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Abstract. We introduce a declarative approach for a coherent coniposif
autonomous databases. For this we use ID-logic, a formdhsitnextends clas-
sical logic with inductive definitions. We consider ID-legheories that express,
at the same time, the two basic challenges in database caiopgzoblems:
relating different schemas of the local databases to orfleagkchemasgchema
integratior) and amalgamating the distributed and possibly contradiaiata to
one consistent databasiata integration. We show that our framework supports
different methods for schema integration (as well as thainlzinations) and that
it provides a straightforward way of dealing with inconeist data. Moreover,
this framework facilitates the implementation of databeeggair and consistent
query answering by means of a variety of reasoning systems.

1 Introduction and Motivation

Composition of information that arrives from differentdatources is a major challenge
of information systems and its importance has been recedtiyg many researches. The
works on this subject may be divided to two types accordirtheir objectives:

— Systems forschema integrationin which the main goal is to provide a uniform
vocabulary to which the various vocabularies of the dataresss can be mapped
(see, for instance, [6, 10, 21, 26, 30]).

— Systems fodata integration in which the major concern is to resolve contradic-
tions that may occur when the distributed data is amalgaih{ae=, e.g., [1-5, 8]).

In this work we consider a framework that handles both thasksat the same time
To illustrate (and motivate) this, consider the followirityation:

Example 1.Given two data sources. One source stores information adibtlte stu-
dents that were enrolled for the first time during 2004, areddther source contains
information about all the students whose first year of enrelit is 2005. The encoding
of such databases might be the following:

DBy = ({st04(:)}, {st04(john)}),
DBy = ({st05(+)}, {st05(mary), st05(john)}).



Here,DB; encodes the fact that John is a student first enrolled in 208P5, en-
codes the facts that John and Mary are students first eniinl@D5.

Assume further that there is a set of (global) integrity ¢aists, stating that the
first year of enrollment is unique for every student, and Hteheone must have been
enrolled already in 2003. That is,

Ic — VXYZ(enr(X,Y)ANenr(X,2) - Y = Z)
~ | IXenr(X,2003) '

A proper integration system is expected to take the follgvéations in this case:

a) removehe information that John was first enrolled in 2004 or thetinfation that
he was first enrolled in 2009t not botHh)

b) inserta fact that some studeather than John or Maryvas first enrolled in 2003.

Note that in order to accomplish this task, the mediatoresysshould be able to
cope with the following challenges:

1. relate the different terminologies of the local databas®ed that of the global in-
tegrity constraints,

2. identify inconsistencies (i.e., violations of integrdonstraints) and resolve them
by making some (minimal amount of) changes in the unifiedhete,

3. search for solutions that may lie outside the active danodithe databases (in
order, e.g., to satisfy the second constraint above).

We call the whole process described abdaegabase compositiotn this paper we
present a composition system that generalizes the schdegration process intro-
duced in [30] and at the same time enhances the abductivensyst data integration
introduced in [3], by usinghe same logical formalisnThe outcome is a uniform so-
lution for database composition, which to the best of ourkrdge is more compre-
hensive (with respect to the expressive power of the unitgrhanguage, the amount
of integration methods that are supported, and the mediatipabilities mentioned in
Example 1) than any other approach implemented by similstesys.

2 Preliminaries

2.1 ID-logic

ID-logic [12,13] is a knowledge representation formalisrteading classical first-
order logic with non-monotone inductive definitions. It i®tiwated by the realization
that (inductive) definitions are a distinctive form of humarmowledge and are often
encountered in mathematical practice. At the same timeydiie definitions cannot
easily be expressed in classical logic (for instance, tesitive closure of a graph is
one of the simplest concepts typically defined by inductiahibis well-known that
this concept cannot be defined in first-order logic).



The language of ID-logic uses the well-founded semantig} {@ extend classi-
cal logic with a new ‘inductive definition’ primitive, and asich it allows even non-
monotone inductive definitions to be correctly formalizedan intuitive way. It has
also been shown that ID-logic is able to capture the basiasideshind different con-
cepts and approaches in common-sense reasoning, suchsasrthstical foundations
of situation calculus [15] and description logic [27]. Asr@oal here is to define com-
posed databases in terms of the distributed ones, togeitteravdescription of the
merging process, ID-logic is a natural candidate for behey underlying formalism
behind such an axiomatization. Below we give the formal dtidim of this logic.

Definition 1. An ID-logic theory7, based on a first-order languageis a pair O,F),
whereD is a set of definition®; (i = 1,...,n) andF is a set of first-order formulas.
A definitionD is a set of rules of the form(¢) < B, wherep(?) is an atom and3 is a
first-order formula.

Example 2.The transitive closure of a graph can be defined by the foligu-logic
definition: TransCl(z,y) «— Edge(z,y) V 3z(TransCl(z, z) A TransCl(z,y)).

In what follows we refer t@> and.F as the definitions and the constraints (respec-
tively) of 7. The predicates occurring in the heads of the rules in thaitefis are the
definedpredicates oD. All the other predicates belong @pen (D), the set of th@pen
(abduciblg predicates oD.

Definition 2. A structureM is amodelof a definitionD iff there exists an interpreta-
tion I of Open(D) such that}M is the two-valued well-founded model [28] &F that
extendd. A structureM is a model ofD iff M is a model of eaclb € D.

Definition 3. A structure M is a modelof an ID-logic theoryZ7 =(D,F) iff M is a
model of D and satisfies all formulas ¢f. The collection of all models df is denoted
by mod(T).

We say that a formula is satisfiedby an ID-logic theoryZ if there is a model of
7T that satisfies). A formulaz) followsfrom 7 if every model of7” satisfies).

The following notation will be useful in what follows:

Definition 4. For two ID-logic theoried, 75 over the same language the composed
theory7; o 75 is an ID-logic theoryZ over £, obtained by the pairwise union of both
theories7 = 7—1 ¢} ,TQ = (Dl,fl) o (Dg,fg) = (D1 U Dg,fl U}-Q).

Proposition 1. mod(7; o 73) = mod(71) N mod(73).

2.2 Database Composition
In this section we formally define the problem under consitien and its solutions.

Definition 5. A databasds a pairDB = (£, D), where thedatabase languagg is

a first-order language based on a vocabulary consistingeoptédicate symbols in a
fixed database schensaand a finite seDom of constants representing the elements of
the domain of discourse. Thtlatabase instanc® is a finite set of ground atoms in the
language’.



The semantics of a database instance is given by the coigorudtthe atoms irb
augmented with th&nique Name AssumptiqNA(Dom)), i.e., different constants
represent different objects, and tBésed World AssumptiofCWA(D)) that assures
that each atom which is not explicitly mentionedZiis false. Often, th®omain Clo-
sure Assumptio(DCA(Dom)) is also imposed, meaning that all elements of the domain
of discourse are named by constant®ism.? The meaning of a database instance un-
der these assumptions is formalized in a model theoretiaglhy theleast Herbrand
modelsemantics.

Definition 6. A composition problens a pair(®, €), where theset of resource® is
a non-empty set of (local) databases; = (£;,D;),i = 1,...,n, and the (global)
integrity constraints® = (Lg,ZC) consists of a (possibly empty) s&f of first-order
formulae in a first-order (global) language .

Given a composition problefD, ¢), our goal is therefore to construct a composed
(global) databas®Bg = (Lg,Dg) such that its database instariPg contains the
translation tol¢ of data-facts that appear in database instances of eleinedtspro-
vided that these data facts do not violate the integrity tairgs inZC. Clearly, this
database instance should ‘gather’ from the local datalzsesich information as con-
sistently possible, that is, it should be ‘as close as ptssib | J,_, ,, D;, without
violating ZC. o

Example 3.Consider again Example 1. The composition problem in thé& cansists

of two databasesPB; and DB., that should be composed under the integrity con-
straints inZC. WhenLg = {enr(X,Y)} is the language of the composed database
(meaning that a student was first enrolled in a yeaY’), the two best composed
database instances are the following:

D}, = { enr(mary, 2005), enr(john,2005), enr(u, 2003) }
D = { enr(mary, 2005), enr(john,2004), enr(u, 2003) }
whereu is a (Skolem) constant, different fromary andjohn.
WhenDom consists only ofnary andjohn, DCA(Dom) excludes the two solutions
above, and the composed database instances are the fagjl(semalso Example 5):
D} = { enr(mary,2005), enr(john, 2003) }
D} = { enr(john,2005), enr(mary, 2003) }
D} = { enr(john,2004), enr(mary, 2003) }
Note that other compositions @153; and DB are less intuitive in this case. For in-

stance D* = {enr(john,2003)} requires more revisions in the original assumptions
thanDy, and saDg, is ‘closer’ toD; U D, thanD*.

In what follows we shall describe how to define ID-logic thiesrthatrepresenthe
composition problems under consideration (Section 3) awd to reasonwith these
theories in order teomputecomposed databases for the given composition problems
(Section 4).

% This assumption is sometimes lifted when constants ou@ite should be introduced; see
e.g. Examples 3 and 5 below.



3 The Composition Theory

In what follows we assume that all the databases share the damairDom (this will
simplify the presentation, as the implicit assumptitA (Dom) andDCA(Dom) can
be imposed globally) and that all the languages are mutdatinct (to assure this, one
can annotate the predicate names with the source ideptities

Definition 7. A mediator systenfor a composition problent®, ¢) is a quadruple
M = {(L,CP,SI,Dl), where:

— L is the union of the source languaggs the global languagég, and the auxiliary
predicates defined below.

- CP ={S4,...,S,,IC}, the composition problem descriptiois a set of ID-logic
theoriesS; encoding the source databases (i.e., the database irs@anoé the
databases i), and an ID-logic theoryC encoding the global integrity constraints
ZC in € (see Section 3.1).

- SI = {My,...,M,, K}, the schema integration specificatian a set of ID-logic
theoriesM; encoding the relations between the source languédgesd the global
languageLg, and an ID-logic theoriK encoding additional information about the
relations among the schemas (see Section 3.2).

— DI = {Comp, Trans}, the data integration specificatiors a set of ID-logic theo-
ries that specify how to make the combined database contisith the setZC of
integrity constraints ir€ (see Section 3.3).

A composition theoryor a mediator systenM is an ID-logic theoryZy, = 7s; o Ipy
in £, whereZgy =S10---0S,0oM;jo---0M, o Kand7p, = IC o Comp o Trans.

Inthe rest of this section we consider in further detailsdmponents of a mediator.

3.1 Representation of the Composition Problem
Let ({(£1,D1),...,(Ln,Dn)},(Lg,ZC)) be a composition problem.

— The encoding of a source database instabcél <i <n) in CP is the ID-logic
theoryS; = ({{D;}},0), whereD, is the enumeration of the facts .

— The encoding of the global integrity constraiai§ in CP is the ID-logic theory
IC = (0,{IC}), wherelC is obtained by interpreting the integrity constraiftsas
an enumeration of formulae ifig, and substituting every occurrence of a predicate
p(t) by fact(p(?)).*

3.2 Representation of Schema Integration

The componertl of a mediator system describes the relationships betweesotlrce
language&’; and the global languag®;. These relationships are expressed in the form
of (inductive) definitions, taking into account the ontdlmag relationships between the
predicates and the actual knowledge of the source. For sepuadgscription of such
relations, one has to take into consideration the follovdases:

4 The need of this substitution will become apparent in Sa@ia.



1. Suppose that the set of rulés(¢t) < B; | i = 1...k} only partially defines a
predicatep. A complete definition can be obtained by adding a pf® — p*(3),
in which the auxiliary open predicajé represents all the tuples jnthat are not
defined by any of the bodids;.

2. Sometimes a body of a rulgt) «— B is too general, i.e., it includes tuples not
intended to be in the predicapeln this case it is possible to add to the baéyan
auxiliary open predicatg® that filters the extraneous tuples. The completed rule in
this case i9(t) < B A p*(?).

Auxiliary predicates help to relate different languages emcomplete partial infor-
mation. As such, they serve as open (abducible) predicates.

Definition 8. A language mappindrom a languageC; to a languageC: is an ID-

logic theory(Ri_.2,1C; 2), whereR;_., defines the predicates d¥, in terms of the
predicates off; and the necessary auxiliary predicates, b formulates generic
integrity constraints on the auxiliary predicates.

In terms of the last definition, the elemern¥s, ..., M,, of Sl are the language
mappings between the source languages and the global gadlize first component
of each one of these mappinlgs may be of one of the following two forms:

— R;—¢. Inthis case the predicates of global langudgeare defined in terms of the
predicates of a local languagg,(in this case). This mapping corresponds to the
Global as ViewWGAV) approach in schema integration (see, e.g., [26]).

— Rg_.;. Inthis case the languadk of a local source is defined in terms of the global
languageLg. This mapping corresponds to thecal as View(LAV) approach in
schema integration (see [21]).

Most of the systems that are introduced in the literatur@ettpnly one type of the
schema integration methods described above. In our caseliar that one may use
both kinds of language mappings in the same theory, and satenioth GAV and LAV
by the same mediator system.

Example 4.Consider the source languagés = {st05(-)} and the global language
Lg = {enr(-,-)}, wherest05(-) represents (some) students that are first enrolled in
2005 ancenr(-, -) represents all students with their first year of enroliméwrtording
to the LAV approach, a mapping, = (Rg—1,1Cg,1) between these languages could
be the following ID-logic theory:
{{st05(X) « enr(X,2005) A st05°(X).}},
{VX (st05°(X) — enr(X,2005))} ’
wherest05°(-) represents the students known by the source and the igtegristraint
expresses that this is a subset of all students enrolledis. BImilarly, a GAV mapping
M; = (Ri_g,1C; ¢) could be, e.qg., the following ID-logic theory:
{{enr(X,Y) « (st05(X) AY = 2005) V enr*(X,Y).}},
VXY (enr*(X,Y) — —(st05(X) A Y = 2005)) ’
whereenr* (-, -) represents the students not known by the source, and tlygitpteon-
straint imposes thatns* (-, -) does not duplicate the information from the source.



The remaining element il, denoted by, contains some additional information
about the predicates and the interrelations. In the abavmple, for instance, one may
know that the source has complete information about allesttsdenrolled in 2005,
so nowst05(-) should represerdll the students first enrolled in 2005. This can be ex-
pressed by the constraivik enr(X, 2005) < st05(X). Inthe LAV approach itimplies
that the relatiorst05°(-) is empty (and could be omitted in the language mapping); in
the GAV approach, it implies thatwr* (-, -) cannot have tuples with the year 2005.

3.3 Representation of Data Integration

The data integration specificatiddl is a specification of how the database instances
should be integrated such that no integrity constraintléllviolated. It makes sure that

if the setD = | J D, of all the local databases (translated to the global schpmeagrves

all the integrity constraints ifiC (notation:D |= ZC),° then the global database instance
Dg will be equal to this set. Otherwise, some (minimal amouptata-facts should be
inserted to- or retracted from this union in order to resttwreonsistency with respect
to ZC. In other words| J D; should be ‘repaired’:

Definition 9. [1] A repair of a database instan@2with respect to a séiC of integrity
constraints is a paifinsert, Retract), such that: (1)nsert N D =), (2) Retract C D,°
and (3)((D U Insert) \ Retract) = ZC.

Intuitively, Insert is a set of elements that should be inserte®tandRetract is a
set of elements that should be removed frbnn order to assure thd? is consistent
with ZC. This is represented by the following ID-logic theory (twmposey.

fact(X) — db(X) A retract(X). ||
(Bl )
{VX db(X) — retract(X) }

Comp =

wheredb(X) denotes in the global language ttiais a data-fact, anglzct(X ) denotes
that the data-fack should appear in the global database. Heieert andretract are
open (abducible) predicates that describe repairs. Thsnagormulas ofComp assure
that conditions (1) and (2) in Definition 9 will hold.

As there are usually many ways to repair a given database oftén convenient
to make preferences among the possible repairs, and comsilyethe most preferred
ones. Below are two common preference criteria for preigrairepairInsert, Retract)
over a repaifInsert’, Retract’):

Definition 10. Let (Insert, Retract) and(Insert’, Retract’) be two repairs of a database.

— setinclusion preference criterion
(Insert, Retract) <; (Insert’, Retract’), if Insert C Insert’ andRetract C Retract’

5 That s, every formula ifC is satisfied in the least Herbrand modellaf
5 Note that by conditions (1) and (dpsert N Retract = .
" The third condition of Definition 9 is imposed by the thed€yas defined in Section 3.1.



— minimal cardinality preference criterian
(Insert, Retract) <. (Insert’, Retract’), if |Insert|+|Retract| < [Insert’|+|Retract’|

If D = ZC, then(0, D) is theonly <;- and<.-preferred repair oD, as expected.

The second component Bl is thetranslator, Trans. It represents all the translated
data-facts in terms of one (global) language:

Trans = ({{db(p1 () —p1(t), - .., db(pg(?)) —pg (£)}},0)
wherepy, ..., pg are the predicates of the gIobaI languahe

The translator reifies the database predicates, i.e., ectathe database facts into
terms of the predicateb.? For reducing notational complexity, we use the same sym-
bols for the predicates and their reifications (e.g-Tians above, thep; appearing on
the left-hand side of the implications are the reified syrloblthe predicates; on the
right-hand side of the same implications). Note that theljgagefact of the composer
represents which one on these new ‘fact’-terms appeargiodmposed database.

3.4 Backto the Canonical Example

A composition theory for Example 1 may be the following:
e The schema integration thedfy, is a composition 0$1, So,M;, andMs (in this case
K'is assumed to be empty):

{ st04(john). }
st05(mary).
st05(john).
enr(X,Y) « st04(X) AN'Y = 2004. ,
enr(X ) —enrj(X,Y).
em“( — st05(X) A'Y = 2005.
em“(X Y —enr3(X,)Y).
VXY (enri(X,Y) — —(st04(X) A Y = 2004)).
VXY (enry(X,Y) — —(st05(X) A Y = 2005)).
The definitions offs, are from the theorieS,, So, M1, andMs,; the constraints are
from M; andM,.
e The data integration theofp, is the following composition ofC, Comp andTrans:
fact(X) — db(X) A —retract(X).
fact(X) — insert(X). ,
{db(enr(X,Y)) — enr(X,Y). }
VX =(insert(X) A db(X)).
VXdb(X) «— retract(X).
VXY Z (fact(enr(X,Y)) A fact(enr(X,Z)) =Y = Z).
3X fact(enr(X,2003)).

The definitions oflp, are fromComp (the first two) andTrans (the third one); the
constraints offp, are fromComp (the first two) andC (the last two).

8 See [7] for a description of reifications in the context of Wiexdge representation.



4 Reasoning with Composed Databases

Query answering is probably the main task of a mediator systa order to com-
pute answers from a compaosition theory in our context, trietging ID-logic theory
should be converted to an equivalent theory in answer sgtanaming (ASP) or abduc-
tive logic programming (ALP), which are the two availablethmas of reasoning with
ID-logic theories. By this, corresponding off-the-shalfers (such as the ASP systems
div [17] andsModels [25], or the ALP solverdsystem [3, 20, 29]) can be utilized for
the query answering. Below we consider both options.

Abductive Logic Programming

An ID-logic theory can be converted to an equivalent abaeatiormal logic program
(see [29] for a detailed description of this process), amt throcessed by solvers for
reasoning with abductive theories. We have implementedapproach for database
composition by such a solver, calletsystem [3, 20, 29}. The Asystem computes in-
terpretation of the abducible predicates of a given IDddbeory® by executing the
abductive refutation procedure SLDNFA (an extensio8lob-resolution for programs
with Negation agrailure operators anédbducible predicates; see [14]). It therefore
constructs an explanation formwfain terms of the open predicates®f that entails a
queryQ. Formally:

Definition 11. An abductive solutiorfior an ID-logic theoryZ and a queng is a pair
(A, €), whereA is a set of abducible atoms a#éds the conjunction of the elements in
A, suchthatl |= 37 £(7) and7 =V (£ — Q)(T).

In our case, the computed explanation forméilaescribes a class of models of
T. When¢ is trug the query is satisfiable with respect to all the models. When
Asystem is unable to find an abductive solution@rthen? = V(-Q).

SLDNFA is a sound proof procedure for abductive normal Igg@grams under the
(three-valued) completion semantics. Under certain damdi it is also complete (see
[14]) and always terminates (see [31})These properties are inherited by thsystem,
which is also equipped with a component that discards ndimapsolutions, called the
optimizer Given a preference criterion on the solution space, thienig#r computes
only the most-preferred (abductive) solutions by prunimg the fly’ those branches of
the search tree that lead to solutions that are worse thamnsothat have already been
computed. This is actually a branch and bound ‘filter’ thagesps-up execution and
makes sure that only the desired solutions will be obtaili¢lkde preference criterion is
a pre-order (as those of Definition 10), the optimizerampletethat is, it can compute
all the optimal solutions (as illustrated in Example 5 bélowe refer to [3, 29] for a
detailed description of the abductive inference procegddmented by thelsystem.

® See alsdit t p: / / www. cs. kul euven. ac. be/ ~dt ai / kt / syst ens- E. sht i .

10 These interpretations uniquely determine the models ofttéery; see Definitions 2 and 3.

1 This is the case, for instance, when the underlying logiggnms are hierarchical, or abductive
non-recursive



Example 5.Consider again the composition thed@fy, = 75,0 7p, given in Section 3.4
for the running example. BYs| we derive the atomsnr(john, 2004), enr(john, 2005),
enr(mary, 2005), which is the translation of the local data in terms of thebgldan-
guage. Now, both integrity constraintsi@ are violated, so the data should be repaired.
Indeed, byZp, and<.-optimizer, the following repairs are obtained:

— retract(enr(john, 2004)), insert(enr(u, 2003)) for u & {john, mary},
— retract(enr(john, 2005)), insert(enr(u, 2003)) for u & {john, mary}.

With an <;-optimizer, three more solutions are obtained:

— retract(enr(john,2004)), retract(enr(john, 2005)), insert(enr(john, 2003))
— retract(enr(mary, 2005)), retract(enr(john, 2004)), insert(enr(mary, 2003))
— retract(enr(mary, 2005)), retract(enr(john, 2005)), insert(enr(mary, 2003))

The global database instances in this case are, respgctivel

— {enr(u,2003)), enr(john, 2005)), enr(mary, 2005))},
— {enr(u,2003)), enr(john, 2004)), enr(mary, 2005))}.
— {enr(john,2003)), enr(mary, 2005))}.
— {enr(mary, 2003)), enr(john, 2005))}.
— {enr(mary, 2003)), enr(john, 2004))}.

The first two solutions are obtained since thgystem does not impose the domain
closure assumptioDCA(Dom). This allows to compute solutions outside the least Her-
brand model of the problem, and so to suggest explanatiomafabase inconsistency,
which could not be captured otherwise.

Answer Set Programming

An ID-logic theory in which each variable occurring in a farta is delimited by a
range (domain) relation is called a strongly range-resttitheory. In [23] it is shown
that strongly range-restricted ID-logic theories can la@$formed to equivalent logic
programs under the stable model semantics. This impliegMBR solvers may also be
incorporated for reasoning with ID-logic-based mediay@tems.

ALP and ASP have a lot in common, and they are often viewedftexelit varia-
tions of the same paradigm. In particular, both approacbegpate (minimal) models
of the theory. Still, in opposed to the ALP approach, which Iscal inference proce-
dure that selects only the information which is relevanttha query, ASP is a global
reasoning tool for processing ground theories. ASP regfiinée domains and imposes
the domain closure axiom. As a consequence, this methodhiteptually less suitable
for reasoning about tasks which need to go outside the Hadlspace, and it is inher-
ently less scalable (in terms of the size of the databasas)AiLP}?> Note, however,
that grounding to finite theories ensures the terminatich®”SP computations.

21n Example 5, for instance, ASP solvers will not produce the tepairs that contain the
Skolem constant.



A simple work around that allows to lift the domain closursw@sption posed by the
ASP approach is to iteratively add new Skolem constantseadtttrbrand domain and
check for solutions in the new domains. However, a probleth this naive generate-
and-test approach is that one needs a criterion to know whaththe solutions have
been found. In case of a preference condition, the numbereoSkolems constants
used in a solution allows to derive a lower bound on its cokictwvcould likely be the
basis for a terminating condition. Note that in certain ea@&g., when no insertions
are allowed to restore consistency), all the solutions &eady inside the Herbrand
domain, and so ASP and ALP solvers will terminate.

5 Concluding Remarks

In this paper we have developed a formal declarative fouod&br representing and
reasoning with independent databases that contain infamabout a common do-
main, but may have different schemas and may contradict etiehr. This problem,
known as database composition, is represented by ID-Ibgiries that mediate among
the ontologies of the sources, and resolve contradictietvgden local information and
global constraints.

It is important to note that this paper is mainly concernethwherepresentation
aspects of this problem, showing that different ingredienitit can be expressed in a
natural and intuitive way by a single logical formalism. hist context, we have elabo-
rated on the following advantages of our approach:

— The underlying logic extends classical logic with induetdefinitions, and as such
it can be viewed as an expressive form of a description I6gin. particular, our
approach is more expressive than similar approaches théisaed on description
logics.

— Unlike some other approaches of data integration, no siicghecestriction is im-
posed on the integrity constraints (which carelpg set of first-order formulas).

— The inherent modularity of ID-logic allows to representfeliént aspects of the
same problem (that is, schema and data integration) inrdiffenodules. In other
formalisms (e.g., ALP, ASP, or description logics) thegeea$s are mixed in one
complex theory.

— The representation methodology is tolerant to the strectirthe autonomous
databases. For instance, the composition theory desdrilsettion 3 may be eas-
ily modified in case that a certain source of information idedior dropped.

— Different types of schema integration are supported (&4\V and LAV), as well
as their combinations and corresponding extensions, ssittheageneralized LAV
approach (GLAV) [19] and Both-as-View approach (BAV) [24].

Other benefits of our framework, which are relateddmputatioraspects of data inte-
gration, are hinted in Section 4. Below we list two of théfh:

13 See [27] for more information about the relation betweeridfie and description logics.

4 The full details are beyond the scope (and the space limits}iof this paper. Still, as noted in
Section 4, the properties below are obtained by straightoit generalizations or adaptations
to our context of the techniques described in [3] (for ALPY §&3] (for ASP).



— Different types of query answering are supported. Ekeptical query answering
(also calledcertain answering in which a query is true iff it is entailed bgvery
composed database,@edulous query answering which a query is true iff it is
entailed bysomecomposed database.

— Different notions of optimal repairs (e.g., set inclusiarinimal cardinality, mini-
mization of the amount of inserted data-facts, and so fatl)dealt with through
preferential semantics.

As noted above, the mediator systems considered here magddenented by a
variety of off-the-shelf solvers. Several other implenatioins have been introduced for
the kind of problems we are dealing with here. Among the im@etations of schema
integration are the abductive GAV-based system of [9] aed thV-based information
manifold system of [21]. Systems for data integration aig, 8RelLS [22] and the data
repair system of [18]. We provide here a uniform framewonkifothkinds of integra-
tions. Recently, some other implementations of schema atadidtegration have been
introduced, e.g., [8] and [10]. These approaches are basegpoesentation platforms
that are more restricted than ours, as they implement ontycpér kinds of schema
mapping styles, limit the syntactic structure of the iniiggronstraints, and impose the
domain closure assumption.

A detailed investigation of the properties of particulamgutational models for our
framework is beyond the scope of the current paper. We reffrlt, 16] for a discus-
sion on some computational aspects (e.g, complexity andalgtity) of the kinds of
problems considered here. Other topics for future elalmrétclude incorporation of
temporal information in the databases, handling of cosfiotong integrity constraints,
and a study of other merging policies (such as merging by ritajeote).
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