by Lemma 2.4, pg, —po F qo, thus (L£,F) is not —-paraconsistent.
Case II. For every formula ¢ in p, g and for every p € Apg, if u(p) = n(q) = T then u(¢) = T.

Again, as F is structural, and since I'' I 1,

O(T') [¥(qo,90)/q0] = 0(¥) [¥(qo0, q0)/q0)- (4)

In addition, (%) above entails that any valuation p € Ay such that p(pg) = T and p(qo) € {t, f} is a
model of 6(T") [¥(qo, go)/qo] which is not a model of 8(¢) [¥(qo, g0)/qo]. Thus, the only M-model of
{po, —po,0(¥) [¥(q0, g0)/qo]} is the one in which both of py and gg are assigned the value T. It follows
that po, —po, 0(¥) [¥(q0,90)/q0] Fam qo- Thus,

P()ﬁpo,@(w) [‘I’(CIO7QO)/QO] F qo. (5)

By using () again (for p(qo) € {¢t, f}) and the condition of case II (for u(qp) = T), we have:

Po, 7o = 0(7) [¥ (g0, 90)/qo] for every v € T (6)
Again, by (4)—(6) above and by Lemma 2.4, we have that po,—po F qo, and so (L,F) is not —
paraconsistent in this case either. (Il
Note 3.3

1. The requirement on the underlying language, stated in Theorem 3.2, is very minor, and all the
interesting three-valued logics that we are aware of meet it (see Example 3.8 below).

2. Suppose that M is a three-valued paraconsistent matrix which satisfies the condition of The-
orem 3.2. Then any three-valued extension of it, obtained by enriching the language of M
with extra three-valued connectives, necessarily has the same properties. Hence, not only is
M maximally paraconsistent, but so must be also all its three-valued extensions that are so
obtained.!?

HNote, however, that this fact does not imply that maximal paraconsistency is always robust with respect to an
addition of connectives.
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Below are three particular cases of Theorem 3.2.

Definition 3.4 Let M = (V, D, O) be a matrix for a language £ that includes a _unary connective —.
Then — is an extension in Lirg of classical negation, if there are t € D and f € D, such that 5t = f
and 5f =t.

Clearly, an extension in L4 of classical negation is a weak negation for Ls. Moreover, by
Proposition 3.1, when M is a three-valued paraconsistent matrix, the only extensions of classical
negation are Kleene’s negation (in which =T = T) and Sette’s negation (in which =T = ¢); See also
Example 3.8 below.

Corollary 3.5 Let M be a three-valued paraconsistent matriz for a language L that includes a unary
connective - that extends classical negation and a binary connective +, such that for every x € V,
z+t=t+x=t Then M is mazimally —~-paraconsistent for L.

Proof. By Theorem 3.2, where ¥(p,q) = (p + —p) + (¢ + —q). O

Corollary 3.6 Let M be a three-valued paraconsistent matriz for a language L that includes a unary
connective — that extends classical negation and a binary connective -, such that for every x € V,
- f=f"x=f. Then M is mazimally —~-paraconsistent for L.

Proof. By Corollary 3.5, taking ¢ + ¢ = —(—¢ - =¢) (and so ¥(p,q) = =((p- —p) - (¢ 7q)))- O

Corollary 3.7 Let M be a three-valued paraconsistent matriz for a language L that includes a unary
connective — that extends classical negation, and a formula f for which v(f) = f for allv € Apq. Then
M is mazimally —-paraconsistent for L.

Proof. By Theorem 3.2, where ¥(p, q) = —f. O

Example 3.8 Theorem 3.2 and Corollaries 3.5, 3.6 and 3.7 imply that all of the following well-known
three-valued logics are maximally paraconsistent for their languages:

e Sette’s logic Py [31] is induced by the matrix Py = ({¢, f, T}, {t, T}, {V,A, =, =}), where the
operations are defined by the tables below:

t
Flt
.

Now, the {—, V}-fragment of Py is maximally paraconsistent by Corollary 3.5 (where the role
of + is taken by V), the {—, A}-fragment of P; is maximally paraconsistent by Corollary 3.6
(where the role of - is taken by A), and the {—, —}-fragment of P; is maximally paraconsistent
by Corollary 3.7 (taking =(p — p) as the formula f). Each of these facts implies of course that
P, itself is maximally paraconsistent.
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e Priest’s LP [30] is induced by the matrix LP = ({¢, f, T}, {t, T},{V, A, =}) with the following
standard Kleene’s operations [24]:

= = I
o

Again, the {—, V}-fragment and the {—, A}-fragment of LP (and so LP itself) are maximally
paraconsistent by Corollary 3.5 and Corollary 3.6 (respectively).

e The three-valued logic Ss, induced by Sobocinski’s matrix S considered in Example 2.9, is
maximally paraconsistent, as the connective +, defined by = + y = —x — y, meets the condition
of Theorem 3.2.

e Let L be a logic that is obtained from one of the previous examples by enriching its language
with extra three-valued connectives. Then L is also a maximally paraconsistent logic. This
includes the following logics:

1. PAC [13, 5], extending LP by an implication connective D, defined by: = D y = y if
x € {t, T}, otherwise x Dy = t.

2. J3 [19], obtained from PAC by adding the propositional constant f.

3. The logic of the mazimally monotonic language in [6] that consists of the connectives of
LP and two propositional constants f and T, where the latter is defined by v(T) = T for
every v € Apg.

4. The logic of the functionally complete language in [6], consisting of the connectives of PAC
and the two propositional connectives considered in the previous item.

5. The semi-relevant logic SRM3, that can be obtained from Sobocinski’s three-valued matrix
S by the addition of the standard three-valued interpretations for A and Vv, as in LP.

e In Section 5.3 of [15] a whole family 8Kb of three-valued logics of formal inconsistency (LFIs)
that are “maximal fragments of classical logic” is described. These are the logics which are
induced by any of the following three-valued matrices for the language of {—,0,V,A,—}, in
which V = {¢t, T, f}, D = {t, T} and the interpretations of the connectives are as follows (below,
we denote by ‘x !y’ that z and y are two optional values):

Al t f T V| ot ST
tl ot f 0T t] ot t 0T
flofr rf flrte f T
TI0T f 0T T|0QT 0T 0T
S|t f T o
t] ¢t f 0T t
flt t T t

Tt T f QT f

Thus, there are 2 possible interpretations for -, 23 interpretations for A, 2° interpretations for Vv,
and 2* interpretations for —, altogether 22 (8192) distinct logics. Now, by Corollary 3.6 (with
the role of - again taken by A) the {—, A}-fragments of these logics (and so the logics themselves)
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are all maximally paraconsistent (in the strong sense). It follows that any extension of one of
these fragments (including all logics in the family 8Kb) is maximally paraconsistent. With the
exception of S3 (and its extensions), this includes all the examples considered so far.!?

e Let M be any three-valued paraconsistent matrix in a language which includes a pre-negation —
and an operation o (‘consistency’), interpreted as in the previous item (i.e., 6t = ¢, 5f = ¢, and
8T = f). Then by Corollary 3.7, the fact that v(o 01)) =t for every ¢ implies that M induces
a logic that is maximally paraconsistent (in the strong sense). This again includes, e.g., logics
like J3 and Py, and of course all the 2'3 logics in 8Kb, since o with the above interpretation is
definable in them.

Theorem 3.2 and the examples we have given above show that all reasonably expressive three-
valued paraconsistent logics are necessarily maximal. An important related question that was left
open in [2] is whether there exist three-valued paraconsistent logics which are not maximal. The
following proposition answers this question affirmatively, and shows that three-valued paraconsistent
logics may or may not be maximal when their languages are of weak expressive power.

Proposition 3.9

a) The —-fragment Ly, of Jaskowski-D’ottaviano’s J3 (or of Priest’s LP) is not mazimally para-
consistent.

b) The —-fragment Ly of Sette’s Py is maximally paraconsistent.

Proof. For Part (a), note first that it is not difficult to see that Ly, can be axiomatized by the double-
negation rules p - —=—p and —=—p F p (indeed, by using these rules we can reduce the question whether
r I—L;3 ¥ to the case where all formulas in T' U {¢} are literals, and it is easy to see that in this case
r FL;S ¥ iff ¢p € T). Tt follows that the two-valued logic Lip, induced by the matrix in which = is the
identity function, is an extension of Ly, . For the same reason so is the —-fragment of the two-valued
classical logic, and therefore so is also the intersection L of these two logics. We show that L is a
proper extension of Ly which is —-paraconsistent with respect to its weak negation —. For this, note
that p, —p, —q VL;S q (since v(q) = f,v(p) = T is a legal valuation), while p, —p, -¢q Fr, ¢. Moreover,
p,—p /1, g, since v(p) = v(—p) = ¢, v(q) = f is a legal valuation with respect to Lip, and so L is
paraconsistent. Finally, p t/1, —p, since v(p) = ¢, v(—p) = f is a legal valuation with respect to L.
Hence — is a pre-negation also for L. That it is actually a weak negation for L is proved similarly.

For Part (b), let L be a proper extension of L . Since L is finitary (see Definition 2.2), this means
that there is a finite I and a formula v so that I" by, ¢ but I’ |7‘Ll;1 1. Since =—=¢ is equivalent in Ly,
to —¢, we may assume that I' U {¢)} consists only of formulas of the forms p, —p, or =—p, where p is
atomic. Moreover: since I' cannot contain both ——p and —p (otherwise I’ I—LF1 ¥), and ——p I—L;1 D,
we may assume that if =—p is in I then neither p nor —p is in I'. These observations leave the following
three possibilities:

1. Suppose that ¢ = —r for atomic 7. Then —r ¢ I'. Tt follows (using weakening if necessary and
the fact that —=—r F r) that IV, == b, —r, where r does not occur in IV and I has the same
properties we assume about I'. Substituting r for any p such that ——p € I, and ¢ for any other
atom occurring in I (and using weakenings if necessary), we get that ¢, —¢, =—r b, —r. Since
-, T I—Lgl p for any p, we get that ¢, ~q, =—r b, p for any p, q,r. Substituting —¢ for r and
using the fact that ¢ - ———q, we get that —q, ¢ by, p for every p, q.

12The 2'3 LFTs of the family 8Kb (in the full language with o) have been shown in [15, 26, 27] to be maximally
paraconsistent in the weak sense (with respect to classical logic).
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2. Suppose that ¢ = r for atomic . Then neither r nor =—r is in I'. Substituting —r for r we
return to the previous case, and so again L is not paraconsistent.

3. Suppose that ¢p = ——r for atomic r. Then —=—r € I'. Since ——r, —r l—L;1 q, also ==, —r by, q,
and since I' Fy, ——r we get that I',—r kg, ¢ for any ¢ that does not occur in I' and —r. By
substituting —r for any p such that —=—p € T (such p is necessarily different from r), and r
for any atom that is different from ¢ and such that ——p does not occur in I, we get (using
weakenings and the fact that —-r = =——r) that r, —=r b, ¢. Hence again L is not paraconsistent.

We have found that in all three cases the proper extension L is not paraconsistent. Hence Ly is
maximally paraconsistent. (I

4 Three-Valued Non-Deterministic Semantics: Maximal and
Premaximal Paraconsistency

We now turn to three-valued logics induced by properly non-deterministic matrices. In this respect,
we investigate the following subjects:

1. We check what three-valued Nmatrices induce maximally paraconsistent logics.

2. We use Nmatrices for representing extensive sets of related deterministic matrices, each one of
which is maximally paraconsistent. For this, we introduce the notion of premazimality.

Regarding the first subject, we note that the expressive power of Nmatrices is in general greater
than that of ordinary matrices, as there are logics which cannot be characterized by finite matrices,
but do have characteristic finite Nmatrices.'> However, as the next theorem shows, in the context of
mazimally paraconsistent logics, this is not the case:

Theorem 4.1 Let M be an three-valued mazimally paraconsistent Nmatriz. Then there is a (deter-
ministic) three-valued matric M* that induces the same (mazimally paraconsistent) logic.

Proof. By Theorem 2.31, D has at least two elements. From this fact, together with Propositions 2.29
and 2.30, it follows that there are two different elements t and T in D and an element f € D, such that
f € =t, while =T ND # () (note that it is possible that also =t N'D # (), or that f € =T). Let M* be
any determinization (Definition 2.22) of M, for which S+t = f and So+ T € Saq+ T N'D. Then, by
Proposition 2.24, the logic of M* extends that of M, and it is paraconsistent with respect to — (which
is still pre-negation in M™*). Since M is maximally paraconsistent, this implies that -y =Fa-. O

Theorem 4.1 implies that all maximally paraconsistent logics induced by three-valued Nmatrices
also have characteristic three-valued standard matrices. Yet, it is still interesting to identify the
three-valued Nmatrices that induce maximally paraconsistent logics. This is what we do next.

Theorem 4.2 Let M = (V,D,0) be a mazximally paraconsistent three-valued proper Nmatriz for
a language L with pre-negation —. Then M is isomorphic to an Nmatriz in which V = {t, T, f},
D = {t, T}, the interpretations of all connectives except — are deterministic, =t = {f}, =T = {¢t, f},
and =f ={f} or 5f = {t}.

13For instance, the (non-maximal) paraconsistent logic L aq, from Example 2.21, is not induced by any deterministic
matrix (see [10, 12]).
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Proof. First we show that there is no € D such that x € <z and <z ND # 0. Suppose otherwise,
and let y € D\ {x} (such y exists, by Theorem 2.31). Now

1. if Sy N'D # 0, we let M* be a determinization of M for which =2 € D and =y € D.
2. if Sy ND # 0, we let M* be a determinization of M for which <z = x and <y € D.

In both cases — is still a pre-negation in M*, M* is —-paraconsistent, and the logic induced by M*
extends the logic induced by M (see Proposition 2.24). Now M* is a three-valued deterministic
matrix, and so p, =p, =—p F - =—p.1% On the other hand, p, —p, ~—p #rq =——p, since we may take
v(p) = v(-p) = v(=—p) = x, and v(—~——p) € D. Thus, the logic induced by M* properly extends the
logic induced by M, and so M is not maximally paraconsistent. A contradiction.

Propositions 2.29, 2.30, Theorem 2.31, and what we just have proved together imply that V consists
of three elements ¢, f, and T, such that D = {¢, T} and f € 5t, t € =, ST ND £ 0, =T # {f, T}
and 5T # {f, T,t}. Hence, either 5T C D or 5T = {¢, f}, and =t is either {f} or {f, T}.

A Suppose that =t = {f, T} and =T = {f,t}. Let M* be a simple refinement of M in which
At = {f} and =T = {¢t}. Then - is still a pre-negation in M*, and M* is still paraconsis-
tent. Moreover, b« properly extends Fpq (implying that the latter is not maximal). Indeed,
p, =P, =P Fae g, while p,—p, —=p ¥ q (let v(p) = v(=-p) =, v(-p) = T and v(q) = f).
This contradicts the fact that M is maximally paraconsistent.

B Suppose that =T C D and =t = {f}. Assume that S = 3(x1,...,x,) is not a singleton. Let
Y =9(q1,...,qn), where ¢; = p1 ifx;, =T, ¢ = p2 if z; = t, and ¢ = —py if z; = f. Then
v() € S for every v such that v(p;) = T and v(p2) = ¢, and any element of S can be chosen to
be v(1)) in this case.

1. Suppose that T € S. In this case, p1, p1,p2, ¥, 7 /ar —p2, since by taking v(p1) = T,
v(-p1) € D, v(p2) = t, v(—p2) = f, v(¢) = T, and v(—p) € D we get a counter-model.
Let M* be the refinement of M in which &(ay,...,a,) =S\ {T} (note that S\ {T} # 0,
since S is not a singleton). Then pq, —p1, p2, ¥, 7 Fa+ —p2. Indeed, v is a model of the
Lh.s only if v(p1) = v(p2) = T (because now v(v) € {t, f} if v(p2) = ¢), and such v is also
a model of —ps (because =T C D). Hence k- properly extends 4. It remains to show
that — is still a pre-negation in M*, and that M* is still paraconsistent. This is trivial in
case ¢ % —. So assume that ¢ = -. Then n = 1, and z; is an element of V s.t. Sz is not
a singleton. Since we assume that =t = {f}, z; # t, and — is still a pre-negation (since
-t = {f}). If x1 = f then the paraconsistency of M is not affected (it follows from the
properties of T). Finally, if z; = T then S = =T, which by assumption is a subset of D.
Since S is not a singleton, S = D, and so =y~ T = {t}. Hence M* is paraconsistent. It
follows that M is not maximally paraconsistent in this case. A contradiction.

2. Suppose that S = {¢t, f}. In this case either ¢ is different from —, or 1 = f (since we assume
that =T C D and =t = {f}). It follows that — is still a pre-negation in the refinement
M* of M, in which &(ay,...,a,) = {f}, and M* is paraconsistent. It remains to show
that ¢« properly extends Faq. In this case p1, —p1,p2, ¥ HFar —p2 (because by letting
v(p1) = T,v(—p1) € D, v(ps) =t, v(—p2) = f and v(yh) = t we get a counter-model), while
D1, D1, P2, ¥ Farr 02 (since again v is a model of the Lh.s only if v(p1) = v(p2) = T).
Again this contradicts the maximal paraconsistency of M.

4See the proof of Theorem 3.4 in [10].
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C Suppose that =T C D and =t = {f, T}. Let M* be the refinement of M in which =t = {f}.
Then - is still a pre-negation in M*, and M* is still paraconsistent. By Case B, M* is not
maximally paraconsistent. Hence the same applies to M. A contradiction.

It follows from the above analysis that =T = {f,¢} and =t = {f}. Now we determine =f.

1. Assume that =f is not a singleton. In this case either f € =f or t € =f. Hence we can get
a simple refinement M* of M s.t. ——p b« p by either defining =f = {f} or =f = {t}.
Obviously, in both cases — is still a pre-negation in M*, and M* is still paraconsistent. Now
since = f is not a singleton, either f € =f or T € 5f. In the first case we let v(p) = v(—p) = f
and v(——p) be some element of =f N D (such an element exists since =f is not a singleton).
In the second case, we take v(p) = f, v(—p) = T, and v(—=—p) = ¢. In both cases we get an
M-model of =—p which is not a model of p. It follows that ——p F¥o¢ p, and so b+ properly
extends . This contradicts the maximal paraconsistency of M.

2. Assume that =f = {T}. Let in this case M* be the refinement of M in which 5T = {¢}.
Obviously, — is still a pre-negation in M*, and M* is still paraconsistent. Now in M* we have
that p, —7p Fa« 7———p (the only model of {p, —p} is when v(p) = T, and in M* y(-———p) =t
for such v). However, p,—p l/p ———p, since we get a counter-model by taking v(p) = T,
v(-p) = f,v(=—p) =T, v(—-—p) = ¢, and v(—-———p) = f. Again, this contradicts the maximal
paraconsistency of M.

It follows that either =f = {t} or =f = {f}.

Finally, assume that ¢ is a connective different from — that has a properly non-deterministic
interpretation in M. Let M’ be the simple refinement of M that is the same as M except that
ST = {t}. Then M’ is still —-paraconsistent and — is still a pre-negation for L. By case B above,
M’ cannot be maximally paraconsistent. As Faq C o (Proposition 2.24), M is not maximally
paraconsistent either. A contradiction. O

Corollary 4.3 The only non-determinism that may exist in a three-valued maximally paraconsistent
Nmatriz is =T = {t, f}.

Now we turn to the case in which — is a weak negation (this is the really interesting case).

Theorem 4.4 A three-valued proper Nmatrix M for a language with a weak negation — can be
mazximally paraconsistent only if it is isomorphic to an Nmatriz (V,D,O), in which V = {t, T, f},
D={t, T}, and:

LoSt=A{f}, =T ={t, f} and =f = {t}.

2. The interpretation of any other connective o of M is deterministic, gets values only in {t, f}, and
does not distinguish between t and T (i.e. if © is n-ary, then &(x1,...,2j_1,¢,Tjt11,...,%n) =
Sz, i1, T, Tjq1, ..., &p) forevery 1 <j<mnandz1,...,2j-1,Zj41,...,Tn € V).

Proof. Most of the claims are immediate from Theorem 4.2 and Proposition 2.30. We only need to
show that if ¢ is an n-ary connective other than —, then & gets values only in {¢, f}, and does not
distinguish between ¢ and T. For this we use M’, the determinization of M in which =T = {¢}.
Obviously, — is still a weak negation in M’, M’ is still paraconsistent with respect to it, and (by
Proposition 2.24) k¢ extends Fag.

Assume first that o does not get values only in {¢, f}. Then 3(z1,...,2,) = {T} for some
Z1,...,2, (because ¢ is deterministic). Like in Case B in the proof of Theorem 4.2, this implies
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the existence of a formula (p1,p2), such that v(yp) = T for every v such that v(p;) = T and
v(pe) = t. Therefore pi,—p1,p2, 7—p2 ar 1), because a counterexample is provided by taking
v(ip1) =T, v(p2) =t, v(vb) = T, and v(—) = f. On the other hand p;, —p1, p2, 7—p2 Farr —1), and
S0 Faq properly extends . Hence M is not maximally paraconsistent.

Now assume that ¢ distinguishes between t and T. So there are e.g. x1,...,z,_1 such that
(X1, ey Tp1, 1) #3(x1,...,Zpn_1,t). Since & is deterministic and gets values only in {¢, f}, we may
assume (using — if necessary and the fact that =t = {f},=f = {t}) that S(z1,..., 201, T) = {t},
while 3(x1,...,2n-1,t) = {f}. Let ¥ = o(q1,...,qn-1,q), where for 1 < i < n -1, ¢ = p1 if
x; = T, q =pyif ¢; = t, and ¢ = —pg if &; = f. Then v(¢p) = t for every assignment v
such that v(p;) = T,v(p2) =t and v(q) = T, while v(¢)) = f for every assignment v such that
v(p1) = T,v(p2) =t and v(q) = t. It follows that p1, —p1, p2, P2, ¢, ¥ a —q, (take v(p1) = v(q) =
T,v(p2) =t,v(—p1) = t,v(-p2) = f,v(——p2) = t,v(yp) =t, and v(—q) = f). On the other hand, it is
easy to see that pi, —p1,p2, 72, q, ¥ Far —q. Hence again a0 properly extends a4, and so M is
not maximally paraconsistent. ([

The following theorem provides a sort of converse for Theorem 4.4:

Theorem 4.5 Let M be a three-valued proper Nmatrixz which satisfies all the conditions specified in
Theorem 4.4. Then b=k, where M’ is the (unique) paraconsistent determinization of M (in
which =T = {t}). Hence M is mazimally paraconsistent in any case where M’ is.

Proof. By Proposition 2.24, F(Ck . For the converse, assume I' g ¥. Let v € Ay be a model
of T in M such that v(¢)) = f. Define v/ € Apy as follows: v/(p) =t in case p is an atomic formula
such that v(p) = T and v(—p) = f, V'(¢) = v(¢) for any other ¢. It is easy to see that v/ is indeed
in A, and that for every formula ¢, v/(¢) is designated iff v(¢) is designated. In particular: v’ is a
model of T in M’ which is not a model of ¢. It follows that T" I/r 3. Hence Fap Chag. O

To sum up: from the last two theorems it follows that the only maximally paraconsistent three-
valued proper Nmatrices with a weak negation — are those which are obtained by letting =T = {¢, f}
(rather than =T = ¢) from the class of maximally paraconsistent three-valued (deterministic) matrices
which have the following properties: they employ Sette’s negation, all their other operations get values
only in {¢, f}, and they do not distinguish between ¢ and T. Recall that this class of three-valued
matrices includes every fragment of Sette’s logic P; in which — is included (see Example 3.8 and
Part (b) of Proposition 3.9). On the other hand, any properly nondeterministic three-valued Nmatrix
with a weak negation — that includes a connective o interpreted as in the family 8Kb (see Example 3.8)
is not maximally paraconsistent, since & does distinguish between ¢ and T. (Compare this to the
corresponding deterministic case, which is described at the last item of Example 3.8).

We now turn to the second goal of this section, namely: using Nmatrices for representing the
“core” of maximality, shared by different maximally paraconsistent logics (induced by deterministic
matrices). This is particularly important since, as implied by Item (2) of Note 3.3, the number of
maximally paraconsistent logics can be ‘artificially expanded’ by adding extra three-valued connectives
to the language of a maximally paraconsistent logic. The representation of all these logics by their
premaximal non-deterministic basis preserves the ‘essence’ of their maximality.

Definition 4.6 Let M be an Nmatrix for a language £ with a pre-negation =. We say that M is
pre-mazximally —-paraconsistent for L, if every —-paraconsistent determinization of M (in the sense
of Definition 2.22) is maximally —-paraconsistent for L.

Corollary 4.7 Let M be a three-valued paraconsistent Nmatriz for a language L with a pre-negation
—. Suppose that there is a formula V(p, q) in L such that for all v € Ay v(V) =t if either v(p) # T
or v(q) # T. Then M is premazimally —-paraconsistent for L.
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Proof. Any paraconsistent determinization of M is necessarily three-valued, and it trivially satisfies
the condition in Theorem 3.2, hence the claim follows. O

Premaximality is useful for systematizing the vast variety of the available three-valued maximally
paraconsistent logics. Even among the three-valued paraconsistent LFTs there are thousands of max-
imally paraconsistent candidates for being the paraconsistent logic envisioned by da Costa. However,
all of these logics share some common properties, which ensure their maximal paraconsistency. This
common characteristics, or the “core” of maximal paraconsistency, is captured by the underlying
premaximal Nmatrix. Hence, a premaximal Nmatrix represents the family of its maximally paracon-
sistent determinizations, up to the point in which choices based on other considerations should be
made. This is demonstrated by the following example.

Example 4.8 Let Mg be the following three-valued Nmatrix for £ = {—,A,V,—}:

Al it f T v t f T
t 1 {e, T {fF {7} e T {6 T {6 T}
A A A AT {f {67}
T[T {ft {t.T} T[T {&, T {¢, T}
S|t f T A
e {e T {f LT t | {f}
T 6T {67} [ At
TI{TH {f {67 T{tT}

It is easy to check that the formula —((p A —p) A (g A —q)) satisfies the condition of Corollary 4.7, hence
Mg is pre-maximally —-paraconsistent for £. Moreover, it is easy to see that all of its 22° three-valued
determinizations are paraconsistent, and so all of them are maximal (in the strong sense). In [10] it
is shown that L4, is identical to the basic paraconsistent logic Cin [15] that can be axiomatized by
adding the axiom schemes (c¢) == — v and (t) —¢ V ¢ to an axiomatization of positive classical
logic.

We observe that (the o-free fragments of the) 213 LFIs from Example 3.8 are those among the 22°
determinizations of Mg, which are compatible with classical logic. Note that the above mentioned
family of 220 logics includes many other maximally paraconsistent logics, which do not have this
property (even though the purely positive fragment of all of them is identical to positive classical logic).
Thus, for instance, in those refinements of the family, in which V¢ = T, the formula —)V =@V (V)
is valid, even though it is not a classical tautology.

By refining our basic Nmatrix above, we obtain Mgkp, the Nmatrix underlying exactly (the o-free
fragments of) the Marcos-Carnielli 23 maximally paraconsistent LFIs from Example 3.8 and [15, 26]
(the modifications are emphasized):

At f T v t f T
t {t {f} {£ T} e {ty {er {t T}
A A A Aty {61}
Ti{Tr {ft {7} TI{tTH {7} {t.T}
;\ t f T s
t | {tr {fF {7} t | {f}
f{tr {t} {7} f At}
T {t. Ty {f {t. T} T1{t, T}
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A strongly sound and complete axiomatization for the logic L4, can be obtained by adding to
Chin the following o-free counterparts of the (a)-axioms of da Costa [17]:

(@an)* =W Ap) = (7Y V-p)
(av)* (W Ve) = (A=) V(Y AY)V (mp A p))
(an)" =W —9) = (VA=) V(7 AY)V (mp Ap))

This example also demonstrates the modularity property of Nmatrices, mentioned previously. Each
of the axioms above corresponds to some semantic condition on the basic Nmatrix Mg, which leads
to some simple refinement of it. For instance, the axiom (ax)* imposes the condition: tAt = {t}.
Indeed, it is easy to see that to ensure the validity of the schema (a)*, T should not be allowed in
tAt. Similarly, the axioms (ay)* and (a_,)* impose the semantic conditions tVt = ¢tV f = fVt = {t},
and f5t = f5f =t5t = {t} respectively. The Nmatrix Magky is then obtained by straightforwardly
combining the semantic conditions of the three axioms, yielding the truth-tables above. Adding the
schema (e) ¢ — ——1) allows for obtaining similar results for involutive negation. In both cases, the
addition of the axioms (p) o9 — ((» A=) — @) and (i) "ot — (¢ A 1)) leads to similar results in
the language with the addition of o. The obtained systems are equivalent to the LFIs Cia and Ciae
(see [15]), respectively.

We thus believe that logics like L 4, are faithful to da Costa’s original intuitions and motivations
in his search for a “maximally paraconsistent logic”, rephrased to “maximal paraconsistency up to
the point in which choices based on other considerations should be made”.
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