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Abstract. The Closed-World Assumption (CWA) on a database ex-
presses that an atom not in the database is false. The CWA is only
applicable in domains where the database has complete knowledge. In
many cases, for example in the context of distributed databases, a data
source has only complete knowledge about part of the domain of dis-
course. In this paper, we introduce an expressive and intuitively appeal-
ing method of representing a local closed-world assumption (LCWA) of
autonomous data-sources. This approach distinguishes between the data
that is conveyed by a data-source and the meta-knowledge about the
area in which these data is complete. The data is stored in a relational
database that can be queried in the standard way, whereas the meta-
knowledge about its completeness is expressed by a first order theory
that can be processed by an independent reasoning system (for example
a mediator). We consider different ways of representing our approach,
relate it to other methods of representing local closed-word assumptions
of data-sources, and show some useful properties of our framework which
facilitate its application in real-life systems.

1 Introduction and Motivation

In recent years, information integration has attracted considerable attention from
the AI and databases communities. Generally speaking, the idea is, given a set of
independent data-sources, to characterize the collective knowledge represented
by them in terms of a uniform vocabulary, called the global schema, and then
to exploit this information to obtain correct answers from the whole system (see
[8] for a detailed description of this problem, and [1, 9, 14] for some particular
solutions for it). An important aspect of this research is to arrive at an exact
description of the information endorsed by each and every data-source in the
system. Typically, a data-source stores a database consisting of a set of tuples.
In standard database settings, the information held by the data-source would be
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expressed by the conjunction of atoms together with the closed-world assumption

[13]. The CWA expresses the communication agreement that an atom that does
not appear in the database is false. However, it is clear that the CWA can only
be applied when the database contains complete knowledge of the domain of
discourse. In a context of distributed data-sources this assumption is inherently
inappropriate since a consideration of a certain data-source as a single and com-
plete representation of the world either completely discards the other sources of
information or causes contradictions among them. For this reason, some existing
approaches have applied an open-world assumption [3, 11], interpreting a data-
source just as the conjunction of atoms in the database. However, we find that
this does not allow to grasp more refined information that is held in distributed
data systems (sometimes called mediator-based systems). We illustrate this in
the following example.

Example 1. Consider a distributed traffic tax administration system, in which
there is one data-source for each county, maintaining a database of car owners
in that county. There is a protocol amongst the different counties so that when
a car owner leaves one county A to live in another county B, then county A
immediately transfers its information to county B, while still preserving a record
of the car owner and its current status for a certain period of time, to handle
all running tax demands. By the nature of the protocol, we may assume that
each data-source has complete knowledge about all car owners in its county, but
in general it has more information than that. Part of the tables of a particular
county, say Bronx, may look as follows:

Car Owners
Name Model CarID

Peter Steward Mercedes 320 Qn-5452
John Smith Volvo 230 Bx-5242
Mary Clark BMW 550 Bx-5462

Location
Name Residence

Peter Steward Queens
Mary Clark Bronx
John Smith Bronx

By the nature of the distributed system, this data-source has an expertise on car
owners of Bronx. This meta-knowledge allows to derive further information that
is not explicitly stated in the data-source, e.g. that all people that are recorded in
the table Location as residents of Bronx, are actually all the car owners from that
county. However, as the information about car owners in Queens is not complete
in this data-source, one should not rely only on the tables of this source for
making further conclusions about that county.

The example above shows that when the information is distributed over sev-
eral independent data-sources, a different approach is needed in order to properly
capture the meaning of a particular data-source. While in distributed informa-
tion systems, data-sources usually have only partial knowledge about the domain
of discourse, still it is often the case that a particular source is an expert about
a specific area and has complete knowledge about it. We call this area the win-

dow of expertise of the data source. It follows that to express the information

held by a data source, the explicit data recorded in the data-source has to be



complemented by a meta-information that describes this window of expertise.
These two kinds of information should be separated as much as possible, so
that one may still consider data-sources as relational databases, and process the
information about their completeness by an independent reasoning system.

Following these guidelines, we represent the meta-information about the com-
pleteness of a data-source by a theory that consists of several local closed-world

assumptions (LCWA) [4]. A LCWA refines the closed-world assumption by spec-
ifying for a certain predicate an area in which the data source contains all true
tuples of the predicate. In our approach, the semantics of a LCWA is expressed
by a first-order formula of a uniform syntactical form. Specifically, the contribu-
tion of this paper is the following:

• A new method for representing local closed-world assumptions is introduced.
Unlike other methods for expressing such assumptions, conceived e.g. in [2,
4], which are tailored for intelligent agents, our notion of LCWA is specifically
devised for describing complete knowledge in relational data-sources that are
part of mediator systems. This allows, in particular, to formally define the
meaning of each and every data source in such systems.

• The representation of the local closed-world assumption considered here al-
lows to distinguish between the explicit data of the source and the exter-
nal (implicit) information about its completeness. This separation allows to
query a data-source in the standard way, whereas the knowledge about its
completeness can be independently processed by the mediator system.

• We present two equivalent representations of the meaning of data-sources.
One representation is given in terms of first-order theories and the other one
is based on circumscription [10] (which is the common approach for express-
ing LCWA in related works; see, e.g., [2]). This equivalence allows us to show
how our proposal captures the intuition behind traditional approaches for
LCWA, expressed in terms of higher-order languages, and how they can be
reduced to first-order theories in case that certain conditions are met.

The organization of the rest of paper is the following. In Section 2 we intro-
duce the local closed-world assumption and use it for defining the meaning of a
data-source. In Section 3 we consider an alternative approach, defined in terms
of second-order, pseudo-circumscriptive formulae, and show the equivalence be-
tween the two approaches. Then, in Section 4 we give some further comments
and generalizations to the local closed-world assumption, and in Section 5 we
discuss some other approaches to this assumption. Section 6 concludes the paper.

2 The Local Closed-World Assumption (LCWA)

Definition 1. A data-source S is a pair 〈Σ, D〉, where Σ is a vocabulary con-
sisting of predicate symbols in a fixed relational schema R(Σ) and a finite set
C(Σ) of constants representing the elements of the domain of discourse; and D
is a finite set of ground atoms expressed in terms of Σ.



Definition 2. Let S = 〈Σ, D〉 be a data-source and let P be a predicate that
appears in D. Denote by PS the set of tuples of P in D. We write P (t) ∈ PS ,
where t is a tuple of terms, to denote the formula

∨

a∈P S (t = a).

Example 2. Let S = 〈Σ, D〉 be the following data-source with facts about the
relations CarO(·, ·) (between people and their cars ID) and Loc(·, ·) (between
people and the place they live.)

〈{

CarO/2, Loc/2
}

,

{
CarO(JS, V231), CarO(MC, V231), CarO(MC, B342),
Loc(JS, Qn), Loc(MC, Bx)

}〉

.

Here, LocS = {(JS, Qn), (MC, Bx)}, hence Loc(x, y) ∈ LocS denotes the following
formula:

(
(x = JS) ∧ (y = Qn)

)
∨

(
(x = MC) ∧ (y = Bx)

)
.

Standard mediator systems consist of a number of data-sources collaborating
with information through a common interface, the global schema [8, 14]. In such
context, the data-sources can be viewed as storing information, in the form of
a collection of tuples, about certain domain in the real world. However, which
parts of the modeled world are accurately represented in the data-source is not
recorded explicitly in the system, and so the meaning of the data-source remains
ambiguous. With the following definition we address this problem by character-
izing through a FOL expression -using the same language of the data-source-
the cases in which the data-source contains all the valid facts. We call this the
window of expertise of the data-source, and it is represented in the following
definition by the formula Ψ .

Definition 3. A local closed-world assumption for a data-source S = 〈Σ, D〉, is
a triple LCWA = 〈S, P , Ψ〉, where P = {P1(x1), . . . , Pn(xn)} is a set of atoms
(the LCWA’s objects) and Ψ(y) (the context of the assumption) is a first-order
formula over Σ with free variables y s.t. y ⊆

⋃n

i=1 xi.

Note that in each Pi(xi), the value of the variables xi ∩ y are constrained by
Ψ . For this reason we call Ψ the window of expertise, and ∃y \xi(Ψ) the window
of expertise of the predicate Pi. The intuitive meaning of the local closed-world
assumption in Definition 3 is that for each i ∈ {1, . . . , n}, each fact Pi(xi) that
is true in the real world and which satisfies ∃y \ xi(Ψ) should appear in the
data-source.

Example 3. Let S = 〈Σ, D〉 the data-source of Example 2.

1. 〈S, {CarO(x, y)}, x = MC〉 intuitively indicates that the data-source S con-
tains all true atoms of the form CarO(x, y) for x = MC.

2. 〈S, {CarO(x, y)}, Loc(x, Bx)〉 indicates that S knows about all the cars of the
people that live in Bx.

3. 〈S, {CarO(x, y), Loc(x, z)}, Loc(x, Bx)〉 expresses that S contains all the data
about the cars of persons living in Bx and about all people living in Bx.

4. 〈S, {CarO(x, y), Loc(x, z)}, x = MC〉 indicates that S has full knowledge about
Mary Clark (i.e., a LCWA regarding everything that is concerned with MC).



Example 4. Consider the following two local closed-world assumptions:

LCWAA = 〈S, {CarO(x, y), Loc(x, z)}, CarO(x, V231) ∧ Loc(x, Bx)〉

LCWAB = 〈S, {CarO(x, u), Loc(y, v)}, u = V231 ∧ v = Bx〉

Intuitively, the difference between these two expressions is that the first one
expresses a full knowledge of S about car ownership and locations of V231 owners
in Bronx. On the other hand, under the second assumption, the data-source
knows all people having a V 321 including people not living in the Bronx; the
data-source also knows all people living in the Bronx, including those that do
not have a V 321.

Example 5. In case of item (1) of Example 3, the local closed-world assumption
may be expressed as follows:

∀x
(
x = MC → ∀y(CarO(x, y) → y = V231 ∨ y = B342)

)
(1)

In case of item (2) of the same example, the local closed-world assumption may
be expressed as follows:

∀x
(
Loc(x, Bx) → ∀y(CarO(x, y) → y = V231 ∨ y = B342)

)
(2)

These examples lead us to the following general formulation of a local closed-
world assumption in terms of first-order formulae:

Definition 4. Let LCWA = 〈S, {P1(x1), . . . , Pn(xn)}, Ψ(y)〉 be a local closed-
world assumption for a data-source S. The formula that is induced from LCWA,
denoted by ΛLCWA, is the following:

∀y

(

Ψ(y) → ∀z
(

n∧

i=1

(
Pi(xi) →

(
Pi(xi) ∈ PD

i

)))
)

where, x =
⋃n

i=1 xi, and z = x \ y.

Note that if P is empty, then ΛLCWA is tautologically true and does not specify
any additional information.

Example 6. Below are, respectively, the formulae that are induced from the local
closed-world assumptions of items (1) and (2) in Example 3.

1. ∀x
(
x = MC → ∀y

(
CarO(x, y) →

((x = JS ∧ y = V231) ∨ (x = MC ∧ y = V231) ∨ (x = MC∧ y = B342))
))

2. ∀x
(
Loc(x, Bx) → ∀y(CarO(x, y) →

((x = JS ∧ y = V231) ∨ (x = MC ∧ y = V231) ∨ (x = MC ∧ y = B342))
))

Note that under the unique name assumption (see Note 1 below), these formulae
are equivalent with those of Example 5.3

3 Consider, for instance, the first formula. It is of the form ∀xΦ, and the formula in
Example 3–(1) is of the form ∀xΦ′. For every x other than MC both Φ and Φ′ are
trivially true, and for x = MC, both Φ and Φ′ hold only if there is no c 6∈ {V231, B342}
s.t. CarO(MC, c) is true.



Definition 5. For a data-source S = 〈Σ, D〉, denote: D(S) =
∧

d∈D d.

Now we are ready to define the meaning of a data-source (in the context of
mediator systems):

Definition 6. Let S = 〈Σ, D〉 be a data-source and let LCWAj = 〈S, P
j
, Ψ j〉,

j =1, . . . , m, be all the local closed-world assumptions of S. Then the meaning

of S is given by the following formula:

M(S) = D(S) ∧

m∧

j=1

ΛLCWAj .

Note 1. When S = 〈Σ, D〉 is the only data-source, the following two conditions
are usually assumed:

– Domain Closure Axiom: DCA(S) = ∀x(
∨n

i=1 x = Ci)

– Unique Name Axiom: UNA(S) =
∧

16i<j6n Ci 6= Cj

where C1, . . . , Cn are all constants in Σ. In such cases, DCA(S) and UNA(S)
appear as two additional conjuncts in M(S). We denote the meaning of S by
MD(S), MU (S), or MDU (S), when the first, the second or both assumptions
are imposed, respectively.

The meaning of a data-source can be understood as a first-order theory rep-
resenting incomplete knowledge about the real world. In the general case this
theory will be incomplete, so there will exist more than one model, the actual
world corresponding to one of them. Consequently, the meaning of a data-source
is not be interpreted with respect to its database but with respect to the real
world.

Given a formula Ψ , denote by ∃|xΨ the existential quantification of all free
variables in Ψ , except those in x.

The next proposition shows that the formula ΛLCWA formalizes the intu-
itive meaning of the local closed-world assumption 〈S, P , Ψ〉, as specified in the
paragraph below Definition 3.

Proposition 1. For S = 〈Σ, D〉, let LCWA = 〈S, {P1(x1), . . . , Pn(xn)}, Ψ〉 and

LCWAi = 〈S, {Pi(xi)}, ∃|xi
Ψ〉 i = 1, . . . n. Then:

ΛLCWA ≡

n∧

i=1

ΛLCWAi

Proof. The equivalence is obtained by applying some simple rewriting rules on
the relevant formulae. Indeed, denote x = ∪n

i=1xi and z = x \ y . Then:



ΛLCWA ≡ ∀y
(
Ψ(y) →

(
∀z

( ∧n

i=1

(
Pi(xi) →

(
Pi(xi) ∈ PD

i

)))))

≡ ∀y
(
Ψ(y) →

( ∧n

i=1 ∀z
(
Pi(xi) →

(
Pi(xi) ∈ PD

i

))))

≡ ∀y(
∧n

i=1

(
Ψ(y) → ∀(xi \ y)

(
Pi(xi) →

(
Pi(xi) ∈ PD

i

)))

≡
∧n

i=1 ∀y
(
Ψ(y) → ∀(xi \ y)

(
Pi(xi) →

(
Pi(xi) ∈ PD

i

)))

≡
∧n

i=1 ∀(y ∩ xi)
(
∃|xΨ(y) → ∀(xi \ y)

(
Pi(xi) →

(
Pi(xi) ∈ PD

i

)))

≡
∧n

i=1 ΛLCWAi
.

Thus the equivalence is obtained. �

Example 7. The assumptionLCWA = 〈S, {CarO(x, y), Loc(x, z)}, x = MC〉, given
in Example 3-(4), which says that S has full knowledge about Mary Clark, may
also be represented in a modular way by the following two expressions:

LCWAA = 〈S, {CarO(x, y)}, x = MC〉

LCWAB = 〈S, {Loc(x, z)}, x = MC〉

We say that the meaning of a data-source is consistent if it has at least one
model in the standard model-theoretic sense.

Proposition 2. Every data-source has a consistent meaning.

Proof. We consider the case where the meaning of a data-source S = 〈Σ, D〉 is
given by M(S). The proofs for MD(S), MU (S), and MDU (S) (i.e., when any
combination of DCA and UNA is also assumed) are similar.

Let LCWAj = 〈S, P
j
, Ψ j〉, j=1, . . . , m be all the local closed-world assump-

tions for S. Then M(S) =
∧

A∈D A∧
∧m

j=1 ΛLCWAj . To show the proposition we
define an interpretation I for Σ and show that it is a model of M(S). Let I be the
Herbrand interpretation associated with the database of S: the domain is C(Σ)
and P I = PS . By construction of I, I |= Pi(di1 , . . . , dik

) for every ground atom
in D. When Ψ j(yj) is false in I, then trivially I |=

∧m

j=1 ΛLCWAj . When Ψ j(yj)

true in I, then by its construction, whenever I |= P
j
, also I |= P j(x) ∈ PS . �

The next proposition implies that for single data-sources our semantics of the
local closed-world assumption is a conservative extension of Reiter’s closed-world
assumption for relational databases; the present approach allows to express in
such cases that a single data-source has complete knowledge about the world.

Proposition 3. Let S = 〈Σ, D〉 be the only data-source and let LCWA =
〈S, P , TRUE〉, where P = {P1(x1), . . . , Pn(xn)} are all the predicates occurring

in Σ. Then MDU (S) coincides with Reiter’s axiomatization of the closed-world

assumption [13] for S.

Proof. Reiter’s axiomatization of closed-world assumption of S is a first-order
theory Γ , consisting of the following formulae: (1) DCA(S), (2) UNA(S), (3) the



ground atomic facts in D, and (4) completion axioms for each predicate of S:
∀x(Pi(xi) → P (xi) ∈ PD

i ), i = 1, . . . , n.
By Definition 6, MDU (S) includes (1), (2) and (3), so it remains to show that

LCWA = 〈S, P , TRUE〉 is equivalent to (4). Indeed, the formula that is induced
from this assumption is

∀x
(

n∧

i=1

(
Pi(xi) →

(
Pi(xi) ∈ PD

i

)))
,

which is equivalent to the conjunction of the formulae in (4). �

3 A Circumscriptive Approach to the LCWA

In this section we consider an alternative approach to the representation of
the closed-word assumption, this time by second-order formulas, and show its
equivalence to the approach given in the previous section.

Consider again item 1 of Example 3. The local closed-world assumption in
this case could be defined also in terms of sets as follows:

{y | CarO(MC, y)} = {y | CarO(MC, y) ∈ D}.

Since the set on the left-hand side of this equation is always a superset of the
set on the right-hand side, the condition could be rephrased as follows:

{y | CarO(MC, y)} ⊆ {y | CarO(MC, y) ∈ D}.

This condition is specified in terms of a set inclusion property, and it is common
to express such conditions by means of circumscriptive formulae. These formulae
express the aspiration that the set of tuples of a certain predicate, satisfying a
certain condition, should be as minimal as possible. It is not surprising, therefore,
that a variant of the notion of local closed-world assumption presented here has
already been expressed in term of circumscriptive axioms (see [2] and Section
5).

Definition 7. Let LCWA = 〈S, {P1(x1), . . . , Pn(xn)}, Ψ(y)〉 be a local closed-
world assumption for a data-source S = 〈Σ, D〉. The pseudo-circumscriptive

form of LCWA is the following (second-order) formula, denoted C(S):

∀Θ

(

D(S)[P/Θ] →

(

∀y

(

Ψ(y) → ∀z
(
Θ 6 P )

)

→ ∀y

(

Ψ(y) → ∀z(P 6 Θ)

)))

,

where x =
⋃n

i=1 xi, z = x \ y, and

– P = {P1(x1), . . . , Pn(xn)}, Θ = {Θ1(x1), . . . , Θn(xn)}, and each Θi(xi) is a
predicate variable with the same arity of Pi(xi),



– P 6 Q is an abbreviation for
∧n

i=1(Pi(xi) → Qi(xi)).
4

Definition 8. Let S = 〈Σ, D〉 be a data-source and let Cj(S), j = 1, . . . , m be
the pseudo-circumscriptive forms of its local closed-world assumptions. Denote:

C(S) = D(S) ∧
m∧

j=1

Cj(S).

Theorem 1. For every data-source S, M(S) is equivalent to C(S).

Proof. We prove the theorem for the case that P and Θ are singletons, and that
m = 1. The proof can be easily extended to the general case. We have to show
that when D(S) holds,

∀y
(

Ψ(y) → ∀z
(
P (x) →

(
P (x) ∈ PS

)))

(3)

is equivalent to

∀Θ
(

D(S)
[
P/Θ

]

︸ ︷︷ ︸

(a)

→
(

∀y
(

Ψ(y) → ∀z
(
Θ 6 P )

︸ ︷︷ ︸

(b)

)

→ ∀y
(

Ψ(y) → ∀z(P 6 Θ)
︸ ︷︷ ︸

(c)

)))

,

(4)
where, in both cases, z = x \ y. Indeed,

(⇒) Let I be a model of D(S) and (3), and consider some value ΘI in I for
the predicate variable Θ. We show that if D(S)[P/Θ] is satisfied, so is the sub-
formula (c) of (4), and hence the whole formula (4) is true as well. Let us prove,
then, that sub-formula (c) holds. Assume that for some y, Ψ(y) is true in I and
for some z, P (x) is true in I. As I is a model of (3), this implies that P (x) ∈ P S ,
i.e. for some tuple of terms c in the table of P in S, the equality x = cI holds in
I. Since ΘI satisfies D(S)[P/Θ], it follows that x ∈ ΘI .

(⇐) Let I be a model of D(S) and (4). From D(S) it follows that Θ 6 P . It
is obvious that Θ 6 P implies (b). Consequently (c) holds. Assume that there
exist values x such that Ψ(y) and P (x) hold in I. To prove (3) we need to show
that P (x) ∈ PS ; or equivalently that there exists c ∈ PS s.t. x = cI . Because of
(c) holds, it follows that x ∈ ΘI . By our choice of ΘI , this mean that for c ∈ PS ,
x = cI . �

By the last theorem, the counterparts of Propositions 1, 2, and 3 in terms of
C(S) are also obtained.

Note 2. It is important to note that unless the data-sources consist of sets of
facts, the first-order approach and the circumscriptive approach to the LCWA
do not coincide. To see this, consider S = 〈{P/1}, {P (a) ∨ P (b)}〉, and the as-
sumption LCWA = 〈S, {P (x)}, TRUE〉. The formula in Definition 7 expresses

4 C(S) is called pseudo-circumscriptive since it differs from a pure circumscription
schema by introducing the first-order formula Ψ into the representation. Just as in
Definition 4, Ψ represents the context in which P should be minimal.



a set inclusion minimization, and in this case it states an unconditional mini-
mization of any extension of P . That is, an interpretation that satisfies both the
disjunctive expression in S and the circumscriptive form of LCWA, will neces-
sarily state that either P (a) or P (b) is true, but not both. Intuitively, this can
be read as “although the data-source is not complete with respect to P , at least
it knows that no other element of the domain can belong to P , except of a or b
(where the ‘or’ here is interpreted exclusively)”.

4 Extensions and additional comments on the LCWA

4.1 LCWA with several data-sources

An important (and intended) aspect of LCWA is applying it in a multiple-source
environment. In this respect, it could be useful to specify a LCWA that addresses
expertise obtained by the collective information in several data-sources. That is,

LCWA = 〈{S1, . . . , Sn}, P , Ψ〉. (5)

should represent complete knowledge, shared by sources {S1, . . . , Sn}, in the
context Ψ , about the predicates in P . The induced formula ΛLCWA of the as-
sumption in (5) is obtained just as in the case of one data-source, when PS is
modified in the obvious way as follows:

Definition 9. Let Si = 〈Σ, Di〉, i = 1, . . . , n be n data-sources and let P be
a predicate that appears in

⋃n

i=1 Di. Denote by P ∪Si the set of tuples of P in
⋃n

i=1 Di, and abbreviate by P (t) ∈ P ∪Si the formula
∨

a∈P∪Si
(t = a).

Now, the formula ΛLCWA for the LCWA in (5) is defined just as the formula
for one source, where P (t) ∈ PS is replaced by P (t) ∈ P ∪Si .

4.2 Complex forms of LCWA

As local closed-world assumptions are first-order formulae, they can be used for
expressing more complex assumptions about the information endorsed by the
data-sources. For instance, a context (i.e., the third component) of one LCWA
may be a formula that is induced by another LCWA, and so it is possible to
’compose’ assumptions, and get, e.g., LCWA such as the following:

LCWA =
〈

S2, {Q(x)}, Λ〈S1{P (x)},TRUE〉

〉

(6)

Note that the formula that is induced by assumption (6) is in fact equivalent to
Λ〈S1,{P (x)},TRUE〉 → Λ〈S2,{Q(x)},TRUE〉, and in general,

Λ〈S2,{Q(x〉},Λ〈S1{P(x)},Ψ〉〉 = Λ〈S1,{P (x)},Ψ〉 → Λ〈S2,{Q(x)},TRUE〉.

This idea also allows us to express more complicated assertions in terms of local
closed-world assumptions. For instance, the following formula expresses that
“either S1 or S2 has complete knowledge about P”:

{
Λ〈S1,{P (x)},TRUE〉 ∨ Λ〈S2,{P (x)},TRUE〉

}



Another possibility is to express that the assumptions about S1 and S2 are
complementary, and so forth.

5 Related Works

The concept of a local closed-world assumption was first introduced in [4], in the
context of knowledge bases for agents. The idea in that work was to represent
a situation in which an agent has local closed-world information relative to a
formula Φ and a knowledge base Γ , by a condition saying that every ground
sentence that unifies with Φ either follows from Γ or is falsified by it. Formally:

LCWA (Φ) ≡ (Γ |= Φθ) ∨ (Γ |= ¬Φθ) for all ground substitutions θ.

As we have noted above, a formal semantics for the definition of [4] in terms of
second-order circumscription was proposed in [2]. The intuitive idea behind this
semantics is the selection of only those models that satisfy the agent’s knowledge-
base and that are minimal with respect to the formulae for which the agent
has complete information. We note, however, that the circumscriptive approach
presented in [2] allows to minimize more predicates than those allowed by the
pseudo-circumscriptive formula presented here. To see this consider, for instance
LCWA = 〈S, {P (x)}, Q(x)〉. Here, one may not know for which x, Q(x) is true,
and indeed the pseudo-circumscriptive formula of the LCWA does not affect
Q(x), but only P (x) in the context of Q(x). Suppose, then, that P (a) is not
in S, and we do not know whether Q(a) is true, i.e. Q(a) is not in S. In our
approach, all we can derive is that if Q(a) were true, then P (a) would be false;
but it is also possible that P (a) is true but Q(a) is false. Following the approach
in [2], P (x) and Q(x) satisfy the data-source, but moreover, the intersection of
P (x) and Q(x) should be minimal. In particular, if P (b) is in S, but Q(b) is not,
then Q(b) is considered false. So in this approach, also part of Q is minimized,
not only P .

An alternative approach to express different levels of knowledge of a cer-
tain data-source with respect to the global domain is to label the predicates
of the data-sources as “sound”, “complete” or “exact” (see, for instance, [1, 5,
6]). We identify two main drawbacks with this approach. The first one is the
loss of elegance and flexibility by the introduction of non-logical symbols to the
representation. The second, more serious problem, is related to the limitation in
grasping more refined knowledge about the specific areas in which the predicates
of the data-source contain complete information, as observed in several examples
in this paper.

In [12], the concepts of “coverage” and “density” were introduced in order
to measure the completeness of data-sources at the intensional and extensional
levels, respectively. The authors use these concepts to determine the complete-
ness of one or more data-sources, gathered under merge operators. As in our
approach, the intension and the contents of the predicates in a data-source are



divided into two independent components. This allows to provide a general com-
pleteness measure for the data-sources, but again, it is not possible to explicitly
specify situations in which the data-sources have complete knowledge about
(parts of) the domain of discourse.

6 Conclusion and Future Work

In this paper we presented a method of expressing the meaning of a data-source
in the context of information systems that mediate among several sources. A
key issue in this respect is the ability to properly define and represent particular
cases where there is a complete knowledge, although partial knowledge of the
sources is usually assumed. The resulting theory is expressed by a first-order
one. It may also be represented by circumscriptive-like formulae.

This is an ongoing work which is part of a larger project aiming to represent
and reason with incomplete information in general mediator-based systems. In
such broader context a number of related issues should be addressed as well.
Below we consider some of them.

• Expressing meta-knowledge about the data-sources themselves. For instance,
while it is possible to express by our approach statements such as “the data-
source S contains complete knowledge about car owners in Bronx”, it is
not possible to represent a statement such as “for every car in Bronx that
is known to the data-source S, S also knows its owners”. While the first
statement refers to the knowledge that S possesses about the domain of
discourse, the latter expresses knowledge about S itself. In order to represent
the second kind of statements, an extension based on modalities in the spirit
of [7] seems to be a natural candidate.

• Consider the assumption LCWA∗ = 〈S, {P (x)},¬Q(x)〉. If no other assump-
tion mentions Q in its second component, this assertion does not allow to
conclude whether S has complete knowledge about P . Indeed, the induced
formula in this case is of the form ΛLCWA = ∀x.¬Q(x) → . . ., but the
validity of ¬Q(x) cannot be verified, since the data-sources mention only
positive information. Of course, if there are other assumptions, for instance,
LCWA∗∗ = 〈S, {Q(x)}, TRUE〉 (which implies complete knowledge about Q)
then LCWA∗ states that for all x such that Q(x) is not in the database, if
P (x) is true then S contains P (x). This situation shows that in order to
obtain complete knowledge about an arbitrary predicate P under its win-
dow of expertise, the formula Ψ must define unambiguously such window.
The specific conditions for which Ψ define complete knowledge over source
predicates is a crucial issue that must be investigated in the depth, since it
would allow to discriminate from a set of LCWA expressions which ones are
useful in practice.

• While this paper concentrates on representation forms of the closed-world-
assumption and their properties, computational aspects of reasoning with



these assumptions should be considered as well. Among the issues that should
be addressed is the effect of the local closed-world assumptions on the com-
plexity and decidability of the resulting theories.

• Finding a proper way to incorporate the information that the mediator sys-
tem has about its data-sources with the theory that relates the different
terminologies of the data-sources and the global vocabulary (called schema

mappings). This information may also be used for splitting global queries
among the sources to obtain sound and complete answers (query planning).
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