
Reduing Preferential Paraonsistent Reasoningto Classial EntailmentOfer Arieli Mar DenekerDepartment of Computer Siene, Department of Computer Siene,The Aademi College of Tel-Aviv The Catholi University of LeuvenAntokolski 4, Tel-Aviv 61161, Israel Celestijnenlaan 200A, B-3001 Heverlee, Belgiumoarieli�mta.a.il mard�s.kuleuven.a.beAugust 15, 2002AbstratWe introdue a general method for paraonsistent reasoning in the ontext of lassial logi.A standard tehnique for paraonsistent reasoning on inonsistent lassial theories is by shiftingto multiple-valued logis. We show how these multiple-valued theories an be \shifted bak" totwo-valued lassial theories through a polynomial transformation, and how preferential reason-ing based on multiple-valued logi an be represented by lassial irumsription-like axioms. Byapplying this proess we provide new ways of implementing multiple-valued paraonsistent rea-soning. Standard multiple-valued reasoning an thus be performed through theorem provers forlassial logi, and multiple-valued preferential reasoning an be implemented using algorithmsfor proessing irumsriptive theories (suh as DLS and SCAN).Keywords: paraonsistent reasoning, preferential semantis, irumsription, multiple-valuedlogis.1 IntrodutionIt is well-known that lassial logi is inappropriate for imitating \ommon-sense" reasoning ingeneral, and for reasoning with unertainty in partiular. Indeed, on one hand lassial logi istoo autious in drawing onlusions from inomplete theories. This is so sine lassial logi ismonotoni, thus it does not allow to retrat previously drawn onlusions in light of new, moreaurate information. On the other hand, lassial logi is too liberal in drawing onlusions frominonsistent theories. This is explained by the fat that lassial logi is not paraonsistent [12℄,therefore everything lassially follows from a ontraditory set of premises.Preferential reasoning [34℄ is an elegant way to overome lassial logi's shortoming for rea-soning on unertainty. It is based on the idea that in order to draw onlusions from a given theoryone should not onsider all the models of that theory, but only a subset of preferred models. Thissubset is usually determined aording to some preferene riterion, whih is often de�ned in termsof partial orders on the spae of valuations. This method of preferring some models and disregarding1



the others yields robust formalisms that allow to draw intuitive onlusions from partial knowledge.In the ontext of lassial logi, preferential semantis annot help to overome the problem oftrivial reasoning with ontraditory theories. Indeed, if a ertain theory has no (two-valued) models,then it has no preferred models as well. A useful way of reasoning on ontraditory lassial theoriesis therefore by embedding them in multiple-valued logis in general, and Belnap's four-valued logi[8, 9℄ in partiular (whih is the underlying multiple-valued semantis used here). There are severalreasons for using this setting. The most important ones for our purposes are the following:� In the ontext of four-valued semantis it is possible to de�ne onsequene relations that arenot degenerated w.r.t. any theory (see, e.g., [3, 4, 31, 32, 35℄); the fat that every theory hasa nonempty set of four-valued models implies that four-valued reasoning may be useful forproperly handling inonsistent theories. As shown e.g. in [3, 4℄, this indeed is the ase.� Analysis of four-valued models an be instrutive to pinpoint the auses of the inonsistenyand/or the inompleteness of the theory under onsideration. (See [3, 4, 8, 9℄ for a detaileddisussion on this property, as well as some relevant results).However, Belnap's four-valued logi has its own shortomings:� As in lassial logi, many theories have too many models, and as a onsequene the entailmentrelation is often too weak. In fat, sine Belnap's logi is weaker than lassial logi w.r.t.onsistent theories1, we are even in a worse situation than in lassial logi!A (partial) solution to this problem is by using preferential reasoning in the ontext of multiple-valued logi (see, e.g., [2, 3, 4, 5, 22, 23, 31, 32℄).� At the omputational level, implementing paraonsistent reasoning based on four-valued se-mantis poses important hallenges. An e�etive implementation of theorem provers for oneof the existing proof systems for Belnap's logi requires a major e�ort. The problem is evenworse in the ontext of four-valued preferential reasoning, for whih urrently no proof systemsare known.Our goal in this paper is to show a way in whih these problems an be solved. In partiu-lar, we present a polynomial transformation bak from four-valued theories to two-valued theoriessuh that reasoning in preferential four-valued semantis an be implemented by standard theoremproving in two-valued logi.2 Moreover, preferene riteria on four-valued theories are translatedinto \irumsriptive-like" formulae [28, 29℄, and thus paraonsistent reasoning may be automati-ally omputed by some speialized methods for ompiling irumsriptive theories (suh as thosedesribed in [19, 33℄), and inorporated into algorithms suh as SCAN [30℄ and DLS [13, 14℄, forreduing seond-order formulae to their �rst-order equivalents.1That is, everything that follows in Belnap's four-valued logi from a given theory also lassially follows from thattheory, but not vie-versa. For instane, the rule of exluded middle (either  or : should hold for every  ) and theDisjuntive Syllogism (from  _ � and :� onlude  ) are not sound in Belnap's four-valued logi.2Similar tehnique, of shifting bak and forth between lassial and non-lassial logis, is also onsidered in [17℄,where it is shown that it is possible to aomplish belief revision in any logi that is translatable to lassial logi.2



In the last part of this paper we show that our approah of representing preferential onsidera-tions by higher-order formulae an be generalized to ases in whih arbitrarily many truth values areneeded (suh as in probabilisti reasoning or fuzzy logis). For that we use Ginsberg/Fitting's bilat-ties [16, 18℄, whih are algebrai strutures that naturally extend Belnap's four-valued struture.It is shown that within the bilattie-based semantis one an use the same methods for syntatiallyrepresenting preferenes in many-valued logis.The rest of this paper is organized as follows: in the next setion we show how paraonsistentfour-valued reasoning on a logi theory an be simulated by lassial reasoning on a suitably trans-lated �rst order theory. In Setion 3 we show, moreover, that four-valued preferential reasoningon a logi theory an be simulated by amalgamating its translation with seond-order formulae.In Setion 4 we extend these results to general multiple-valued formalisms, and in Setion 5 weonlude. 32 Paraonsistent lassial reasoningIn order to de�ne the redution of paraonsistent (four-valued) reasoning to lassial logi, we �rstde�ne the underlying framework for representing inonsistent (and inomplete) theories. Then weonsider a polynomial transformation of theories in this framework to \equivalent" lassial theories.Finally, in the last part of this setion we use this transformation for simulating paraonsistentreasoning (as well as reasoning with inomplete information) by lassial logi.2.1 The underlying semantial strutureThe formalism that we onsider here is based on four-valued semantis. Four-valued reasoning maybe traed bak to the 1950's, where four-valued formalisms have been investigated by a numberof people, inluding Bialyniki-Birula [10℄, Rasiowa [11℄, and Kalman [20℄. In the sequel we shalluse a orresponding four-valued algebrai struture (denoted here by FOUR), introdued later byBelnap [8, 9℄. This struture is omposed of four elements FOUR = ft; f;?;>g, arranged in thefollowing two lattie strutures:� (FOUR;�t), in whih t is the maximal element, f is the minimal one, and >;? are twointermediate and inomparable elements.� (FOUR;�k), in whih > is the maximal element, ? is the minimal one, and t; f are twointermediate and inomparable elements.Here, t and f orrespond to the lassial truth values. The two other truth values may intuitively beunderstood as representing di�erent ases of unertainty: > orresponds to the ontraditory truthvalue (i.e., the orresponding assertion and its negation are both true), and ? orresponds to aninomplete truth value (i.e., neither the assertion nor its negation are true). This interpretation ofthe meaning of the truth values will be useful in what follows for modeling paraonsistent reasoning.43This is a revised and an extended version of [6℄.4This was also the original motivation of Belnap when he introdued FOUR. See [3, 4℄ for some further argumentsin favor of using this struture as a semantial bakground of formalisms for ommon-sense reasoning.3



Aording to this interpretation, the partial order �t reets di�erenes in the amount of truth thateah element represents, and the partial order �k reets di�erenes in the amount of knowledge(or information) that eah element exhibits. A double-Hasse diagram of FOUR is given in Figure1. 5 6�k
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Figure 1: Belnap's four-valued struture, FOURIn what follows we shall denote by ^ and _ the meet and join operations on (FOUR;�t), andby 
 and � the meet and the join operations on (FOUR;�k). A negation, :, is a unary operationon FOUR, de�ned by :t=f , :f= t, :>=>, and :?=?. As usual in suh ases, we take t and >as the designated elements in FOUR (i.e., the elements that represent true assertions).In the rest of this paper we denote by � a language with a �nite alphabet, in whih the onne-tives are _;^;:. These onnetives orrespond to the operations on FOUR with the same notations.� and � denote arbitrary four-valued valuations, i.e., funtions that assign a value in FOUR to everyatom in �. The extension to omplex formulae in � is de�ned in the usual way. The spae of thefour-valued valuations is denoted by V4. A valuation �2V4 is a model of a formula  (alternatively,� satis�es  ) if �( )2ft;>g. � is a model of a set � of formulae if � is a model of every  2�. Theset of the models of � is denoted by mod(�).2.2 An alternative representation of semantial oneptsThe elements of FOUR an be represented by pairs of omponents from the two-valued lattie(f0; 1g; 0 < 1) as follows: t= (1; 0), f = (0; 1), >= (1; 1), ?= (0; 0). One way to understand thisrepresentation is that a four-valued truth value (x; y) for p orresponds to a two-valued truth valuex for p and a two-valued truth value y for :p. Note that this reading is in aordane with theoriginal intuitive meaning of the truth values in FOUR, disussed in Setion 2.1. Aording to thisrepresentation, the negation operator is de�ned in FOUR by :(x; y)=(y; x), and the orresponding5The latties (FOUR;�t) and (FOUR;�k) are referred to in Belnap's papers [8, 9℄ as the logial lattie (L4) andthe approximation lattie (A4), respetively, whereas the truth-values ? and > as None and Both, respetively. Herewe follow the alternative way of denoting these elements, used, e.g., in [2, 3, 4, 5, 6, 15, 16℄.4



partial orders in are represented by the following rules: for every x1; x2; y1; y22f0; 1g,(x1; y1) �t (x2; y2) i� x1�x2 and y1�y2; (x1; y1) �k (x2; y2) i� x1�x2 and y1�y2:It follows, in partiular, that in the representation by pairs of two-valued omponents, the basibinary operations on FOUR are de�ned as follows:(x1; y1) _ (x2; y2) = (x1 _ x2; y1 ^ y2); (x1; y1) ^ (x2; y2) = (x1 ^ x2; y1 _ y2);(x1; y1)� (x2; y2) = (x1 _ x2; y1 _ y2); (x1; y1)
 (x2; y2) = (x1 ^ x2; y1 ^ y2):It is obvious that the above representation of the truth values in terms of pairs of two-valuedomponents implies a similar way of representing four-valued valuations; a four-valued valuation �may represented in terms of pair of two-valued omponents (�1; �2) by �(p)= (�1(p); �2(p)). So if,for instane, �(p)= t, then �1(p)=1 and �2(p)=0.Next we propose a tehnique to ompute the truth value of a formula in four-valued logi, bytransforming it to a formula that an be evaluated in two-valued logi. This is alled a splittingtransformation.De�ne the sope of a negation operator : in the formula : as the set of all appearanes ofpropositional symbols in  .De�nition 2.1 Let  be a formula. We say that an appearane of p in  is positive, if it appearsin the sope of an even number of negation operators in  ; otherwise, it is a negative appearane.Example 2.2 Let  = :(p _ :q) _ :q. Then the �rst appearane of q in  is positive, and theseond appearane of q in  is negative.Let  be a formula in a language �. Denote by  the formula that is obtained by substitutingevery positive ourrene in  of an atomi formula p by a new prediate symbol p+, and replaingevery negative ourrene in  of an atomi formula p by :p�. For instane, if  is the formulaof Example 2.2, then  = :(:p� _ :q+) _ ::q�. Given a theory �, we shall write � for the setf j  2�g. The language that is obtained from � by introduing these new prediate symbols willbe denoted in what follows by ��.Given a four-valued valuation � = (�1; �2) of the atomi formulae ~p in �, � denotes the two-valued valuation on the atoms of ��, whih interprets symbols p+ as �1(p) and symbols p� as�2(p). Sometimes we shall \unfold" this notation and instead of � we shall write (~p + :�1 ; ~p � :�2).� is a standard two-valued interpretation of atoms in �� and an be extended to omplex formulaein the usual way. 6Notation 2.3 For a valuation �=(~p + :�1 ; ~p � :�2), denote rev(�)=(~p + ::�2 ; ~p � ::�1).6Clearly, the onverse onstrution is also possible: every two-valued valuation � on �� orresponds to a uniquefour-valued valuation �0 on � de�ned, for every atom p, by �0(p)=(�(p+); �(p�)).5



Proposition 2.4 Let �=(�1; �2). Then �( ) = (�( ); :rev(�)( )).Proof: The proof is rather tehnial; we give it in the appendix. 2Note 2.5 Proposition 2.4 shows how to represent valuations in terms of their split ounterparts.It will have a entral role in showing some of the next results (e.g., Theorems 2.8 and 4.15 be-low). It is interesting to note that this proposition holds also w.r.t. another (polynomial) splittingtransformation of formulae in the language, used e.g. in [6℄, whih an be de�ned as follows: for aformula  in � denote by e the formula in ��, obtained from  by �rst translating  to its negationnormal form,  0 (where the negation operator preedes atomi formulae only),7 then substitutingevery atomi formula p, whih is not preeded by a negation, by a new prediate symbol p+, andreplaing every other atomi formula q in  0, together with the negation that preedes it, by a newprediate symbol q�. For instane, if  = :(r _ :s), then e = r� ^ s+.Proposition 2.4 holds also w.r.t. the alternative transformation (see [6℄ for the proof), and so allthe relevant results in the sequel an be obtained w.r.t. either one of the splitting transformations.Here we shall use the original transformation, whih is applied diretly on the underlying formularather than on its representation in negation normal form.2.3 Simulating four-valued reasoning by lassial logiA natural de�nition of a onsequene relation on FOUR is the following:De�nition 2.6 Let � be a set of formulae and  a formula in �. Denote � j=4 if every four-valuedmodel of � is a four-valued model of  .In [2℄ it is shown that j=4 is a onsequene relation in the sense of Tarski [36℄, and that itis paraonsistent and ompat. Moreover, as it is shown in [2, 7℄, j=4 has a ut-free, sound andomplete Gentzen-type proof system (known as \the f^;_;:g-fragment of GBL" in [2℄, or \the basif^;_;:g-system" in [7℄), whih is the same as the system of \�rst degree entailments" in relevanelogi [1℄. In fat, for formulae  ; 1; : : : ;  n in �, the following onditions are equivalent:1.  1; : : : ;  n j=4  .2.  1; : : : ;  n )  is provable in GBL (or in the \intuitionisti" version of it, GBLI [2℄)3.  1^ : : : ^ n !  is provable in the system R (or E) of Anderson and Belnap [1℄.4. For every valuation � in V4, �( 1^ : : : ^ n) �t �( ).In partiular, the last item provides an alternative de�nition for j=4 w.r.t. the language � (f.De�nition 2.6).In what follows we use the pairwise representations, onsidered in Setion 2.2, for showing thatfour-valued reasoning an be simulated by lassial reasoning. The justi�ation for doing so is thefollowing lemma:7It is easy to verify that as in the two-valued ase,  and  0 are logially equivalent in FOUR.6



Lemma 2.7 For every four-valued valuation � and a formula  in �, �( ) is designated i� �( )=1.Proof: �( ) is designated i� �1( )=1, i� (Proposition 2.4) �( )=1. 2The following result is an immediate orollary of Lemma 2.7:Theorem 2.8 Denote by j=2 the two-valued lassial onsequene relation. Then � j=4 i� � j=2 .It follows, therefore, that four-valued reasoning may be implemented by two-valued theoremprovers. Moreover, sine � is obtained from � in a polynomial time, the theorem above showsthat four-valued entailment in the ontext of Belnap's logi is polynomially reduible to lassialentailment.Another immediate onsequene of this theorem is the next well-known result:Corollary 2.9 In positive logi (i.e., in the language without negations), � j=4 i� � j=2 .Proof: Follows from Theorem 2.8 and the fat that in the language without negations � is the sameas �. 2Note 2.10 Reently and independently, Gabbay, Rodrigues and Russo [17℄ have provided anotherway (motivated by di�erent arguments) to simulate (basi) four-valued reasoning by lassial en-tailment. Roughly, the idea in [17℄ is to use a two sorted �rst-order language, omposed of a sort forrepresenting formulae (in the language of ^;_;:) and a sort for the truth-values. The language alsoontains a speial two-sorted binary prediate, denoted hold, where holds( ; t) intuitively meansthat there is some �2V4 s.t. �( )�k t, and holds( ; f) intuitively means that there is some �2V4s.t. �( )�k f . In addition, a set A with the following axioms is onsidered:8x ( holds(x; f)$ holds(:x; t) ) 8x ( holds(x; t)$ holds(:x; f) )8x8y ( holds(x^y; t)$ holds(x; t) ^ holds(y; t) ) 8x8y ( holds(x^y; f)$ holds(x; f) _ holds(y; f) )8x8y ( holds(x_y; t)$ holds(x; t) _ holds(y; t) ) 8x8y ( holds(x_y; f)$ holds(x; f) ^ holds(y; f) )In the present notations, the following result holds (f. Theorem 2.8):Proposition 2.11 [17℄ Let � be a set of formulae and  a formula in �. Then:� j=4 i� A[ fholds(; t) j 2�g j=2 holds( ; t) and A[ f:holds(; f) j 2�g j=2 :holds( ; f).3 Preferential reasoningDespite the nie properties of j=4, it appears that it has several drawbaks. One of whih is thatj=4 is stritly weaker than lassial logi, even for onsistent theories (e.g., 6j=4  _: ). Also, itompletely invalidates some intuitively justi�ed inferene rules, like the Disjuntive Syllogism: from: and  _� one annot infer  by using j=4. Finally, the fat that j=4 is a Tarskian onsequenerelation means, in partiular, that it is monotoni, and as suh it is \over-autious" in drawingonlusions from inomplete theories. 7



In order to overome these drawbaks of j=4, we onsider in this setion a re�ned way of drawingonsequenes from a given theory, known as preferential reqsoning [34℄. This is a general modeltheory for non-monotoni inferenes, in whih the set of the semantial objets that desribe agiven theory is equipped with a preferene relation that intuitively reets some preferene riterionamong the given semantial objets. Inferenes are then made only aording to those elementsthat are the most-preferred ones w.r.t. the preferene relation.In the �rst part of this setion we quikly revise some basi onepts and notations that arerelated to preferential reasoning.8 Then we reall the tehniques of [4℄ for applying preferentialreasoning in the four-valued ontext. In the third part of this setion we show that, again, lassiallogi an be used for simulating the kind of reasoning in a four-valued semantis that we areinterested in. This time, in addition to the basi theory that is onverted to a lassial one, (seond-order) irumsribing formulae will be used for representing the orresponding preferene relations.We onlude this setion with experimental results for some simple test ases.3.1 PreliminariesDe�nition 3.1 A preferential model (w.r.t. a language �) is a tripleM=(M; j=;�), where� M is a set (of semantial objets, sometimes alled states),� j= is a relation on M�� (sometimes alled the satisfation relation), and� � is a binary relation on the elements of M (sometimes alled the preferene relation).Note that De�nition 3.1 is a very general one. Some formalisms make more spei� assumptionson the nature of the omponents of a preferential model. For instane, in the original de�nition ofShoham [34℄, eah preferential model orresponds to a theory �, the underlying semantial objets(i.e., the elements in M) are the models of � w.r.t. the satisfation relation j=, and the preferentialrelation � is a partial order on M .De�nition 3.2 Let M=(M; j=;�) be a preferential model, � a set of formulae in a language �,and m2M .a) m satis�es � (notation: m j=�) if m j= for every 2�.b) m preferentially satis�es � (alternatively, m is a �-most preferred model of �) if m satis�es� and there is no element n2M that satis�es �, and for whih n�m and m 6�n.) The set of the elements in M that preferentially satisfy � is denoted by !(�;�).Now we an de�ne the preferential entailment relations:De�nition 3.3 Let M = (M; j=;�) be a preferential model, � a set of formulae in �, and  aformula in �. We say that  (preferentially) follows from � (alternatively, � preferentially entails ), if every element of !(�;�) satis�es  . We denote this by � j=� .8Among the various ways of de�ning preferential reasoning that are given in the literature, we follow here that ofMakinson [27℄. 8



In ase thatM onsists of the models of �, De�nition 3.3 simply says that � preferentially entails if every �-preferred model of � is a model of  .The idea that a non-monotoni dedution should be based on some preferene riterion thatreets some normality relation among the relevant semantial objets is a very natural one, andmay be traed bak to [28℄. Furthermore, this approah is the semantial basis of some well-knowngeneral patterns for non-monotoni reasoning, introdued in [24, 25, 26, 27℄, and it is a key oneptbehind many formalisms for nonmonotoni and paraonsistent reasoning, suh as RI [22, 23℄, LPm[31, 32℄, and the bilattie-based logis of [2, 5℄. Our purpose in the rest of this paper is to proposetehniques of expressing some of the preferential relations used in these formalisms by formulae inthe underlying language. Next we de�ne the framework for doing so.3.2 Four-valued preferential reasoningIn what follows we desribe some partiularly useful ways of applying preferential reasoning in thefour-valued ase. See [4℄ for a more detailed disussion on the formailsms that are obtained.De�nition 3.4 [4℄ Let �; �2V4. Denote:� � �k � if �(p) �k �(p) for every atom p.� � �f>g � if for every atom p, �(p)=> whenever �(p)=>.� � �f>;?g � if for every atom p, �(p)2f>;?g whenever �(p)2f>;?g.It is easy to hek that �k is a partial order and �f>g, �f>;?g are pre-orders on V4. In whatfollows we shall write �<k� to denote that ��k� and � 6�k �; similarly for <f>g and <f>;?g.Eah one of these preferene orders has its own rationality: aording to �k, for instane, oneprefers valuations with as minimal information as reasonably possible. This is a ommon riterionfor making preferenes among di�erent semantis of a given theory.9 This riterion may as well beviewed as an argumentation for onsisteny preserving, sine as long as one keeps the amount ofinformation (or belief) as minimal as possible, the tendeny of getting into onits dereases.The pre-order �f>g states a somewhat more expliit preferene of inonsisteny minimization:it prefers those valuations that minimize the amount of inonsistent assignments. The last ordergiven in De�nition 3.4, �f>;?g, prefers those valuations that are as lassial as possible, i.e., thoseones that assign lassial truth values whenever possible.In terms of Setion 2.2, the preferene riteria of De�nition 3.4 may be reformulated as follows:Lemma 3.5 Let �; �2V4. Then:� ��k� i� for every atom p, �1(p)��1(p) and �2(p)��2(p).9Notable examples of formalisms that are based on the idea of �k-minimization are the well-founded semantis[37℄ and Fitting's �xpoint semantis [15℄ for general logi programs.9



� ��f>g� i� for every atom p, whenever �1(p)^�2(p)=1, �1(p)^�2(p)=1 as well.� ��f>;?g� i� for every atom p, whenever (�1(p)^�2(p)) _ (:�1(p)^:�2(p))=1, we have that(�1(p)^�2(p)) _ (:�1(p)^:�2(p))=1 as well.Proof: Immediately follows from the orresponding de�nitions. 2Alternatively, the preferene riteria above may be de�ned as follows:Corollary 3.6 Let �; �2V4. Then:� ��k� i� whenever �i(p)=1 then �i(p)=1, for i=1; 2.� ��f>g� i� whenever �1(p)=�2(p)=1 then �1(p)=�2(p)=1.� ��f>;?g� i� whenever �1(p)=�2(p) then �1(p)=�2(p).Given a set � of formulae in �, the minimal elements in mod(�) w.r.t. �k are alled the k-minimal models of �.10 Similarly, the minimal elements of mod(�) w.r.t. �f>g are alled the mostonsistent models of �, and the minimal elements of mod(�) w.r.t. �f>;?g are alled the mostlassial models of �.Example 3.7 Let �=fp;:p_q;:q; r_qg. The ten four-valued models of � are given in Table 1.Table 1: The elements in mod(�)Model No. p q rM1 �M2 > f t;>M3 �M6 t > ?; f; t;>M7 �M10 > > ?; f; t;>Thus, the k-minimal models of � are fM1;M3g, the most onsistent ones are fM1;M3;M4;M5g,and the most lassial ones are fM1;M4;M5g.Eah one of the preferene riteria onsidered in De�nition 3.4 indues a orresponding prefer-ential onsequene relation. Next we de�ne these relations:De�nition 3.8 [4℄ Let � be a set of formulae and  a formula in �. Denote:� � j=4k if every k-minimal model of � is a model of  .� � j=4f>g if every most onsistent model of � is a model of  .� � j=4f>;?g if every most lassial model of � is a model of  .10That is, �2mod(�) is a k-minimal model of � if there is no �2mod(�) s.t. �<k �.10



Example 3.9 Consider again the set � of Example 3.7, and let  =r_:r. Then � j=4f>;?g , while� 6j=4k and � 6j=4f>g .Clearly, the onsequene relations de�ned in 3.8 are partiular ases of the preferential entailmentrelations j=�, de�ned in 3.3 (see also the note after De�nition 3.3). Some important properties ofthese relations are listed in the next proposition:Proposition 3.10 [4℄ Denote by j=2 the two-valued lassial onsequene relation. For every set� of formulae and a formula  in �,1. � j=4k i� � j=4 .2. If � is lassially onsistent and  is a formula in CNF, none of its disjuntions is a tautology,then � j=4f>g i� � j=2 .3. If � is lassially onsistent then � j=4f>;?g i� � j=2 .4. j=4k, j=4f>g, and j=4f>;?g are paraonsistent.Note 3.11 Proposition 3.10 demonstrates the usefulness of the onsequene relations onsideredin De�nition 3.8:� Item 1 implies that j=4k is a ompat representation of j=4; it is suÆient to onsider only thek-minimal models of a given theory in order to simulate reasoning with j=4.� By item 2 it follows that in order to hek whether a formula lassially follows from aonsistent theory �, it is suÆient to onvert it to a onjuntive normal form, drop all theonjunts that are tautologies, and hek the remaining formula only w.r.t. the most onsistentmodels of �.� By items 3 and 4 it follows that j=4f>;?g is equivalent to lassial logi on onsistent theoriesand is nontrivial w.r.t. inonsistent theories.A more detailed disussion on the onsequene relations de�ned in 3.8 and some related onesappears in [4, 5℄. In the next setion we will show how to express the semantial onsiderationsbehind suh relations by seond-order formulae.3.3 Simulating preferential four-valued reasoning by irumsriptionIn this setion we show that four-valued preferential entailment an be de�ned in terms of lassialentailment for the transformed theories augmented with irumsriptive axioms. Indeed, in order toextend the tehnique of Setion 2.3 to deal with preferential four-valued reasoning, we must expressthat the enoded four-valued interpretation is minimal with respet to the preferene relation �.This is aomplished by introduing a irumsription axiom that expresses the preferene relation� objetively, by a formula 	�. Thus, the �rst point to hek out is how to express a semantialpreferene relation � in an axiom. 11



Let ~p = fp1; p2; : : :g be the set symbols of a language �. De�ne ~p � as the set of symbolsfp+1 ; p�1 ; p+2 ; p�2 ; : : :g. To be able to express for two valuations � = (�1; �2) and � = (�1; �2) that� � � by one formula, we introdue new symbols ~q as a renaming of the symbols of ~p. Similar asbefore, we de�ne (~p � : � ; ~q � :�) as the two-valued interpretation that interprets, for every i, thesymbols p+i as �1(p), p�i as �2(p), q+i as �1(p) and q�i as �2(p).De�nition 3.12 A preferential order � is represented by a formula 	�(~p �; ~q �) if for every four-valued valuations � and � we have that ��� i� (~p � :�; ~q � :�) satis�es 	�(~p �; ~q �).Proposition 3.13 Let 	�(~p �; ~q �) be a formula that represents a preferential order �. Then � isa �-most preferred model of  (that is, �2 !( ;�)) i� � satis�es  and the following formula:Cir�(~p �) = 8(~q �) f  (~q �) ! (	�(~q �; ~p �)! 	�(~p �; ~q �) ) g:Proof: By Corollary 2.7, � is a model of  i� � satis�es  . It remains to show that the fat that �satis�es Cir� is a neessary and suÆient ondition for assuring that � is a �-minimal element inthe set mod( ) of the models of  . Indeed, � satis�es Cir� i� for every valuation � that satis�es and for whih � � �, it is also true that � � �. Thus, for every � 2 mod( ), we have that(� � �)! (� � �) (alternatively, there is no � 2 mod( ) s.t. � < �), i.e., �2 !( ;�). 2Note 3.14 Let 	<(~q �; ~p �) = 	�(~q �; ~p �)^:	�(~p �; ~q �),11 and denote by ~p � = ~q � the formulaVni=1 ((p+i =q+i ) ^ (p�i =q�i )). Thena) The formula Cir� of Proposition 3.13 may be rewritten as follows:Cir�(~p �) = 8(~q �) f  (~q �) ! :	<(~q �; ~p �) gb) In ase that � is a partial order, Cir� an be rewritten as follows:Cir�(~p �) = 8(~q �) f [  (~q �) ^	�(~q �; ~p �) ℄! ~p � = ~q � gThe next theorem is an immediate orollary of Proposition 3.13:Notation 3.15 Denote by j=4� the onsequene relation j=� (De�nition 3.3), where the underlyingsemantial struture is FOUR, and the set of the designated elements is D=ft;>g.Theorem 3.16 Let � be a set of formula and  a formula in �. Let Cir� be the formula given inProposition 3.13 for a preferential relation �. Then � j=4� i� � [ Cir� j=2 .Proposition 3.13 gives a general haraterization in terms of \formula irumsription" [29℄ of thepreferred models of a given theory: given a preferential relation �, in order to express �-preferentialsatisfation of a theory, one should �rst formulate a orresponding formula 	� that represents �,and then integrate 	� with Cir� as in Proposition 3.13. Again, this an be done in a polynomialtime.Next we de�ne formulae that represent the preferential relations onsidered above. For that, weshall need the following notations:11It is easy to see that for all four-valued valuations � and �, �<� i� (~q � :�; ~p � :�) satis�es 	<(~q �; ~p �).12



Notation 3.17 In what follows we shall write x�y for x!y, and x�y for (x!y)^:(y!x).12Lemma 3.18 Let n be the number of di�erent atomi formulae in �. Then:a) The preferential relation �k is represented by the following formula:	�k(~p �; ~q �) = n̂i=1 ((p+i � q+i ) ^ (p�i � q�i )):b) The preferential relation �f>g is represented by the following formula:	�f>g(~p �; ~q �) = n̂i=1 ((p+i ^p�i ) � (q+i ^q�i )):) The preferential relation �f>;?g is represented by the following formula:	�f>g(~p �; ~q �) = n̂i=1 ( ((p+i ^p�i ) _ (:p+i ^:p�i )) � ((q+i ^q�i ) _ (:q+i ^:q�i )) ):Proof: We show only part (a); the proof of the other parts is similar.��k� () 81� i�n �(pi) �k �(pi)() 81� i�n �1(pi)��1(pi) and �2(pi)��2(pi)() (~p � :�; ~q � :�) satis�es Vni=1 ((p+i � q+i ) ^ (p�i � q�i ))() (~p � :�; ~q � :�) satis�es 	�k(~p �; ~q �) 2By Proposition 3.13, Lemma 3.18(a), and Note 3.14(b), we have the following orollary:Corollary 3.19 A valuation �=(�1; �2) is a k-minimal model of  i� � satis�es  and Cir�k(~p �),where Cir�k(~p �) is the following formula: 138(~q �) f [  (~q �) ^ n̂i=1 ((q+i � p+i ) ^ (q�i � p�i )) ℄ ! [ n̂i=1 ((q+i = p+i ) ^ (q�i = p�i )) ℄ gAs in Corollary 3.19, the most onsistent models and the most lassial models of a given the-ory an be represented by formulae of the form Cir�f>g(~p �) and Cir�f>;?g(~p �), obtained byrespetively integrating the formulae given in parts (b) and () of Lemma 3.18 with Cir�, given inProposition 3.13.In what follows we onsider a uniform way of representing Cir�f>g(~p �), Cir�f>;?g(~p �), andsome other formulae that orrespond to preferential riteria like �f>g and �f>;?g. For this, let12Thus, x�y = (x�y)^ :(y�x).13Note that Cir�k(~p �) is a standard irumsriptive axiom in the sense of [28℄.13



��FOUR. De�ne an order relation <� on FOUR by x<� y i� x 62� while y2�. A orrespondingpre-order on V4 may now be de�ned as follows: for every �; � 2 V4, � �� � i� for every atom p,the fat that �(p) 2� entails that �(p) 2� as well. The ��-most preferred models of � are the��-minimal elements inmod(�), and � j=4� if every ��-most preferred model of � is a model of  .Clearly, �f>g and �f>;?g are partiular ases of ��, where �= f>g and �= f>;?g, respe-tively. Now, the ��-most preferred models of a given theory an be represented by a irumsriptiveformula in the following way:Notation 3.20 For ��FOUR, let ��(p+; p�) = Wx2� �x(p+; p�), where �t(p+; p�) = p+ ^:p�,�f (p+; p�) = :p+ ^ p�, �?(p+; p�) = :p+ ^ :p�, and �>(p+; p�) = p+ ^ p�. 14Similar arguments as those in Lemma 3.18 show that the formula	��(~p �; ~q �) = n̂i=1 ( ��(p+i ; p�i ) � ��(q+i ; q�i ) )represents the preferential relation ��. Therefore, by Proposition 3.13,Proposition 3.21 A valuation � is a ��-preferred model of  i� � satis�es  and the followingformula: Cir��(~p �) = 8(~q �) f  (~q �) ! (	��(~q �; ~p �)! 	��(~p �; ~q �) ) g:3.4 Experimental studyAs we have already noted, all the formulae that are obtained by our method have a irumsriptiveform. It is therefore possible to apply, for instane, the formula Cir�k , given in Corollary 3.19,in algorithms for reduing irumsriptive axioms. Below are some simple results obtained byexperimenting with suh algorithm (We have used Doherty, Lukaszewiz and Szalas DLS algorithm[13, 14℄, available at http://www.ida.liu.se/labs/kplab/projets/dls/ir.html). 15� Consider the theory � = fQ(a); Q(b);:Q(a)g, where Q denotes some prediate, and a; bare two onstants. In our ontext, this theory is translated to � = fQ+(a); Q+(b); Q�(a)g.Cirumsribing � where Q+ and Q� are simultaneously minimized, yields the following result:8x f (Q�(x)! x = a) ^ (Q+(x)! (x = a _ x = b)) g:It follows, then, that a is the only objet for whih both Q+(x) and Q�(x) hold (i.e., a isthe only objet that is inonsistent w.r.t. Q), and b is the only objet for whih only Q+(x)holds. For all the other objets neither Q+(x) nor Q�(x) holds, i.e., if  62 fa; bg then Q()orresponds to ?. This indeed is exatly the k-minimal semantis of �.Note that the fat that for every objet x di�erent from a and b neither Q+(x) nor Q�(x)holds means that the truth values of all the domain elements other than a or b do not matterin order to satisfy this formula. This may be important from an analyti point of view.14Intuitively, �x(p+; p�) expresses that �(p) = x and ��(p+; p�) expresses that �(x) 2 �.15In what follows we deliberately onsider some very simple ases. Our experiene is that for more omplex theoriesthe output quikly beomes more ompliated. Although this is useful for automated omputations, it is muh lessomprehensible by humans. 14



� Suppose that in the previous example one wants to impose a three-valued semantis. It ispossible to do so by adding to � the restrition  = 8x(Q(x)_:Q(x)), whih is translated to = 8x(Q+(x) _Q�(x)). Cirumsribing � [ f g yields8x f [(Q+(x) ^ x 6= a ^ x 6= b)! :Q�(x)℄ ^ [(Q�(x) ^ x 6= a)! :Q+(x)℄ g;whih has almost the same meaning as before, exept that this time, the ombination of thisand  means that if  62 fa; bg then either Q+() or Q�() holds, but not both. It follows,then, that for suh , Q() must have some lassial value. Again, this orresponds to whatone expets when k-minimizing � [ f g.4 Using more than four valuesIn this setion we extend to the multiple-valued ase the results obtained in the previous setions.Essentially, we go through the same proess. We start with a multiple-valued logi that may not beparaonsistent . Then we shift to a di�erent semantis that is based on a more omplex struture oftruth values, and then show how to simulate the latter semantis by the original one. The outomeof this proess is twofold:1. A general approah for deriving a paraonsistent logi from a general multiple-valued logi.2. A redution of (preferential) paraonsistent reasoning in this derived logi to objet-levelreasoning in the original logi.We thus obtain a general method for performing paraonsistent reasoning in a multi-valued logi.This extension may serve as an evidene for the robustness of the tehniques proposed in this paper.4.1 Lattie-valued reasoningDe�nition 4.1 A multiple-valued struture for a language � is a triple (L;DL;OL), where L is setof elements (\truth values"), DL is a nonempty proper subset of L, and OL is a set of operationson L that orrespond to the onnetives in �.In the sequel we shall assume that L = (L;�L) is a omplete lattie with a negation operator:,16 and that DL is a �lter in it, namely: it is a nonempty proper subset of L s.t. for every x; y2L,x^y2DL i� x2DL and y2DL. Sometimes we shall assume that DL is a prime �lter in L, i.e. thatit is a �lter in L s.t. for every x; y2L, x_y2DL i� x2DL or y2DL.The set DL onsists of the designated values of L, i.e., those that represent true assertions. Byits de�nition it is obvious that DL is �L-upwards losed, and so sup(L)2DL and inf(L) 62DL.16That is, for every x; y 2 L, x �L y i� :y �L :x, and for every x 2 L, ::x=x. The requirement for a ompletelattie is needed here for giving semantis to quanti�ed formulae: for a struture with a domain E and a valuation�, we let �(8x (x)) = inf�tf�( (e) j e2Eg; for all other purposes, it is suÆient to take distributive latties withnegation operators. 15



In what follows we further on assume that � is the lassial propositional language whereonjuntions orrespond to the meet operation in L, disjuntions orresponds to the join operationin L, and negations orrespond to the negation operator of L.De�nition 4.2 Let L be a omplete lattie, DL a prime �lter in it, and � a set of formulae in �.a) A (multiple-valued) valuation � is a funtion that assigns an element of L to eah atomiformula. A valuation is extended to omplex formulae in the standard way.b) A valuation � satis�es a formula  if �( )2DL.) A valuation � is a model of � if it satis�es every formula in �. We shall ontinue to denoteby mod(�) the set of the models of �.De�nition 4.3 Let L be a omplete lattie and DL a prime �lter in it. For a set � of formulae anda formula  , denote � j=L;DL if every model of � is a model of  .Note that lassial logi is obtained from the above de�nitions by taking the two-valued lattie(ft; fg; f <L t) with DL = ftg. Similarly, Kleene three-valued logi [21℄ is obtained by taking thethree-valued lattie L= (ft; f;?g;�L) with DL = ftg. The onnetives in OL orrespond in thisase to the lattie operations of a lattie in whih f <L?<L t together with a negation operationde�ned by: :f= t;:t=f;:?=?. Note also that both these logis are not paraonsistent.4.2 Paraonsistent reasoning through bilattiesIn order to add paraonsistent apabilities to the lattie-based logi under onsideration, we use thesame methodology as in the two-valued ase. The basi idea is to onsider a logi in whih the truthvalues are not the lattie elements but are arbitrary pairs of lattie elements, rather than pairs off0; 1g, as in the ase of FOUR.De�nition 4.4 [18℄ Let L=(L;�L) be a omplete lattie. The struture L�L=(L�L;�t;�k;:)onsists of pairs of elements from L that are arranged in two lattie strutures as follows:� (L�L;�t), where (y1; y2) �t (x1; x2) i� y1 �L x1 and y2 �L x2� (L�L;�k), where (y1; y2) �k (x1; x2) i� y1 �L x1 and y2 �L x2The unary operation : is de�ned on L�L by :(x1; x2) = (x2; x1).The struture that L�L forms is alled a bilattie [16, 18℄. As in the four-valued ase, a truthvalue (x; y) 2 L � L may intuitively be understood so that x represents the amount of evidenefor an assertion, while y represents the amount of evidene against it. It is easy to verify thatthe �k-minimal element of L � L is (inf(L); inf(L)), the �k-maximal one is (sup(L); sup(L)), the�t-minimal element is (inf(L); sup(L)), and the �t-maximal one is (sup(L); inf(L)).Example 4.5 Belnap's four-valued lattie FOUR, onsidered in the previous setions, is a par-tiular ase of the algebrai strutures de�ned in 4.4, sine FOUR = T WO � T WO, whereT WO is the two-valued lassial lattie. For another example, onsider the three-valued lattieT HREE=(f0; 12 ; 1g; 0< 12<1). Figure 2 ontains a double-Hasse diagram of T HREE �T HREE .16
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Figure 2: T HREE � T HREEIn what follows we shall ontinue to use the symbols _;^;�, and 
 for denoting, respetively,the �t-join, �t-meet, �k-join, and the �k-meet operations in L � L. By De�nition 4.4 it followsthat these operations are omputed as in FOUR, i.e., for every x1; x2; y1; y22L,(x1; y1) _ (x2; y2) = (x1 _ x2; y1 ^ y2); (x1; y1) ^ (x2; y2) = (x1 ^ x2; y1 _ y2);(x1; y1)� (x2; y2) = (x1 _ x2; y1 _ y2); (x1; y1)
 (x2; y2) = (x1 ^ x2; y1 ^ y2):As noted in Example 4.5, De�nition 4.4 is a natural extension of Belnap's four-valued struture.The notion of the designated values in FOUR an also be generalized in a natural way in L� L:De�nition 4.6 [2℄ Let L� L be the bilattie de�ned in 4.4.a) A bi�lter D of L� L is a nonempty proper subset of L�L, suh that:(i) x^y2D i� x2D and y2D, (ii) x
y2D i� x2D and y2D.b) A bi�lter D is alled prime, if it also satis�es the following onditions:(i) x_y2D i� x2D or y2D, (ii) x�y2D i� x2D or y2D.Given a bilattie of the form L � L, we �x some prime bi�lter D in L � L. This set onsistsof the designated elements of L � L. It is easy to verify that a prime bi�lter of L � L is upwardslosed w.r.t. both partial orders of L� L, thus it ontains the �t- and the �k-largest element anddoes not ontain the �t- and the �k-least one.As in the lattie-valued ase,(prime) bi�lters are used for de�ning validity of formulae: a valua-tion � on L� L is a model of a set � of formulae if �( )2D for every  2�.Example 4.7 The set D=ft;>g of the designated elements in FOUR is indeed a prime bi�lter inFOUR (and, moreover, it is the only prime bi�lter in this bilattie). In T HREE � T HREE thereare two prime bi�lters: 17



� D1 = f(1; x) j x2f0; 12 ; 1gg = f(x1; x2) j (x1; x2)�k (1; 0)g, and� D2 = f(x1; x2) j x1� 12 ; x22f0; 12 ; 1gg = f(x1; x2) j (x1; x2)�k (12 ; 0)g:Proposition 4.8 [5℄a) D is a bi�lter in L� L i� D=DL�L, where DL is a �lter in L.b) D is a prime bi�lter in L� L i� D=DL�L, where DL is a prime �lter in L.Corollary 4.9 [5℄ Let x0 2 L, x0 6= inf(L). Denote: D(x0) = f(y1; y2) j y1 �L x0; y2 2 Lg, andDL(x0)=fy2L j y�Lx0g. Then:a) D(x0) is a prime bi�lter in L� L i� DL(x0) is a prime �lter in L.b) D(sup(L)) is a prime bi�lter in L � L i� sup(L) is join irreduible (i.e., i� x _L y = sup(L)implies that x=sup(L) or y=sup(L)).) If the ondition of item (b) is met, then D(sup(L)) is least (w.r.t. set inlusion) among the(prime) bi�lters of L� L.Given a billatie L�L and a prime bi�lter D in it, one may de�ne a orresponding onsequenerelation in a similar way to the lattie-valued ase:De�nition 4.10 � j=L�L;D if every L�L-valued model of � is a L�L-valued model of  .Proposition 4.11 j=L�L;D is paraonsistent.Proof: It is easy to verify that j=L�L;D does not allow trivial reasoning from inonsistent theories.Indeed, p;:p 6j=L�L;D q. A ounter-model assigns (sup(L); sup(L)) to p and (inf(L); sup(L)) to q. 24.3 Simulating bilattie-valued reasoningIn the rest of this paper we �x some lattie L= (L;�L) with a prime �lter DL, and denote by Dthe orresponding prime bi�lter of the form DL�L in L�L. We shall show that by using the samemethod as that of Setion 3 for the four-valued ase, it is now possible to have analogous results forevery struture of the form L � L with a set of designated values D. Again, we start by standardbilattie-valued reasoning and then, in the next setion, onsider the preferential ase.For every formula  in � we an obtain its \split form",  in exatly the same way as in thefour-valued ase. Also, sine every valuation � on L � L an be represented by a pair (�1; �2) ofL-valued omponents, then � is an L-valued valuation de�ned (just as in the four-valued ase) by�(p+) = �1(p) and �(p�) = �2(p). Again, whenever it is more onvenient, we shall use the moredetailed notation (~p + :�1 ; ~p � :�2) instead of just �.Using the notations above we an now generalize Proposition 2.4 to the ase of L�L as follows:18



Proposition 4.12 Let L be a de Morgan lattie,17 and let � = (�1; �2) be a valuation on L � L.Then �( ) = (�( );:rev(�)( )).The proof of Proposition 4.12 is idential to that of Proposition 2.4, using L � L instead ofFOUR.In the rest of the paper we suppose, then, that L is a de Morgan lattie.18 Under this assumption,the next two orollaries immediately follow from Proposition 4.12.Corollary 4.13 Let DL be a prime �lter in L, and let D = DL�L be the set of the designatedelements in L� L.19 For every valuation � on L� L and a formula  in �, �( )2D i� �( )2DL.Proof: �( ) is designated i� �1( )2DL, i� (Proposition 4.12) �( )2DL. 2In partiular, sine by Proposition 4.8(b) every prime bi�lter in L � L is of the form DL�L,where DL is a prime �lter in L, we have that whenever �( ) is designated in L�L, there is a prime�lter in L with respet to whih �( ) is designated in L, and vie-versa.Corollary 4.14 Suppose that sup(L) is join irreduible in L, and let D=D(sup(L)) be the set ofthe designated elements in L�L.20 For every valuation � in L�L and a formula  in �, �( )2Di� �( )=sup(L).Proof: �( ) is designated i� �1( )=sup(L), i� (Proposition 4.12) �( )=sup(L). 2We an now extend Theorem 2.8, and show how to simulate reasoning in L�L by objet levelreasoning in L.Theorem 4.15 � j=L�L;D  i� � j=L;DL  .Proof: Follows from Corollary 4.13. 2As in the four-valued ase, sine in the language without negations, � is obtained just byrenaming the atomi formulae that appear in �, the following orollary immediately follows fromTheorem 4.15 (f. Corollary 2.9):Corollary 4.16 In positive logi, � j=L�L;D  i� � j=L;DL  .17That is, for every x; y2L, :(x_y) = :x^:y, and :(x^y) = :x_:y.18It is interesting to note that L�L is always a de Morgan bilattie. Indeed, :[(x1; x2)_(y1; y2)℄=:(x1_y1; x2^y2)=(x2^y2; x1_y1)=(x2; x1)^(y2; y1)=:(x1; x2)^:(y1; y2).19By Proposition 4.8, D is indeed a prime bi�lter in L �L.20By Corollary 4.9, D is indeed a prime bi�lter in L �L.
19



4.4 Simulating bilattie-valued preferential reasoningWe turn now to the preferential ase. Again, by using the same methods as those of Setion 3 forthe four-valued ase, it is possible to de�ne irumsriptive formulae for expressing multiple-valuedpreferential reasoning w.r.t. a representable preferene order �. This implies, in partiular, thatone again we are able to redue \meta-reasoning" (this time, in the bilattie) to objet level reason-ing (in the lattie) by axiomatizing the preferred models of a given theory in the bilattie throughformula irumsription in the lattie.Suppose, then, that � is some preferential order among the valuations into L�L. Note that thenotion of a representation of � by a formula 	�, de�ned in 3.12, an be diretly extended to thebilattie-valued ase. A orresponding onsequene relation an also be de�ned by extending thede�nition of the four-valued ase:Notation 4.17 � j=L�L;D�  i� every �-most preferred L�L-valued model of � is a L�L-valuedmodel of  .21Now, for onstruting the irumsribing formulae in the L-valued logi we need to have animpliation onnetive on L that behaves as material impliation in lassial logi. This is what wede�ne next.De�nition 4.18 Let L=(L;�L) be a lattie and DL a (prime) �lter in it. For every x; y2L de�ne:a) x!y = sup(L) if either x 62DL or y2DL, otherwise x!y = inf(L).b) x�y = sup(L) if x�L y, otherwise x�y = inf(L).) x�y = sup(L) if x<L y, otherwise x�y = inf(L). 22Our next result extends Theorem 3.16:Theorem 4.19 Let � be a set of formula and  a formula in �. Let Cir� be the formula given inProposition 3.13 for a preferential relation �.23 Then � j=L�L;D�  i� � [ Cir� j=L;DL  .Proof: As in the proof of Theorem 3.16, the laim follows from the fat that � is a �-most preferredmodel of  i� � satis�es  (this is true by Corollary 4.13) and the fat that � also satis�es Cir�(the proof of Proposition 3.13 may be used in the present ase as well for showing the latter fat). 2Clearly, Theorem 4.19 may be applied only in ases that the preferential relations under on-sideration are representable (in the sense of De�nition 3.12). Next we show that all the preferentialrelations that have been onsidered in Setion 3 an be generalized to (bi)lattie-valued preferentialrelations that are also representable by irumsriptive formulae.21Again, this is the same relation as the one de�ned in 3.3, together with an expliit indiation that the underlyingsemantis is based on L � L and D.22Note that this is a generalization of the de�nition of the operators with the same notations, given in Notation3.17. In partiular, when L is the two-valued lattie, ! and � are the same as the lassial impliation.23Where the relevant onnetives are interpreted by De�nition 4.18.20



Representing preferene of minimal informationAs in Proposition 3.19, the set of the k-minimal models of  in L�L an be represented by Cir�k ,using the generalized interpretations for the relevant onnetives (see De�nition 4.18):Proposition 4.20 A valuation � in L�L is a k-minimal model of  i� �( )2DL and �(Cir�k) =sup(L).Proof: The same proof as that of Proposition 3.13 holds in this ase as well (where every refereneto Corollary 2.7 should be replaed by a referene to Corollary 4.13). Thus, � is a k-minimal modelof  i� �( )2DL and �(Cir�k)2DL, whereCir�k(~p �) = 8(~q �) f  (~q �) ! (	�k(~q �; ~p �)! 	�k(~p �; ~q �) ) g;and 	�k(~p �; ~q �) = n̂i=1 ((p+i � q+i ) ^ (p�i � q�i )):Note also that Cir�k is de�ned only by operators onto finf(L); sup(L)g. Now , sine all theoperators in � are losed w.r.t. this set of values, and sine sup(L)2DL, we have that �(Cir�k)2DLi� �(Cir�k) = sup(L).It remains to show that �k is represented by 	�k . Indeed, by the way the partial order �k isde�ned on L�L (see De�nition 4.4) and by De�nition 4.18, we have that��k� () 81� i�n �(pi)�k�(pi) () 81� i�n �1(pi)�L�1(pi) and �2(pi)�L�2(pi)() (~p � :�; ~q � :�) satis�es Vni=1 ((p+i � q+i ) ^ (p�i � q�i ))() (~p � :�; ~q � :�) satis�es 	�k(~p �; ~q �): 2Representing preferene of most onsistent interpretationsLet I>=fx2L�L j x2D;:x2Dg be the set of the inonsistent values in L � L. A valuation �1is (stritly) more onsistent than a valuation �2 if the set of atoms pi s.t. �1(pi)2I> is (stritly)subsumed in the set of atoms pj s.t. �2(pj)2I>. A valuation �2mod( ) is a most onsistent modelof  [4, 5℄, if there is no other model of  that is stritly more onsistent than �.By a proof that is similar to that of Proposition 4.20 one an show that the set of the mostonsistent models of  an be represented by Cir�f>g: a valuation � in L� L is a most onsistentmodel of  i� �( )2DL and �(Cir�f>g) = sup(L).Representing preferene of most lassial interpretationsLet I> be the set of the inonsistent elements in L � L as in the previous ase, and let I?= fx2L�L j x 62D;:x 62Dg be the set of the inomplete values in L�L. A valuation �1 is (stritly) morelassial than a valuation �2 if the set of atoms pi s.t. �1(pi)2I> [I? is (stritly) subsumed in theset of atoms pj s.t. �2(pj)2I> [ I?. A valuation �2mod( ) is a most lassial model of  [4, 5℄,if there is no other model of  that is stritly more lassial than �.21



Again, a similar proof as that of Proposition 4.20 shows that the set of the most lassial modelsof  an be represented by Cir�f>;?g: a valuation � in L � L is a most lassial model of  i��( )2DL and �(Cir�f>;?g) = sup(L).Partiular ases in whih the representations above may be used are the bilattie-based logisintrodued in [2, 3, 4, 5℄, and the annotated logi [35℄ RI, introdued in [22, 23℄, provided that theunderlying many-valued struture is of the form L� L.5 Summary and onlusionA well-known way of formalizing paraonsistent reasoning is in terms of de Morgan algebras, with aertain four-element algebra playing a pivotal role analogous to that of the two-element Boolean al-gebra in its lass. To formalize reasoning that is simultaneously paraonsistent and non-monotoni,Belnap [8, 9℄ and Ginsberg [18, 19℄ have elaborated de Morgan algebras into bilatties. In [4℄ it isshown that the four-element bilattie FOUR again plays a pivotal role. In this paper we followedup this work, essentially motivated by omputational onsiderations. We have shown that ques-tions of onsequene in these strutures an be redued to ones of lassial onsequene, by meansof polynomial translations that essentially serves to separate negated atoms from aÆrmed ones.Moreover, these translations an be inorporated together with some appropriate irumsriptiveaxioms to apture the notion of minimality and for representing preferential reasoning [34℄. Thismethod also touhes upon several additional aspets:1. It shows that two-valued reasoning may be useful for simulating inferene proedures in theontext of many-valued semantis.2. This approah demonstrates the usefulness of irumsription not only as a general methodfor non-monotoni inferential reasoning, but also as an appealing tehnique for implementingparaonsistent reasoning.3. This is another evidene for the fat that in many ases onepts that are de�ned in a \meta-language" (suh as preferene riteria, et.) an be expressed in the language itself (using,e.g., higher-order formulae).Note that although we have proposed our tehnique for propositional logi, it an be easilyapplied to the prediate ase as well. Moreover, as shown in Setion 4, our approah an beextended to many-valued (lattie-based) logis. These observations, together with item (3) above,imply that suh tehniques allow a potentially wide area for pratial implementations. For instane,as we have shown above, preferential multiple-valued reasoning an be inorporated with pratialappliations for automated reasoning and theorem proving.AknowledgementWe thank the anonymous referees for many useful omments.22



Referenes[1℄ A.R.Anderson, N.D.Belnap. Entailment Vol.1, Printon University Press, 1975.[2℄ O.Arieli, A.Avron. Reasoning with logial bilatties. Journal of Logi, Language, and Informa-tion 5(1), pp. 25{63, 1996.[3℄ O.Arieli, A.Avron. The logial role of the four-valued bilattie. Pro. 13th IEEE Conf. on Logiin Computer Siene (LICS'98), pp. 218{226, IEEE Press, 1998.[4℄ O.Arieli, A.Avron. The value of the four values. Arti�ial Intelligene 102(1), pp. 97{141, 1998.[5℄ O.Arieli, A.Avron. Bilatties and paraonsisteny. Frontiers of Paraonsistent Logi (D. Batens,C. Mortensen, G. Priest, J. Van Bendegem, editors), pp. 11{27, Studies in Logi and Compu-tation 8, Researh Studies Press, 2000.[6℄ O.Arieli, M.Deneker. Modeling paraonsistent reasoning by lassial logi Pro. 2nd Int. Symp.on Foundations of Information and Knowledge Systems (FoIKS'02). Leture Notes in ComputerSiene 2284 (T.Eiter, K.D.Shewe, editors), pp. 1{14, Springer, 2002.[7℄ A.Avron. Simple onsequene relations. Information and Computation 92, pp. 105{139, 1991.[8℄ N.D.Belnap. A useful four-valued logi. Modern Uses of Multiple-Valued Logi (G.Epstein,J.M.Dunn, editors), Reidel Publishing Company, Boston, pp. 7{37, 1977.[9℄ N.D.Belnap. How a omputer should think. Contemporary Aspets of Philosophy (G.Ryle,editor), pp. 30{56, Oriel Press, 1977.[10℄ A.Bialyniki-Birula. Remarks on quasi-boolean algebras. Bull. Aad. Polonaise des Sienes Cl.III, Vol. V No. 6, pp. 615{619, 1957.[11℄ A.Bialyniki-Birula, H.Rasiowa. On the representation of quasi-boolean algebras. Bull. Aad.Polonaise des Sienes Cl. III, Vol. V, No. 3, pp. 259{261, 1957.[12℄ N.C.A.da-Costa. On the theory of inonsistent formal systems. Notre Damm Journal of FormalLogi 15, pp. 497{510, 1974.[13℄ P.Doherty, W.Lukaszewiz, A.Szalas. Computing irumsription revisited: Preliminary report.Pro. 14th Int. Joint Conf. on Arti�ial Intelligene (IJCAI'95), pp. 1502{1508, 1995.[14℄ P.Doherty, W.Lukaszewiz, A.Szalas. Computing irumsription revisited: A redution algo-rithm. Journal of Automated Reasoning 18, pp. 297{334, 1997.[15℄ M.Fitting. Kripke-Kleene semantis for logi programs. Journal of Logi Programming 2, pp.295{312, 1985.[16℄ M.Fitting. Kleene's logi, generalized. Journal of Logi and Computation 1, pp. 797{810, 1990.
23



[17℄ D.Gabbay, O.Rodrigues, A.Russo. Revision by translation. Information, Unertainty, and Fu-sion (B.Bouhon-Meunier, R.R.Yager, L.Zadeh, editors), pp. 3{32, Kluwer Aademi Publish-ers, 2000.[18℄ M.L.Ginsberg. Multi-valued logis: A uniform approah to reasoning in AI. Computer Intelli-gene 4, pp. 256{316, 1988.[19℄ M.L.Ginsberg. A irumsriptive theorem prover. Arti�ial Intelligene 29, pp. 209{230, 1989.[20℄ J.A.Kalman. Latties with involution. Trans. of the Amerian Math. So. 87, pp. 485{491, 1958.[21℄ S.C.Kleene. Introdution to metamathematis. Van Nostrand, 1950.[22℄ M.Kifer, E.L.Lozinskii. RI: A logi for reasoning with inonsisteny. Pro. IEEE Conf. on Logiin Computer Siene (LICS'89), pp. 253{262, IEEE Press, 1989.[23℄ M.Kifer, E.L.Lozinskii. A logi for reasoning with inonsisteny. Journal of Automated Rea-soning 9(2), pp. 179{215, 1992.[24℄ S.Kraus, D.Lehmann, M.Magidor. Nonmonotoni reasoning, preferential models and umula-tive logis. Arti�ial Intelligene 44(1{2) pp. 167{207, 1990.[25℄ D.Lehmann, M.Magidor. What does a onditional knowledge base entail? Arti�ial Intelligene55, pp. 1{60, 1992.[26℄ D.Makinson. General theory of umulative inferene. Non-Monotoni Reasoning (M.Reinfrank,editor), Leture Notes in Arti�ial Intelligene 346, pp. 1{18, Springer, 1989.[27℄ D.Makinson. General patterns in nonmonotoni reasoning. Handbook of Logi in Arti�ialIntelligene and Logi Programming 3 (D.Gabbay, C.Hogger, J.Robinson, editors) pp. 35{110,Oxford Siene Pub., 1994.[28℄ J.MCarthy. Cirumsription { A form of non monotoni reasoning. Arti�ial Intelligene 13(1{2), pp. 27{39, 1980.[29℄ J. MCarthy. Appliations of irumsription to formalizing ommon-Sense knowledge. Arti�alIntelligene 28, pp. 89{116, 1986.[30℄ H.J.Ohlbah, SCAN { Elimination of prediate quanti�ers. Pro. of the 13th onf. on auto-mated dedutiona (CADE'96), (M.A.MRobbie, J.Slaney, editors), Leture Notes in Arti�ialIntelligene 1104, pp. 161{165, Springer, 1996.[31℄ G.Priest. Reasoning about truth. Arti�ial Intelligene 39, pp. 231{244, 1989.[32℄ G.Priest. Minimally Inonsistent LP. Studia Logia 50, pp. 321{331, 1991.[33℄ T.Przymusinski. An algorithm to ompute irumsription. Arti�ial Intelligene 38, pp. 49{73,1991.[34℄ Y.Shoham. Reasoning about hange. MIT Press, 1988.24



[35℄ V.S.Subrahmanian. Mehanial proof proedures for many valued lattie-based logi program-ming. Journal of Non-Classial Logi 7, pp. 7{41, 1990.[36℄ A.Tarski. Introdution to logi. Oxford University Press, N.Y., 1941.[37℄ A.Van Gelder, K.A.Ross and J.S.Shlipf.The well-founded semantis for general logi programs.Journal of the ACM 38(3), pp. 620{650, 1991.Appendix A. Proof of Proposition 2.4Proposition 2.4: Let �=(�1; �2). Then �( ) = (�( ); :rev(�)( )).Proof: Reall that � = (~p + :�1 ; ~p � :�2) and that rev(�) = (~p + ::�2 ; ~p � ::�1).We �rst show two lemmas:Lemma 2.4-A: rev(�)(: ) = �(: ).Lemma 2.4-B: �(: ) = rev(�)(: ).Proof of Lemmas 2.4-A and 2.4-B: Note �rst that both lemmas are equivalent. Indeed, sinerev(rev(�)) = �, by replaing � by rev(�) in Lemma 2.4-A we obtain Lemma 2.4-B and vie versa.The proof is by the following indution on the struture of  :�  = p: rev(�)(: ) = rev(�)(:p+) = :(~p + ::�2 ; ~p � ::�1)(p+) = ::�2(p) = �2(p).On the other hand,�(: ) = �(:p) = �(::p�) = (~p + :�1 ; ~p � :�2)(p�) = �2(p).�  = :�: rev(�)(: ) = rev(�)(::�) = :rev(�)(:�) = (by indution hypothesis) =:�(:�) = �(::�) = �(�) = �(::�) = �(: ).�  = �1_�2: By the de�nition of splitting transformation and by De�nition 2.1, it is obviousthat �1_�2 = �1 _ �2 and �1^�2 = �1 ^ �2. Thus:rev(�)(: ) = :rev(�)( ) = :rev(�)(�1_�2) = :[rev(�)(�1)_ rev(�)(�2)℄ =(sine L is a de Morgan lattie) = :rev(�)(�1) ^ :rev(�)(�2) =rev(�)(:�1)^ rev(�)(:�2) = (by indution hypothesis) = �(:�1) ^ �(:�2) =�(:�1 ^ :�2) = �(:�1 ^ :�2) = (de Morgan law again) = �(:(�1 _ �2)) = �(: ).� The ase in whih  =�1^�2 is analogue to the latter ase.25



Now we are ready to show the equation of Proposition 2.4. Again, we show it by an indutionon the struture of  .�  = p: (�( ); :rev(�)( )) = (�(p+); :rev(�)(p+)) =((~p + :�1 ; ~p � :�2)(p+); :(~p + ::�2 ; ~p � ::�1)(p+)) =(�1(p); ::�2(p)) = (�1(p); �2(p)) = �( ).�  = :�: �( ) = �(:�) = :�(�) = (by indution hypothesis) = :( �(�); :rev(�)(�) ) =(:rev(�)(�); (�(�))) = (rev(�)(:�); :(�(:�))) = (by Lemmas 2.4-A and 2.4-B)(�(:�); :rev(�)(:�)) = (�( ); :rev(�)( )).�  = �1_�2: �( ) = �(�1_�2) = �(�1)_�(�2) = (by indution hypothesis) =(�(�1); :rev(�)(�1)) _ (�(�2); :rev(�)(�2)) = (by the de�nition on _) =(�(�1) _ �(�2); :rev(�)(�1) ^ :rev(�)(�2)) = (by de Morgan law) =(�(�1_�2); :(rev(�)(�1)_ rev(�)(�2))) = (�(�1_�2); :rev(�)(�1_�2)) =(�( ); :rev(�)( )).� The ase in whih  =�1^�2 is analogous to the latter ase. 2
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