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Abstract

We identify three classes of four-state paraconsis-
tent logics according to their different approaches
towards the disjunctive syllogism, and investigate
three representatives of these approaches: Quasi-
classical logic, which always accepts this princi-
ple, Belnap’s logic, that rejects the disjunctive
syllogism altogether, and a logic of inconsistency
minimization that restricts its application to con-
sistent fragments only. These logics are defined
in a syntactic and a semantic style, which are
linked by a simple transformation. It is shown
that the three formalisms accommodate knowl-
edge minimization, and that the most liberal for-
malism towards the disjunctive syllogism is also
the strongest among the three, while the most cau-
tious logic is the weakest one.

Introduction
Paraconsistent (‘inconsistency-tolerant’) logics are for-
malisms that reason with inconsistent information in a
controlled and discriminating way. Thus, while classi-
cal logic, intuitionistic logic, and many other standard
logics are ‘explosive’ in the sense that they admit the
inference of any conclusion from an inconsistent set of
premises, paraconsistent logics avoid this approach. In
order to do so, at least one of the following two classi-
cally valid rules has to be rejected:

The Disjunctive Syllogism: from ψ and ¬ψ ∨ φ infer φ.

The Introduction of Disjunction: from ψ infer ψ ∨ φ.

Formalisms that validate both of the rules above are
necessarily explosive, as ψ entails ψ ∨ φ and this to-
gether with ¬ψ implies φ, thus the inconsistent set of
assumptions {ψ,¬ψ} yields, in the presence of the two
rules above, a derivation of an arbitrary φ.

In this paper, we consider different approaches of
weakening the rules above in order to gain paracon-
sistency. We do so in a framework that is based on four
possible states of information regarding the truth of an
assertion ψ: in addition to the two standard states, in
which ψ is either accepted or rejected, two additional
states are allowed, reflecting the two extreme cases of

uncertainty about ψ: either there is no sufficient infor-
mation to determine its truth, or there are conflicting
indications, causing a contradictory information about
it.

In the sequel, we divide four-state paraconsistent
logics by the way they apply the disjunctive syllo-
gism (and so, indirectly, by their attitude to the in-
troduction of disjunction). Each approach is demon-
strated by a different logic, representing a particular
attitude for tolerating inconsistency: The basic logic
(known as Belnap’s four-valued logic (Belnap 1977a;
1977b)), in which the propositional connectives have
their standard lattice-theoretic interpretations, invali-
dates the disjunctive syllogism altogether. On other
extreme, this principle is a cornerstone behind quasi-
classical logic (Besnard and Hunter 1995), which is an-
other formalism that is considered here. In between, we
have intermediate approaches for cautious applications
of the disjunctive syllogism. This class is represented
by the logic of inconsistency minimization (Arieli and
Avron 1996), according to which the disjunctive syl-
logism is allowed only with respect to consistent frag-
ments of the premises.

Each one of the logics mentioned above is presented
in a syntactic and a semantic style, which are linked
by a simple transformation. We also show that knowl-
edge minimization, used for reducing the amount of
the relevant models without affecting the inferences, is
supported by all the three logics. Interestingly, Bel-
nap’s logic, which is the most cautious in its attitude
towards the disjunctive syllogism, is also the weakest
logic among the three formalisms, and quasi-classical
logic, which is the most liberal one, is the strongest
formalism.

Consequence Relations Based on Four
States of Information

Reasoning with four states of information is exten-
sively studied in computer science and AI. Some ex-
amples for its application are in the context of sym-
bolic model checking (Chechik et al. 2003), seman-
tics of logic programs (Fitting 2002), natural language
processing (Nelken and Francez 2002), and, of-course,
inconsistency-tolerant systems. In the context of KR



the latter has been investigated, e.g., in the frame-
work of description logic (Ma, Lin, and Lin 2006), de-
fault logic (Yue, Ma, and Lin 2006), belief revision
operators (Gabbay, Rodrigues, and Russo 2000), and
by circumscriptive-like formulas (Arieli and Denecker
2003) or quantified Boolean formulas (Arieli 2007).

The basic idea behind our framework is to acknowl-
edge four states of information for a given assertion:
either the assertion is known to be true, known to be
false, no information about it is available, or there are
contradictory indications about its truth. Two common
ways of representing those states are by incorporating
a related (meta-) language for describing the reasoner’s
information (we call these approaches syntactical , as
they do not involve truth functions), or by using truth
values for the same purpose (such approaches are called
semantical). In this section we define these approaches
and describe an obvious link between them by a simple
transformation.

A Syntactic Approach

Let L be a propositional language consisting of an al-
phabet A of propositional variables (atomic formulas),
and the logical symbols ¬,∧,∨. We denote the elements
in A by p, q, r, literals (i.e., atomic formulas or their
negations) by li (i = 1, 2, . . .), clauses (∨-disjunction
of literals) by Ci (i = 1, 2, . . .), and formulas in a con-
junctive normal form (CNF; ∧-conjunction of clauses)
by ψ, φ. The set of CNF-formulas of L is denoted
N . Theories are sets of CNF-formulas, and are de-
noted by Γ,∆.1 The set of all atoms occurring in a
formula ψ is denoted by A(ψ) and the set of all atoms
occurring in a theory Γ is denoted by A(Γ) (that is,
A(Γ) = ∪ψ∈ΓA(ψ)). A signed alphabet A± is a set that
consists of symbols p+, p− for each atom p ∈ A.

An information state I is an element in P(A±), the
power-set of A±. Intuitively, p+ ∈ I means that in I
there is a reason for accepting p, and p− ∈ I means
that in I there is a reason for accepting ¬p. Clearly, an
information state may contain both of p+ and p−, or
neither of them. The former situation reflects inconsis-
tent data about p and the latter situation corresponds
to incomplete data about it. This is formalized in the
following definition, which also extends atomic informa-
tion to CNF-formulas and theories:

Definition 1 Denote by ‖=4 the binary relation on
P(A±)×N , inductively defined as follows:

I ‖=4 p if p+∈ I,
I ‖=4 ¬p if p−∈ I,
I ‖=4 l1 ∨ . . . ∨ ln if I ‖=4 li for some 1 ≤ i ≤ n,
I ‖=4 C1 ∧ . . . ∧ Cn if I ‖=4 Ci for every 1 ≤ i ≤ n.

1The concentration on (sets of) CNF-formulas is justified
by the fact that, just as in the classical semantics, in the
four-valued semantics for L, every well-formed formula is
logically equivalent to a CNF-formula (see (Arieli and Avron
1996)).

Given an information state I and a theory Γ, we denote
I ‖=4 Γ if I ‖=4 ψ for every ψ ∈ Γ.

Definition 1 induces a corresponding relation on
P(N )×N .

Notation 2 Given a theory Γ and a formula ψ ∈ N ,
we denote:

Mod‖=4(Γ) = {I ∈ P(A±) | I ‖=4 Γ}.
Γ 
4 ψ if Mod‖=4(Γ) ⊆Mod‖=4(ψ).

In what follows we shall write Γ, φ 
4 ψ for abbrevi-
ating Γ ∪ {φ} 
4 ψ.

Proposition 3 
4 is a Tarskian consequence relation
(Tarski 1941), i.e., it has the following properties, for
every theory Γ and formulas ψ, φ ∈ N .
Reflexivity: Γ, ψ 
4 ψ.
Monotonicity: if Γ 
4 ψ and Γ ⊆ Γ′, then Γ′ 
4 ψ.
Transitivity: if Γ 
4 φ and Γ′, φ 
4 ψ, then Γ,Γ′ 
4 ψ.

Proof. Reflexivity immediately follows from Notation 2.
Monotonicity follows from the fact that if Γ ⊆ Γ′ then
Mod‖=4(Γ

′) ⊆ Mod‖=4(Γ). For transitivity, suppose
that Γ 
4 φ and Γ′, φ 
4 ψ, and let I ∈Mod‖=4(Γ∪Γ′).
Since I ∈ Mod‖=4(Γ) and Γ 
4 φ, I ∈ Mod‖=4({φ}).
Thus, as I ∈Mod‖=4(Γ

′), we have that I ∈Mod‖=4(Γ
′∪

{φ}). Now, since Γ, φ 
4 ψ, I ∈ Mod‖=4({ψ}), and so
Γ,Γ′ 
4 ψ. 2

Proposition 4 
4 is paraconsistent: there are ψ, φ ∈
N such that ψ,¬ψ 14 φ.

Proof. Let I = {p+, p−} for some p ∈ A. For every
q ∈ A \ {p} we have that I ‖=4 p and I ‖=4 ¬p but
I 6‖=4 q, thus p,¬p 14 q. 2

A Semantic Counterpart
The paraconsistent consequence relation 
4 considered
in the previous section is constructed in a syntactical
manner, without using truth values. Yet, it is evident
(e.g., by the intuitive meaning of information states)
that it may be associated with a four-valued seman-
tics. The corresponding four-valued algebraic structure,
denoted FOUR, was introduced by Belnap (1977a;
1977b) (see Figure 1). This structure is composed of
four elements {t, f,⊥,>}. Intuitively, t and f have
their usual classical meanings, ⊥ represents incomplete
information and > represents inconsistent information.
These values are arranged in two lattice structures.
One, represented along the horizontal axis of Figure 1,
is the standard logical partial order, ≤t, which intu-
itively reflects differences in the ‘measure of truth’ that
every value represents. We shall denote by ∧ and by ∨
the meet and the join (respectively) of the lattice ob-
tained by ≤t, and by ¬ its order reversing involution,
for which ¬> = > and ¬⊥ = ⊥.

The other partial order of FOUR, denoted ≤k, is
understood (again, intuitively) as reflecting differences
in the amount of knowledge or information that each
truth value exhibits. This partial order is represented
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Figure 1: FOUR

along the vertical axis of Figure 1, and it will also have
a great importance in what follows.

The next step in using FOUR for reasoning is to
choose its set of designated elements. The obvious
choice is the set D = {t,>}, since both of the values
in D intuitively represent formulas that are ‘known to
be true’. The set D has the property that a ∧ b ∈ D iff
both a and b are in D, while a ∨ b ∈ D iff at least one
of a or b is in D.

The semantical analogue of information states are
valuations, which are functions that assign a truth value
to each atomic formula. For a valuation ν we shall
sometimes denote ν = {pi :xi | i = 1, 2, . . .} instead of
ν(pi) = xi. The space of valuations is denoted Λ.

The following definition and notation should be com-
pared with Definition 1 and Notation 2, respectively.

Definition 5 Denote by |=4 the binary relation on
Λ×N , inductively defined as follows:
ν |=4 p if ν(p) ∈ D,
ν |=4 ¬p if ¬ν(p) ∈ D,
ν |=4 l1 ∨ . . . ∨ ln if ν |=4 li for some 1 ≤ i ≤ n,
ν |=4 C1 ∧ . . . ∧ Cn if ν |=4 Ci for every 1 ≤ i ≤ n.

For a valuation ν and a theory Γ, we denote ν |=4 Γ if
ν |=4 ψ for every ψ ∈ Γ.

Notation 6 Given a theory Γ and a formula ψ ∈ N ,
we denote:

Mod|=4(Γ) = {ν ∈ Λ | ν |=4 Γ}.
Γ `4 ψ if Mod|=4(Γ) ⊆Mod|=4(ψ).

Proposition 7 `4 is a paraconsistent Tarskian conse-
quence relation.

Proof. A direct proof is obtained from the proofs of
Propositions 3 and 4, replacing information states by
valuations and Mod‖=4(Γ) by Mod|=4(Γ). This propo-
sition also follows as a corollary of Propositions 3, 4,
by the correspondence between 
4 and `4, shown in
Proposition 10 below. 2

Relating the Two Approaches
The syntactic and the semantic approaches described
above can be related by the following transformation:
Definition 8 For an information state I ∈ P(A±), the
valuation σ(I) ∈ Λ is defined for every p ∈ A as follows:

σ(I)(p) =


t if p+ ∈ I and p− 6∈ I,
f if p+ 6∈ I and p− ∈ I,
⊥ if p+ 6∈ I and p− 6∈ I,
> if p+ ∈ I and p− ∈ I.

Clearly, σ is a one-to-one mapping from the space
P(A±) of the information states onto the space Λ of
the four-valued valuations. Given a valuation ν ∈ Λ,
we shall denote by σ−1(ν) the information state I for
which σ(I) = ν.
Lemma 9 It holds that I ‖=4 Γ iff σ(I) |=4 Γ, and
ν |=4 Γ iff σ−1(ν) ‖=4 Γ.
Proof. By induction on the structure of a CNF-formula
ψ, it is easily verified that I ‖=4 ψ iff σ(I)(ψ) ∈ D, and
so I ‖=4 ψ iff σ(I) |=4 ψ . This implies that I ‖=4 Γ iff
σ(I) |=4 Γ. The second part is similar. 2

Proposition 10 For every theory Γ and formula ψ ∈
N , Γ 
4 ψ iff Γ `4 ψ.
Proof. If Γ 6`4 ψ then ν ∈ Mod|=4(Γ) \Mod|=4(ψ) for
some ν ∈ Λ. By Lemma 9, Mod‖=4(Γ) = {σ−1(ν) | ν ∈
Mod|=4(Γ)}, thus σ−1(ν) ∈ Mod‖=4(Γ) \ Mod‖=4(ψ).
It follows that Γ 14 ψ. The proof of the converse is
similar, using the fact that by Lemma 9, Mod|=4(Γ) =
{σ(I) | I ∈Mod‖=4(Γ)}. 2

Proposition 10 shows that the two approaches above
actually coincide for CNF-formulas. This will be useful
in what follows for showing correspondence among the
different derivatives of these consequence relations.
Note 11 For relating `4 and 
4 with respect to ar-
bitrary sets of formulas in L (not necessarily in a con-
junctive normal form), some generalizations of the basic
definitions are required. In the semantic approach this
can be done rather directly by extending Definition 5
so that for every L-formulas ψ, φ,
ν |=4 ¬ψ if ¬ν(ψ) ∈ D,
ν |=4 ψ ∨ φ if ν |=4 ψ or ν |=4 φ,
ν |=4 ψ ∧ φ if ν |=4 ψ and ν |=4 φ.

The consequence relation that is obtained by extending
Definition 5 to this satisfiability relation coincides with
Belnap’s well-known four-valued logic (Belnap 1977a;
1977b) and has strong ties to ‘first-degree entailments’
in relevance logic (Anderson and Belnap 1975; Dunn
and Restall 2002). Indeed, it holds that ψ1, . . . , ψn `4 φ
iff ψ1 ∧ . . . ∧ ψn → φ is a first-degree entailment.

Adapting the syntactic approach to general formu-
las is somewhat more cumbersome, as extra conditions
have to be imposed on the satisfaction relation for as-
suring the well-behaving of the induced entailment with
respect to general formulas (e.g., the double-negation
rule, associating ¬¬ψ with ψ, has to be explicitly re-
quired; see, e.g., (Hunter 2000, Section 5)).



Quasi-Classical Logic
By their definition, paraconsistent logics are weaker
than classical logic with respect to inconsistent sets of
premises. However, the consequence relations consid-
ered in the previous section seem to be too weak, as
they exclude some classically valid rules even when the
premises are classically consistent. Thus, for instance,
both of `4 and 
4 reject the disjunctive syllogism in any
circumstance, as q is not `4-deducible (and, by Proposi-
tion 10, it is not 
4-deducible either) from {p,¬p∨ q}.2
In order to overcome this shortcoming, Besnard and
Hunter (1995; 2000) introduced an alternative formal-
ism, called quasi-classical logic, in which the satisfac-
tion relation of the syntactic-based approach (Defini-
tion 1) is strengthen as follows:

Definition 12 Let ∼ l be the complement of a literal l
(i.e., ∼ l = ¬p if l = p, and ∼ l = p if l = ¬p). Denote by
‖=QC the binary relation on P(A±)×N , defined just as
the relation ‖=4 of Definition 1, with the only exception
that I ‖=QC l1 ∨ . . . ∨ ln if the following two conditions
hold:
• I ‖=4 l1 ∨ . . . ∨ ln, and
• for every 1 ≤ i ≤ n,

if I ‖=QC∼ li then I ‖=QC l1∨ . . . li−1∨ li+1∨ . . .∨ ln.3

Example 13 Let I1 = {q+} and I2 = {p+, p−}. Then
I1 ‖=QC p ∨ q and I1 ‖=QC ¬p ∨ q. On the other hand,
I2 6‖=QC q, and so I2 6‖=QC p ∨ q and I2 6‖=QC ¬p ∨ q.

Note that according to Definition 12, the disjunction
∨ cease to have its usual lattice-based meaning. The
idea behind this definition is, generally speaking, to link
between a disjunct and its complement, and by this to
preserve the meaning of the resolution principle. This
gives rise to the following definition of entailments in
the quasi-classical logic.

Notation 14 Given a theory Γ and a formula ψ ∈ N ,
we denote:
Mod‖=QC

(Γ) = {I ∈ P(A±) | I ‖=QC Γ}.
Γ 
QC ψ iff Mod‖=QC

(Γ) ⊆Mod‖=4(ψ).

Example 15 For Γ = {p ∨ q,¬p ∨ q}, Mod‖=QC
(Γ) =

{{p+, p−, q+}, {p+, q+}, {p−, q+}, {q+}}, thus Γ 
QC q.
Note that Γ 14 q, since {p+, p−} is in Mod‖=4(Γ) but
not in Mod‖=4(q).

Proposition 16 
QC is paraconsistent.

Proof. It holds that {p+, p−} ∈ Mod‖=QC
({p,¬p}) but

{p+, p−} 6∈Mod‖=4({q}), therefore p,¬p 1QC q. 2

Note that, as demonstrated in Example 15, unlike 
4,
the entailment 
QC admits the principle of resolution,
so for arbitrary clauses C1, C2, C3, C4 we have:{
C1 ∨ l ∨ C2 , C3∨∼ l ∨ C4

}

QC C1 ∨ C2 ∨ C3 ∨ C4.

2Consider a valuation that assigns > to p and f to q.
3In (Besnard and Hunter 1995; Hunter 2000) the rela-

tions ‖=QC and ‖=4 are called, respectively, strong satisfia-
bility and weak satisfiability.

The clause C1 ∨ C2 ∨ C3 ∨ C4 is called a resolvent of
C1 ∨ l ∨ C2 and C3∨∼ l ∨ C4. By the monotonicity of
quasi-classical logic we have, then, the next result.

Proposition 17 Any resolvent of two clauses in a the-
ory Γ is 
QC-deducible from Γ.

The ‘price’ of this is that 
QC is not a consequence
relation, since (although it is reflexive and monotonic)
it is not transitive.4 Thus, proofs cannot be composed
for more complicated proofs, and so inference in quasi-
classical logic is not an iterative process, but rather a
one-step procedure. We refer to (Hunter 2000) for a
more detailed discussion on the properties of 
QC and
a corresponding sound and complete proof theory.

By the next lemma, shown in (Hunter 2000), we can
give a semantic counterpart to 
QC.

Lemma 18 I ‖=QC l1 ∨ . . . ∨ ln iff

• there is 1 ≤ i ≤ n, such that l+i ∈ I and l−i 6∈ I, or

• for all 1 ≤ i ≤ n, l+i ∈ I and l−i ∈ I.

Definition 19 Denote by |=QC the binary relation on
Λ×N , inductively defined as follows:
ν |=QC p if ν(p) ∈ D
ν |=QC ¬p if ¬ν(p) ∈ D
ν |=QC l1 ∨ . . . ∨ ln if ν(li) = t for some 1 ≤ i ≤ n

or ν(li) = > for all 1 ≤ i ≤ n
ν |=QC C1 ∧ . . . ∧ Cn if ν |=QC Ci for all 1 ≤ i ≤ n

Given a valuation ν and a theory Γ, we denote ν |=QC Γ
if ν |=QC ψ for every ψ ∈ Γ.

Notation 20 Given a theory Γ and a formula ψ ∈ N ,
we denote:

Mod|=QC
(Γ) = {ν ∈ Λ | ν |=QC Γ}.

Γ `QC ψ iff Mod|=QC
(Γ) ⊆Mod|=4(ψ).

Proposition 21 For every theory Γ and a formula ψ ∈
N , Γ 
QC ψ iff Γ `QC ψ.

Proof. For a literal l we have that I ‖=QC l iff σ(I)(l) ∈
D, thus I ‖=QC l iff σ(I) |=QC l. Also, by Lemma 18,
I ‖=QC l1 ∨ . . . ∨ ln iff σ(I) = t for some 1 ≤ i ≤ n, or
σ(I) = > for every 1 ≤ i ≤ n, iff σ(I) |=QC l1 ∨ . . .∨ ln.
Thus, by induction on the structure of a CNF-formula
ψ, we have that I ‖=QC ψ iff σ(I) |=QC ψ. It follows
that Mod‖=QC

(Γ) = {σ−1(ν) | ν ∈ Mod|=QC
(Γ)} and

Mod|=QC
(Γ) = {σ(I) | I ∈ Mod‖=QC

(Γ)}. This implies
(as in the proof of Proposition 10) that 
QC and `QC

coincide. 2

Logic of Minimal Inconsistency

As noted before, Belnap’s logic excludes some classi-
cally valid rules even for classically consistent theories,
and so it may be considered as too weak. Quasi classi-
cal logic, on the other hand, may be considered as too
strong. This is shown in the following example.

4Indeed, p 
QC p∨q and ¬p, p∨q 
QC q, but p,¬p 1QC q.



Example 22 Consider the theory Γ = {p,¬p, p ∨ q}.
Here, Mod|=QC

(Γ) = {{p : >, q : t}, {p : >, q : >}}, thus
Γ `QC q. This may look counter-intuitive, as there is
no justification to infer q from p∨ q (the only assertion
in Γ that mentions q) as long as one already ‘knows’ p.

The formalism that is considered in this section over-
comes this problem by applying classically valid rules
(in particular, the disjunctive syllogism) only to clas-
sically valid fragments of the theory (see Corollary 29
and Note 30 below). The idea here is to minimize the
inconsistent states of information of the reasoner, fol-
lowing the recognition that although inconsistency is
unavoidable, it should be minimized as much as possi-
ble.
Definition 23 For ν, µ ∈ Λ we denote by ν ≤> µ that
for every atom p ∈A, µ(p) = > whenever ν(p) = >. We
denote by ν <> µ that ν ≤> µ and there is an atomic
formula p ∈ A, such that µ(p) = > while ν(p) 6= >.
Notation 24 Given a theory Γ and a formula ψ ∈ N ,
we denote:
Mod|=MI

(Γ) = {ν ∈Mod|=4(Γ) |
if µ <> ν then µ 6∈Mod|=4(Γ)}.

Γ `MI ψ iff Mod|=MI
(Γ) ⊆Mod|=4(ψ).

The logic `MI was introduced in (Arieli and Avron
1996; 1998) as a generalization to the four-valued case
of Priest’s three-valued logic LPm of inconsistency min-
imization (Priest 1991).
Proposition 25 `MI is paraconsistent.
Proof. Indeed, {p : >, q : f} ∈ Mod|=MI

({p,¬p}) but
{p :>, q :f} 6∈Mod|=4({q}), and so p,¬p 0MI q. 2

Example 26 Consider again the theory Γ = {p,¬p, p∨
q} of Example 22. As intuitively expected (and unlike
quasi-classical logic), q is not a `MI-conclusion of Γ, as
Mod|=MI

(Γ) = {{p :>, q : t}, {p :>, q : f}, {p :>, q :⊥}}.
On the other hand, r,¬r,¬p, p∨q `MI q. The latter is a
particular case of the next proposition that shows that
every non-tautological clause that can be inferred from
a consistent fragment of a theory, can also be inferred
by `MI from the whole theory, provided that the clause
is independent of the inconsistent part of the theory.
Definition 27 We say that Γ′ and Γ′′ are independent ,
if A(Γ′)∩A(Γ′′) = ∅. Two independent theories Γ′ and
Γ′′ are a partition of Γ, if Γ = Γ′ ∪ Γ′′.
Proposition 28 Denote by ` the standard entailment
of classical logic. Let Γ′ and Γ′′ be a partition of Γ.
Suppose that Γ′ is classically consistent, and that ψ is
a non-tautological clause5 that is independent of Γ′′. If
Γ′ ` ψ then Γ `MI ψ.6

5That is, none of the disjunctions in ψ contains an atomic
formula and its negation.

6The aspiration to preserve classically valid inferences
whenever this is reasonably possible, even in the presence
of inconsistency, is sometimes called ‘adaptivity’ (Batens
2000); Adaptive formalisms presuppose the consistency of
all the assertions ‘unless and until proven otherwise’.

Proof. By (Arieli and Avron 1998, Proposition 64), if Γ′
is classically consistent and ψ is as in the proposition,
then Γ′ ` ψ iff Γ′ `MI ψ. It is enough to show, then, that
under the conditions of the proposition, if Γ′ `MI ψ then
Γ `MI ψ. Indeed, suppose otherwise that Γ 6`MI ψ. Then
there is a valuation ν ∈Mod|=MI

(Γ) \Mod|=4(ψ). Note
that this in particular implies that ν ∈Mod|=4(Γ

′) and
ν ∈Mod|=4(Γ

′′). Now, consider the following valuation:

µ(p) =
{
ν(p) if p ∈ A(Γ′) ∪ A(ψ),
t otherwise.

As µ(φ) = ν(φ) for every formula φ ∈ Γ′∪{ψ}, we have
that µ ∈ Mod|=4(Γ

′) and µ 6∈ Mod|=4(ψ). Now, since
Γ′ `MI ψ, µ 6∈ Mod|=MI

(Γ′), and so there is a valuation
µ′ ∈Mod|=4(Γ

′) such that µ′ <> µ. Now, consider the
following valuation:

ν′(p) =
{
µ′(p) if p ∈ A(Γ′) ∪ A(ψ),
ν(p) otherwise.

Clearly, ν′ <> ν, and since ν′ is the same as µ′ onA(Γ′),
ν′ is also a model of Γ′. Moreover, using the facts that
both Γ′ and ψ are independent of Γ′′, it follows that ν′ ∈
Mod|=4(Γ

′′). Thus, ν′ ∈Mod|=4(Γ) and ν′ <> ν, which
implies that ν 6∈Mod|=MI

(Γ), but this is a contradiction
to the choice of ν. 2

Corollary 29 Suppose that Γ′ and Γ′′ are a partition
of Γ and that Γ′ is classically consistent. Then any
non-tautological resolvent of two clauses in Γ′ is `MI-
deducible from Γ.
Proof. If ψ is a resolvent of two clauses in Γ′ then
Γ′ ` ψ. Also, A(ψ) ⊆ A(Γ′), thus ψ is independent of
Γ′′. By Proposition 28, then, Γ `MI ψ. 2

Note 30 As Example 26 shows, Corollary 29 does not
hold in general (i.e., for resolvents of clauses in any the-
ory), so `MI admits a restricted form of resolution (and
so of the disjunctive syllogism), adhering consistency
(cf. Proposition 17).

The syntactical counterpart 
MI of `MI is defined as
follows:
Definition 31 For I, J ∈ P(A±) we denote by I ≤> J
that {p ∈A | p+, p− ∈ I} ⊆ {p ∈A | p+, p− ∈ J}}. If
the above containment is proper, we write I <> J .
Notation 32 Given a theory Γ and a formula ψ ∈ N ,
we denote:
Mod‖=MI

(Γ) = {I ∈Mod‖=4(Γ) |
if J <> I then J 6∈Mod‖=4(Γ)}.

Γ 
MI ψ iff Mod‖=MI
(Γ) ⊆Mod|=4(ψ).

Again, it is easy to see that for information states
I, J ∈ P(A±) it holds that I <> J (in the sense
of Definition 31) iff σ(I) <> σ(J) (in the sense of
Definition 23). Similarly, for valuations ν, µ ∈ Λ,
ν <> µ iff σ−1(ν) <> σ−1(µ). Thus, we have that
Mod‖=MI

(Γ) = {σ−1(ν) | ν ∈ Mod|=MI
(Γ)} and that

Mod|=MI
(Γ) = {σ(I) | I ∈ Mod‖=MI

(Γ)}, which implies
that 
MI and `MI coincide.



Knowledge Minimization
Since Mod|=MI

(Γ) ⊆ Mod|=4(Γ) and Mod|=QC
(Γ) ⊆

Mod|=4(Γ), the set of models needed for drawing con-
clusions by `MI and by `QC is never bigger than those
needed for drawing conclusions by `4. In this section
we present a natural approach for reducing the num-
ber of models even further, without changing the logic.
The idea is to consider, in each logic, the ⊆-minimal
information states of the premises, or – equivalently –
to take advantage of the knowledge order ≤k of FOUR
and to consider the ≤k-minimal valuations among the
models of the premises. The intuition behind this re-
finement is that one should not assume anything that
is not really known.
Definition 33 For ν, µ ∈Λ we denote by ν ≤k µ that
for every p ∈A, ν(p) ≤k µ(p). We denote by ν <k µ
that ν ≤k µ and there is a p ∈A such that ν(p) <k µ(p).
Notation 34 Given a set S ⊆ P(A±) of information
states and a set V ⊆ Λ of valuations, we denote:
Min⊆(S) = {I ∈ S | if J ⊂ I then J 6∈ S}.
Min≤k

(V) = {ν ∈ V | if µ <k ν then µ 6∈ V}.
Using Notation 34 we can now introduce a variety

of derivatives of the entailments relations considered
previously, adhering knowledge-minimization.
Notation 35 Given a theory Γ and a formula ψ ∈ N ,
for every logic x ∈ {4,QC,MI} we denote:
Γ 
⊆

x ψ iff Min⊆(Mod‖=x
(Γ)) ⊆Mod‖=4(ψ).

Γ `≤k
x ψ iff Min≤k

(Mod|=x
(Γ)) ⊆Mod|=4(ψ).

Proposition 36 Knowledge minimization with respect
to ⊆ and ≤k are dual:

a) Γ 
⊆
4 ψ iff Γ `≤k

4 ψ.

b) Γ 
⊆
MI ψ iff Γ `≤k

MI ψ.

c) Γ 
⊆
QC ψ iff Γ `≤k

QC ψ.

Proof. We show Part (a); The proof of the other two
parts is similar. For each information states I, J ,
I ⊆ J iff
∀p ∈ A± p+∈ I ⇒ p+∈ J and p−∈ I ⇒ p−∈ J , iff
∀p ∈ A σ(I)(p) ≤k σ(J)(p), iff
σ(I) ≤k σ(J).

By Lemma 9, Mod‖=4(Γ) = {σ−1(ν) | ν ∈ Mod|=4(Γ)}
and Mod|=4(Γ) = {σ(I) | I ∈Mod‖=4(Γ)}, thus:
Min⊆(Mod‖=4(Γ))={σ−1(ν) | ν ∈Min≤k

(Mod|=4(Γ))},
Min≤k

(Mod|=4(Γ))={σ(I) | I ∈Min⊆(Mod‖=4(Γ))}.

It follows, then, that:

• If Γ 6
⊆
4 ψ then there is an I ∈Min⊆Mod‖=4(Γ) such

that I 6∈ Mod‖=4(ψ), thus σ(I) ∈ Min≤k
Mod|=4(Γ)

and σ(I) 6∈Mod|=4(Γ), so Γ 6`≤k

4 ψ.

• If Γ 6`≤k

4 ψ then there is a ν ∈Min≤k
Mod|=4(Γ) and

ν 6∈ Mod|=4(ψ). Thus, σ−1(ν) ∈ Min⊆Mod‖=4(Γ)
and σ−1(ν) 6∈Mod‖=4(ψ), so Γ 6
⊆

4 ψ. 2

Proposition 37 All the logics considered above are
preserved under knowledge minimization: for every the-
ory Γ (not necessarily finite) and a formula ψ,

a) Γ `4 ψ iff Γ `≤k

4 ψ.

b) Γ `MI ψ iff Γ `≤k

MI ψ.

c) Γ `QC ψ iff Γ `≤k

QC ψ.

Proof. Parts (a) and (b) follow, respectively, from
Corollary 32 and Proposition 59 of (Arieli and Avron
1998). For Part (c) we adjust a similar proof in (Arieli
and Avron 1998) to quasi-classical logic. First, we show
the following lemma:

Lemma 38 For every ν ∈ Mod|=QC
(Γ) there is a µ ∈

Min≤k
(Mod|=QC

(Γ)) such that µ ≤k ν.
Proof. Indeed, for a valuation ν ∈ Mod|=QC

(Γ) con-
sider the set Sν = {νi | νi ∈ Mod|=QC

(Γ), νi ≤k ν}.
Suppose that C ⊆ Sν is a descending chain with re-
spect to ≤k. We shall show that C is bounded in
Sν , so by Zorn’s lemma Sν has a minimal element,
which is the required valuation in Min≤k

(Mod|=QC
(Γ)).

Let µ be the following valuation: for every p ∈ A,
µ(p) = min≤k

{νi(p) | νi ∈ C}. This µ is well defined
since C is a chain of four-valued valuations. Obviously,
µ bounds C. It remains to show that µ ∈ Sν . Sup-
pose that ψ ∈ Γ and A(ψ) = {p1, . . . , pn}. Then:
µ(p1) = νi1(p1), . . . , µ(pn) = νin(pn). Since C is a
chain we may assume, without a loss of generality, that
νi1 ≥k . . . ≥k νin , and so µ is the same as νin on every
atom in A(ψ). Since νin ∈Mod|=QC

(ψ), so is µ. This is
true for every ψ ∈ Γ, and so µ ∈ Sν as required.

Now, back to the proof of Part (c) in Proposition 37:
One direction is obvious: if Γ `QC ψ then Mod|=QC

(Γ) ⊆
Mod|=4(ψ). But Min≤k

(Mod|=QC
(Γ)) ⊆ Mod|=QC

(Γ),
hence Min≤k

(Mod|=QC
(Γ)) ⊆Mod|=4(ψ), and so Γ `≤k

QC

ψ. For the converse, let ν ∈Mod|=QC
(Γ). By Lemma 38

there is a valuation µ ∈Min≤k
(Mod|=QC

(Γ)) such that
µ ≤k ν. As Γ `≤k

QC ψ, µ ∈ Mod|=4(ψ), that is, µ(ψ) ∈
D = {t,>}. Since all the operators that correspond to
the connectives of ψ are monotone with respect to ≤k,
ν(ψ) ≥k µ(ψ). But D is upwards-closed with respect to
≤k, therefore ν(ψ) ∈ D as well, i.e., ν ∈Mod|=4(ψ). It
follows that Mod|=QC

(Γ) ⊆Mod|=4(ψ), and so Γ `QC ψ.
2

Example 39 Let Γ = {pi ∨ pi+1, pi ∨ ¬pi+1 | i ≥ 1}.
This theory has an infinite number of QC-models, as
{ν1, ν2, . . .} ⊂ Mod|=QC

(Γ), where ∀i, j ≥ 1 νi(pj) = >
if j ≥ i and νi(pj) = t if j < i. On the other hand, there
is only one ≤k-minimal QC-model of Γ, denote it µ, in
which µ(pj) = t for every pj ∈ A. By Proposition 37,
then, it suffices to consider only µ for the QC-inferences
of Γ, that is, Γ `QC ψ iff µ |=4 ψ.

Knowledge minimization is therefore admitted by all
the formalisms that we have considered:

Corollary 40 For a theory Γ and a formula ψ ∈ N ,



a) Γ `4 ψ iff Γ 
4 ψ iff Γ 
⊆
4 ψ iff Γ `≤k

4 ψ.

b) Γ `MI ψ iff Γ 
MI ψ iff Γ 
⊆
MI ψ iff Γ `≤k

MI ψ.

c) Γ `QC ψ iff Γ 
QC ψ iff Γ 
⊆
QC ψ iff Γ `≤k

QC ψ.

Proof. Item (a) follows from Propositions 10, 36(a), and
37(a); Item (b) follows from the note at the end of the
previous section and from Propositions 36(b) and 37(b);
Item (c) follows from Propositions 21, 36(c), 37(c). 2

Comparing the Logics
As noted before, an important difference among the
three formalisms considered above is their attitude to-
wards the disjunctive syllogism. The following example
illustrates this.

Example 41 Let Γ = {p,¬p, q,¬p ∨ r,¬q ∨ s}. Bel-
nap’s consequence relation excludes any application of
the disjunctive syllogism, thus Γ 6`4 r and Γ 6`4 s. On
the other extreme, quasi-classical logic supports every
application of resolution in Γ, therefore Γ `QC r and
Γ `QC s. The logic of inconsistency minimization is
situated in an intermediate level: as Γ can be parti-
tioned to two independent fragments Γ′ = {q,¬q ∨ s}
and Γ′ = {p,¬p,¬p ∨ r}, the former of which is classi-
cally consistent, then by Proposition 28 the disjunctive
syllogism is supported only with respect to its consis-
tent fragment, hence Γ `MI s while Γ 6`MI r.

Next, we investigate the relative strength of the three
formalisms.

Proposition 42 For every theory Γ and ψ ∈ N ,
a) if Γ `4 ψ then Γ `MI ψ,

b) if Γ `MI ψ then Γ `QC ψ.

Note 43 The two items of Proposition 42 imply that
Γ `QC ψ whenever Γ `4 ψ, and so `4⊆`MI⊆`QC. Note
that by Example 41 these containments are, in fact,
strict (see also Examples 22, 26). Moreover, unlike `4

and `QC that are monotonic (see, respectively, (Arieli
and Avron 1996, Proposition 3.10) and (Hunter 2000,
Proposition 4.32)), `MI is nonmonotonic. This is
demonstrated in Example 26: for Γ = {¬p, p ∨ q} we
have that Γ `MI q but Γ ∪ {p} 6`MI q.

Proof Outline of Proposition 42. Part (a) simply fol-
lows from the fact that Mod|=MI

(Γ) ⊆ Mod|=4(Γ). For
Part (b), suppose first that Γ consists only of clauses.
We consider two operators that construct a theory from
a theory and a valuation:
• T1(Γ, ν) is the theory that is obtained from Γ by re-

moving all the clauses in which there is a literal l
such that ν(l) = >.

• T2(Γ, ν) is the theory that is obtained from Γ by re-
moving from every clause in Γ the literals l such that
ν(l) = >.7

7Consider for instance the theory Γ = {p,¬p, p ∨ q} of
Examples 22 and 26, and let ν ∈ Λ such that ν(p) = >.
Then T1(Γ, ν) = ∅ and T2(Γ, ν) = {q}.

The following facts are easily verified:
Fact 1: If ν∈Mod|=MI

(T1(Γ, ν)) there is µ∈Mod|=MI
(Γ)

such that µ ≤> ν and µ ≤k ν (either µ = ν or µ is
obtained from ν by letting µ(pi) ∈ {t, f,⊥} for some
pi ∈ A(Γ) \ A(T1(Γ, ν)) such that ν(pi) = >).
Fact 2: If ν ∈Mod|=QC

(Γ) then ν ∈Mod|=QC
(T2(Γ, ν)).

Also, by the definitions of T1 and T2, for every clause
C1 in T1(Γ, ν) there is a clause C2 in T2(Γ, ν) such that
C1 is a subformula of C2. Thus:
Fact 3: Mod|=4(T2(Γ, ν)) ⊆Mod|=4(T1(Γ, ν)).

Now, if Γ 6`QC ψ, there is ν ∈Mod|=QC
(Γ) \Mod|=4(ψ).

By Fact 2, ν ∈ Mod|=QC
(T2(Γ, ν)) \ Mod|=4(ψ), thus

ν ∈ Mod|=4(T2(Γ, ν)) \Mod|=4(ψ), and by Fact 3, ν ∈
Mod|=4(T1(Γ, ν)) \Mod|=4(ψ). Note that this implies,
in particular, that there is no p ∈ A(T1(Γ, ν)) ∪ A(ψ)
such that ν(p) = >. Consider a valuation ν′ ∈ Λ that is
identical to ν on A(T1(Γ, ν))∪A(ψ) and ν(p) 6= > else-
where. Then ν′ ∈Mod|=MI

(T1(Γ, ν))\Mod|=4(ψ). Now,
by Fact 1, there is a valuation µ ∈Mod|=MI

(Γ) such that
µ ≤k ν′. Since ν′ 6∈Mod|=4(ψ), µ 6∈Mod|=4(ψ) as well.
Thus Mod|=MI

(Γ) 6⊆Mod|=4(ψ), and so Γ 6`MI ψ.
The proof for sets of CNF-formulas follows from the
proof above by the fact that C1 ∧ . . . ∧ Cn `x ψ iff
C1, . . . , Cn `x ψ for both x = QC and x = MI. 2

A graphic representation of the results in Corollary 40
and Proposition 42 is given in Figure 2.

As the next result shows (see Proposition 1–3
in (Coste-Marquis and Marquis 2005)), the formalisms
considered above also differ in their computational com-
plexity.

Proposition 44 Deciding whether a formula ψ ∈ N
follows from a theory Γ is in P for `4, is coNP-complete
for `QC, and is Πp

2-complete for `MI.8

Summary
Paraconsistent reasoning requires the weakening of ei-
ther the disjunctive syllogism or the law of disjunction
introduction. In this paper, we have considered three
different approaches for doing so in the context of four-
states logics, and investigated the relative expressive
power of three logics, each one represents a different ap-
proach. More specifically, we compared quasi-classical
logic – whose definition is syntactical in nature and mo-
tivated by the need to preserve the resolution principle
– to a logic of inconsistency minimization, that is based
on purely semantical considerations, and which toler-
ates classically valid rules only with respect to classi-
cally consistent fragments of the premises.

Despite their different attitudes to the application
of the disjunctive syllogism, all the investigated for-
malisms share the knowledge minimization property,

8When Γ and ψ are an arbitrary set of formulas and a
formula in L, the decision problem for `4 becomes coNP-
complete, and remains Πp

2-complete for `MI.



Figure 2: Classes of paraconsistent entailments in four-valued logics (Entailments within the same box are equivalent;
Entailments in a higher box are weaker than those in a lower box).

which allows to reduce the number of models without
affecting the conclusions. This also may be captured, in
the context of four possible states of information, as a
kind of consistency preserving method: As long as one
keeps the redundant information as minimal as possible
the tendency of getting into conflicts decreases.
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