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Abstract Déttaviano 2002)). One could identify at least four par-
: . . ties with different philosophical attitudes to such logitee
We show that the incorporation of distance-based se- traditionalistsdefend classical logics and deny any need of

mantics in the context of multiple-valued consequence . .
relations yields a general, simple, and intuitively ap- paraconsistent logics. On the other extreme, dizdethe

pealing framework for reasoning with incomplete and istscontend that th.e world is fundamentally inconsist_ent and
inconsistent information. hence the true logic should be paraconsistent.pitelists
view inconsistent structures as fundamental but provadion
) and favour their replacement, at least in empirical domains
Introduction by consistent counterparts. Finally, theformistsdefend
Reasoning with distance functions is a common way of Consistency in ontological matters, but argue that human
giving semantics to formalisms that are non-monotonic in knowledge and thinking necessarily requires inconsistenc
nature. The basic intuition behind this approach is that, and hence that classical logic should be replaced by a para-
given a set of possible worlds (alternatively, interprietas) consistent counterpart. The underlying theme here, follow
that represent the reasoner’s epistemic states or the infor iNg the reformists, is that conflicting data is unavoidable i
mation content of different data sources, the similarity be ~Practice, but it corresponds to inadequate informatioruabo
tween those worlds can be expressed quantitatively (that is the real world, and therefore it should be minimized. As we
in terms of distance measurements), and thus can be evalu-Show below, this intuition is nicely and easily expressed in
ated by corresponding distance operators. In this respect, terms of distance semantics. Indeed, the incorporation of
there is no wonder that distance semantics has played adistance-based semantics in the context of multiple-ehlue
prominent role in different paradigms for (non-monotonic) Consequence relations yields a framework in which a vari-

information processing. Two remarkable examples for this €ty of paraconsistent multiple-valued logics are definable
are the following: These logics are naturally applied in many situations where

uncertainty is involved.

The principle of uncertainty minimization by distance
semantics is in fact a preference criterion among differ-
ent interpretations of the premises. In this respect, the
formalisms that are defined here may be considered as a
mation (see, e.g., (Lehmann, Magidor, & Schlechta 2001; Certain kind of preferential logics(Shoham 1987; 1988;

. Makinson 1994). In particular, the intuition and the mo-

Peppas, Ch.opra, &.FOO 2004; Delgrande 2004)). ) tivation behind this work is closely related to other exten-
e Database integration systems (Arenas, Bertossi, & sjons to multiple-valued semantics of the theory of pref-

Chomicki 1999; 2003; Lin & Mendelzon 1999) and merg-  erential reasoning (see for instance (Arieli & Avron 1998;

ing operators for independent data-sources (Konieczny, 2000; Konieczny & Marquis 2002; Arieli & Denecker 2003;

Lang, & Marquis 2002; Konieczny & Pino Pérez 2002), Ben Naim 2005; Arieli 2004; 2006)).

where the basic idea is that the amalgamat_ed information The rest of this paper is organized as follows: in the

should be kept coherent and at the same time as close asyqy section we set up the framework; we consider basic

possible to the collective information as it is depicted by 1 itiple-valued entailments and define their distancestias
the distributed sources. variants. Then we consider different distance metrics and

The goal of this paper is to introduce similar distance con- investigate some of the properties of the induced conse-
siderations in the context gfaraconsistent logicsthat is: quence relations. Finally, we discuss a generalizatiohef t
formalisms that tolerate inconsistency and do not become distance-based entailments to prioritized theories and/sh
trivial in the presence of contradictions (see (da Costat197 its usefulness for modeling belief revision and for coresist
and (Priest 2002); some collections of papers on this topic query answering in database systems. In the last section we
appear, e.g., in (Bateret al. 2000; Carnielli, Coniglio, & conclude.

e Formalisms for modeling belief revision, in which dis-
tance minimization corresponds to the idea that the dif-
ference between the reasoner’s new states of belief and
the old one should be kept as minimal as possible, that is,
restricted only to what is really implied by the new infor-



The Framework
Basic Multiple-Valued Entailments

Definition 1 Let £ be an arbitrary propositional language.
A multiple-valued structurdor £ is a triple (V, O, D),
whereV is set of elements (“truth values™) is a set of
operations orY that correspond to the connectiveginand

D is a nonempty proper subsetf

The setD consists of thedesignatedvalues ofV, i.e.,
those that represent true assertions. In what follows we
shall assume tha¥ contains at least the classical values
true, false, and thatrue € D, false & D.

Definition 2 LetS = (V, O, D) be a multiple-valued struc-
ture for a propositional languagg

a) A (multiple-valuedyaluationv is a function that assigns
an element o¥’ to each atomic formula if. Extensions
to complex formulae are done as usual. In what follows
we shall sometimes write = {p1 : x1,...,pn : z,} tO
denote that(p;) = z; fori = 1,...,n. The set of valu-
ations onV is denoted by .

b) A valuationv satisfiesa formulay if () € D.

c) A valuationv is amodelof a setl” of formulae inZ, if v
satisfies every formula ifi. The set of the models af is
denoted bynodS (T").

Definition 3 LetS = (V, O, D) be a multiple-valued struc-
ture for a languagé€. A basicS-entailmenis a relation==
between sets of formulae ifiand formulae inZ, defined as
follows: I =5 v if every model ofl" satisfies).

Example 4 In many cases the underlying semantical struc-
ture of a multiple-valued logic is a lattice, and so it is Usua
to include inO (at least) the basic lattice operations. In
such cases a conjunction i is associated with the join,
the disjunction corresponds to the meet, and if the lattice
has a negation operator, it is associated with the negation o
the language. In what follows we use these definitions for
the operators 0. Now, the two-valued structurewo is
defined by the two-valued lattice, and is obtained by taking
V = {true, false} andD = {true}. The corresponding en-
tailment is denote¢=2. For three-valued structures we take
V = {true, false, middle}, the lattice operators i@ are de-
fined with respect to the total ordérise < middle < true,
and D is either {true} or {true, middle}. The structure
with D = {true} is denoted here by HREE, . The associ-
ated entailment=3+, corresponds to Kleene’s three-valued
logic (Kleene 1950). The other three-valued structure,
THREE~, corresponds to Priest's logic LP (Priest 1989;
1991)! Note that by different choices of the operators in
O other three-valued logics are obtained, line weak Kleene
logic, strong Kleene logic, and tukasiewicz's logic (see,
e.g., (Fitting 1990; Avron 1991)). In the four-valued case
there are usually two middle elements, denoted hetsbly

and neither.? In this context it is usual to takerue and

1AIso known as d, RMs, and PAC (see (D’ottaviano 1985;
Rozoner 1989; Avron 1991) and chapter I1X of (Epstein 1990)).

2The names of the middle elements correspond to their intu-
itive meaning as representing conflicts (‘both true andefaland
incomplete information (‘neither true nor false’).

both as the designated values. The corresponding struc-
ture is known as Belnap’s bilattice (see (Belnap 1977a;
1977b) as well as (Arieli & Avron 1998)), and it is denoted
here byFOUR. Its entailmentis denoted liy*. Entailments

in which V is the unit interval and = {1} are common in

the context of fuzzy logic (see, e.g., (Hajek 1998)). Irsthi
context it is usual to consider different kinds of operasion
on the unit interval (T-norms, T-conorms, residual implica
tions, etc.), and this is naturally supported in our framewo
as well. The simplest case is obtained by associatiagd

Vv with the meet and the join operators on the unit interval,
which in this case are the same as the minimum and the
maximum functions (respectively), and relating negatimn t
the involutive operator-, defined for every) < z <1 by

-z = 1 — z. In what follows we denote the corresponding
structure §) by [0, 1].

Distance-Based Entailments

By their definition, basicS-entailments are monotonic. In
addition, some of them are trivial in the presence of contra-
dictions (e.9.p, —-p =2 ¢ andp, —p =3+ ¢), or exclude clas-
sically valid rules (e.gp, -pVq =37 g andp, —pV q 4 q).
Common-sense reasoning, on the other hand, is frequently
non-monotonic and tolerant to inconsistency. For assuring
such properties we consider in what follows distance-based
derivatives of the basic entailments. In the sequel, unless
otherwise stated, we shall considimite sets of premises in
the classical propositional language= {—, A, v, —}, the
operators of which correspond, respectively, to a negation
meet, join, and the material implication on the underlying
lattice.

Definition 5 A total functiond : U xU — RT is called
pseudo distancen U if it is symmetric (that is,Vu,v €

U d(u,v) = d(v,u)) and preserves identitfvu,v € U
d(u,v) = 0iff w = v). A distance functioron U is a
pseudo distance ali that satisfies the triangular inequality
(Vu,v,wel d(u,v) < d(u, w) + d(w, v)).

Definition 6 An aggregation functiory is a total function
that accepts arbitrarily many real numbesnd returns a
real number. In addition, the following conditions should
be satisfied: (a)f is non-decreasing in each of its argu-
ments, (b)f (z1,...,2,) =0if 2y = ... = 2, = 0, and
(c)Vz e R, f(z) = x.

Definition 7 An S-distance metricis a quadrupleD
(S,d, f, g), whereS = (V, O, D) is amultiple-valued struc-
ture, d is a pseudo distance on the space of Yhealued
interpretations\”, andf andg are aggregation functions.

Definition 8 Given a theory" = {1, ...,v,}, aV-valued
interpretation’, and anS-distance metri® = (S,d, f, g),
define:

b df(l/’ "/}z) = f;L67rzod$('t/)7,) d(ua V)
i dQ(V7F> = g(df(ya 1/11), s adf(l/v wn»

3This can be formally handled by associatifigwith the set
{fn : R™ — R | n € N} of n-ary functions.



Itis common to defing as the minimum function, so that
a distance between an interpretatioto a formulay is the
minimal distance betweanand some model af. Frequent
choices ofg are the summation function (over the distances
to the formulae in") and the maximal value (among those
distances).

Note 9 Let® = (S,d, f,g) be anS-distance metric. As
distances are non-negative numbers, by conditions (a) and
(b) in Definition 6,ds is a non-negative function for every
choice of an aggregation functiofi This implies thatd,,

is obtained by applying an aggregation functipon non-
negative numbers, and gg is non-negative as well.

Definition 10 An S-distance metric® = (S,d, f,g) is
callednormal if: (a) d;(v, ) = 0 for everyv € mod® (¢)),
and (b)g(z1,...,z,) =0o0nlyifzy =... =z, =0.

As easily verified, the standard choicesfondg men-
tioned above preserve the conditions in Definition 10. Thus,
for instance, for every multi-valued structu$eand a pseudo
distanced, ® = (S, d, min, ¢g) is @ normal metric for each
g € {2, max, avg, median}.*

Definition 11 Given a finite theoryl’ and anS-distance
metric® = (S, d, f, g), define:

A°(D) ={veAN |VueNdywT)<dy(uT)}

Proposition 12 Let® = (S, d, f, g) be a normal metric. If
mod® (T) # () thenA® (T') = mod® (T).

Proof. If v is amodel of{¢1, ..., ¥, }, then asD is normal,
dy(v,;) = 0 for everyl <i<n. Thus, ag is an aggrega-
tion function, by condition (b) in Definition G (v,I") = 0.
Sinced,, (11, ") > 0 for everyu € AY (Note 9), it follows that
ve N°).

For the converse, consider the following lemma:

Lemma 13 In every normal metri¢S, d, f, g) the function
g is strictly positive whenever it has at least one strictlgipo
tive argument and the rest of its arguments are non-negative

Lemma 13 follows from the fact that(z:,...,z,) = 0
iff a1 . = x, = 0 (by conditions (b) in Defini-
tions 6 and 10) together with the requirements thistnon-
decreasing in each of its arguments (condition (a) in Defini-
tions 6).

To complete the proof of Proposition 12, suppose thercthat
is not a model of 1, ..., ¥, }. As such, it does not satisfy
1y, for somel <k <n, and sady (v, ¢) >0. By Lemma 13,
dg(v,T') >0 as well. On the other hand, we have shown that

dg(p, T') =0 for everyu € mod® (), thusv ¢ A° (I'). O
Now we are ready to define distance-based entailments:

Definition 14 For a metric®, definel’ =® v if every valu-
ation inA® (T") is a model ofi.

“Note that the arguments gfare non-negative numbers, and
so lettingg be the summation, average, or median of such numbers
preserves condition (b) in Definition 10.

Example 15 Considerl’ = {p, —¢q, 7, p — ¢}, and let
Dy = (TWO,dy,min, X) be a (normal) distance metric,
wheredy is the Hamming distance between two-valued val-
uations. The distances between the relevant two-valued val-
uations and" are given in the following table:

model P q r ds,
121 true | true | true 1
Vo true | true | false 2
V3 true | false | true 1
V4 true | false | false 2
Vs false | true | true 2
Vg false | true | false 3
vy false | false | true 1
Vs false | false | false 2

Thus,A®2(T") = {v1,v3, 7}, and so, for instancd; =*2
r, while T' [£®2 p andT' }£®2 ¢q. This can be intuitively
explained by the fact that, unlikeandq, the atomic formula
r is not related to the contradictory fragmentigfthus it is
areliable information that can be safely deduced fidm

Proposition 16 Let® be a normalS-distance metric, and
letT" be a set of formulas if such thatnod® (') # (. Then
for every formulap in £, T =S 4 iff T =2 1.

Proof. Immediately follows from Proposition 12. O

Some important particular cases of Proposition 16 are the
following:

Corollary 17 Let® be a normal distance metric ifWO.
For every classically consistent set of formulasand for
every formulap, T' =2 o iff T =2 1.

Proof. By Proposition 16, since every classically consistent
theory has a model. O

Corollary 18 Let® be a normalS-distance metric.
a) If S = THREE+ thenl’ =27 v iff T =° 4.
b) If S = FOUR thenl" =4 v iff T' =2 1.

Proof. By Proposition 16, since itHREE+ and inFOUR,
a valuation that assigns the designated middle element to
every atom is a model of every theory in the classical propo-
sitional language. O

Example 19 Consider again the distance metfde of Ex-
ample 15. By Corollary 17="2 is the same ag=2 with
respect to classically consistent sets of premises, bikeunl
the basic two-valued entailment, it does not become trivial
in the presence of contradictions. On the contrary, as Ex-
ample 15 showsi=?2 allows to draw conclusion from in-
consistent theories in a non-trivial way, andks®'2 (as well

as many other distance-based relations that are induced by
Definition 14; see Proposition 22 below) iparaconsistent
consequence relation.

Consider now®* = (THREE,,dy,min,¥). The in-
duced entailmentkgﬂ, is again paraconsistent, and with
respect to consistent set of premises it coincides with Kle-
nee’s logic,=3+ (note that the latter relation it paracon-

sistent, so in generak3+ and}=""" arenotthe same). By

®l.e., du (v, ) is the number of atomic formulgs such that
v(p) # u(p); see also the next section.



Corollary 18, the three-valued entailmept®’" , induced

by ®37 = (THREET, dy, min, ), and the four-valued en-
tailment =>4, induced by®, = (FOUR, dy, min, %), are
paraconsistent consequence relations that coincide kgth t
consequence relation of Priest’s logic LP and with the conse
guence relation of Belnap’s four-valued logic, respedyive

2006)), and so itis a valid rewriting of the truth values. Now

the distance between two values= (z1, z2), ¥y = (y1,y2)

in this pairwise representation is given by

z =y e — e
- 5 ,

d*(z,y)

Note that the above observations still hold when the sum- s the graphic representationdsfon the four-valued struc-

mation function in the metrics is replaced, e.g., by maxi-
mum, average, or the median function.

Reasoning with Distance-based Semantics
Distance Functions

A major consideration in the definition of the entailment re-
lations considered in the previous section is the choichef t
distance functions. In this section we consider some useful
definitions of distances in the context of multiple-valued s
mantics. For this, we need the following notation.

Notation 20 Denote byAtoms the set of atomic formulas
of the languageC and byAtoms(I") the set of the atomic
formulae that appear in some formulalaf

ture is the following:

true = (1,0)

d* = d* =

N[ =

both =
(1,1)

neither =
(0,0)

dt =

N

false = (0,1)

Now, the generalized Hamming distance between two four-

Many distance definitions have been considered in the lit- valued interpretations, . is defined by:

erature as quantitative measurements of the level of simila
ity between given interpretations. For instance, dinestic
distanceconsidered in (Konieczny, Lang, & Marquis 2002),
is defined by

dp(v,p) = {

Another common measurement of the distance between
two-valued interpretations is given by tHamming distance
that counts the number of atomic formulae that are assigned
different truth values by these interpretations (see &sdig]
1988)):

du (v, ) = |{p € Atoms | v(p) # p(p)} |-

For three-valued logics (such as Kleene’s and Priest’s log-
ics considered above) it is possible to apply the same dis-
tance measurements, or to use a natural extension of the
Hamming distance that considers the distance between the
extreme elementsrue andfalse as strictly bigger than the

0
1

if v=p,
otherwise.

distances between each one of them and the middle element.

In this casetrue is associated with the valuefh]se is asso-
ciated with 0, and the middle element corresponds tShe
generalized Hamming distance is then defined as follows:

dy(v,p) =Y |v(p)—up)

pEAtoms

This function is used, e.g., in (de Amo, Carnielli, & Mar-
cos 2002) as part of the semantics behind (three-valued)
database integration systems.

For four-valued interpretations there is also a natural gen
eralization of the Hamming distance. The idea here is
that each one of the four truth values is associated with a
pair of two-valued components as followsue = (1,0),
false (0,1), neither (0,0), both (1,1). This
pairwise representation preserves Belnap’s original-four
valued structure (see (Arieli & Denecker 2003; Arieli 2004;

2.

dy(v,p) = > d*(v(p),up)).

pEAtoms

Clearly, this definition may be applied on any lattice whose
elements have a pairwise representation (see (Arieli 2004;
2006)).

It is not difficult to verify that all the functions defined
above satisfy the conditions in Definition 5. Below are some

further observations on these distance functions:
1. Given two interpretations, i into {true, false}, it holds

thatd, (v, pn) = d (v, u) = du (v, ), thusdy; andds;
indeed generalize the standard Hamming distance.

As the following example shows, the choice of the dis-

tance function (as well as the choice of the other com-

ponents of a distance metric) has a great impact on the
induced entailment.

Example 21 Consider the following two metrics:

®' = (THREE_ , djy, min, &),
©" = (THREE, , d3,, min, ).

Forl’ = {p, —p}, we have

A'(D) = {{p:true}, {p:false}},
A(T) = {{p:true}, {p:false}, {p: middle} }.

Thus, for instance, =2"p v —p, while " 2" p v —p.8

3. In (Konieczny, Lang, & Marquis 2002) it is shown that

the choice of the distance function has also a major affect
on the computational complexity of the underlying for-
malism. See Section 4 of that paper for some complexity
results of distance-based operators wi§ea TWO.

®This is so, since/(p V —p) = middle whenv(p) = middle,

and inTHREE ;. the middle element is not designated.



Basic Properties of ="

Paraconsistency. In what follows we consider some char-
acteristic properties of the distance-based entailmens.
begin with the ability to reason with inconsistent theoiies

a non-trivial way. The following proposition shows thatshi
property is common to many distance-based logics that are
definable within our framework.

Proposition 22 The consequence relatiogs®, induced by
the following metrics, are all paraconsistent:

a) © = (TWO, d, min, g), whered is the drastic distance
(dp) orthe Hamming distancel{;) andyg is either a sum-
mation or a maximum function.

b) © (THREE |, d, min, g), whered € {dp,du,d3}
andyg is either a summation or a maximum function.

c) ® = (THREET,d, min, g), whered € {dp,dm,d%}
andg is either a summation or a maximum function.

d) ® = (FOUR, d, min, g), whered is any distance function
of those considered in the previous section ansleither
a summation or a maximum function.

e) © = ([0, 1],d, min, g), whered is the drastic distance or
the Hamming distance angis either a summation or a
maximum function.

Proof. For any of the items above we shall show that
p,—p =® ¢, and so it isnot the case that any formula fol-
lows from an inconsistent theory. Indeed, in item (a) we
have that{p: true, ¢:false} (as well as{p: false, ¢:false})
isin A® ({p, ~p}), thusq does not follow from{p, —p}. For
item (b) note that although different distance functions in
duce different sets of preferred models{gf —p} (see Ex-
ample 21), it is easy to verify that whenewvgis the sum-
mation function thep : true, ¢:false} is, e.g., an element
of A®({p, —p}), and whenevey is the maximum function
{p:middle, ¢:false} is an element of\® ({p, =p}). Thus,

in both casesg does not follow from{p, —p}. Part (c)
holds since by Proposition 12 we have tigt ({p, —p}) =
mod3™ ({p, —p}), and so{p: middle, ¢: false} is an element

in A ({p, —=p}) (recall that inTHREE+ the middle element
is designated, and @ : middle} is a model of p, ~p}). We
therefore again have that—p £ ¢. The proof of part (d)

is similar to that of part (c) with the obvious adjustments to
the four-valued case. Part (e) is similar to part (a) replgci
respectivelytrue andfalse by 1 ando0. ]

Monotonicity. Next we consider monotonicity, that is:
whether the set of="-conclusions is non-decreasing in
terms of the size of the premises. As the next two proposi-
tions show, this property is determined by the multi-valued
structure and the distance metric at hand:

Proposition 23 Let © be a normal distance metric for
FOUR. Then the corresponding distance-based entailment,
=®, is monotonic.

Proof. By Corollary 18(b) /=" is the same as the basic four-
valued entailment=? of Belnap’s logic. The proposition

now follows from the monotonicity of the latter (see (Arieli
& Avron 1996, Theorem 3.10) and (Arieli & Avron 1998,
Proposition 19)). m|

Proposition 24 Let® =(TWO, d, min, g) be a normal dis-
tance metric such thag(z1,...,z,) < g(y1,...,ym) If
{@1,...,2,} € {y1,...,ym}.” Then the corresponding
distance-based entailment™, is non-monotonic.

Proof. Consider, e.gI' = {p,—p V ¢q}. By Corollary 17,
I'=* ¢. On the other hand, considef = T'U {—p}, and let

v andvy be two-valued valuations that respectively assign
true andfalse to p. By the assumption o we have that

dg (Vt7 Fl) g(dmin(Vta -p), dmin(Vh -V Q))
g(dmin(l/ta ﬁp))

dmin(”ﬁ ﬁp)

dmin(Vf7p)

g (dmin(Vf 3 p))

dg (l/f, F/).

It follows, then, that every two-valued valuation that as-
signsfalse to p is in A® (I), no matter what value it assigns
to ¢ (asd, (v, I) is not affected by (g)). In particular,
A®(I") contains valuations that assidaise to ¢, and so

IV £° q. |
Rationality. In (Lehmann & Magidor 1992), Lehmann
and Magidor consider some properties that a “rational” non-
monotonic consequence relation should satisfy. One prop-
erty that is considered as particularly important assurat t

a reasoner will not have to retract any previous conclusion
when learning about a new fact that has no influence on the
existing set of premises. Consequence relations thafysatis
this property are calledational. Next we show that many
distant-based entailments are indeed “rational”.

Notation 25 An aggregation functiorf is calledhereditary
if f(z1,.  ,Tny215-2m) < f(Y1,- s Uny 215y 2m)
wheneverf(zy,...,2,) < f(y1,--- s yn)L

Proposition 26 Let® = (S, d, f, g) be anS-distance met-
ric with a hereditary functiog. If ' |=° « thenl, ¢ =°
for every¢ such thatAtoms(I' U {1 }) N Atoms(¢) = 0.

Intuitively, the condition ony in Proposition 26 guaran-
tees that is ‘irrelevant’ forI" and«. The intuitive meaning
of Proposition 26 is, therefore, that the reasoner does not
have to retract) when learning thap holds.

Proof of Proposition 26. Let u € AY be a valuation that
does not satisfy. AsT |=® ¢ while u(¢) ¢ D, necessarily
pis notinA® (T), and so there is a valuatierin A® (T'), for
whichd, (v,T') < dg(u,T'). Again, sincel' E® ¢, v(¢) €
D. Assuming thal’ = {¢1,...,v,}, we have that

gldy(w,n), - dp (v 9n)) < g(dy(p, 1), o, df (o))

Now, consider a valuation, defined for every atomp as
follows:

o) = {

"As the arguments of are non-negative, summation, maxi-
mum, and many other aggregation functions satisfy thisgntgp

8Note that heredity, unlike monotonicity, is defined by stric
inequalities. Thus, for instance, the summation is heaeglitvhile
the maximum function is not.

v

if p € Atoms(I" U %)
otherwise

v(p)
1(p)



Note thato(p) = v(p) for everyp € Atoms(v), and so To formalize the existence of different levels of priority
o(yp) € D as well. AsAtoms(I" U {¢/}) N Atoms(¢) = 0 in prioritized theories, we consider the following sequenc
and sincg is hereditary, we have that of sets: for a metri® = (S,d, f,g) and ann-prioritized

theoryI' =T'; U...UT,, define:
dy(o, T U{ep}) glds(o, 1), ..., ds(0,%n),ds (0, d))
' oy vin), () dg(uo))  * AR = {v € & | € AV dy(n.T) < dy (1. T))

< gdp(p, 1), dp(pyon), dy(u,9)) @ foreveryl <i<m,let

= dg(p, ' U{g}). AP(T) = {ve A ()|
Thus, for every valuation: such thatu(y) ¢ D there is Ve AP (1) dg(v,Ti) < dg(p,Ti)}
a valuationo such thato(y)) € D andd,(o,I' U {¢}) < Definition 28 Given anS-distance metri®, define for ev-
dy(u, T U{g}). It follows that the elements a&® (I'U {¢}) ery n-prioritized theoryl" and formula, T' |=° o if every
must satisfy, and sal’, ¢ =° 1. a valuation inA® (T") satisfies).
Adaptivity. The ability to handle theories with contra- Note that the last definition is a conservative extension of

dictions in a nontrivial way and at the same time to pre- Definition 14, since for non-prioritized theories (i.e., avh
suppose a consistency of all sentences ‘unless and un-” = 1) the two definitions coincide.

til proven otherwise’, is callechdaptivity (Batens 1989, Example 29 Consider the following puzzle, known as the
1998). Consequence relations with this propextiaptto Tweety dilemma:
the specificinconsistencies that occur in the theories. For

instance, a plausible inference mechanism showldap- bird(x) — f1y(x),

ply the Disjunctive Syllogism for concluding thatfollows penguin(x) — bird(x),
from {p, —p,—p V ¢}. On the other hand, in the case of I' =4 penguin(x) — —fly(x),
{p, —p,r,—r V ¢}, applying the Disjunctive Syllogism to bird(Tweety),

and—r Vv ¢ may be justified by the fact that the subset of for- penguin(Tweety)

mulae to which the Disjunctive Syllogism is applied should ) ) ) ) )
not be affected by the inconsistency of the whole theory, AS this theory is not consistent, everything classically fo

therefore inference rules that are classically valid caagpe ~ lows from it, including, e.g.f1y(Tweety), which seems a
plied to it. counter-intuitive conclusion in this case, as penguinsikho

not fly, although they are birds. The reason for this anomaly

distance-based entailments are adaptive. If a given theor is that all the formulas above have the same importance, in
. X plive. T1a g Y contrast to the intuitive understanding of this case. lddee

can be split up to a consistent and an inconsistent parts, the ] ) .

every assertion that is not related to the inconsistenfpadt. 1. The confidence level of strict factsird(Tweety) and

which classically follows from the consistent part, must be ~ penguin(Tweety) in our case) is usually at least as high

entailed by the whole theory. as the confidence level of general rules (implications).

Proposition 27 Let ® = (S,d, f,¢) be a normals- 2. As penguingsneverfly, and this is a characteristic fea-

distance metric with a hereditary functign Suppose that ture of penguins (without expeptlong), one would proba-

T is a theory that can be representedl4sJ I'/, where bly like to attach to the assertigenguin(x) — ~f1ly(x)

modS(I") # 0 and Atoms(I”) N Atoms(I”’) = 0. Then a higher priority than that obird(x) — £1y(x), which

for every formulay) such thatAtoms(z)) N Atoms(IT") = 0, states only a default property of birdls.

it holds that ifT" =5 ¢ thenT' =2 4. Consider now the metri® = (TWO, dy, min, ) and

Proof. If " =5 ¢, then by Proposition 16" =2 4. Now regardl’ as a prioritized theory in which the two consid-

erations above are satisfied. It is easy to verify that the
asAtoms(I” U {¢}) N Atoms(I"’) = @, we have, by Propo- ; D ;
sition 26, tha®" =2 . unique valuation inA? (T") (wheren > 1 is the number of

priority levels inT") assigngrue to bird(Tweety), true to
penguin(Tweety), andfalse to f1y(Tweety). Thus, e.g.,
I =® —fly(Tweety), as intuitively expected.

The following proposition shows that in many cases

Distance-based Entailments for
Prioritized Theories o
=°, Generalized Applications

We now extend the distance-based semantics of the previous!" this section we show how the generalized distance-based
section toprioritized theories An n-prioritized theory isa ~ Semantics for prioritized theories, introduced in the fives
theoryl' = T'; U ... UT,, where the set§; (1 < i < n) section, can be naturally applied in related areas. Below we
are pairwise disjoint. Intuitively, when< j the formulas ~ consider two representative examples: database query sys-
in T; are preferred than those Tn;. A common situation ~ t@ms and belief revision theory.

in which theories are prlorl_t|zed is, e.g., when data-sesirc The third assertionpenguin(x) — bird(x), could have an

are augmented with integrity constraints. In such cases the iiermediate priority, as again there are no exceptionsidofact
corresponding theory has two priority levels, as the integr  that every penguin is a bird, but still penguins aretyptcal birds,
constraints must always be satisfied, while the datafacys ma  thus they shouldn't inherit all the properties we expectibito

be revised in case of conflicts. have.



A. Consistent Query Answering in Database Systems so the associated theory is
A particularly important context in which reasoning with T —
prioritized theories naturally emerges is consistency- han o5 ={p = ¢} U{p,~q,7}-
dling in database systems. In such systems, it is of prac- Thistheory is the same as the one considered in Example 15,
tical importance to enforce the validity of the data facts but with one major difference: now— ¢ is preferred over
by a set of integrity constraints. In case of any violation the other formulas, thus only its models are taken into ac-
of some integrity constraint, the set of data-facts is sup- count. Consider the same metric as that of Example 15. As
posed to be modified in order to restore the database consis-valuationsvs, v4 in the table of that example do not satisfy
tency. It follows, then, that integrity constraints are srpr C, they are excluded. Among the remaining valuations,
than the facts themselves, and so the underlying theory is andv; are the closest t6 U CWA(Z), and so the consistent
a prioritized one. This also implies that consistent query query answers ofZ, C) are the formulas that are satisfied by
answering from possibly inconsistent databases (Arenas, bothr;, andv;.
Bertossi, & Chomicki 1999; 2003; Greco & Zumpano 2000; ; ; ; )
Bravo & Bertossi 2003; Eiter 2005) or constraint data- llc\llg);ci(\a/eSZsﬁéaenf]é)rl?ni%asnhc%ws, P articular, trfa” is notre

X . i ; , pi =P p althoughp e T'pg. This
sources (Konieczny, Lang, & Marquis 2002; Konieczny & o e justified by the fact that one way of restoring the con-
Plno.Perez 2002)_mga_y be defmgd in terms of d|stance—basedSistency ofDB is by removingp from Z (v; corresponds to
enta|lr_nents on prlor|t|;ed theories. Moreover, as our Fam this situation), and sp does not hold in all the consistency
work is tolerant to different semantics, such methods of ‘repairs’ of 'ps.10 Similarly, the fact that” D _, 4l

; . o DB- y, the fact thal'pp £ —q al
guery answering, which are traditionally two-valued ones, though—q € T'ps may be justified by the alternative way

may be related.to o_ther formalism§ that are based on many- ¢ restoring the consistency @3, in which ¢ is added to
valued semantics like those considered in (Subrahmanian (1 corresponds to this situation). Note also that there is

1994) and (de Amo, Carnielli, & Marcos 2002). no reason to remove from Z, as this will not contribute

Let £ be a propositional language witktoms its under- to the consistency restoration 3. This intuitively justi-
lying set of atomic propositions. A (propositionditabase fies the fact that for (unlike the other atomic formulae in
instanceZ is a finite subset ofAtoms. The semantics I'ps), we do have thaf s =* r (cf. Example 15). This is
of a database instance is given by the conjunction of the also to the intuition behind the query answering formalisms
atoms inZ, augmented with thelosed world assumption  for inconsistent databases, considered e.g. in (Arenas,
(CWA(Z)) (Reiter 1978) that assures that each atom which Bertossi, & Chomicki 1999; 2003; Greco & Zumpano 2000;
is not explicitly mentioned i is false. Bravo & Bertossi 2003; Eiteet al. 2003; Arieliet al. 2004;

Definition 30 A databaseis a pair (Z,C), whereZ is a 2006).

database instance, add— the set ofintegrity constraints ) ) o
— is a finite and consistent set of formulaednA database ~ B. Modeling of Belief Revision

DB = (Z,C) is consistenif every formulainC follows from A belief revision theory describes how a belief state is ob-
7, that is, there is no integrity constraint that is violatad i~ tained by the revision of a belief stateby some new in-
T formation, ¢». A belief revision operatopr describes the

. . kind of information change that should be made in face of
Given a databas®B = (Z,C), the theoryI'p that is the new (possibly contradicting) information depictediy

associated with it contains the componentsd and im- The new belief state, denotétb 1, is usually characterized
poses the closed word assumption@n In addition, this  py the closest worlds t@ in which ¢ holds. This crite-
theory should reflect the fact that the integrity constsaint  yion, often callecthe principle of minimal changés one of

C are of higher priority than the rest of the data. Thatis, the most widely advocated postulates of belief revision the
I'pi should be a two-leveled theory, in whi¢h = C and ory. Clearly, it is derived by distance considerations, tso i

I'y =7 UCWA(Z). Now, query answering with respectto s 'not surprising that this consideration can be expressed i
DB may be defined in terms of a distance-based entailment oyr framework. Indeed, the intended meaning of the revi-

onl'pg. sion operator is to describe ‘how to reviBen order to be
Suppose, then, th& is a normalS-distance metric for consistent withy)’. In our context the revised belief state
some multiple-valued structut® and letDB = (Z,C) be a corresponds to the (coherent) set of conclusions that can be
(possibly inconsistent) database. Its prioritized thesry derived from the prioritized theoryy} U B, in which ¢
is superior thar3. Indeed, suppose again thtis a nor-
I'pg =T1 Ul =CU(ZUCWA(TZ)), mal S-distance metric for some multiple-valued structSte

and considel’ = T'; UTy = {¢} U B. Again, by Propo-
sition 12, A9 (') = mod(v)), and so the new belief state
consists of the formulas that are satisfied by every model of
¢ and that are minimally distant (in terms@f) from B. In
other words,

andQ is a consistent query answerlifs =2 Q. Now, as
C is classically consistent, by Proposition 18 (I'pz) =
mod(C). It follows, therefore, that is a consistent query
answer of DB if it is satisfied by every model of with
minimal distance (in terms af,) fromZ U CWA(Z).

Example 31 LetDB = ({p,r}, {p — ¢}). Here,

Boy = AJ(I), 1)

100y, equivalently,p is involved in contradictions if'ps; see
TUCWAIZ) =T U{z |z &1} ={p,—q,r}, also the discussion in Example 15 above.



wherel’ =Ty UT,, 'y = {¢}, andl’y; = B.

Example 33 For ®; = (TWO, dy, min, X) define a be-
lief revision operatop by Equation (1) above. The revision

operator that is obtained is the same as the one considered

in (Dalal 1988). It is well-known that this operator satisfie
the AGM postulates (Alchourrén, Gardenfors, & Makinson
1985).

Conclusion

In this paper we have introduced a family of multiple-valued
entailments, the underlying semantics of which is based on
distance considerations. It is shown that such entailments
can be incorporated in a variety of deductive systems, me-
diators of distributed databases, consistent query afrsgver
engines, and formalisms for belief revision.

A characteristic property of the entailments considered
here is that, although being paraconsistent in nature, to a
large extent they retain consistency. For instance, the en-
tailments that are defined by normal distance metrics in a
two-valued (respectivelys-valued) semantics, are identical
to classical two-valued entailment (respectively, arenide
cal to the corresponding basientailment), as long as the
set of premises is kept consistent. Moreover, even when the

set of premises becomes inconsistent, the conclusions that

are obtained from the fragment of the theory that is not re-
lated to the ‘core’ of the inconsistency, are the same agthos
obtained by the classical two-valued (respectively, the ba
sic S-valued) entailment, when only the consistent fragment
is taken into account. In contrast to the classical entaitme

however, our formalisms are not degenerated in the presence

of contradictions, so the set of conclusions is not ‘exptbde
is such cases.
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