
Preference Modeling by Rectangular Bilattices

Ofer Arieli1, Chris Cornelis2, and Glad Deschrijver2

1 Department of Computer Science, The Academic College of Tel-Aviv, Israel
oarieli@mta.ac.il

2 Fuzziness and Uncertainty Modeling Research Unit, Department of Mathematics
and Computer Science, Ghent University, Belgium
{chris.cornelis,glad.deschrijver}@UGent.be

Abstract. Many realistic decision aid problems are fraught with facets
of ambiguity, uncertainty and conflict, which hamper the effectiveness of
conventional and fuzzy preference modeling approaches, and command
the use of more expressive representations. In the past, some authors
have already identified Ginsberg’s/Fitting’s theory of bilattices as a nat-
urally attractive candidate framework for representing uncertain and
potentially conflicting preferences, yet none of the existing approaches
addresses the real expressive power of bilattices, which lies hidden in
their associated truth and knowledge orders. As a consequence, these
approaches have to incorporate additional conventions and ‘tricks’ into
their modus operandi, making the results unintuitive and/or tedious. By
contrast, the aim of this paper is to demonstrate the potential of (rect-
angular) bilattices in encoding not just the problem statement, but also
its generic solution strategy.

1 Introduction

The notion of preference is common in various contexts involving decision or
choice. Preference modeling provides declarative means for choosing among al-
ternatives, including different solutions to problems, answers to database queries,
decisions of a computational agent, etc. This topic is gaining increasing atten-
tion in diverse areas of artificial intelligence such as nonmonotonic reasoning,
qualitative decision theory, configuration, and AI planning. More recently, pref-
erence modeling has also been used in constraint satisfaction and constraint
programming, for treating soft constraints, for describing search heuristics, and
for reducing search effort (see, e.g. [9] and [13] for recent collections of papers
on these topics).

Conventional preference modeling (see e.g. [25]) is centered on the notion of
classical preference structures 〈P, I, R〉, consisting of three fundamental binary
relations (strict preference P , indifference I, and incomparability R) that may
hold among the alternatives; usually the evidence in favour of these relations
is captured by a so-called outranking relation S that describes, for each couple
(u, v) of alternatives, whether u is (known to be) at least as good as v. In
practice, it is common to encounter situations where these relationships hold up



to a certain degree, which gives rise to the study of fuzzy preference structures
(see e.g. [20, 31, 32]).

Fuzziness, however, cannot adequately cover all the imperfections inherent to
real-life data, since the ‘one-dimensional’ measurements induced by the ordering
of membership degrees in fuzzy sets have difficulties coping with information-
deficient data. As Tsoukiàs and Vincke noted in [29], fuzzy sets and logic per
se do not provide “a clear distinction between situations where the information
is missing, not satisfactory and situations in which the information is too rich,
contradictory, conflictual, ambiguous”. Indeed, stating that P (u, v) = 0 may ei-
ther mean that u (definitely) is not preferred to v, or simply that there is no
information to establish a preference of u over v, and there is no unambiguous
way for a decision maker to distinguish between the two situations. For this rea-
son, several researchers have considered more elaborate means of eliciting and
representing preferences. In particular, Belnap’s logic FOUR [7, 8], and some of
its extensions, built around the truth values ‘true’, ‘false’, ‘unknown’ and ‘con-
tradiction’, had immediate and intuitive appeal, and were taken as the basis
for the approaches in [21, 24, 27–29]. However, we found that many of these ap-
proaches lack a proper way of representing the preferences, and as a consequence
no solid analysis tools nor clear strategies for decision making under incomplete
and/or conflicting information are available to the reasoner in such cases.

The goal of this paper is to overcome this shortcoming. For this, we consider
a certain family of algebraic structures, called bilattices [18, 22] that encapsulate
and refine Belnap’s FOUR, and that serve here as a representation platform. We
demonstrate the real expressive power of these structures, and in particular of
the ‘two-dimensional’ measurements induced by their dual orderings, in describ-
ing and modeling imprecise preferences. As such, the material presented in this
paper is not a ‘new’ approach to preference modeling, but rather a clarification,
simplification and streamlining of existing ones.

The remainder of this paper is organized as follows: in Section 2, we re-
call important preliminary notions about bilattices and their role in uncertainty
modeling. Section 3 contains our novel analysis of preference modeling by rectan-
gular bilattices; it exhibits the drawbacks of existing approaches, and describes
how they can be mended. In Section 4 we conclude.

2 Preliminaries

2.1 Bilattices

Definition 1. A bilattice [22] is a triple B = (B,≤t,≤k), where B is a nonempty
set containing at least two elements, and (B,≤t), (B,≤k) are complete lattices.3

3 Structures that meet this definition are sometimes called pre-bilattices. In such cases
the notion ‘bilattices’ is reserved for some particular type of pre-bilattices which is
determined according to the way the two partial orders are related; see Definition 2.



The two partial orders ≤t and ≤k of bilattices intuitively represent differ-
ences in the degree of truth and in the amount of knowledge/information (respec-
tively), conveyed by the assertions. In the sequel, following the usual notations
for the basic bilattice operations, we shall denote by ∧ (respectively, by ∨) the
≤t-meet (the ≤t-join) and by ⊗ (respectively, by ⊕) the ≤k-meet (the ≤k-join)
of B. While the meaning of ∧ and ∨ corresponds to the standard logical role
of these operators, the intuition behind ⊗ and ⊕ is somewhat less transparent.
Fitting [19] calls them consensus and gullibility operations, respectively, to in-
dicate that x⊗ y is the most information ‘agreed’ upon by x and y, while x ⊕ y
includes everything accepted by at least one of x and y.

We denote by f and t the ≤t-extreme elements, and ⊥, ⊤ denote the ≤k-
extreme elements of B. Intuitively, these elements can be perceived as ‘false’,
‘true’, ‘unknown’ (i.e., neither true nor false) and ‘contradictory’ (both true and
false), respectively. Thus, for instance, f ≤t ⊥ since the ‘degree of truth’ of a
statement which is known to be false is smaller than that of a statement about
which there is no information whatsoever. On the other hand, ⊥ ≤k f , since
knowing that a statement is false is more informative than knowing nothing at
all about it.

Clearly, the more interesting forms of bilattices are those in which the two
partial orders are related in one way or another. Below are some common types
of such relations:

Definition 2. Let B = (B,≤t,≤k) be a bilattice.

– B is called distributive [22] if all the (twelve) possible distributive laws con-
cerning ∧, ∨, ⊗, and ⊕ hold (for instance, a ∧ (b ⊕ c) = (a ∧ b) ⊕ (a ∧ c)).

– B is called interlaced [17] if each one of ∧, ∨, ⊗, and ⊕, is monotonic with
respect to both ≤t and ≤k (for instance, if a ≤k b then a ∧ c ≤k b ∧ c).

– B is a bilattice with a negation [22] if there exists a unary operation ¬
satisfying, for every x, y in B, (1) ¬¬x = x, (2) if x ≤t y then ¬x ≥t ¬y,
and (3) if x ≤k y then ¬x ≤k ¬y.

Originally, Ginsberg considered bilattices with negations. In this case a nega-
tion is an involution with respect to the lattice (B,≤t) and an order preserving
operation of the lattice (B,≤k). In such cases it is easy to see that ¬f = t,
¬t = f , ¬⊥ = ⊥, and ¬⊤ = ⊤. Following Ginsberg, Fitting introduced the
family of interlaced bilattices and showed their usefulness in the context of logic
programming (see e.g. [17–19]). It is easy to verify that distributive bilattices
are also interlaced. In the context of fuzzy sets, interlaced bilattices have been
considered, e.g., in [11].

Example 1. Figure 1 in Section 2.3 depicts double-Hasse diagrams of a four-
valued bilattice and a nine-valued bilattice. It is easy to verify that both these
bilattices are distributive, interlaced, and each one has a negation operator ob-
tained by switching the components of the truth values, that is: ¬(x, y) = (y, x).



2.2 Rectangular Bilattices

Definition 3. Let L = (L,≤L) and R = (R,≤R) be two complete lattices. A
rectangular bilattice, shortly rectangle, is a structure L⊙R = (L×R,≤t,≤k),
where, for every x1, y1 ∈ L and x2, y2 ∈ R,

(1) (x1, x2) ≤t (y1, y2) ⇔ x1 ≤L y1 and x2 ≥R y2,
(2) (x1, x2) ≤k (y1, y2) ⇔ x1 ≤L y1 and x2 ≤R y2.

We say that a structure is rectangular if it is isomorphic to a rectangular
bilattice. An element (x1, x2) of a rectangle L ⊙ R may intuitively be under-
stood such that x1 represents the amount of belief for some assertion, and x2

is the amount of belief against it. In the context of fuzzy sets, this corresponds
to Atanassov’s theory of intuitionistic fuzzy sets [5], which extends standard
fuzzy set theory so that any element u in a universe U is assigned not only
a membership degree, µA(u), but also a non-membership degree νA(u), where
both degrees are drawn from the unit interval [0, 1] and satisfy the condition
µA(u) + νA(u)≤ 1. Rectangular bilattices generalize this idea by not imposing
the latter condition, by considering arbitrary lattices (not only the unit interval),
and by defining the membership function and the non-membership function over
potentially different ranges .

Denote the join and meet operations of a complete lattice L = (L,≤L) by
∧L and ∨L, respectively. Then, for every x1, y1 in L and x2, y2 in R, we have

(x1, x2) ∧ (y1, y2) = (x1 ∧L y1, x2 ∨R y2),

(x1, x2) ∨ (y1, y2) = (x1 ∨L y1, x2 ∧R y2),

(x1, x2) ⊗ (y1, y2) = (x1 ∧L y1, x2 ∧R y2),

(x1, x2) ⊕ (y1, y2) = (x1 ∨L y1, x2 ∨R y2),

Moreover, denoting 0L = inf L and 1L = sup L, it holds that

⊥L⊙R = (0L, 0R), ⊤L⊙R = (1L, 1R), tL⊙R = (1L, 0R), fL⊙R = (0L, 1R).

It is easy to verify that a rectangular bilattice is indeed a bilattice (in the
sense of Definition 1). The next proposition summarizes some basic properties
of rectangular bilattices and shows their central role in the theory of bilattices:

Proposition 1.

a) [17] Every rectangular bilattice is interlaced.

b) [6] Every interlaced bilattice is rectangular.

c) [22] If L and R are distributive lattices then L⊙R is a distributive bilattice.

d) [17, 22] Every distributive bilattice is isomorphic to L⊙R for some distribu-
tive lattices L and R.

In the context of item (b) of the proposition above, it is interesting to note
that every interlaced bilattice B = (B,≤t,≤k) is isomorphic to L ⊙ R, where
L = ({x | x ≥t ⊥}, ≤k) and R = ({x | x ≤t ⊥}, ≤k). These lattices are unique
up to an isomorphism (see [6]). The same lattices may be used for item (d) of the
proposition, together with the observation that if B is a distributive bilattice,
then L and R are necessarily distributive lattices.



2.3 Squares

An important family of rectangular bilattices are those in which L and R co-
incide. These bilattices are called squares [3, 4, 12, 15] and L ⊙ L is abbreviated
by L2. The squares that are obtained by the two-valued and the three-valued
chains are shown in Figure 1. In the literature, these structures are commonly
referred to as FOUR (after Belnap’s [7, 8] original four-valued logic) and NINE
(see e.g. [1, 2]), respectively. An example of a square with an infinite amount of
elements is ([0, 1],≤)2. In the context of fuzzy set theory, the ≤t–ordering of this
square is studied in [12, 15] and its ≤k–ordering is considered in [14].
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Fig. 1. The squares {0, 1}2 and {0, 1

2
, 1}2

Again, it is easy to verify that every square L2 is interlaced, and that it is
distributive when L is distributive. The following proposition shows that the
converse is also true.

Proposition 2. [6] Every interlaced bilattice with a negation is isomorphic to
a square, equipped with a negation ¬ defined, for every x, y in L, by ¬(x, y) =
(y, x). 4

A detailed investigation of squares and the graded versions of the logical con-
nectives that can be defined on them appears in [4, 10]. As shown in [3, 4], the
evaluation structure of intuitionistic fuzzy sets is equal to the substructure of the
consistent elements of the square ([0, 1],≤)2, i.e., the elements (x, y) that satisfy
the condition x+y ≤ 1. In [3, 4] it is also shown that squares are a generalization
to arbitrary complete lattices (not only the unit interval) of interval-valued fuzzy

4 Note that by the fact that every distributive lattices is also interlaced, this proposi-
tion holds in particular for distributive bilattices with a negation.



sets [16, 23, 26, 30], an alternative method of extending fuzzy set theory, moti-
vated by the need to replace crisp, [0, 1]-valued membership degrees by intervals
in [0, 1] that approximate the (unknown) membership degrees.

3 Modeling Imprecise Preference Information

In a number of recent papers (e.g. [21, 24, 27–29]), the use of a four-valued logic
called DDT (derived from Belnap’s original proposal) and some of its graded
extensions has been advocated as a means of dealing with the task of prefer-
ence modeling under incomplete and/or conflicting information. In all of the
mentioned papers, bilattice theory per se plays only a subservient role as the
convenient ‘language’ for modeling positive and negative preference arguments
separately, and for representing the associated epistemic states of truth, falsity,
ignorance and contradiction. By contrast, the aim of this section is to demon-
strate and exploit the full expressive power of rectangular bilattices, and of
squares in particular, for preference modeling.

3.1 Encoding the Evidence

The problem at hand is that of ranking a (finite) set U of alternatives from
the best to the worst, with respect to a number of given criteria. In order to
do this, we assume that partial information is available regarding the pairwise
comparison of alternatives. In binary preference modeling, it is common to ex-
press such information by means of a two-valued outranking relation S in U (see
e.g. [25]), where S(u, v) = 1 is read as “(there is evidence that) u is at least
as good as v”. Such an approach can be criticized for lack of expressivity, since
explicit evidence that u is not at least as good as v could only be captured by
imposing S(v, u) = 1.5 Yet, as Fortemps and S lowiński argue in [21], arguments
in disfavour of a sentence are not necessarily identical to arguments in favour of
the opposite sentence!

For this reason, in [29] Tsoukiàs and Vincke propose to distinguish between
positive and negative arguments regarding the claim ‘u is at least as good as v’
(u ≥ v, for short). Essentially, this amounts to defining the outranking relation
S as a mapping from U2 to {0, 1}2, where the value of the first (respectively,
the second) component of S(u, v) reveals the presence of arguments in favour
(respectively, in disfavour) of u ≥ v. Clearly, this intuition fits our framework,
and Belnap’s square FOUR can be used to endow {0, 1}2 with an attractive
epistemic structure in terms of truth-hood (the ≤t-ordering: from only evidence
against, to only evidence for the claim) and of available information (the ≤k-
ordering: from ignorance to conflict).

Definition 4. For ease of notation, in what follows we shall abbreviate T for
(1, 0), F for (0, 1), U for (0, 0), and K for (1, 1), to be read as true, false, unknown
and contradiction, respectively.

5 Note that S(u, v) = 0 means that there is no evidence that u is at least as good as
v, which is obviously different than claiming that u is not at least as good as v.



Of course, nothing stands in the way of generalizing this framework by al-
lowing for graded evidence. For instance, in [21] and [24] the square induced by
the unit interval L = ([0, 1],≤) was investigated. In general, S can be a map-
ping from U2 to some rectangular bilattice L ⊙ R, reflecting that positive and
negative arguments may be evaluated according to two different scales.

3.2 Representing the Preferences

Once the various outranking arguments have been provided, the objective then is
to present the decision maker with as close to reality and transparent as possible
a rendering of the actual state of affairs. In conventional preference modeling
(i.e., when S(u, v) ∈ {0, 1}), a ‘decision’ concerning two alternatives u and v can
take four forms:

1. u is (strictly) preferred over v if S(u, v) = 1 and S(v, u) = 0,
2. v is (strictly) preferred over u if S(u, v) = 0 and S(v, u) = 1,
3. u and v are indifferent if S(u, v) = 1 and S(v, u) = 1,
4. u and v are incomparable if S(u, v) = 0 and S(v, u) = 0.

Evidently, all possible situations are covered in this way. Accordingly, one can
build three binary relations P (strict preference, corresponding to case 1 and 2),
I (indifference, corresponding to case 3) and R (incomparability, corresponding
to case 4), such that U2 = P ∪ P−1 ∪ I ∪ R. It is also said that 〈P, I, R〉 is a
classical preference structure; it is easy to see that it determines S unequivocally,
and vice versa; weakened versions emerge when S becomes a fuzzy relation, a
theme explored in e.g. [20, 31, 32]. In what follows, we study the bilattice-valued
generalizations of this framework.

A crisp four-valued approach Let first S be a mapping from U2 to {0, 1}2.
Each couple of alternatives (u, v) corresponds to a couple (S(u, v), S(v, u)) in
({0, 1}2)2. For notational ease, and in order to enhance the clarity of the ex-
position, we shall abbreviate these couples by simply juxtaposing the two let-
ters corresponding to their evaluations. For instance, FK represents the element
((0, 1), (1, 1)) that exhibits a situation in which there are only negative arguments
for u ≥ v and conflicting (both positive and negative) arguments for v ≥ u.

Note 1. In [27–29], essentially the same representation, albeit in a more compli-
cated form, is obtained by defining, for every u, v in U ,

∆S(u, v) = 1 ⇔ S(u, v) = (1, x) for some x in {0, 1}

read as, “there is presence of truth in saying that u is at least as good as v”, and
consequently introducing the so-called true, false, contradictory and unknown
extensions6 of the formula S(u, v) by, respectively,

TS(u, v) = 1 ⇔ ∆S(u, v) = 1 and ∆S(v, u) = 0 (1)

6 These are actually two-valued predicates; in [21] T, F, U and K are called strong
unary operators.



FS(u, v) = 1 ⇔ ∆S(u, v) = 0 and ∆S(v, u) = 1 (2)

US(u, v) = 1 ⇔ ∆S(u, v) = 0 and ∆S(v, u) = 0 (3)

KS(u, v) = 1 ⇔ ∆S(u, v) = 1 and ∆S(v, u) = 1 (4)

In our notations FK denotes the case where FS(u, v) = 1 and KS(v, u) = 1.

Thus, a decision maker is confronted with any of sixteen (instead of four)
possible situations involving the alternatives u and v. As the prime determina-
tion is to try to rank the alternatives, it is worthwhile to endow those various
situations with some meaningful structure, and it turns out that bilattices can
go a long way in doing just that.

Indeed, starting from the ≤t-ordering on FOUR, we can construct a bilattice-
based square on top of ({0, 1}2)2 with the following two orderings:

– (x1, x2) ≤t (y1, y2) ⇔ x1 ≤t y1 and x2 ≥t y2

Intuitively, if (x1, x2) = (S(u, v), S(v, u)) and (y1, y2) = (S(u′, v′), S(v′, u′)),
then (x1, x2) ≤t (y1, y2) expresses that the extent to which u is preferred
over v is less than the extent to which u′ is preferred over v′. The smallest
element is FT (it is not true that u ≥ v, while it is true that u ≤ v) and the
biggest one is TF (u ≥ v and not v ≥ u).

– (x1, x2) ≤k (y1, y2) ⇔ x1 ≤t y1 and x2 ≤t y2

This ordering ranges between a state of incomparability (FF) and one of
indifference (TT).

Starting from the ≤k-ordering on FOUR we can define two other orderings on
({0, 1}2)2 as follows:

– (x1, x2) ≤′
t (y1, y2) ⇔ x1 ≤k y1 and x2 ≥k y2.

Intuitively, if (x1, x2) = (S(u, v), S(v, u)) and (y1, y2) = (S(u′, v′), S(v′, u′)),
then x1 ≤k y1 means that we know less about u ≥ v than about u′ ≥ v′,
and x2 ≥k y2 means that we know more about u ≤ v than about u′ ≤ v′.
So, the bigger (x1, x2) according to this ordering, the more we know about
u ≥ v and the less we know about u ≤ v.

– (x1, x2) ≤′
k

(y1, y2) ⇔ x1 ≤k y1 and x2 ≤k y2.

This ordering marks the amount of information at our disposition: from a
shortage of information (UU) to an excess (KK).

Note 2. In [28, 29], the authors present a dictionary-style solution to discriminate
among the sixteen states, giving concrete names and explanations to each one
of them. For instance, TF is called ‘strict preference of u over v’, KF in their
terms is ‘weak preference of u over v’, etc. This approach, apart from being
tedious, is also misleading. As an example, in their approach (as in ours) FF

means that u and v are incomparable, whereas UU is read as “u and v are semi
incomparable”, and FU as “u and v are weakly incomparable”. Such terminology
implies an inaccurate description of the state of affairs, since



a) the element UU bears no mark of incomparability whatsoever, and

b) referring to ≤k, the elements UF, FK and KF could claim the status of rep-
resenting ‘weak incomparability’ with just as much justification as FU.

By contrast, the four order relations considered above serve to discriminate much
more naturally, and without bias, among the sixteen states, positioning each
state along four scales of measurement.

Extensions to arbitrary (possibly continuous) rectangular bilattices
Another important advantage of our approach is that it can be straightforwardly
generalized to graded evidence without the need for additional parameters . In-
deed, the four orderings ≤t, ≤k, ≤′

t, and ≤′
k

can equally be defined on L ⊙ R
for any complete lattices L = (L,≤L) and R = (R,≤R). The orderings present
the decision maker with a rather complete picture of the situation; depending
on the underlying goals and attitudes, he or she may exploit the information in
various ways.

Consider, for instance, the bilattice ([0, 1]2)2 together with, e.g., the normal-
ized Euclidean distance function. For any value (S(u, v), S(v, u)) one can measure
its distance to the external elements of each order. Such distances give graded in-
formation which is often more helpful for the decision maker than just the order-
ings themselves. For example, when (S(u, v), S(v, u)) = ((0.1, 0.77), (0.25, 0.41)),
the distance to FT is 0.44 and the distance to TF is 0.67, which indicates a prefer-
ence of v over u. Likewise, the distances 0.62 and 0.52 to UK and KU respectively
may indicate that the amount of available information is greater for “v ≥ u” than
for “u ≥ v”.

Note also that, as shown in Figure 2 (see the diagram on the bottom-left
side), the distance to FT (respectively, to TF) of each one of KT, UT, FU, FK, is
1/2 (respectively,

√
3/2), while the distance to FT (to TF) of TK, TU, UF, KF,

is
√

3/2 (respectively, 1/2). This can be interpreted as follows: the elements on
the middle layer do not give any evidence that u ≥ v or u ≤ v, the elements on
the second layer from below give more evidence that u ≤ v, and the elements on
the fourth layer provide more evidence that u ≥ v. As Figure 2 shows, similar
layered structures and distance values are also induced by the other orders (see
the bottom-right side of this figure for ≤k, the top-left side for ≤′

t, and the
top-right side for ≤′

k
).

Figure 2 reveals a nice symmetry among the four diagrams: there are eight
external elements each corresponding to a ‘definite’ state of affairs (TF and
FT: strict preference; TT: indifference; FF: incomparability; KK, UU, UK, KU:
information defect) and the eight remaining ones which float somewhat between
the extremes (they are always in second or the fourth layer). Note also that the
middle layer of each diagram always contains the six other external elements.

As the next proposition shows, the four order relations considered above pre-
serve these distance considerations for every element of the underlying bilattice:

Proposition 3. Let � be any one of the above four orders (≤t, ≤k, ≤′
t, ≤′

k
) on

([0, 1]2)2, and let d be the Euclidean distance function on it. Denote by 0 and 1
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the �-minimal element and the �-maximal element, respectively. For every u, v
in ([0, 1]2)2, if u � v then d(0, u) ≤ d(0, v) and d(u, 1) ≥ d(v, 1).

Proof. We shall show the claim for ≤t and its minimal element FT; the other
cases are similar.

Let u = (x1, x2) and v = (y1, y2). If u ≤t v then x1 ≤t y1 and x2 ≥t y2, which
means that d(F, x1) ≤ d(F, y1) and d(T, x2) ≤ d(T, y2). Thus, d(FT, (x1, x2)) =
1

2

√

d(F, x1)2 + d(T, x2)2 ≤ 1

2

√

d(F, y1)2 + d(T, y2)2 = d(FT, (y1, y2)). �

The above representation stands in sharp contrast to existing work relying
on the conventions described in Note 1. Indeed, devising graded versions of
the predicates T, F, U and K requires an explicit choice of how to model the
conjunction in the right-hand sides of their defining equalities (1)–(4). In [21]
and [24], two different choices involving different t-norms on the unit interval
are put forward, each elaborately justified in its own terms. As our exposition
reveals, however, this effort is altogether superfluous since it can be avoided by
working with the original outranking information. As we have shown, rectangular
bilattices offer a simple and natural way of encoding this information, even in
cases that the argument in favour of a certain preference and the argument in
disfavour of that preference are specified in terms of different ranges.

4 Conclusion

In this paper we introduced a simple and generic solution strategy for model-
ing imprecise preference information, taking advantage of the new opportunities
offered by bilattice-based structures. The ‘traditional’ approach of evaluating
membership functions by values that are arranged in one (and usually total)
order, is replaced here by more expressive ‘two-dimensional’ measurements that



reflect different interpretations of the underlying orderings, which may be ap-
plied simultaneously. Our approach exploits the order-theoretical ingredients of
bilattice theory, and puts existing approaches of preference modeling into a sim-
ple and unified perspective. This work therefore demonstrates the applicative
aspects of our study on bilattice-based fuzzy sets [3, 4, 10] and vindicates our
claim that these structures provide a natural and attractive framework for the
representation of uncertain and potentially conflicting information.
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thyroidienne, 1975. Ph. D. Thesis, University of Marseille.
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29. A. Tsoukiàs and P. Vincke. Extended preference structures in MCDA. In
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