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Abstract

The notion of a bilattice was first proposed by Ginsberg
as a general framework for many applications. This
notion was further investigated and applied for various
goals by Fitting. In the present paper we develop proof
systems, which correspond to bilattices in an essential
way. We then show how to use those bilattices for ef-
ficient inferences from possibly inconsistent data. For
this we incorporate certain ideas of Kifer and Lozin-
skit concerning inconsistencies, which happen to suit
well the framework of bilattices. The outcome is a
paraconsistent logic with a lot of desirable properties.

1 Introduction

When using multiple-valued logics, it is usual to or-
der the truth values in a lattice structure, where its
partial order, <;, describes intuitively differences in
the “measure of truth” that the lattice elements are
supposed to represent. However, these elements (the
“truth values”) can be ordered differently. Another
reasonable ordering, <j, reflects (again, intuitively)
differences in the amount of the knowledge or in the
amount of information that each one of these elements
exhibits. Ginsberg introduced (in [Gins]) the notion of
bilattices, which are algebraic structures that contain
two such partial orders simultaneously (see definition
2.1). His motivation was to present a general frame-
work for many applications, like truth maintenance
systems and default inferences. This notion was fur-
ther investigated and applied for various properties by
Fitting (see [Fit1]-[Fit6]).

The present paper has two main goals: The first
is to develop proof systems, which correspond to bi-
lattices in an essential way. For this purpose we have
found it useful to introduce and investigate the notion
of a logical bilattice. (All the bilattices which were
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actualy proposed for applications in the literature fall
under this category). The general logic of these bilat-
tices has indeed a very nice proof theory.

Our second goal is to use logical bilattices in a more
specific way for efficient inferences from inconsistent
data (this was also the original purpose of Belnap,
who had introduced the first bilattice in [Bell],[Bel2]).
For this we incorporate certain ideas from [KiLo]. We
show (so we believe) that bilattices provide a better
framework for applying these ideas than the one used
in the original paper. The outcome 1s a paraconsistent
[dCos] logic with a lot of desirable properties.

Due to the lack of space, some of the proofs are
omitted, and others are given in outlines. Full proofs,
as well as a more detailed presentation, will be given
in the full paper.

2 Logical bilattices

2.1 Bilattices - General background

Definition 2.1 A bilattice [Gins] is a structure B =
(B, <4, <j, ) such that B is a non empty set contain-
ing at least two elements; (B, <;), (B, <) are com-
plete lattices; and — is a unary operation on B that
has the following properties:

if a <; b, then —a >; —b.

if a < b, then —a <p —b.

—a = a.

Notations: Following Fitting, we shall use A and Vv
for the lattice operations which correspond to <;, and
®, @ for those that correspond to <;. f and ¢ will
denote, respectively, inf<,(B) and sup<,(B), while L
and T —inf<, (B) and gupsk(B). Obviously, f # t
and L # T.



While A and V can be associated with their usual
intuitive meanings of “and” and “or”, one may under-
stand ® and @ as the “consensus” and the “guillibil-
ity” (“accept all”) operators, respectivelly. A practical
application of ® and @ is provided, for example, in an
implementation of a logic programming language de-
signed for distributed knowledgebases (see [Fitd] for
more details).

Note that negation is order preserving w.r.t <g.
This reflects the intuition that <j corrsponds to dif-
ferences in our knowledge about formulae and not to
their truth values. (see [Gins] for further discusion).

Definition 2.2 A bilattice is called distributive
[Gins] if all the twelve possible distributive laws con-
cerning A, V, ®, and & hold. It is called interlaced
[Fitl] if each one of A, V, ®, and &, is monotonic with
respect to both <; and <j.

Lemma 2.3 [Fitl] Every distributive bilattice is in-
terlaced.

Example 2.4 The bilattices FOUR and NINE (fig-
ure 1) are both distributive bilattices 1, while Gins-
berg’s DEFAULT [Gins| (figure 2) is not even inter-
laced.

Definition 2.5 [Gins] Let (L,<) be a complete lat-
tice. The structure LOL=(L x L,<;,<j,) is defined
as follows:

(Y1,92) >¢ (21, 22) iff y1 > z1 and yo < zs.

(y1,92) >k (21, 22) iff y1 > 21 and yo > @2,

_|(l‘1, l‘z) = (1‘2, l‘l).

L® L was introduced in [Gins], and later used by
Fitting as a general mechanizm for constructing bi-
lattices. A truth value (#,y) € LO L may intuitively
be understood as simultaneously representing the de-
gree of belief for an assertion, and the degree of belief
against it.

Lemma 2.6
a) [Fit3] LOL is an interlaced bilattice.
b) [Gins] If L is distributive, then so is L& L.

Example 2.7 Denote {0,1} by TWO. Then FOUR
is isomorphic to TWO ©TWO. Similarly, NINE is
isomorphic to {11,0,1}®{L1,0,1}.

LFOUR is due to Belnap (see [Bell], [Bel2])

2.2 Bifilters and logicality

One of the most important component in a many-
valued logic is the subset of the designated truth val-
ues. This subset is used for defining validity of formu-
laec and a consequence relation. Frequently, in an al-
gebraic treatment of the subject, the set of designated
valued forms a filter, or even a prime (ultra-) filter,
relative to some natural ordering of the truth values.
Natural analogues for bilattices of filters, prime-filters,
and set of designated values in genetal, are the follow-
ing:

Definition 2.8

a) A bifilter of a bilattice B is a nonempty set F CB,
F#B, such that:

aANbe Fiffae Fandbe F

a@beFiffae FandbeF

b) A bifilter F is called prime, if it satisfies also:
avbeFiffaecForbeF

apbe FifaecForbeF

Example 2.9 FOUR and DEFAULT contain exactly
one bifilter, {T,t}, which is prime in both. {T ¢} is
also the only bifilter of FIVE [Gins] (figure 3), but
it is not prime there: dTV L€ F, while dT € F, and
1 @F. NINE contains two bifilters: {T,ot,1}, as well
as {T,ot,0f t,dT,dt}; both are prime.

Since every bifilter F is necessarily upward-closed
wrt <4 and <p, {x | 2 > ¢} and {2 | @ >¢ T} are
subsets of F. On the other hand, f € F, and L & F|
since F#B.

Definition 2.10 A logical bilattice is a pair (B, F), in
which B is a bilattice, and F is a prime bifilter on B.

In the next section we shall use logical bilattices for
defining logics in a way which is completely analogous
to the way Boolean algebras and ultrafilters are used
in classical logic. The role which TWO has among
Boolean algebras is taken here by FOUR:

Theorem 2.11 Let (B,F) be a logical bilattice.
Then there exists a unique homomorphism

h: B — FOUR, such that h(b)e{T,t}iff be F.

Outline of Proof: Define h(b) = T if b € F and
—beF h(b)y=tifbeFand -b@F h(b) = fif -beF
and b F,and h(b) = Lif bgF and ~bgF. O

We next discuss the existence of bifilters and prime
bifilters, concentrating on an important special case:



dt

Figure 1: FOUR and NINE

df di

Figure 2: DEFAULT



Figure 3: FIVE

Deﬁnitic(i)rfl 2.12 Let B be a bilattice. Define:
ODk(B) é{l‘|l‘2kt}
‘Dt(B)Ciéf{x|thT}

Intuitively, each element of Dj(B) represents a
truth value which is known to be “at least true”
([Bel2], p.36). Hence it seems that Dy(B) is a par-
ticulary natural candidate to play the role of the set
of the designated values of B.

Example 2.13

a) Di(FOUR) = Dy(FOUR) = {T,t}.

b) Dy (DEFAULT) = Dy(DEFAULT) = {T,t}.

¢) Di(FIVE) = Dy(FIVE) = {T,t}.

d) Dy (NINE) = Dy(NINE) = {T,ot,t}.

e) Dp(LOL) =D(LoL) ={ (sup(L),x) |x € L }.

Proposition 2.14 Let B be an interlaced bilattice.
Then Dy(B) = D+(B), and it is the smallest bifilter

(i.e.: it is contained in any other bifilter). Moreover,

{b,—b} C Di(B) iffb=T.

It follows that if B is interlaced, then (B, Dy (B)) is a
logical bilattice iff Dy (B) is prime. In fact, (B, Dy(B))
is logical bilattice in all the exapmles which were ac-
tually used in the literature for constructive purposes.
This is true even for DEFAULT | although it is not in-
terlaced.

We next provide a sufficient and neccessary condi-
tions for Dy (B) to be prime in one particularly impor-
tant case:

Proposition 2.15 If L is a complete lattice, then
(LOL, Dy (LAL)) is alogical bilattice iff sup(L) is join
irreducible (i.e.: if a Vb = sup(L), then a = sup(L) or
b= sup(L)).

3 The basic logic of logical bi-
lattices

For simplicity, we treat here only the propositional
case; the extension to full predicate logic is in most
cases straightforward.

3.1 The basic consequence relation

Definition 3.1

a) The language BL (Bilattice-based Language) is the
standard propositional language over {A,V,—, ®, ®}.
b) BL(4) is BL enriched with the constants
{f,4, L, T}

c) Let B=(B,F) be a logical bilattice. BL(B) is BL
enriched with a propositional constant for each ele-
ment in B.

Given a bilattice B, the semantic notion of valua-
tions in B 1s defined in the obvious way. The associ-
ated logics are also defined naturally:

Definition 3.2

a) I' Eprp) A iff for every valuation v such that
v(yp) € F for all ¢ € T', we have that v(¢) € F for
some ¢ € A.

b) I' Epr A (I' Epr(a) A), where I' and A are finite
sets of formulae in BL (in BL(4)), iff I' =pr(p) A for
every logical bilattice B.

Proposition 3.3

a) =pr(p) is paraconsistent: p, =p [Epr(p) .
b) g has no tautologies.

Our next theorem is an easy consequence of theo-
rem 2.11. It shows that in order to check consequence

2In BL(4), however, t and T are tautologies.



in any logical bilattice, it 1s sufficient to check it in

FOUR.

Theorem 3.4 Let I' and A be finite sets of formu-
lae in BL (in BL(4)). For every B, I' Epr(p) A iff
I' E=Br(rour) A.

3.2 A Gentzen-type proof system

Since Epgr, does not have valid formulae, it cannot
have a Hilbert-type representation. However, there is
a nice Gentzen-type formulation, which we shall call

GBL (GBL(4)):
The system GBL

Axioms:

L= A9
Rules:

Exchange, Contraction, and the following logical rules:

Lv,¢ = A =AYy T'=Ao
Lvng=A F=A¢vNg
L-v=A T,-¢=A = A -y, —¢
I =(Ag)= A I'= A =(dAd)
Lv=A T,6=>A =AY, ¢
Lvve=A F=AYvVve
Iy, - = A =A% TI'=>A-¢
I=(dve)=A I'= A =(4Ve)
Lv,¢ = A F=A¢y T'=Ao
Myo@e=A Ir=Ava¢
Iy, - = A F=A-% T'=>A-¢
I'=(yo¢)=A I'= A ~()@d)
Lv=A T,¢=A =AY, ¢
Lyvdo=A I'=Adao
L-v=A T -¢=A = A -y, —¢
I'=(W&e)=A I'= A ~()a¢)
Ly=A I'= A4
[, =A [ = A -

Note: The positive rules for A and ® are 1dentical.
Both behave as classical conjunction. The difference
is with respect to the negations of pAg and p®g. Unlike
the conjunction of classical logic, the negation of p&g
is equivalent to -p®—¢q. This follows from the fact
that p < q iff =p <z —q. The difference between V and
@ is similar.

Definition 3.5 A follows from T' (notation: T Fepr
A)if T' = A is provable in GBL.

Theorem 3.6 (Soundness and Completeness)

T Epr AffT Fapr A

Theorem 3.7 (Cut Elimination) If Ty Fgpr Aq, ¢
and I's, Y Fgpr Ao, then I't, Iabgpr Ar, As.

Outline of Proofs: The two theorems are proved
together by showing, using induction on compexity of
sequents and the fact that all the rules are reversible,
that every sequent has either a cut free proof or a
counter-model. O

Theorem 3.8 (Monotonicity and Compactness)

Let T', A be arbitrary sets of formulae in BL (not nec-
essarily finite). Then T' |=pr A iff there exist finite
sets IV, A’ such that I"CT, A’CA and IV =g A’ (iff
I"Fgpr A'). The same is true for [=pr(a).

Outline of Proof: Suppose that I')A are sets for
which no such TV A’ exist. Extend the pair (T', A) to
a maximal pair (I'*, A*) with the same property. Us-
ing I'" and A* construct a refuting v in FOUR in a
way which is similar to the construction of A in the
proof of 2.11. O

Notes:

1. The {A,V,—}-fragment was called “the basic
{A,V, =}-system” in [Avrl], and was introduced there
following a different motivation. It had generally been
known as the system of “first degree entailments” in
relevance logic (see [AnBe], [Dunn]).

2. In [Avrl] it is shown that if we add T, -, ¢ =
A as an axiom to the {A,V,=} (or {A,V,, f,t})-
fragment of GBL, we get a sound and complete sys-
tem for Kleene 3-valued logic, while if we add I' =
A, = we get one of the basic three-valued para-
consistent logics 3. By adding both we get classical
logic.

3.3 Implication connectives
3.3.1 Weak implication

The language BL, rich as it is, lacks an appropri-
ate general implication connective (relative to |=pr).
Defining ¢ — ¢ as =9 V ¢ 1s not adequate, since both
modus ponens and the deduction theorem fail for this
connective. Instead we follow [Avrl] by looking for

3Also known as Js - see, e.g., chapter IX of [Epst] as well as
[OtdC],[Ottal,[Avr3],[Rozo].



an internal implication D that satisfies what is called
there the symmetry conditions for implication. Such
an implication can be defined in every logical bilattice

(B, F) as follows: *

def [ b ifacF

an_{t ifagr
We enrich now the languages BL, BL(4), and
BL(B)), with the connective . The various conse-

quence relations are extended accordingly. The fol-
lowing facts hold:

Proposition 3.9 We still have that |pra) =
FBL(FOUR) = FBL(B)-

Proof: Similar to that of theorem 2.11. O

Proposition 3.10 Both modus ponens and the de-
duction theorem are valid for D under =gz (FpL(a),
ete).

Theorem 3.11 Extend the systems above with the
following rules:

=4, A T,¢=>A Lv=4¢,A

LyDo=>A I'=vD2¢ A

L, —¢ = A I'=>¢v,A T'=-¢ A
=¥ D¢)=A I'= (¢ D¢)A

The soundness, completeness, and cut elimination the-
orems hold for the extended systems as well.

Proof: Similar to that of theorems 3.6 and 3.7. O

Unlike the previous case, once we have D, the lan-
guage does have valid sentences; hence it is possible
to give a Hilbert-type axiomatization, which we will
denote by HBL. HBL can be obtained from what was
called in [Avrl] “the basic Hilbert-type system” by
adding as axioms the counterparts of the rules for ®
and @: °

The system HBL

Defined connective:
V=0 (WD) A(GDY)

Inference rule:

Y %D
¢

Axioms:

41t is not difficult to show that in FOUR this is the only
possible definition.

5In the formulae below the associations of nested implication
should be taken to the right.

vDO¢DY
(W26D9) D (WD) D (YD)
(#D¢)D¢) D¢

YANGDY YA DE
VDOPDUAP

YOeDdY YD
VD2¢DoRe

vDOYVe ¢DUYVe

(WD) D(@D9)D(WVe D)
vDOYdo ¢DVEBE

(WD) D(@D9)DWde D)

(Y APy =V o
)

(Y V@) =Y A=
(Y ©¢)=v@ ¢
(o) =vd ¢
(YD ¢) =Y Aé
= g

Note that the {A,V, D}-fragment of these systems is
identical to the classical one. The critical connective
is, therefore, negation.

3.3.2 Strong implication

The implication connective D has two drawbacks: the
main one is that even in case that ¢» D ¢ and ¢ D ¢
are both valid, ¢ and ¢ might not be equivalent (in
the sense that one can be substituted for the other
in any context). For example, if ¢y = =(¢ D p) and
¢ = ¢ A —p, then both ¥ D ¢ and ¢ D ¥ are valid,
but =1 D —¢ is not. The second disadvantage is that
1 D ¢ may be true, its conclusion false, without this
entailing that the premise is false (for example: L D
f =1). Asis always the case when we have an internal
implication which satisfies the symmetry conditions,
we can introduce however a stronger implication which
does not have these disadvantages (see [Avrl]):

Definition 3.12 (strong implication)
def

v—¢ = (¥ DP)A(—¢ D)



The connective — has a lot of similarities with Gi-
rard’s linear implication (see [Giral]). All the basic ax-
ioms concerning that implication (see [Avr2]) are valid
for —, while the contraction axiom and the weakening
axiom are not. On the other hand, on {¢, f, L}, — is
exactly Lukasiewicz implication ([Luka],[Urqu]), while
on {t, f, T} it is Sobocinski’s implication ([Sobo]),
which is the implication of RMj3 - the strongest logic in
the family of relevance logics (see also [AnBe], [Dunn],

and [Hind]).

Notes:

1. Using — we can sometimes translate “anno-
tated atomic formulae” from Subrahmanian’s anno-
tated logic (see [CHLS],[Subl],[Sub2],[KiLo],[KiSu]).
Thus, the translation to BL(4) of ¢ : b when b €
FOUR, and the partial order is <y, is simply b — 1.

2. In FOUR, v(¢ — ¢) € DR (FOUR) iff v(v) <:v(9).
Moreover, ¢ D ¢ is equivalent to ¢V (¢ — ¢ — ¢).

The next example demonstrates the potential use of
E B as well as of the various implication connectives.
We shall use in it ~ to denote the implication of the
classical calculus (i.e: ¢ ~ ¢ = 290 V @).

Example 3.13 Consider the following knowledge
base:

bird(tweety) ~ fly(tweety)
penguin(tweety) D bird(tweety)
penguin(tuweety) — ~fly(tweety)
bird(tweety)

Note that we are using different implication con-
nectives according to the strength we attach to each
entailment: Penguins never fly. This is a character-
istic feature of penguins, and there are no exceptoins
to that, hence we use the strongest implication (—)
in the third asertion in order to express this fact. The
second asertion states that every penguin is a bird.
Again, there are no exceptions to that fact. Still, pen-
guins are not typical birds, thus they shouldn’t inherit
all the properties we expect birds to have. The use of
a weaker implication (D) forces us, indeed, to infer
that something is a bird whenever we know that it is
a penguin, but it does not forces us to infer that it has
every property of a bird. Finally, the first assertion
states only a default feature of birds, hence we attach
the weakest implication (~) to it. Indeed, since from
¢ and ¢ ~ ¢ we cannot infer ¢ (by =pr) without
more information, the first assertion does not cause

automatic inference of flying abilities just from the
fact that something 1s a bird. It does give, however,
strong connection between these two facts.

The above knowledge-base does not allow us to infer
whether tweety is a penguin or not (as it should be),
and if it can fly or not (which is less satisfactory; we
shall return to it in the next section). However, if
we add to the knowledge-base an exstra assumption,
penguin(tweety), we can infer —fly(tweety) but we
still can not infer fly(tweety), as should be expected.

4 A more subtle consequence
relation

EBr should be taken as a first approximation of what
can be safely inferred when we have a classically incon-
sistent knowledge-base; this safety is its main advan-
tage. The disadvantage is that =g, is somewhat “over
cautious”. Thus, in the last example we would have
liked to be able to infer fly(tweety) from the original
knowledge-base, before the new information is added
to it. We can’t, of course, since [=pgz is monotonic °.

To overcome this difficulty we adapt an idea of Kifer
and Lozinskii (see [KiLo]). Their idea, basically, is to
order models of a given knowledge-base in a way that
somehow reflects their degree of consistency, and then
take into account only the models which are maximal
w.r.t this order. The main difference is that they were
using just ordinary (semi)lattices, in which the par-
tial order relation corresponds, intuitively, to our <j.
Hence, no direct interpretation of the standard log-
ical connectives (A, V) was available to them. They
were forced, therefore, to use an unnatural language,
in which the atomic formulae are of the form p : b
(where p is an atomic formula of the basic language,
and b — a value from the semilattice). ¢ : b is meaning-
less, however, for nonatomic ). The use of bilattices
allows us to give the standard logical language a di-
rect interpretation, and so gives a meaning to every
annotated formula. On the other hand, by using F
we can dispense with annotated formulae altogether,
as we do below 7.

Definition 4.1 Let B = (B, <4, <j, ) be a bilattice.
A subset 7 of B is called an inconsistency set, if it has
the following properties:

8 Another disadvantage is, perhaps, that =p; is basically
just the logic of FOUR.

"Despite the fact that this method of using “annotated”
atomic formulae is quite common, it is still artificial from a log-
ical point of view, since semantic notions interfere within the
syntax.



a)beTiff —beT.
b)be FNTiff b€ F and —be F.

Notes:

1. From (b), always T €Z. Also, from (b), t €7,
and so, from (a), f¢7.

2. Asfor L, both ZU{L} and Z\ {L} are inconsis-
tency sets in case Z is. On one hand, in every bilattice,
-1l =1, s0 L has some features that may be associ-
ated with inconsistent elements. Now, on the other
hand, L intuitively reflects no knowledge at all about
the assertions it represents; in particular, one might
not take such assertions to be inconsistent.

Example 4.2

ayIy={blbe FA-be F}

b) Zy = {b | b= b}

¢) Is={b|b=-b}\ {L}

7, is the minimal possible inconsistency set in ev-
ery logical bilattice. In case that B 1s interlaced,
and F = Dy(B), Z; is just {T}. Zy and Z3 are al-
ways Inconsistency sets in case that B is interlaced,
and F = Dy(B). There are, however, other cases in
which 75 and 73 are inconsistency sets; for example,

in DEFAULT.

We fix henceforth some logical bilattice B = (B, F),
and an inconsistency subset 7 of B. All the definitions
below will be relative to B and Z. A(T') will denote
the set of the atomic formulae that appear in some
formula of T'.

Definition 4.3 Let I' and A be two sets of formulae,
M, N — models of T.

a) M is more consistent than N (N <.on M), if the
set of the atomic formulae in A(T') that are assigned
under M values from 7 is properly contained in the
corresponding set of N.

b) M is a most consistent model of T' (mem), if there
is no other model of I' which is more consistent than
M.

¢) T Eeon A if every mem of T is a model of some
formula of A.

Example 4.4 Let’s return to the knowledge-base KB
of example 3.13. This knowledge-base has exactly one
mem, which takes values in {¢, f}. Hence, KB on ¢,
iff ¥ follows classically from KB. So, unlike the case
of EBr:

KB FEcon fly(tweety), KB |=ion —penguin(tweety),
KB Wcon ~fly(tweety), KB WEcon penguin(tweety).
Now, consider again what happens when we add
“penguin(tweety)” to KB: the new knowledge-base,
KB’ has two mcms, My and M, where:

M (bird(tweety)) = t,
Mi(penguin(tueety)) = T,
My (fly(tweety)) =T,

and
Ms(bird(tweety)) = T,
Ma(penguin(tweety)) = 1,

Ms(fly(tweety)) = f.

This time, therefore:

KB’ |Econ penguin(tweety), KB' |=con —fly(tweety),
KB’ [£con “penguin(tweety), KB' [econ fly(tweety).
It follows that .., is a nonmonotonic consequence
relation, which seems to behave according to our ex-
pectations.

Some important properties of .., are summerized
below. We formulate them for BL, but with the ex-
ception of propositions 4.8 and 4.10, they are true for
all the other languages as well.

Proposition 4.5 If T' =pr A, then T |E.on A.
Proposition 4.6 ., is non-monotonic.

Proof: Consider, e.g., T' = {p,-pVq}. T Econ ¢, but
L =pleon ¢ O

Proposition 4.7 =, is paraconsistent:
p,p I#con q

Proof: Consider a valuation that assigns p the value
T, and assigns ¢ the value f. O

Proposition 4.8 If T' is classically consistent set in
the basic language (i.e, without D), and ¢ is a clause
that does not contain any pair of an atomic formula
and its negation, then T |=.o, ¢ iff ¢ follows classi-
cally from T' (Hence the difference here between =,
and classical logic is only with respect to inconsistent
theories).

Definition 4.9 [Lehm]: A plausibility logic is a logic
that satisfies the following conditions:

Inclusion:

L=,

Right Monotonicity:
= A, then I'= ¢, A.

Cautious Left Monotonicity:
If T'=1 and I= A, then ',y =>A &,

8This rule was first proposed in [Gabb].



Cautious Cut:
I, ¢1,...,¢p=>Aand =, Afori=1...n,
then I'= A.

Proposition 4.10 If B is interlaced bilattice and L ¢
7, then |=.0n, limited to the basic language, is a plau-
sibility logic.

Outline of Proof: We summarize the proof of the
most difficult case — that of Cautious Cut. Well, given
an mcm M of I, we construct another model M’ of T’
so that M'(p) = M(p) if p€ T, and L otherwise. We
then show that M’ is a model of some formula in A.
But M(p) > M’(p) for every p. Since B is interlaced,
this is true for every formula . Hence M is also a
model of some formulain A. O

Proposition 4.11 All the rules of GBL are valid for

':con~

Thus, Econ has a lot of desirable properties. We
should mention, however, one disadvantage: |=.o, is
not closed under substitutions. In other words: 1t is
sensitive to the choice of the atomic formulae. Thus,
although —p, pV ¢ Econ ¢ when p and ¢ are atomic, it
is not true in general (take, e.g., p = =(—r Ar)). This,
however, is unavoidable when one wants to achieve
both propositions 4.7 and 4.8 above.

5 Conclusion

Bilattices have had an extensive use in several areas,
most notably in logic programming, but their role so
far was almost algebraic in nature. We develop a real
notion of logic based on bilattices, giving two asso-
ciated consequence relations and coresponding proof
systems. These consequence relations are strongly re-
lated to non-monotonic reasoning, and especially to
reasoning in the presence off inconsistent data.

The next natural step is to investigate how the re-
sulting logics are affected by the choice of the bilattice
under consideration, the truth values that are taken
to be designated, and the choice of the inconsistency
subsets.
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