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Abstract. We introduce a declarative approach for a coherent composition of
autonomous databases. For this we use ID-logic, a formalismthat extends clas-
sical logic with inductive definitions. We consider ID-logic theories that express,
at the same time, the two basic challenges in database composition problems:
relating different schemas of the local databases to one global schema (schema
integration) and amalgamating the distributed and possibly contradictory data to
one consistent database (data integration). We show that our framework supports
different methods for schema integration (as well as their combinations) and that
it provides a straightforward way of dealing with inconsistent data. Moreover,
this framework facilitates the implementation of databaserepair and consistent
query answering by means of a variety of reasoning systems.

1 Introduction and Motivation

Composition of information that arrives from different data-sources is a major challenge
of information systems and its importance has been recognized by many researches. The
works on this subject may be divided to two types according totheir objectives:

– Systems forschema integration, in which the main goal is to provide a uniform
vocabulary to which the various vocabularies of the data-sources can be mapped
(see, for instance, [6, 10, 21, 26, 30]).

– Systems fordata integration, in which the major concern is to resolve contradic-
tions that may occur when the distributed data is amalgamated (see, e.g., [1–5, 8]).

In this work we consider a framework that handles both these tasksat the same time.
To illustrate (and motivate) this, consider the following situation:

Example 1.Given two data sources. One source stores information aboutall the stu-
dents that were enrolled for the first time during 2004, and the other source contains
information about all the students whose first year of enrollment is 2005. The encoding
of such databases might be the following:

DB1 = ({st04(·)}, {st04(john)}),

DB2 = ({st05(·)}, {st05(mary), st05(john)}).



Here,DB1 encodes the fact that John is a student first enrolled in 2004,andDB2 en-
codes the facts that John and Mary are students first enrolledin 2005.

Assume further that there is a set of (global) integrity constraints, stating that the
first year of enrollment is unique for every student, and thatsomeone must have been
enrolled already in 2003. That is,

IC =

{

∀XYZ
(

enr(X,Y ) ∧ enr(X,Z)→ Y = Z
)

∃Xenr(X, 2003)

}

.

A proper integration system is expected to take the following actions in this case:

a) removethe information that John was first enrolled in 2004 or the information that
he was first enrolled in 2005 (but not both!)

b) inserta fact that some studentother than John or Marywas first enrolled in 2003.

Note that in order to accomplish this task, the mediator system should be able to
cope with the following challenges:

1. relate the different terminologies of the local databases and that of the global in-
tegrity constraints,

2. identify inconsistencies (i.e., violations of integrity constraints) and resolve them
by making some (minimal amount of) changes in the unified database,

3. search for solutions that may lie outside the active domain of the databases (in
order, e.g., to satisfy the second constraint above).

We call the whole process described abovedatabase composition. In this paper we
present a composition system that generalizes the schema integration process intro-
duced in [30] and at the same time enhances the abductive system for data integration
introduced in [3], by usingthe same logical formalism. The outcome is a uniform so-
lution for database composition, which to the best of our knowledge is more compre-
hensive (with respect to the expressive power of the underlying language, the amount
of integration methods that are supported, and the mediation capabilities mentioned in
Example 1) than any other approach implemented by similar systems.

2 Preliminaries

2.1 ID-logic

ID-logic [12, 13] is a knowledge representation formalism extending classical first-
order logic with non-monotone inductive definitions. It is motivated by the realization
that (inductive) definitions are a distinctive form of humanknowledge and are often
encountered in mathematical practice. At the same time, inductive definitions cannot
easily be expressed in classical logic (for instance, the transitive closure of a graph is
one of the simplest concepts typically defined by induction but it is well-known that
this concept cannot be defined in first-order logic).



The language of ID-logic uses the well-founded semantics [28] to extend classi-
cal logic with a new ‘inductive definition’ primitive, and assuch it allows even non-
monotone inductive definitions to be correctly formalized in an intuitive way. It has
also been shown that ID-logic is able to capture the basic ideas behind different con-
cepts and approaches in common-sense reasoning, such as thesemantical foundations
of situation calculus [15] and description logic [27]. As our goal here is to define com-
posed databases in terms of the distributed ones, together with a description of the
merging process, ID-logic is a natural candidate for being the underlying formalism
behind such an axiomatization. Below we give the formal definition of this logic.

Definition 1. An ID-logic theoryT , based on a first-order languageL, is a pair (D,F ),
whereD is a set of definitionsDi (i = 1, . . . , n) andF is a set of first-order formulas.
A definitionD is a set of rules of the formp(t)←B, wherep(t) is an atom andB is a
first-order formula.

Example 2.The transitive closure of a graph can be defined by the following ID-logic
definition:TransCl(x, y)← Edge(x, y) ∨ ∃z(TransCl(x, z) ∧ TransCl(z, y)).

In what follows we refer toD andF as the definitions and the constraints (respec-
tively) of T . The predicates occurring in the heads of the rules in the definitions are the
definedpredicates ofD. All the other predicates belong toOpen(D), the set of theopen
(abducible) predicates ofD.

Definition 2. A structureM is amodelof a definitionD iff there exists an interpreta-
tion I of Open(D) such thatM is the two-valued well-founded model [28] ofD that
extendsI. A structureM is a model ofD iff M is a model of eachD ∈ D.

Definition 3. A structureM is a modelof an ID-logic theoryT =(D,F ) iff M is a
model ofD and satisfies all formulas ofF . The collection of all models ofT is denoted
bymod(T ).

We say that a formulaψ is satisfiedby an ID-logic theoryT if there is a model of
T that satisfiesψ. A formulaψ followsfrom T if every model ofT satisfiesψ.

The following notation will be useful in what follows:

Definition 4. For two ID-logic theoriesT1, T2 over the same languageL, the composed
theoryT1 ◦ T2 is an ID-logic theoryT overL, obtained by the pairwise union of both
theories:T = T1 ◦ T2 = (D1,F1) ◦ (D2,F2) = (D1 ∪ D2,F1 ∪ F2).

Proposition 1. mod(T1 ◦ T2) = mod(T1) ∩mod(T2).

2.2 Database Composition

In this section we formally define the problem under consideration and its solutions.

Definition 5. A databaseis a pairDB = (L,D), where thedatabase languageL is
a first-order language based on a vocabulary consisting of the predicate symbols in a
fixed database schemaS and a finite setDom of constants representing the elements of
the domain of discourse. Thedatabase instanceD is a finite set of ground atoms in the
languageL.



The semantics of a database instance is given by the conjunction of the atoms inD
augmented with theUnique Name Assumption(UNA(Dom)), i.e., different constants
represent different objects, and theClosed World Assumption(CWA(D)) that assures
that each atom which is not explicitly mentioned inD is false. Often, theDomain Clo-
sure Assumption(DCA(Dom)) is also imposed, meaning that all elements of the domain
of discourse are named by constants inDom.3 The meaning of a database instance un-
der these assumptions is formalized in a model theoretical way by theleast Herbrand
modelsemantics.

Definition 6. A composition problemis a pair(D,C), where theset of resourcesD is
a non-empty set of (local) databasesDBi = (Li,Di), i = 1, . . . , n, and the (global)
integrity constraintsC = (LG , IC) consists of a (possibly empty) setIC of first-order
formulae in a first-order (global) languageLG .

Given a composition problem(D,C), our goal is therefore to construct a composed
(global) databaseDBG = (LG ,DG) such that its database instanceDG contains the
translation toLG of data-facts that appear in database instances of elementsin D, pro-
vided that these data facts do not violate the integrity constraints inIC. Clearly, this
database instance should ‘gather’ from the local databasesas much information as con-
sistently possible, that is, it should be ‘as close as possible’ to

⋃

i=1,...,n
Di, without

violatingIC.

Example 3.Consider again Example 1. The composition problem in this case consists
of two databases,DB1 andDB2, that should be composed under the integrity con-
straints inIC. WhenLG = {enr(X,Y )} is the language of the composed database
(meaning that a studentX was first enrolled in a yearY ), the two best composed
database instances are the following:

D1

G =
{

enr(mary, 2005), enr(john, 2005), enr(u, 2003)
}

D2

G =
{

enr(mary, 2005), enr(john, 2004), enr(u, 2003)
}

whereu is a (Skolem) constant, different frommary andjohn.

WhenDom consists only ofmary andjohn, DCA(Dom) excludes the two solutions
above, and the composed database instances are the following (see also Example 5):

D3

G =
{

enr(mary, 2005), enr(john, 2003)
}

D4

G =
{

enr(john, 2005), enr(mary, 2003)
}

D5

G =
{

enr(john, 2004), enr(mary, 2003)
}

Note that other compositions ofDB1 andDB2 are less intuitive in this case. For in-
stance,D∗ = {enr(john, 2003)} requires more revisions in the original assumptions
thanD3

G , and soD3

G is ‘closer’ toD1 ∪ D2 thanD∗.

In what follows we shall describe how to define ID-logic theories thatrepresentthe
composition problems under consideration (Section 3) and how to reasonwith these
theories in order tocomputecomposed databases for the given composition problems
(Section 4).

3 This assumption is sometimes lifted when constants outsideDom should be introduced; see
e.g. Examples 3 and 5 below.



3 The Composition Theory

In what follows we assume that all the databases share the same domainDom (this will
simplify the presentation, as the implicit assumptionsUNA(Dom) andDCA(Dom) can
be imposed globally) and that all the languages are mutuallydistinct (to assure this, one
can annotate the predicate names with the source identities).

Definition 7. A mediator systemfor a composition problem(D,C) is a quadruple
M = 〈L,CP, SI,DI〉, where:

– L is the union of the source languagesLi, the global languageLG , and the auxiliary
predicates defined below.

– CP = {S1, . . . ,Sn, IC}, the composition problem description, is a set of ID-logic
theoriesSi encoding the source databases (i.e., the database instances Di of the
databases inD), and an ID-logic theoryIC encoding the global integrity constraints
IC in C (see Section 3.1).

– SI = {M1, . . . ,Mn,K}, the schema integration specification, is a set of ID-logic
theoriesMi encoding the relations between the source languagesLi and the global
languageLG , and an ID-logic theoryK encoding additional information about the
relations among the schemas (see Section 3.2).

– DI = {Comp,Trans}, the data integration specification, is a set of ID-logic theo-
ries that specify how to make the combined database consistent with the setIC of
integrity constraints inC (see Section 3.3).

A composition theoryfor a mediator systemM is an ID-logic theoryTM = TSI ◦ TDI

in L, whereTSI = S1 ◦ · · · ◦ Sn ◦M1 ◦ · · · ◦Mn ◦ K andTDI = IC ◦ Comp ◦ Trans.

In the rest of this section we consider in further details thecomponents of a mediator.

3.1 Representation of the Composition Problem

Let ({(L1,D1) , . . . , (Ln,Dn)} , (LG , IC)) be a composition problem.

– The encoding of a source database instanceDi (1 ≤ i≤ n) in CP is the ID-logic
theorySi = ({{Di}} , ∅), whereDi is the enumeration of the facts inDi.

– The encoding of the global integrity constraintsIC in CP is the ID-logic theory
IC = (∅, {IC}), whereIC is obtained by interpreting the integrity constraintsIC as
an enumeration of formulae inLG , and substituting every occurrence of a predicate
p(t) by fact(p(t)).4

3.2 Representation of Schema Integration

The componentSI of a mediator system describes the relationships between the source
languagesLi and the global languageLG . These relationships are expressed in the form
of (inductive) definitions, taking into account the ontological relationships between the
predicates and the actual knowledge of the source. For a proper description of such
relations, one has to take into consideration the followingcases:

4 The need of this substitution will become apparent in Section 3.3.



1. Suppose that the set of rules{p(t) ← Bi | i = 1 . . . k} only partially defines a
predicatep. A complete definition can be obtained by adding a rulep(s)← p∗(s),
in which the auxiliary open predicatep∗ represents all the tuples inp that are not
defined by any of the bodiesBi.

2. Sometimes a body of a rulep(t) ← B is too general, i.e., it includes tuples not
intended to be in the predicatep. In this case it is possible to add to the bodyB an
auxiliary open predicateps that filters the extraneous tuples. The completed rule in
this case isp(t)← B ∧ ps(t).

Auxiliary predicates help to relate different languages and to complete partial infor-
mation. As such, they serve as open (abducible) predicates.

Definition 8. A language mappingfrom a languageL1 to a languageL2 is an ID-
logic theory(R1→2, IC1,2), whereR1→2 defines the predicates ofL2 in terms of the
predicates ofL1 and the necessary auxiliary predicates, andIC1,2 formulates generic
integrity constraints on the auxiliary predicates.

In terms of the last definition, the elementsM1, . . . ,Mn of SI are the language
mappings between the source languages and the global language. The first component
of each one of these mappingsMi may be of one of the following two forms:

– Ri→G . In this case the predicates of global languageLG are defined in terms of the
predicates of a local language (Li in this case). This mapping corresponds to the
Global as View(GAV) approach in schema integration (see, e.g., [26]).

– RG→i. In this case the languageLi of a local source is defined in terms of the global
languageLG . This mapping corresponds to theLocal as View(LAV) approach in
schema integration (see [21]).

Most of the systems that are introduced in the literature support only one type of the
schema integration methods described above. In our case it is clear that one may use
both kinds of language mappings in the same theory, and so imitate both GAV and LAV
by the same mediator system.

Example 4.Consider the source languagesL1 = {st05(·)} and the global language
LG = {enr(·, ·)}, wherest05(·) represents (some) students that are first enrolled in
2005 andenr(·, ·) represents all students with their first year of enrollment.According
to the LAV approach, a mappingM1 = (RG→1, ICG,1) between these languages could
be the following ID-logic theory:

(

{{st05(X)← enr(X, 2005) ∧ st05s(X).}},

{∀X(st05s(X)→ enr(X, 2005))}

)

,

wherest05s(·) represents the students known by the source and the integrity constraint
expresses that this is a subset of all students enrolled in 2005. Similarly, a GAV mapping
M1 = (R1→G , IC1,G) could be, e.g., the following ID-logic theory:

(

{{enr(X,Y )← (st05(X) ∧ Y = 2005) ∨ enr∗(X,Y ).}},

∀XY (enr∗(X,Y )→ ¬(st05(X) ∧ Y = 2005))

)

,

whereenr∗(·, ·) represents the students not known by the source, and the integrity con-
straint imposes thatenr∗(·, ·) does not duplicate the information from the source.



The remaining element inSI, denoted byK, contains some additional information
about the predicates and the interrelations. In the above example, for instance, one may
know that the source has complete information about all students enrolled in 2005,
so nowst05(·) should representall the students first enrolled in 2005. This can be ex-
pressed by the constraint∀Xenr(X, 2005)↔ st05(X). In the LAV approach it implies
that the relationst05s(·) is empty (and could be omitted in the language mapping); in
the GAV approach, it implies thatenr∗(·, ·) cannot have tuples with the year 2005.

3.3 Representation of Data Integration

The data integration specificationDI is a specification of how the database instances
should be integrated such that no integrity constraint willbe violated. It makes sure that
if the setD =

⋃

Di of all the local databases (translated to the global schema)preserves
all the integrity constraints inIC (notation:D |= IC),5 then the global database instance
DG will be equal to this set. Otherwise, some (minimal amount of) data-facts should be
inserted to- or retracted from this union in order to restoreits consistency with respect
to IC. In other words,

⋃

Di should be ‘repaired’:

Definition 9. [1] A repair of a database instanceD with respect to a setIC of integrity
constraints is a pair(Insert,Retract), such that: (1)Insert ∩ D= ∅, (2) Retract ⊆ D,6

and (3)((D ∪ Insert) \ Retract) |= IC.

Intuitively, Insert is a set of elements that should be inserted toD andRetract is a
set of elements that should be removed fromD in order to assure thatD is consistent
with IC. This is represented by the following ID-logic theory (thecomposer):

Comp =









{{

fact(X)← db(X) ∧ ¬retract(X).
fact(X)← insert(X).

}}

,

{

∀X ¬(insert(X) ∧ db(X))
∀X db(X)← retract(X)

}









,

wheredb(X) denotes in the global language thatX is a data-fact, andfact(X) denotes
that the data-factX should appear in the global database. Here,insert andretract are
open (abducible) predicates that describe repairs. The last two formulas ofComp assure
that conditions (1) and (2) in Definition 9 will hold.7

As there are usually many ways to repair a given database, it is often convenient
to make preferences among the possible repairs, and consider only the most preferred
ones. Below are two common preference criteria for preferring a repair(Insert,Retract)
over a repair(Insert′,Retract′):

Definition 10. Let (Insert,Retract) and(Insert′,Retract′) be two repairs of a database.

– set inclusion preference criterion:
(Insert,Retract) ≤i (Insert′,Retract′), if Insert ⊆ Insert′ andRetract ⊆ Retract′

5 That is, every formula inIC is satisfied in the least Herbrand model ofD.
6 Note that by conditions (1) and (2),Insert ∩ Retract=∅.
7 The third condition of Definition 9 is imposed by the theoryIC as defined in Section 3.1.



– minimal cardinality preference criterion:
(Insert,Retract) ≤c (Insert′,Retract′), if |Insert|+|Retract| ≤ |Insert′|+|Retract′|

If D |= IC, then(∅, ∅) is theonly≤i- and≤c-preferred repair ofD, as expected.

The second component ofDI is thetranslator, Trans. It represents all the translated
data-facts in terms of one (global) language:

Trans = ({{db(p1(t))←p1(t), . . . , db(pG(t))←pG(t)}}, ∅)

wherep1, . . . , pG are the predicates of the global languageLG .

The translator reifies the database predicates, i.e., it converts the database facts into
terms of the predicatedb.8 For reducing notational complexity, we use the same sym-
bols for the predicates and their reifications (e.g., inTrans above, thepi appearing on
the left-hand side of the implications are the reified symbols of the predicatespi on the
right-hand side of the same implications). Note that the predicatefact of the composer
represents which one on these new ‘fact’-terms appears in the composed database.

3.4 Back to the Canonical Example

A composition theory for Example 1 may be the following:

• The schema integration theoryTSI is a composition ofS1, S2,M1, andM2 (in this case
K is assumed to be empty):















































































{

st04(john).
}

{

st05(mary).
st05(john).

}

{

enr(X,Y )← st04(X) ∧ Y = 2004.
enr(X,Y )← enr∗

1
(X,Y ).

}

{

enr(X,Y )← st05(X) ∧ Y = 2005.
enr(X,Y )← enr∗2(X,Y ).

}















































,

{

∀XY (enr∗1(X,Y )→ ¬(st04(X) ∧ Y = 2004)).
∀XY (enr∗

2
(X,Y )→ ¬(st05(X) ∧ Y = 2005)).

}

































The definitions ofTSI are from the theoriesS1, S2, M1, andM2; the constraints are
from M1 andM2.

• The data integration theoryTDI is the following composition ofIC, Comp andTrans:




























{

fact(X)← db(X) ∧ ¬retract(X).
fact(X)← insert(X).

}

{

db(enr(X,Y ))← enr(X,Y ).
}







,















∀X¬(insert(X) ∧ db(X)).
∀Xdb(X)← retract(X).
∀XY Z (fact(enr(X,Y )) ∧ fact(enr(X,Z))→ Y = Z).
∃Xfact(enr(X, 2003)).





































The definitions ofTDI are fromComp (the first two) andTrans (the third one); the
constraints ofTDI are fromComp (the first two) andIC (the last two).

8 See [7] for a description of reifications in the context of knowledge representation.



4 Reasoning with Composed Databases

Query answering is probably the main task of a mediator system. In order to com-
pute answers from a composition theory in our context, the underlying ID-logic theory
should be converted to an equivalent theory in answer set programming (ASP) or abduc-
tive logic programming (ALP), which are the two available methods of reasoning with
ID-logic theories. By this, corresponding off-the-shelf solvers (such as the ASP systems
dlv [17] andsModels [25], or the ALP solverAsystem [3, 20, 29]) can be utilized for
the query answering. Below we consider both options.

Abductive Logic Programming

An ID-logic theory can be converted to an equivalent abductive normal logic program
(see [29] for a detailed description of this process), and then processed by solvers for
reasoning with abductive theories. We have implemented ourapproach for database
composition by such a solver, calledAsystem [3, 20, 29].9 TheAsystem computes in-
terpretation of the abducible predicates of a given ID-logic theory10 by executing the
abductive refutation procedure SLDNFA (an extension ofSLD-resolution for programs
with Negation asFailure operators andAbducible predicates; see [14]). It therefore
constructs an explanation formulaE , in terms of the open predicates ofT , that entails a
queryQ. Formally:

Definition 11. An abductive solutionfor an ID-logic theoryT and a queryQ is a pair
(∆, E), where∆ is a set of abducible atoms andE is the conjunction of the elements in
∆, such thatT |= ∃x E(x) andT |= ∀x (E → Q)(x).

In our case, the computed explanation formulaE describes a class of models of
T . WhenE is true, the query is satisfiable with respect to all the models. Whenthe
Asystem is unable to find an abductive solution forQ, thenT |= ∀(¬Q).

SLDNFA is a sound proof procedure for abductive normal logicprograms under the
(three-valued) completion semantics. Under certain conditions it is also complete (see
[14]) and always terminates (see [31]).11 These properties are inherited by theAsystem,
which is also equipped with a component that discards non-optimal solutions, called the
optimizer. Given a preference criterion on the solution space, the optimizer computes
only the most-preferred (abductive) solutions by pruning ‘on the fly’ those branches of
the search tree that lead to solutions that are worse than others that have already been
computed. This is actually a branch and bound ‘filter’ that speeds-up execution and
makes sure that only the desired solutions will be obtained.If the preference criterion is
a pre-order (as those of Definition 10), the optimizer iscomplete, that is, it can compute
all the optimal solutions (as illustrated in Example 5 below). We refer to [3, 29] for a
detailed description of the abductive inference process implemented by theAsystem.

9 See alsohttp://www.cs.kuleuven.ac.be/∼dtai/kt/systems-E.shtml.
10 These interpretations uniquely determine the models of thetheory; see Definitions 2 and 3.
11 This is the case, for instance, when the underlying logic programs are hierarchical, or abductive

non-recursive



Example 5.Consider again the composition theoryTM = TSI◦TDI given in Section 3.4
for the running example. ByTSI we derive the atomsenr(john, 2004), enr(john, 2005),
enr(mary, 2005), which is the translation of the local data in terms of the global lan-
guage. Now, both integrity constraints inIC are violated, so the data should be repaired.
Indeed, byTDI and≤c-optimizer, the following repairs are obtained:

– retract(enr(john, 2004)), insert(enr(u, 2003)) for u 6∈{john,mary},
– retract(enr(john, 2005)), insert(enr(u, 2003)) for u 6∈{john,mary}.

With an≤i-optimizer, three more solutions are obtained:

– retract(enr(john, 2004)), retract(enr(john, 2005)), insert(enr(john, 2003))
– retract(enr(mary, 2005)), retract(enr(john, 2004)), insert(enr(mary, 2003))
– retract(enr(mary, 2005)), retract(enr(john, 2005)), insert(enr(mary, 2003))

The global database instances in this case are, respectively,

– {enr(u, 2003)), enr(john, 2005)), enr(mary, 2005))},
– {enr(u, 2003)), enr(john, 2004)), enr(mary, 2005))}.
– {enr(john, 2003)), enr(mary, 2005))}.
– {enr(mary, 2003)), enr(john, 2005))}.
– {enr(mary, 2003)), enr(john, 2004))}.

The first two solutions are obtained since theAsystem does not impose the domain
closure assumptionDCA(Dom). This allows to compute solutions outside the least Her-
brand model of the problem, and so to suggest explanations for database inconsistency,
which could not be captured otherwise.

Answer Set Programming

An ID-logic theory in which each variable occurring in a formula is delimited by a
range (domain) relation is called a strongly range-restricted theory. In [23] it is shown
that strongly range-restricted ID-logic theories can be transformed to equivalent logic
programs under the stable model semantics. This implies that ASP solvers may also be
incorporated for reasoning with ID-logic-based mediator systems.

ALP and ASP have a lot in common, and they are often viewed as different varia-
tions of the same paradigm. In particular, both approaches compute (minimal) models
of the theory. Still, in opposed to the ALP approach, which isa local inference proce-
dure that selects only the information which is relevant forthe query, ASP is a global
reasoning tool for processing ground theories. ASP requires finite domains and imposes
the domain closure axiom. As a consequence, this method is conceptually less suitable
for reasoning about tasks which need to go outside the Herbrand space, and it is inher-
ently less scalable (in terms of the size of the databases) than ALP.12 Note, however,
that grounding to finite theories ensures the termination ofthe ASP computations.

12 In Example 5, for instance, ASP solvers will not produce the two repairs that contain the
Skolem constantu.



A simple work around that allows to lift the domain closure assumption posed by the
ASP approach is to iteratively add new Skolem constants to the Herbrand domain and
check for solutions in the new domains. However, a problem with this naive generate-
and-test approach is that one needs a criterion to know whether all the solutions have
been found. In case of a preference condition, the number of the Skolems constants
used in a solution allows to derive a lower bound on its cost, which could likely be the
basis for a terminating condition. Note that in certain cases (e.g., when no insertions
are allowed to restore consistency), all the solutions are already inside the Herbrand
domain, and so ASP and ALP solvers will terminate.

5 Concluding Remarks

In this paper we have developed a formal declarative foundation for representing and
reasoning with independent databases that contain information about a common do-
main, but may have different schemas and may contradict eachother. This problem,
known as database composition, is represented by ID-logic theories that mediate among
the ontologies of the sources, and resolve contradictions between local information and
global constraints.

It is important to note that this paper is mainly concerned with therepresentation
aspects of this problem, showing that different ingredients of it can be expressed in a
natural and intuitive way by a single logical formalism. In this context, we have elabo-
rated on the following advantages of our approach:

– The underlying logic extends classical logic with inductive definitions, and as such
it can be viewed as an expressive form of a description logic.13 In particular, our
approach is more expressive than similar approaches that are based on description
logics.

– Unlike some other approaches of data integration, no syntactical restriction is im-
posed on the integrity constraints (which can beanyset of first-order formulas).

– The inherent modularity of ID-logic allows to represent different aspects of the
same problem (that is, schema and data integration) in different modules. In other
formalisms (e.g., ALP, ASP, or description logics) these aspects are mixed in one
complex theory.

– The representation methodology is tolerant to the structure of the autonomous
databases. For instance, the composition theory describedin Section 3 may be eas-
ily modified in case that a certain source of information is added or dropped.

– Different types of schema integration are supported (e.g.,GAV and LAV), as well
as their combinations and corresponding extensions, such as the generalized LAV
approach (GLAV) [19] and Both-as-View approach (BAV) [24].

Other benefits of our framework, which are related tocomputationaspects of data inte-
gration, are hinted in Section 4. Below we list two of them:14

13 See [27] for more information about the relation between ID-logic and description logics.
14 The full details are beyond the scope (and the space limitations) of this paper. Still, as noted in

Section 4, the properties below are obtained by straightforward generalizations or adaptations
to our context of the techniques described in [3] (for ALP) and [23] (for ASP).



– Different types of query answering are supported. I.e.,skeptical query answering
(also calledcertain answering), in which a query is true iff it is entailed byevery
composed database, orcredulous query answering, in which a query is true iff it is
entailed bysomecomposed database.

– Different notions of optimal repairs (e.g., set inclusion,minimal cardinality, mini-
mization of the amount of inserted data-facts, and so forth)are dealt with through
preferential semantics.

As noted above, the mediator systems considered here may be implemented by a
variety of off-the-shelf solvers. Several other implementations have been introduced for
the kind of problems we are dealing with here. Among the implementations of schema
integration are the abductive GAV-based system of [9] and the LAV-based information
manifold system of [21]. Systems for data integration are, e.g., BReLS [22] and the data
repair system of [18]. We provide here a uniform framework for bothkinds of integra-
tions. Recently, some other implementations of schema and data integration have been
introduced, e.g., [8] and [10]. These approaches are based on representation platforms
that are more restricted than ours, as they implement only particular kinds of schema
mapping styles, limit the syntactic structure of the integrity constraints, and impose the
domain closure assumption.

A detailed investigation of the properties of particular computational models for our
framework is beyond the scope of the current paper. We refer to [11, 16] for a discus-
sion on some computational aspects (e.g, complexity and decidability) of the kinds of
problems considered here. Other topics for future elaboration include incorporation of
temporal information in the databases, handling of conflicts among integrity constraints,
and a study of other merging policies (such as merging by majority vote).
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