
Coherent Composition of DistributedKnowledge-Bases through AbdutionOfer Arieli, Bert Van Nu�elen, Mar Deneker, and Maurie BruynoogheDepartment of Computer Siene, University of LeuvenCelestijnenlaan 200A, B-3001 Heverlee, BelgiumAbstrat. We introdue an abdutive method for oherent ompositionof distributed data. Our approah is based on an abdutive infereneproedure that is applied on a meta-theory that relates di�erent, pos-sibly inonsistent, input databases. Repairs of the integrated data areomputed, resulting in a onsistent output database that satis�es themeta-theory. Our framework is based on the A-system, whih is an ab-dutive system that implements SLDNFA-resolution. The outome is arobust appliation that, to the best of our knowledge, is more expressive(thus more general) than any other existing appliation for oherent dataintegration.1 IntrodutionIn many ases omplex reasoning tasks have to integrate knowledge frommultiplesoures. A major hallenge in this ontext is to ompose ontraditing soures ofinformation suh that what is obtained would properly reet the ombinationof the distributed data on one hand1, and would still be oherent (in terms ofonsisteny) on the other hand.Coherent integration and proper representation of amalgamated data is ex-tensively studied in the literature (see, e.g., [1, 3, 7, 13, 14, 20{23,26, 29℄). Com-mon approahes for dealing with this task are based on tehniques of beliefrevision [20℄, methods of resolving ontraditions by quantitative onsiderations(suh as \majority vote" [21℄) or qualitative ones (e.g., de�ning priorities ondi�erent soures of information or preferring ertain data over another [2, 4, 5℄).Other approahes are based on rewriting rules for representing the information ina spei� form [14℄, or use multiple-valued semantis (e.g., annotated logi pro-grams [28, 29℄ and bilattie-based formalisms [12, 22℄) together with non-lassialrefutation proedures [11, 19, 28℄ that allow to deode within the language itselfsome \meta-information" suh as on�dene fators, amount of belief for/againsta spei� assertion, et.Eah one of the tehniques mentioned above has its own limitations and/ordrawbaks. For instane, in order to properly translate the underlying data toa spei� form, formalisms that are based on rewriting tehniques must assume1 This property is sometimes alled ompositionality ; see, e.g., [30℄.

that the underlying data (or some part of it, suh as the set of integrity on-straints) has a spei� syntatial struture. Other formalisms (e.g., that of[20℄) are based on propositional languages, and so in both ases the expressive-ness is limited. In some of the non-lassial formalisms mentioned above (e.g.,those that are based on annotated logis and several probabilisti formalisms),semantial notions interfere with the syntax. Moreover, in many of these frame-works syntatial embeddings of �rst-order formulae into non-lassial languagesare needed. Suh translations may damage or bias the intuitive meaning of theoriginal formulae. Finally, some of the approahes mentioned above are not ap-able of resolving ontraditions unless the reasoner spei�es his/her preferenes.In other approahes, the mehanism of resolving ontraditions is determinedin advane, or is ad-ho (thus it is oriented towards spei� kinds of problems).This interferene neessarily redues the exibility and the generality of theorresponding mediative engine.In this paper we start from the perspetive of a pure delarative representa-tion of the omposition of distributed data. This approah is based on a meta-theory relating a number of di�erent (possibly inonsistent) input databases witha onsistent output database. The underlying language is that of ID-logi [9℄,whih an be embedded in an abdutive logi program. Our omposing systemis implemented by the abdutive solver the, A-system [18℄. In the ontext ofthis work, we extended this system with an optimizing omponent that will al-low us to ompute preferred oherent solutions to restore the onsisteny of thedatabase.Our approah is related to other work on the use of abdution in the ontextof databases. [16℄ proposed to use abdution for database updating. [15, 27℄ de-veloped a framework for explaining or unexplaining observations by an extendedform of abdution in whih arbitrary formulas may be added or formulas of thetheory may be removed. In this paper, the fous is on a di�erent appliation ofabdution, namely omposition and integrity restoration of multiple databases.By this delarative approah we are able to overome some of the shortom-ings of the amalgamating tehniques mentioned above. In partiular, our systemhas the following apabilities:1. Any �rst-order formula may be spei�ed for desribing the domain of dis-ourse (as part of the integrity onstraints). Thus, to the best of our know-ledge, our approah is more general and expressive than any other availableappliation for oherent data integration.2. No syntatial embeddings of �rst-order formulae into di�erent languagesnor any extensions of two-valued semantis are neessary. Our approah isbased on a pure generalization of lassial refutation proedures.3. The way of keeping the data oherent is enapsulated in the omponent thatintegrates the data. This means, in partiular, that no reasoner's input norany other external poliy for making preferenes among oniting souresis ompulsory in order to resolve ontraditions.

In the sequel we show that our system is sound, omplete, and supportsvarious types of speial information, suh as timestamps and soure traing. Wealso disuss implementation issues and provide some experimental results.2 Coherent omposition of knowledge-bases2.1 Problem desriptionDe�nition 1. A knowledge-base KB is a pair (D; IC), where D (the database)is a set of atomi formulae, and IC (the set of integrity onstraints) is a �niteset of �rst order formulae.As usual in suh ases, we apply the losed world assumption on databases,i.e., every atom that is not mentioned in the database is onsidered false. Theunderlying semantis orresponds, therefore, to minimal Herbrand interpreta-tions.De�nition 2. A formula follows from a database D if the minimal Herbrandmodel of D is also a model of .De�nition 3. A knowledge-base KB=(D; IC) is onsistent if all the integrityonstraints are onsistent, and eah one follows from D.Our goal is to integrate n onsistent knowledge-bases, KBi = (Di; ICi), i=1; : : : n, to a single knowledge-base in suh a way that the data in this knowledge-base will ontain everything that an be dedued from one of the soures ofinformation, without violating any integrity onstraint of another soure. Theidea is to onsider the union of the distributed data, and then to restore itsonsisteny. A key notion in this respet is the following:De�nition 4. [14℄ A repair of KB=(D; IC) is a pair (Insert;Retrat) suh thatInsert \ Retrat= ;, Insert \ D= ;, Retrat � D, and every integrity onstraintfollows from D [Insert n Retrat. 2(D [Insert n Retrat ; IC) is alled a repaired knowledge-base of KB.As there may be many ways to repair an inonsistent knowledge-base, it isoften onvenient to make preferenes among the repairs and to onsider only themost preferred ones. Below are two ommon preferene riteria.De�nition 5. Let (Insert;Retrat) and (Insert0;Retrat0) be two repairs of agiven knowledge-base.{ set inlusion preferene riterion :(Insert0;Retrat0) �i (Insert;Retrat) if Insert � Insert0 and Retrat � Retrat0.2 I.e., Insert are elements that should be inserted into D and Retrat are elements thatshould be removed from D in order to obtain a onsistent knowledge-base.

{ ardinality preferene riterion:(Insert0;Retrat0) � (Insert;Retrat) if jInsertj+jRetratj�jInsert0j+jRetrat0j.Let � be a semi-order on the set of repairs, expressing a preferene riterium.De�nition 6. [14℄ A �-preferred repair of a knowledge-base KB is a repair(Insert;Retrat) of KB s.t. there is no other repair (Insert0;Retrat0) of KB forwhih (Insert;Retrat)�(Insert0;Retrat0). 3De�nition 7. The set of all the �-preferred repairs of a knowledge-base KB isdenoted by !(KB;�).De�nition 8. A �-repaired knowledge-base of KB is a repaired knowledge-baseof KB, onstruted from a �-preferred repair of KB. The set of all the �-repairedknowledge-bases of KB is denoted byR(KB;�) = f (D [Insert n Retrat ; IC) j (Insert;Retrat) 2 !(KB;�) g.Note that if KB is onsistent and the preferene riterion is a partial order andmonotoni in the size of the repairs (as in De�nition 5), then R(KB;�) = fKBg,i.e., KB is the (only) �-repaired knowledge-base of itself, and so there is nothingto repair in this ase, as expeted.De�nition 9. For KBi = (Di; ICi), i = 1; : : : n, let UKB = (n[i=1Di; n[i=1 ICi).In the rest of this paper we desribe a system that, given n distributedknowledge-bases and a preferene riterion �, omputes the set R(UKB;�)of the �-repaired knowledge-bases of UKB. The reasoner may use di�erentstrategies to determine the onsequenes of this set. Among the ommon ap-proahes are the skeptial (onservative) one, that it is based on a \onsensus"among all the elements ofR(UKB;�) (see [14℄), a \redulous" approah in whihentailments are deided by any element inR(UKB;�), an approah that is basedon a \majority vote", et. A detailed disussion on these methods and ways ofassuring the onsisteny of the omposed data in eah method, will be presentedelsewhere.We onlude this setion by noting that in the sequel we shall assume thatIC = Sni=1 ICi is onsistent. This is a usual assumption in the literature andit is justi�ed by the nature of the integrity onstrains as desribing statementsthat are widely aepted. Thus, it is less likely that integrity onstraints wouldontradit eah other. Contraditions between the data in the di�erent KB's andintegrity onstraints are more frequent, and may our due to many di�erentreasons. In the next setion we onsider some ommon ases.3 In [14℄ this notion is de�ned for the spei� ase where the preferene ondition istaken w.r.t. set inlusion.

2.2 ExamplesIn all the following examples we use set inlusion as the preferene riterion.4Example 1. [14, Example 1℄ Consider a distributed knowledge-base with rela-tions of the form teahes(ourse name; teaher name). Suppose also that eahknowledge-base ontains a single integrity onstraint, stating that the sameourse annot be taught by two di�erent teahers:IC = f 8X8Y 8Z (teahes(X;Y) ^ teahes(X;Z) ! Y = Z) g.Consider now the following two knowledge-bases:KB1 = (fteahes(1; n1); teahes(2; n2)g; IC),KB2 = (fteahes(2; n3)g; IC)Clearly, KB1[KB2 is inonsistent. Its preferred repairs are (;; fteahes(2; n2)g)and (;; fteahes(2; n3)g). Hene, the two repaired knowledge-bases are:R1 = (fteahes(1; n1); teahes(2; n2)g; IC), andR2 = (fteahes(1; n1); teahes(2; n3)g; IC).Example 2. [14, Example 2℄ Consider a distributed knowledge-base with rela-tions of the form supply(supplier; department; item) and lass(item; type).Let KB1 = (fsupply(1; d1; i1); lass(i1; t1)g; IC), andKB2 = (fsupply(2; d2; i2); lass(i2; t1)g; ;), whereIC = f 8X8Y 8Z (supply(X;Y; Z)^ lass(Z; t1)! X = 1) gstates that only supplier 1 an supply items of type t1.KB1[KB2 is inonsistent and has two preferred repairs: (;; fsupply(2; d2; i2)g)and (;; flass(i2; t1)g). Hene, there are two ways to repair it:R1 = (fsupply(1; d1; i1); lass(i1; t1); lass(i2; t1)g; IC),R2 = (fsupply(1; d1; i1); supply(2; d2; i2); lass(i1; t1)g; IC).Example 3. [14, Example 4℄ Let D1= fp(a); p(b)g;D2= fq(a); q()g, and IC=f8X(p(X)!q(X))g. Again, (D1; ;)[(D2; IC) is inonsistent. The orrespondingpreferred repairs are (fq(b)g; ;) and (;; fp(b)g). The repaired knowledge-basesare therefore the following:R1 = (fp(a); p(b); q(a); q(b); q()g; IC),R2 = (fp(a); q(a); q()g; IC).3 Knowledge integration through abdutionIn this setion we introdue an abdutive method for a oherent integration ofknowledge-bases. Our framework is omposed of a language for desribing the4 Generally, in what follows we shall �x a preferene riterion for hoosing the \best"repairs and omit its notation whenever possible.

problem domain (ID-logi, [9℄), an abdutive solver that is based on an abdutiverefutation proedure (SLDNFA, [10℄), and a omputational model for ontrollingthe searh (A-system [18℄).3.1 ID-logi and abdutive logi programmingID-logi [9℄ is a framework for delarative knowledge representation that extendslassial logi with indutive de�nitions. This logi inorporates two types ofknowledge: de�nitional and assertional. Assertional knowledge is a set of �rstorder statements, representing a general truth about the domain of disourse.De�nitional knowledge is a set of rules of the form p B, in whih the head p isa prediate and the body B is a �rst order formula. A prediate that does notour in any head is alled open (sometimes alled abduible).Below we present an ID-logi meta-theory desribing the omposition of data-bases in terms of open prediates insert and retrat. The key property of thistheory is that its abdutive solutions desribe the oherent ompositions. Ab-dutive reasoning on an ID-logi theory an be performed by mapping it intoan abdutive logi program [8℄ under the extended well-founded semantis [24℄and applying an abdutive inferene proedure to it. An abdutive logi program(ALP)) is a triple T =(P ;A; IC), suh that{ P is a logi program, the lauses of whih are interpreted as de�nitions forthe prediates in their head,{ A is a set of prediates, none of whih ours in the head of a lause in P .The elements in A are alled the abduible prediates .{ IC is a set of �rst-order formulae, alled the integrity onstraints .Constants, funtors and prediate symbols are de�ned as usual in logi programs.De�nition 10. An (abdutive) solution for a theory (P ;A; IC) and a queryQ is a set � of ground abduible atoms, all having a prediate symbols in A,together with an answer substitution �, suh that: (a) P [� is onsistent, (b)P [� j= IC, and () P [� j= 8Q�.In what follows we use ID-logi to speify the knowledge integration, andimplement the reasoning proess by an abdutive refutation proedure. For thiswe represent any data in some distributed database by a prediate db, anddenote the elements in the omposed database by the prediate fat. The latterprediate is de�ned as follows:fat(X) :- db(X), not retrat(X).fat(X) :- insert(X).In partiular, in order to restore onsisteny, some fats may be removedand some other fats may be introdued. These fats are represented by the(abduible) prediates retrat and insert, respetively. To assure proper om-putations of the solutions, the following integrity onstraints are also spei�ed:55 In what follows we use the notation \i :- B" to denote the denial \false B".

{ An element annot be retrated and inserted at the same time:i :- insert(X), retrat(X).{ An inserted element should not belong to a given database:i :- insert(X), db(X).Assuming that all the integrity onstraints of the distributed knowledge-bases are ompatible and that no distintions are made among the origins of theomposed fats, the following steps are performed:1. Eah database fat X is represented by an atom db(X).2. Every ourrene of an atom P in some integrity onstraint is replaed byfat(P). This is done in order to assure that every integrity onstraint wouldhold for the omposed data as well.3. A solution is omputed in terms of the abduible prediates insert andretrat.3.2 The A-systemThe reasoning proess of our revision system is performed by the A-system,introdued in [18℄. The basi idea of this system is a redution of a high levelspei�ation into a lower level onstraint store, whih is managed by a onstraintsolver. The system is a synthesis of the refutation proedures SLDNFA [10℄ andACLP [17℄, together with an improved ontrol strategy. The latest version of thesystem an be obtained from http://www.s.kuleuven.a.be/�dtai/kt/. Itruns on top of Sistus Prolog 3.8.5. Below we sketh the theoretial bakground aswell as some pratial onsiderations behind this system. For more information,see [10℄ and [18℄.Abdutive inferenes Given an abdutive theory (P ;A; IC) as de�ned above,the logial redution of a query Q an be desribed as a derivation for Q througha rewriting state proess. A state S onsists of two types of elements: a set Pos(S)of literals (possibly with free variables), alled positive goals , and a set Neg(S)of denials, alled negative goals . The set �(S) denotes the abduible atoms inS, i.e. positive goal atoms whose prediate is an abduible. C(S) denotes the setof onstraint atoms in S.A rewriting derivation proeeds from state Si by seleting a literal of Si andapplying a suitable inferene rule, yielding a new state Si+1. The main inferenerules are given by the following rewrite rules. In the list below we denote byA and B some literals, and by C a onstraint literal. P denotes the theoryunder onsideration. For readability, we do not mention ases in whih Pos(S)or Neg(S) is the same in states number i and i+ 1.{ Rules for de�ned prediates:� if A(X) Bj [X℄ 2 P and A(t) 2 Pos(Si), then Pos(Si+1) = Pos(Si) nfA(t)g [fBj [t℄g.� if A(t); Q 2 Neg(Si), then Neg(Si+1) = Neg(Si) n f A(t); Qg [U ,where U = f Bj [t℄; Q j A(t) Bj [t℄ 2 Pg.

{ Rules for open prediates:� if A(t); Q 2 Neg(Si) and p(s) 2 �(Si) then Neg(Si+1) = Neg(Si) n f A(t); Qg [fUg [fRg, where U = t = s;Q, and R = A(t); t 6= s;Q.{ Rules for negations: Assume that A is not a onstraint literal.� if :A 2 Pos(Si) then Pos(Si+1) = Pos(Si) n f:Ag and Neg(Si+1) =Neg(Si) [f Ag.� if :A;Q 2 Neg(Si) then one of the following branhes is taken:1. Pos(Si+1) = Pos(Si) [fAg and Neg(Si+1) = Neg(Si) n f :A;Qg.2. Neg(Si+1) = Neg(Si) n f :A;Qg [f A; Qg.{ Rules for onstraint literals:� if C;Q 2 Neg(Si) then one of the following branhes is taken:1. Pos(Si+1) = Pos(Si) [f:Cg, Neg(Si+1) = Neg(Si) n f C;Qg.2. Pos(Si+1) = Pos(Si)[fCg, Neg(Si+1) = Neg(Si)nf C;Qg[f Qg.Remark: It is important here to assume that the underlying onstraintsolver is apable of handling negated onstraint literals. This is indeedthe ase with the onstraint solver used by our system (Sistus).The initial state S0 for a theory P and a query Q onsists of the query Qas a positive goal and the set of all denials in P as negative goals. A suessfulstate S ful�lls the following onditions:1. S ontains positive goals only of the form of abduible atoms or onstraintatoms,2. negative goals in S are denials ontaining some open atom p(t) whih hasalready been seleted and resolved with eah abdued atom p(s) 2 S, and3. the onstraint store C(S) of S is satis�able.De�nition 11. A suessful abdutive derivation of a query Q w.r.t. P is asequene of states S0; S1; : : : ; Sn, where: (a) S0 is an initial state for P andQ, (b) For every 0� i�n�1, Si+1 is obtained from Si by applying one of thetransition rules, and () Sn is a suessful state.Whenever false is derived (in one of the onstraint domains) the derivationbaktraks. A derivation ounders when universally quanti�ed variables appearin a seleted negated literal in a denial.Let Sn be a �nal state of a suessful derivation. Then any substitution �that assigns a ground term to eah free variable of Sn and whih satis�es theonstraint store C(Sn) is alled a solution substitution of Sn. Suh a substitutionalways exists sine C(Sn) is satis�able for a suessful derivation.Theorem 1. [18℄ Let T = (P ;A; IC) be an abdutive theory s.t. P j= IC, Qa query, S the �nal state of a suessful derivation for Q, and � a solutionsubstitution of S. Then the pair �(�(S)) and � is an abdutive solution for Tand Q.

Control strategy The seletion strategy applied during the derivation proessis ruial. A Prolog-like seletion strategy (left �rst, depth �rst) often leads totrashing, beause it is blind to other hoies and it does not result in a globaloverview of the urrent state of the omputation. In the development of theA-system the main fous was on the improvement of the ontrol strategy. Theidea is to apply �rst those rules that have a deterministi hange of the state, andso information is propagated. If none of suh rules are appliable, then one of theleft over hoies is seleted and a hoie is made. This resembles a CLP-solver, inwhih the onstraints propagate their information as soon a hoie is made. Thispropagation yields less amount of hoies and thus often dramatially inreasesthe performane.3.3 Implementation and experimentsIn this setion we present the struture of our system, disuss a few implement-ation issues, and give some experimental results.The struture of the system Figure 1 shows a layered desription of theimplemented system. The upper most level onsists of the data to be integrated,i.e., the database information and the integrity onstrains. This layer togetherwith the omposer form an ID-Logi theory that is proessed by the A-system.The omposer onsists of the meta-theory for integrating the distributed datain a oherent way. It is interpreted here as an abdutive theory, in whih theabduible prediates provide the information on how to restore the onsistenyof the amalgamated data.The abdutive system (enlosed by dotted lines in Figure 1) onsists of threemain omponents: A �nite domain onstraint solver (the one of Sistus Prolog),an abdutive meta-interpreter (desribed above), and an optimizer.The optimizer is a omponent that, given a preferene riterion on the spaeof the solutions, omputes only the most-preferred (abdutive) solutions. Givensuh a preferene riterion, this omponent prunes \on the y" those branhes ofthe searh tree that lead to worse solutions than what we have already omputed.This is atually a branh and bound \�lter" on the solutions spae that speeds-up exeution and makes sure that only the desired solutions will be obtained. Ifthe preferene riterion is monotoni (in the sense that from a partial solutionit an be determined whether it potentially leads to a solution that is not worsethan a urrent one), then the optimizer is omplete, that is, it an ompute allthe optimal solutions (see also Setion 3.4).Note that the optimizer is a general omponent added to the A-system. Notonly this domain bene�ts, but it is useable in other appliation domains like e.g.planning.Experimental study Figure 2 ontains the ode (data setion + omposer) forimplementing Example 1 (The odes for Examples 2 and 3 are similar). We haveexeuted this ode as well as other examples from the literature in our system.

KB1 KB2 � � � � � � KBnComposerOptimizerA-system (based on SLDNFA)Sistus Prolog

6ID-LogiTheory?6AbdutiveSystem
?

6User Input?6ComposingSystem
?Fig. 1. A shemati view of the system omponents.As Theorem 3 below guarantees, the output in eah ase was the set of the mostpreferred solutions of the orresponding problem.3.4 Soundness and ompletenessIn this setion we give some soundness and ompleteness results for our system.In what follows we denote by T an abdutive theory in ID-logi, onstrutedas desribe above for omposing n given knowledge-bases KB1; : : : ;KBn. Also,ProALP denotes some sound abdutive proof proedure (e.g., SLDNFA [10℄).Proposition 1. Every abdutive solution that is obtained by ProALP for a the-ory T is a repair of UKB.Proof: By the onstrution of T it is easy to see that all the onditions spei�edin De�nition 4 are met: the �rst two onditions are assured by the integrityonstraints of the omposer. The third ondition immediately follows from theomposer's rules. The last ondition is satis�ed sine by the soundness of ProALPit produes abdutive solutions �i for T , thus by the seond property in De�ni-tion 10, for every suh solution�i = (Inserti;Retrati) we have that P[�i j= IC.Sine P ontains a data setion with all the fats, it follows that D [�i j= IC,i.e. every integrity onstraints follows from D [Inserti n Retrati. 2Theorem 2. (Soundness) Every output that is obtained by running T in theA-system together with a �-optimizer [respetively, together with an �i-optimizer℄is a �-preferred repair [respetively, an �i-preferred repair℄ of UKB.Proof: Follows from Proposition 1 (sine the A-system is based on SLDNFA thatis a sound abdutive proof proedure), and the fat that the �-optimizer prunes

/* ------- Composer: -------:- dynami i/0, fat/1, db/1.abduible(insert(_)).abduible(retrat(_)).fat(X) :- db(X), not(retrat(X)).fat(X) :- insert(X).i :- insert(X), db(X).i :- insert(X), retrat(X)./* ------- Example 1: -------db(teahes(1,1)). db(teahes(2,2)). % D1db(teahes(2,3)). % D2i :- fat(teahes(X,Y)), fat(teahes(X,Z)), Y\=Z. % ICFig. 2. Code for Example 1paths that lead to solutions whih are not �-preferable. Similar arguments holdfor systems with an �i-optimizer. 2Proposition 2. Suppose that the query ` true' has a �nite SLDNFA-treew.r.t. T . Then every �-preferred repair and every �i-preferred repair of UKBis obtained by running T in the A-system.Outline of proof: The proof that all the abdutive solutions with minimal ar-dinality are obtained by the system is based on [10, Theorem 10.1℄, where it isshown that SLDNFAo, whih is an extension of SLDNFA, aimed for omput-ing solutions with minimal ardinality, is omplete (see [10, Setion 10.1℄ forfurther details). Similarly, the proof that all the abdutive solutions whih areminimal w.r.t. set inlusion are obtained by the system is based on [10, Theorem10.2℄ that shows that SLDNFA+, whih is another extension of SLDNFA, aimedfor omputing minimal solutions w.r.t. set inlusion, is also omplete (see [10,Setion 10.2℄ for further details).Now, A-system is based on the ombination of SLDNFAo and SLDNFA+.Moreover, as this system does not hange the refutation tree (but only ontrolsthe way rules are seleted), Theorems 10.1 and 10.2 in [10℄ are appliable in ourase as well. Thus, all the �- and the �i-minimal solutions are produed. Thisin partiular means that every �-preferred repair as well as every �i-preferredrepair of UKB is produed by our system. 2Theorem 3. (Completeness) In the notations of Proposition 2 and under itsassumptions, the output of the exeution of T in the A-system together with a�-optimizer [respetively, together with an �i-optimizer℄ is exatly !(UKB;�)[respetively, !(UKB;�i)℄.Proof: We shall show the laim for the ase of �; the proof w.r.t. �i is similar.

Let (Insert;Retrat) 2 !(UKB;�). By Proposition 2, � = (Insert;Retrat)is one of the solutions produed by the A-system for T . Now, during the ex-eution of our system together with the �-optimizer, the path that orres-ponds to � annot be pruned from the refutation tree, sine by our assump-tion (Insert;Retrat) has a minimal ardinality among the possible solutions,so the pruning ondition is not satis�ed. Thus � will be produed by the �-optimized system. For the onverse, suppose that (Insert;Retrat) is some repairof UKB that is produed by the �-optimized system. Suppose for a ontradi-tion that (Insert;Retrat) 62 !(UKB;�). By the proof of Proposition 2, there issome �0 = (Insert0;Retrat0)2 !(UKB;�) that is onstruted by the A-systemfor T , and (Insert0;Retrat0)< (Insert;Retrat). But j�0j < j�j, and so the �-optimizer would prone the path of the � solution one its ardinality beomesbigger than j�0j. This ontradits our assumption that (Insert;Retrat) is pro-dued by the �-optimized system. 24 Handling speialized information4.1 Timestamped informationMany database appliations ontain temporal information. This kind of datamay be divided to two types: time information that is part of the data itself, andtime information that is related to database operations (e.g., reords on when thedatabase was updated). Consider, for instane, birth day(John,15/05/2001)16=05=2001 .Here, John's date of birth is an instane of the former type of time information,and the subsripted data that desribes the time in whih this fat was addedto the database, is an instane of the latter type of time information.In our approah, timestamp information an be integrated by adding a tem-poral theory desribing the state of the database at any partiular time point.One way of doing so is by using situation alulus . In this approah a databaseis desribed by initial information and a history of events performed during thedatabase lifetime (see [25℄). Here we use a di�erent approah, whih is based onevent alulus . The idea is to make a distintion between two kinds of events:add db and del db that desribe the database modi�ations, and the omposer-driven events insert and retrat that are used for onstruting database re-pairs. In this view, the extended omposer has the following form:holds at(P,T) :- initially(P), not lipped(0,P,T).holds at(P,T) :- add(P,E), E<T, not lipped(E,P,T).lipped(E,P,T) :- del(P,C), E�C, C<T.add(P,T) :- add db(P,T). add(P,T) :- insert(P,T).del(P,T) :- del db(P,T). del(P,T) :- retrat(P,T).i :- insert(P,T), retrat(P,T).i :- insert(P,T), add db(P,T).i :- retrat(P,T), del db(P,T).

In this extended ontext the integrity onstrains must be arefully spei�ed.Consider, e.g. the statement that a person an be born only on one date:i :- holds at(birth day(P,D1),T), holds at(birth day(P,D2),T), D16=D2.The problem here is that to ensure onsisteny this onstraint must be hekedat every point in time. This may be avoided by a simple rewriting that ensuresthat the onstraint will be veri�ed only when an event ours:i(birth,T) :- holds_at(birth_day(P,D1),T),holds_at(birth_day(P,D2),T), D1\=D2.i :- add_db(birth_day(_,_),T), NT = T+1, i(birth,NT).i :- del_db(birth_day(_,_),T), NT = T+1, i(birth,NT).4.2 Keeping trak of soure identitiesThere are ases in whih it is important to preserve the identity of the databasefrom whih a spei� piee of information was originated. This is useful, forinstane, when one wants to make preferenes among di�erent soures, or whensome spei� soure should be �ltered out (e.g, when the orresponding databaseis not available or beomes unreliable). This kind of information may be deodedby adding another argument to every fat, whih denotes the identity of its origin.This requires minor modi�ations in the basi omposer, sine the omposerontrols the way in whih the data is integrated. As suh, it is the only omponentthat an keep trak to the soure of the information.Suppose, then, that for every database fat we add another argument thatidenti�es its soure. I.e., db(X,S) denotes that X is a fat originated from a data-base S. The omposer then has the following form:fat(X,S) :- db(X,S), not retrat(X)fat(X,omposer) :- insert(X)i :- insert(X), db(X,S)i :- insert(X), retrat(X)Note that the omposer onsiders itself as an extra soure that inserts brandnew data fats. Now it is possible, e.g., to trae information that omes froma spei� soure, make preferenes among di�erent soures (by speifying ap-propriate integrity onstraints), and �lter data that omes from ertain soures.The last property is demonstrated by the following rule:validFat(X) :- fat(X,S), trusted soure(S)where trusted soure enumerates all reliable soures of the data.4.3 Handling quantitative informationNext we onsider a potential way of deoding in the integrated data some quant-itative information, suh as ertainty fators or probabilities.Suppose that db(X,i) denotes that fat X holds with probability i. One ande�ne a strategy on how to reason with this kind of information, and deode

it in the omposer. For instane, the omposer below uses a onservative poliythat takes for eah fat its lowest probability:fat(X,i) :- db(X,), not retrat(X), i = min fj | db(X,j)gfat(X,1) :- insert(X,1)i :- insert(X,1), db(X,)i :- insert(X,1), retrat(X)For implementing this kind of program the underlying system should be able toompute aggregations (possibly together with reursion). Adding this apabilityto our system is one of the subjets for a future work.5 Conlusion and further workIn this paper we have developed a formal delarative foundation for renderingoherent data, provided by di�erent knowledge-bases, and presented an applia-tion that implements this approah. Like other systems (e.g., [6, 14, 20, 29℄), oursystem mediates among the soures of information and between the reasonerand the underlying data.Composing distributed data by a meta-theory in ID-logi yields a robustand easily extendable system. Extra meta information about the data fats,suh as time stamps and soure, are easily dealt with by extending the meta-theory properly. Due the inherent modularity of the hosen approah, eah partis independent and an be adapted aording to the needs.It is important to note that our omposing system inherits the funtionalityof the underlying solver. This implies, in partiular, exibility, modularity, easyinteration with di�erent soures of information, and the ability to reason withany set of �rst order integrity onstraints.6 As suh, our system may be easilymodi�ed and extended with addition bakground knowledge.Among the diretions for further exploration are dealing with more generalforms of databases, in whih views (or rules) are allowed, and lifting the ondi-tion that all the integrity onstraints are ompatible with eah other. Anotherimportant hallenge is to extend the apabilities of the abdutive system withaggregation. This would allow us to integrate di�erent types of databases, andwould provide means of solving new kinds of problems.Referenes1. M.Arenas, L.E.Bertossi, J.Chomiki. Consistent query answers in inonsistentdatabases. Pro. PODS'99 , 68{79, 1999.2. O.Arieli. Four-valued logis for reasoning with unertainty in prioritized data. In:Information, Unertainty, Fusion, 263{309, Kluwer, 1999.3. C.Baral, S.Kraus, J Minker. Combining Multiple Knowledge Bases. IEEE Trans.on Knowledge and Data Enginnering 3(2), 208{220, 1991.4. S.Benferhat, C.Cayrol, D.Dubois, J.Lang, H.Prade. Inonsisteny management andprioritized syntax-based entailment. Pro. IJCAI'93 , 640{645, 1993.6 Provided that the onstraints do not lead to oundering. To the best of our knowledgeno other appliation of data integration has this ability.

5. S.Benferhat, D.Dubois, H.Prade. How to infer from inonsistent beliefs withoutrevising? Pro. IJCAI'95 , 1449{1455, 1995.6. L.Bertossi, M.Arenas, C.Ferretti. SCDBR: An automated reasoner for spei�a-tions of database updates. Intelligent information Systems 10(3), 253{280, 1998.7. F.Bry. Query Answering in Information Systems with Integrity Constraints. Pro.IICIS'97 , 113{130, 1997.8. M. Deneker, A.C. Kakas. Abdutive Logi Programming, Speial issue of Journalof Logi Programming, 44 (1-3), 2000.9. M.Deneker. Extending lassial logi with indutive de�nitions. Pro. CL'2000 ,J. Lloyd et al., editors, LNAI 1861, Springer, 703{717, 2000.10. M.Deneker, D.De Shreye. SLDNFA an abdutive proedure for abdutive logiprograms. Journal of Logi Programming 34(2), 111{167, 1998.11. M.Fitting. Negation as refutation. Pro. LICS'89 , IEEE Press, 63{70, 1989.12. M.Fitting. Bilatties and the semantis of logi programming. Journal of LogiProgramming 11(2), 91{116, 1991.13. M.Gertz, U.W.Lipek. An extensible framework for repairing onstraint violations.Pro. IICIS'97 , 89{111, 1997.14. S.Greo, E.Zumpano. Querying inonsistent databases. Pro. LPAR'2000 ,M.Parigot and A.Voronokov, editors, LNAI 1955, 308{325, Springer, 2000.15. K.Inoue, C.Sakama. Abdutive framework for nonmonotoni theory hange. Pro.IJCAI'95 , 204-210, 1995.16. T.Kakas, P.Manarella. Database updates through abdution. Pro VLDB'90 ,650{661, 1990.17. T.Kakas, A.Mihael, C.Mourlas. ACLP: Abdutive onstraint logi programming.Journal of Logi Programming 44(1{3), 129{177, 2000.18. T.Kakas, B.Van Nu�elen, M.Deneker. A-System: Problem solving through abdu-tion. Pro. IJCAI'01, 2001.19. M.Kifer, E.L.Lozinskii. A logi for reasoning with inonsisteny. Journal of Auto-mated Reasoning 9(2), 179{215, 1992.20. P.Liberatore, M.Shaerf. BReLS: a system for the integration of knowledge bases.Pro KR'2000 , 145{152, 2000.21. J.Lin, A.O.Mendelzon. Merging databases under onstraints. Int. Journal of Co-operative Information Systems 7(1), 55{76, 1998.22. B.Messing. Combining knowledge with many-valued logis. Data and KnowledgeEngineering 23, 297{315, 1997.23. A.Oliv�e. Integrity heking in dedutive databases. Pro VLBD'91 , 513{523, 1991.24. L.M. Pereira, J.N. Apariio, J.J. Alferes. , Hypothetial Reasoning with Well Foun-ded Semantis , Pro. of the 3th Sandinavian Conferene on AI , B. Mayoh, IOSPress, 289-300, 199125. R. Reiter. On speifying database updates. Journal of Logi Programming, 25(1),53{91, 1995.26. P.Z.Revesz. On the semantis of theory hange: Arbitration between old and newinformation. Pro. PODS'93 , 71{82, 1993.27. C.Sakama, K.Inoue. Updating extended logi programs through abdution. ProLPNMR'99 , 147{161, 1999.28. V.S.Subrahmanian. Mehanial proof proedures for many valued lattie-basedlogi programming. Journal of Non-Classial Logi 7, 7{41, 1990.29. V.S.Subrahmanian. Amalgamating knowledge-bases. ACM Trans. on DatabaseSystems 19(2), 291{331, 1994.30. S.Verbaeten, M.Deneker, D.De Shreye. Compositionality of normal open logiprograms. Journal of Logi Programming 41(3), 151{183, 2000.

