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tWe introdu
e a general method for para
onsistent reasoning in the 
ontext of 
lassi
al logi
.A standard te
hnique for para
onsistent reasoning on in
onsistent 
lassi
al theories is by shiftingto multiple-valued logi
s. We show how these multiple-valued theories 
an be \shifted ba
k" totwo-valued 
lassi
al theories through a polynomial transformation, and how preferential reason-ing based on multiple-valued logi
 
an be represented by 
lassi
al 
ir
ums
ription-like axioms. Byapplying this pro
ess we provide new ways of implementing multiple-valued para
onsistent rea-soning. Standard multiple-valued reasoning 
an thus be performed through theorem provers for
lassi
al logi
, and multiple-valued preferential reasoning 
an be implemented using algorithmsfor pro
essing 
ir
ums
riptive theories (su
h as DLS and SCAN).Keywords: para
onsistent reasoning, preferential semanti
s, 
ir
ums
ription, multiple-valuedlogi
s.1 Introdu
tionIt is well-known that 
lassi
al logi
 is inappropriate for imitating \
ommon-sense" reasoning ingeneral, and for reasoning with un
ertainty in parti
ular. Indeed, on one hand 
lassi
al logi
 istoo 
autious in drawing 
on
lusions from in
omplete theories. This is so sin
e 
lassi
al logi
 ismonotoni
, thus it does not allow to retra
t previously drawn 
on
lusions in light of new, morea

urate information. On the other hand, 
lassi
al logi
 is too liberal in drawing 
on
lusions fromin
onsistent theories. This is explained by the fa
t that 
lassi
al logi
 is not para
onsistent [12℄,therefore everything 
lassi
ally follows from a 
ontradi
tory set of premises.Preferential reasoning [34℄ is an elegant way to over
ome 
lassi
al logi
's short
oming for rea-soning on un
ertainty. It is based on the idea that in order to draw 
on
lusions from a given theoryone should not 
onsider all the models of that theory, but only a subset of preferred models. Thissubset is usually determined a

ording to some preferen
e 
riterion, whi
h is often de�ned in termsof partial orders on the spa
e of valuations. This method of preferring some models and disregarding1



the others yields robust formalisms that allow to draw intuitive 
on
lusions from partial knowledge.In the 
ontext of 
lassi
al logi
, preferential semanti
s 
annot help to over
ome the problem oftrivial reasoning with 
ontradi
tory theories. Indeed, if a 
ertain theory has no (two-valued) models,then it has no preferred models as well. A useful way of reasoning on 
ontradi
tory 
lassi
al theoriesis therefore by embedding them in multiple-valued logi
s in general, and Belnap's four-valued logi
[8, 9℄ in parti
ular (whi
h is the underlying multiple-valued semanti
s used here). There are severalreasons for using this setting. The most important ones for our purposes are the following:� In the 
ontext of four-valued semanti
s it is possible to de�ne 
onsequen
e relations that arenot degenerated w.r.t. any theory (see, e.g., [3, 4, 31, 32, 35℄); the fa
t that every theory hasa nonempty set of four-valued models implies that four-valued reasoning may be useful forproperly handling in
onsistent theories. As shown e.g. in [3, 4℄, this indeed is the 
ase.� Analysis of four-valued models 
an be instru
tive to pinpoint the 
auses of the in
onsisten
yand/or the in
ompleteness of the theory under 
onsideration. (See [3, 4, 8, 9℄ for a detaileddis
ussion on this property, as well as some relevant results).However, Belnap's four-valued logi
 has its own short
omings:� As in 
lassi
al logi
, many theories have too many models, and as a 
onsequen
e the entailmentrelation is often too weak. In fa
t, sin
e Belnap's logi
 is weaker than 
lassi
al logi
 w.r.t.
onsistent theories1, we are even in a worse situation than in 
lassi
al logi
!A (partial) solution to this problem is by using preferential reasoning in the 
ontext of multiple-valued logi
 (see, e.g., [2, 3, 4, 5, 22, 23, 31, 32℄).� At the 
omputational level, implementing para
onsistent reasoning based on four-valued se-manti
s poses important 
hallenges. An e�e
tive implementation of theorem provers for oneof the existing proof systems for Belnap's logi
 requires a major e�ort. The problem is evenworse in the 
ontext of four-valued preferential reasoning, for whi
h 
urrently no proof systemsare known.Our goal in this paper is to show a way in whi
h these problems 
an be solved. In parti
u-lar, we present a polynomial transformation ba
k from four-valued theories to two-valued theoriessu
h that reasoning in preferential four-valued semanti
s 
an be implemented by standard theoremproving in two-valued logi
.2 Moreover, preferen
e 
riteria on four-valued theories are translatedinto \
ir
ums
riptive-like" formulae [28, 29℄, and thus para
onsistent reasoning may be automati-
ally 
omputed by some spe
ialized methods for 
ompiling 
ir
ums
riptive theories (su
h as thosedes
ribed in [19, 33℄), and in
orporated into algorithms su
h as SCAN [30℄ and DLS [13, 14℄, forredu
ing se
ond-order formulae to their �rst-order equivalents.1That is, everything that follows in Belnap's four-valued logi
 from a given theory also 
lassi
ally follows from thattheory, but not vi
e-versa. For instan
e, the rule of ex
luded middle (either  or : should hold for every  ) and theDisjun
tive Syllogism (from  _ � and :� 
on
lude  ) are not sound in Belnap's four-valued logi
.2Similar te
hnique, of shifting ba
k and forth between 
lassi
al and non-
lassi
al logi
s, is also 
onsidered in [17℄,where it is shown that it is possible to a

omplish belief revision in any logi
 that is translatable to 
lassi
al logi
.2



In the last part of this paper we show that our approa
h of representing preferential 
onsidera-tions by higher-order formulae 
an be generalized to 
ases in whi
h arbitrarily many truth values areneeded (su
h as in probabilisti
 reasoning or fuzzy logi
s). For that we use Ginsberg/Fitting's bilat-ti
es [16, 18℄, whi
h are algebrai
 stru
tures that naturally extend Belnap's four-valued stru
ture.It is shown that within the bilatti
e-based semanti
s one 
an use the same methods for synta
ti
allyrepresenting preferen
es in many-valued logi
s.The rest of this paper is organized as follows: in the next se
tion we show how para
onsistentfour-valued reasoning on a logi
 theory 
an be simulated by 
lassi
al reasoning on a suitably trans-lated �rst order theory. In Se
tion 3 we show, moreover, that four-valued preferential reasoningon a logi
 theory 
an be simulated by amalgamating its translation with se
ond-order formulae.In Se
tion 4 we extend these results to general multiple-valued formalisms, and in Se
tion 5 we
on
lude. 32 Para
onsistent 
lassi
al reasoningIn order to de�ne the redu
tion of para
onsistent (four-valued) reasoning to 
lassi
al logi
, we �rstde�ne the underlying framework for representing in
onsistent (and in
omplete) theories. Then we
onsider a polynomial transformation of theories in this framework to \equivalent" 
lassi
al theories.Finally, in the last part of this se
tion we use this transformation for simulating para
onsistentreasoning (as well as reasoning with in
omplete information) by 
lassi
al logi
.2.1 The underlying semanti
al stru
tureThe formalism that we 
onsider here is based on four-valued semanti
s. Four-valued reasoning maybe tra
ed ba
k to the 1950's, where four-valued formalisms have been investigated by a numberof people, in
luding Bialyni
ki-Birula [10℄, Rasiowa [11℄, and Kalman [20℄. In the sequel we shalluse a 
orresponding four-valued algebrai
 stru
ture (denoted here by FOUR), introdu
ed later byBelnap [8, 9℄. This stru
ture is 
omposed of four elements FOUR = ft; f;?;>g, arranged in thefollowing two latti
e stru
tures:� (FOUR;�t), in whi
h t is the maximal element, f is the minimal one, and >;? are twointermediate and in
omparable elements.� (FOUR;�k), in whi
h > is the maximal element, ? is the minimal one, and t; f are twointermediate and in
omparable elements.Here, t and f 
orrespond to the 
lassi
al truth values. The two other truth values may intuitively beunderstood as representing di�erent 
ases of un
ertainty: > 
orresponds to the 
ontradi
tory truthvalue (i.e., the 
orresponding assertion and its negation are both true), and ? 
orresponds to anin
omplete truth value (i.e., neither the assertion nor its negation are true). This interpretation ofthe meaning of the truth values will be useful in what follows for modeling para
onsistent reasoning.43This is a revised and an extended version of [6℄.4This was also the original motivation of Belnap when he introdu
ed FOUR. See [3, 4℄ for some further argumentsin favor of using this stru
ture as a semanti
al ba
kground of formalisms for 
ommon-sense reasoning.3



A

ording to this interpretation, the partial order �t re
e
ts di�eren
es in the amount of truth thatea
h element represents, and the partial order �k re
e
ts di�eren
es in the amount of knowledge(or information) that ea
h element exhibits. A double-Hasse diagram of FOUR is given in Figure1. 5 6�k
-�tu?

uf utu>������������������
������

Figure 1: Belnap's four-valued stru
ture, FOURIn what follows we shall denote by ^ and _ the meet and join operations on (FOUR;�t), andby 
 and � the meet and the join operations on (FOUR;�k). A negation, :, is a unary operationon FOUR, de�ned by :t=f , :f= t, :>=>, and :?=?. As usual in su
h 
ases, we take t and >as the designated elements in FOUR (i.e., the elements that represent true assertions).In the rest of this paper we denote by � a language with a �nite alphabet, in whi
h the 
onne
-tives are _;^;:. These 
onne
tives 
orrespond to the operations on FOUR with the same notations.� and � denote arbitrary four-valued valuations, i.e., fun
tions that assign a value in FOUR to everyatom in �. The extension to 
omplex formulae in � is de�ned in the usual way. The spa
e of thefour-valued valuations is denoted by V4. A valuation �2V4 is a model of a formula  (alternatively,� satis�es  ) if �( )2ft;>g. � is a model of a set � of formulae if � is a model of every  2�. Theset of the models of � is denoted by mod(�).2.2 An alternative representation of semanti
al 
on
eptsThe elements of FOUR 
an be represented by pairs of 
omponents from the two-valued latti
e(f0; 1g; 0 < 1) as follows: t= (1; 0), f = (0; 1), >= (1; 1), ?= (0; 0). One way to understand thisrepresentation is that a four-valued truth value (x; y) for p 
orresponds to a two-valued truth valuex for p and a two-valued truth value y for :p. Note that this reading is in a

ordan
e with theoriginal intuitive meaning of the truth values in FOUR, dis
ussed in Se
tion 2.1. A

ording to thisrepresentation, the negation operator is de�ned in FOUR by :(x; y)=(y; x), and the 
orresponding5The latti
es (FOUR;�t) and (FOUR;�k) are referred to in Belnap's papers [8, 9℄ as the logi
al latti
e (L4) andthe approximation latti
e (A4), respe
tively, whereas the truth-values ? and > as None and Both, respe
tively. Herewe follow the alternative way of denoting these elements, used, e.g., in [2, 3, 4, 5, 6, 15, 16℄.4



partial orders in are represented by the following rules: for every x1; x2; y1; y22f0; 1g,(x1; y1) �t (x2; y2) i� x1�x2 and y1�y2; (x1; y1) �k (x2; y2) i� x1�x2 and y1�y2:It follows, in parti
ular, that in the representation by pairs of two-valued 
omponents, the basi
binary operations on FOUR are de�ned as follows:(x1; y1) _ (x2; y2) = (x1 _ x2; y1 ^ y2); (x1; y1) ^ (x2; y2) = (x1 ^ x2; y1 _ y2);(x1; y1)� (x2; y2) = (x1 _ x2; y1 _ y2); (x1; y1)
 (x2; y2) = (x1 ^ x2; y1 ^ y2):It is obvious that the above representation of the truth values in terms of pairs of two-valued
omponents implies a similar way of representing four-valued valuations; a four-valued valuation �may represented in terms of pair of two-valued 
omponents (�1; �2) by �(p)= (�1(p); �2(p)). So if,for instan
e, �(p)= t, then �1(p)=1 and �2(p)=0.Next we propose a te
hnique to 
ompute the truth value of a formula in four-valued logi
, bytransforming it to a formula that 
an be evaluated in two-valued logi
. This is 
alled a splittingtransformation.De�ne the s
ope of a negation operator : in the formula : as the set of all appearan
es ofpropositional symbols in  .De�nition 2.1 Let  be a formula. We say that an appearan
e of p in  is positive, if it appearsin the s
ope of an even number of negation operators in  ; otherwise, it is a negative appearan
e.Example 2.2 Let  = :(p _ :q) _ :q. Then the �rst appearan
e of q in  is positive, and these
ond appearan
e of q in  is negative.Let  be a formula in a language �. Denote by  the formula that is obtained by substitutingevery positive o

urren
e in  of an atomi
 formula p by a new predi
ate symbol p+, and repla
ingevery negative o

urren
e in  of an atomi
 formula p by :p�. For instan
e, if  is the formulaof Example 2.2, then  = :(:p� _ :q+) _ ::q�. Given a theory �, we shall write � for the setf j  2�g. The language that is obtained from � by introdu
ing these new predi
ate symbols willbe denoted in what follows by ��.Given a four-valued valuation � = (�1; �2) of the atomi
 formulae ~p in �, � denotes the two-valued valuation on the atoms of ��, whi
h interprets symbols p+ as �1(p) and symbols p� as�2(p). Sometimes we shall \unfold" this notation and instead of � we shall write (~p + :�1 ; ~p � :�2).� is a standard two-valued interpretation of atoms in �� and 
an be extended to 
omplex formulaein the usual way. 6Notation 2.3 For a valuation �=(~p + :�1 ; ~p � :�2), denote rev(�)=(~p + ::�2 ; ~p � ::�1).6Clearly, the 
onverse 
onstru
tion is also possible: every two-valued valuation � on �� 
orresponds to a uniquefour-valued valuation �0 on � de�ned, for every atom p, by �0(p)=(�(p+); �(p�)).5



Proposition 2.4 Let �=(�1; �2). Then �( ) = (�( ); :rev(�)( )).Proof: The proof is rather te
hni
al; we give it in the appendix. 2Note 2.5 Proposition 2.4 shows how to represent valuations in terms of their split 
ounterparts.It will have a 
entral role in showing some of the next results (e.g., Theorems 2.8 and 4.15 be-low). It is interesting to note that this proposition holds also w.r.t. another (polynomial) splittingtransformation of formulae in the language, used e.g. in [6℄, whi
h 
an be de�ned as follows: for aformula  in � denote by e the formula in ��, obtained from  by �rst translating  to its negationnormal form,  0 (where the negation operator pre
edes atomi
 formulae only),7 then substitutingevery atomi
 formula p, whi
h is not pre
eded by a negation, by a new predi
ate symbol p+, andrepla
ing every other atomi
 formula q in  0, together with the negation that pre
edes it, by a newpredi
ate symbol q�. For instan
e, if  = :(r _ :s), then e = r� ^ s+.Proposition 2.4 holds also w.r.t. the alternative transformation (see [6℄ for the proof), and so allthe relevant results in the sequel 
an be obtained w.r.t. either one of the splitting transformations.Here we shall use the original transformation, whi
h is applied dire
tly on the underlying formularather than on its representation in negation normal form.2.3 Simulating four-valued reasoning by 
lassi
al logi
A natural de�nition of a 
onsequen
e relation on FOUR is the following:De�nition 2.6 Let � be a set of formulae and  a formula in �. Denote � j=4 if every four-valuedmodel of � is a four-valued model of  .In [2℄ it is shown that j=4 is a 
onsequen
e relation in the sense of Tarski [36℄, and that itis para
onsistent and 
ompa
t. Moreover, as it is shown in [2, 7℄, j=4 has a 
ut-free, sound and
omplete Gentzen-type proof system (known as \the f^;_;:g-fragment of GBL" in [2℄, or \the basi
f^;_;:g-system" in [7℄), whi
h is the same as the system of \�rst degree entailments" in relevan
elogi
 [1℄. In fa
t, for formulae  ; 1; : : : ;  n in �, the following 
onditions are equivalent:1.  1; : : : ;  n j=4  .2.  1; : : : ;  n )  is provable in GBL (or in the \intuitionisti
" version of it, GBLI [2℄)3.  1^ : : : ^ n !  is provable in the system R (or E) of Anderson and Belnap [1℄.4. For every valuation � in V4, �( 1^ : : : ^ n) �t �( ).In parti
ular, the last item provides an alternative de�nition for j=4 w.r.t. the language � (
f.De�nition 2.6).In what follows we use the pairwise representations, 
onsidered in Se
tion 2.2, for showing thatfour-valued reasoning 
an be simulated by 
lassi
al reasoning. The justi�
ation for doing so is thefollowing lemma:7It is easy to verify that as in the two-valued 
ase,  and  0 are logi
ally equivalent in FOUR.6



Lemma 2.7 For every four-valued valuation � and a formula  in �, �( ) is designated i� �( )=1.Proof: �( ) is designated i� �1( )=1, i� (Proposition 2.4) �( )=1. 2The following result is an immediate 
orollary of Lemma 2.7:Theorem 2.8 Denote by j=2 the two-valued 
lassi
al 
onsequen
e relation. Then � j=4 i� � j=2 .It follows, therefore, that four-valued reasoning may be implemented by two-valued theoremprovers. Moreover, sin
e � is obtained from � in a polynomial time, the theorem above showsthat four-valued entailment in the 
ontext of Belnap's logi
 is polynomially redu
ible to 
lassi
alentailment.Another immediate 
onsequen
e of this theorem is the next well-known result:Corollary 2.9 In positive logi
 (i.e., in the language without negations), � j=4 i� � j=2 .Proof: Follows from Theorem 2.8 and the fa
t that in the language without negations � is the sameas �. 2Note 2.10 Re
ently and independently, Gabbay, Rodrigues and Russo [17℄ have provided anotherway (motivated by di�erent arguments) to simulate (basi
) four-valued reasoning by 
lassi
al en-tailment. Roughly, the idea in [17℄ is to use a two sorted �rst-order language, 
omposed of a sort forrepresenting formulae (in the language of ^;_;:) and a sort for the truth-values. The language also
ontains a spe
ial two-sorted binary predi
ate, denoted hold, where holds( ; t) intuitively meansthat there is some �2V4 s.t. �( )�k t, and holds( ; f) intuitively means that there is some �2V4s.t. �( )�k f . In addition, a set A with the following axioms is 
onsidered:8x ( holds(x; f)$ holds(:x; t) ) 8x ( holds(x; t)$ holds(:x; f) )8x8y ( holds(x^y; t)$ holds(x; t) ^ holds(y; t) ) 8x8y ( holds(x^y; f)$ holds(x; f) _ holds(y; f) )8x8y ( holds(x_y; t)$ holds(x; t) _ holds(y; t) ) 8x8y ( holds(x_y; f)$ holds(x; f) ^ holds(y; f) )In the present notations, the following result holds (
f. Theorem 2.8):Proposition 2.11 [17℄ Let � be a set of formulae and  a formula in �. Then:� j=4 i� A[ fholds(
; t) j 
2�g j=2 holds( ; t) and A[ f:holds(
; f) j 
2�g j=2 :holds( ; f).3 Preferential reasoningDespite the ni
e properties of j=4, it appears that it has several drawba
ks. One of whi
h is thatj=4 is stri
tly weaker than 
lassi
al logi
, even for 
onsistent theories (e.g., 6j=4  _: ). Also, it
ompletely invalidates some intuitively justi�ed inferen
e rules, like the Disjun
tive Syllogism: from: and  _� one 
annot infer  by using j=4. Finally, the fa
t that j=4 is a Tarskian 
onsequen
erelation means, in parti
ular, that it is monotoni
, and as su
h it is \over-
autious" in drawing
on
lusions from in
omplete theories. 7



In order to over
ome these drawba
ks of j=4, we 
onsider in this se
tion a re�ned way of drawing
onsequen
es from a given theory, known as preferential reqsoning [34℄. This is a general modeltheory for non-monotoni
 inferen
es, in whi
h the set of the semanti
al obje
ts that des
ribe agiven theory is equipped with a preferen
e relation that intuitively re
e
ts some preferen
e 
riterionamong the given semanti
al obje
ts. Inferen
es are then made only a

ording to those elementsthat are the most-preferred ones w.r.t. the preferen
e relation.In the �rst part of this se
tion we qui
kly revise some basi
 
on
epts and notations that arerelated to preferential reasoning.8 Then we re
all the te
hniques of [4℄ for applying preferentialreasoning in the four-valued 
ontext. In the third part of this se
tion we show that, again, 
lassi
allogi
 
an be used for simulating the kind of reasoning in a four-valued semanti
s that we areinterested in. This time, in addition to the basi
 theory that is 
onverted to a 
lassi
al one, (se
ond-order) 
ir
ums
ribing formulae will be used for representing the 
orresponding preferen
e relations.We 
on
lude this se
tion with experimental results for some simple test 
ases.3.1 PreliminariesDe�nition 3.1 A preferential model (w.r.t. a language �) is a tripleM=(M; j=;�), where� M is a set (of semanti
al obje
ts, sometimes 
alled states),� j= is a relation on M�� (sometimes 
alled the satisfa
tion relation), and� � is a binary relation on the elements of M (sometimes 
alled the preferen
e relation).Note that De�nition 3.1 is a very general one. Some formalisms make more spe
i�
 assumptionson the nature of the 
omponents of a preferential model. For instan
e, in the original de�nition ofShoham [34℄, ea
h preferential model 
orresponds to a theory �, the underlying semanti
al obje
ts(i.e., the elements in M) are the models of � w.r.t. the satisfa
tion relation j=, and the preferentialrelation � is a partial order on M .De�nition 3.2 Let M=(M; j=;�) be a preferential model, � a set of formulae in a language �,and m2M .a) m satis�es � (notation: m j=�) if m j=
 for every 
2�.b) m preferentially satis�es � (alternatively, m is a �-most preferred model of �) if m satis�es� and there is no element n2M that satis�es �, and for whi
h n�m and m 6�n.
) The set of the elements in M that preferentially satisfy � is denoted by !(�;�).Now we 
an de�ne the preferential entailment relations:De�nition 3.3 Let M = (M; j=;�) be a preferential model, � a set of formulae in �, and  aformula in �. We say that  (preferentially) follows from � (alternatively, � preferentially entails ), if every element of !(�;�) satis�es  . We denote this by � j=� .8Among the various ways of de�ning preferential reasoning that are given in the literature, we follow here that ofMakinson [27℄. 8



In 
ase thatM 
onsists of the models of �, De�nition 3.3 simply says that � preferentially entails if every �-preferred model of � is a model of  .The idea that a non-monotoni
 dedu
tion should be based on some preferen
e 
riterion thatre
e
ts some normality relation among the relevant semanti
al obje
ts is a very natural one, andmay be tra
ed ba
k to [28℄. Furthermore, this approa
h is the semanti
al basis of some well-knowngeneral patterns for non-monotoni
 reasoning, introdu
ed in [24, 25, 26, 27℄, and it is a key 
on
eptbehind many formalisms for nonmonotoni
 and para
onsistent reasoning, su
h as RI [22, 23℄, LPm[31, 32℄, and the bilatti
e-based logi
s of [2, 5℄. Our purpose in the rest of this paper is to proposete
hniques of expressing some of the preferential relations used in these formalisms by formulae inthe underlying language. Next we de�ne the framework for doing so.3.2 Four-valued preferential reasoningIn what follows we des
ribe some parti
ularly useful ways of applying preferential reasoning in thefour-valued 
ase. See [4℄ for a more detailed dis
ussion on the formailsms that are obtained.De�nition 3.4 [4℄ Let �; �2V4. Denote:� � �k � if �(p) �k �(p) for every atom p.� � �f>g � if for every atom p, �(p)=> whenever �(p)=>.� � �f>;?g � if for every atom p, �(p)2f>;?g whenever �(p)2f>;?g.It is easy to 
he
k that �k is a partial order and �f>g, �f>;?g are pre-orders on V4. In whatfollows we shall write �<k� to denote that ��k� and � 6�k �; similarly for <f>g and <f>;?g.Ea
h one of these preferen
e orders has its own rationality: a

ording to �k, for instan
e, oneprefers valuations with as minimal information as reasonably possible. This is a 
ommon 
riterionfor making preferen
es among di�erent semanti
s of a given theory.9 This 
riterion may as well beviewed as an argumentation for 
onsisten
y preserving, sin
e as long as one keeps the amount ofinformation (or belief) as minimal as possible, the tenden
y of getting into 
on
i
ts de
reases.The pre-order �f>g states a somewhat more expli
it preferen
e of in
onsisten
y minimization:it prefers those valuations that minimize the amount of in
onsistent assignments. The last ordergiven in De�nition 3.4, �f>;?g, prefers those valuations that are as 
lassi
al as possible, i.e., thoseones that assign 
lassi
al truth values whenever possible.In terms of Se
tion 2.2, the preferen
e 
riteria of De�nition 3.4 may be reformulated as follows:Lemma 3.5 Let �; �2V4. Then:� ��k� i� for every atom p, �1(p)��1(p) and �2(p)��2(p).9Notable examples of formalisms that are based on the idea of �k-minimization are the well-founded semanti
s[37℄ and Fitting's �xpoint semanti
s [15℄ for general logi
 programs.9



� ��f>g� i� for every atom p, whenever �1(p)^�2(p)=1, �1(p)^�2(p)=1 as well.� ��f>;?g� i� for every atom p, whenever (�1(p)^�2(p)) _ (:�1(p)^:�2(p))=1, we have that(�1(p)^�2(p)) _ (:�1(p)^:�2(p))=1 as well.Proof: Immediately follows from the 
orresponding de�nitions. 2Alternatively, the preferen
e 
riteria above may be de�ned as follows:Corollary 3.6 Let �; �2V4. Then:� ��k� i� whenever �i(p)=1 then �i(p)=1, for i=1; 2.� ��f>g� i� whenever �1(p)=�2(p)=1 then �1(p)=�2(p)=1.� ��f>;?g� i� whenever �1(p)=�2(p) then �1(p)=�2(p).Given a set � of formulae in �, the minimal elements in mod(�) w.r.t. �k are 
alled the k-minimal models of �.10 Similarly, the minimal elements of mod(�) w.r.t. �f>g are 
alled the most
onsistent models of �, and the minimal elements of mod(�) w.r.t. �f>;?g are 
alled the most
lassi
al models of �.Example 3.7 Let �=fp;:p_q;:q; r_qg. The ten four-valued models of � are given in Table 1.Table 1: The elements in mod(�)Model No. p q rM1 �M2 > f t;>M3 �M6 t > ?; f; t;>M7 �M10 > > ?; f; t;>Thus, the k-minimal models of � are fM1;M3g, the most 
onsistent ones are fM1;M3;M4;M5g,and the most 
lassi
al ones are fM1;M4;M5g.Ea
h one of the preferen
e 
riteria 
onsidered in De�nition 3.4 indu
es a 
orresponding prefer-ential 
onsequen
e relation. Next we de�ne these relations:De�nition 3.8 [4℄ Let � be a set of formulae and  a formula in �. Denote:� � j=4k if every k-minimal model of � is a model of  .� � j=4f>g if every most 
onsistent model of � is a model of  .� � j=4f>;?g if every most 
lassi
al model of � is a model of  .10That is, �2mod(�) is a k-minimal model of � if there is no �2mod(�) s.t. �<k �.10



Example 3.9 Consider again the set � of Example 3.7, and let  =r_:r. Then � j=4f>;?g , while� 6j=4k and � 6j=4f>g .Clearly, the 
onsequen
e relations de�ned in 3.8 are parti
ular 
ases of the preferential entailmentrelations j=�, de�ned in 3.3 (see also the note after De�nition 3.3). Some important properties ofthese relations are listed in the next proposition:Proposition 3.10 [4℄ Denote by j=2 the two-valued 
lassi
al 
onsequen
e relation. For every set� of formulae and a formula  in �,1. � j=4k i� � j=4 .2. If � is 
lassi
ally 
onsistent and  is a formula in CNF, none of its disjun
tions is a tautology,then � j=4f>g i� � j=2 .3. If � is 
lassi
ally 
onsistent then � j=4f>;?g i� � j=2 .4. j=4k, j=4f>g, and j=4f>;?g are para
onsistent.Note 3.11 Proposition 3.10 demonstrates the usefulness of the 
onsequen
e relations 
onsideredin De�nition 3.8:� Item 1 implies that j=4k is a 
ompa
t representation of j=4; it is suÆ
ient to 
onsider only thek-minimal models of a given theory in order to simulate reasoning with j=4.� By item 2 it follows that in order to 
he
k whether a formula 
lassi
ally follows from a
onsistent theory �, it is suÆ
ient to 
onvert it to a 
onjun
tive normal form, drop all the
onjun
ts that are tautologies, and 
he
k the remaining formula only w.r.t. the most 
onsistentmodels of �.� By items 3 and 4 it follows that j=4f>;?g is equivalent to 
lassi
al logi
 on 
onsistent theoriesand is nontrivial w.r.t. in
onsistent theories.A more detailed dis
ussion on the 
onsequen
e relations de�ned in 3.8 and some related onesappears in [4, 5℄. In the next se
tion we will show how to express the semanti
al 
onsiderationsbehind su
h relations by se
ond-order formulae.3.3 Simulating preferential four-valued reasoning by 
ir
ums
riptionIn this se
tion we show that four-valued preferential entailment 
an be de�ned in terms of 
lassi
alentailment for the transformed theories augmented with 
ir
ums
riptive axioms. Indeed, in order toextend the te
hnique of Se
tion 2.3 to deal with preferential four-valued reasoning, we must expressthat the en
oded four-valued interpretation is minimal with respe
t to the preferen
e relation �.This is a

omplished by introdu
ing a 
ir
ums
ription axiom that expresses the preferen
e relation� obje
tively, by a formula 	�. Thus, the �rst point to 
he
k out is how to express a semanti
alpreferen
e relation � in an axiom. 11



Let ~p = fp1; p2; : : :g be the set symbols of a language �. De�ne ~p � as the set of symbolsfp+1 ; p�1 ; p+2 ; p�2 ; : : :g. To be able to express for two valuations � = (�1; �2) and � = (�1; �2) that� � � by one formula, we introdu
e new symbols ~q as a renaming of the symbols of ~p. Similar asbefore, we de�ne (~p � : � ; ~q � :�) as the two-valued interpretation that interprets, for every i, thesymbols p+i as �1(p), p�i as �2(p), q+i as �1(p) and q�i as �2(p).De�nition 3.12 A preferential order � is represented by a formula 	�(~p �; ~q �) if for every four-valued valuations � and � we have that ��� i� (~p � :�; ~q � :�) satis�es 	�(~p �; ~q �).Proposition 3.13 Let 	�(~p �; ~q �) be a formula that represents a preferential order �. Then � isa �-most preferred model of  (that is, �2 !( ;�)) i� � satis�es  and the following formula:Cir
�(~p �) = 8(~q �) f  (~q �) ! (	�(~q �; ~p �)! 	�(~p �; ~q �) ) g:Proof: By Corollary 2.7, � is a model of  i� � satis�es  . It remains to show that the fa
t that �satis�es Cir
� is a ne
essary and suÆ
ient 
ondition for assuring that � is a �-minimal element inthe set mod( ) of the models of  . Indeed, � satis�es Cir
� i� for every valuation � that satis�es and for whi
h � � �, it is also true that � � �. Thus, for every � 2 mod( ), we have that(� � �)! (� � �) (alternatively, there is no � 2 mod( ) s.t. � < �), i.e., �2 !( ;�). 2Note 3.14 Let 	<(~q �; ~p �) = 	�(~q �; ~p �)^:	�(~p �; ~q �),11 and denote by ~p � = ~q � the formulaVni=1 ((p+i =q+i ) ^ (p�i =q�i )). Thena) The formula Cir
� of Proposition 3.13 may be rewritten as follows:Cir
�(~p �) = 8(~q �) f  (~q �) ! :	<(~q �; ~p �) gb) In 
ase that � is a partial order, Cir
� 
an be rewritten as follows:Cir
�(~p �) = 8(~q �) f [  (~q �) ^	�(~q �; ~p �) ℄! ~p � = ~q � gThe next theorem is an immediate 
orollary of Proposition 3.13:Notation 3.15 Denote by j=4� the 
onsequen
e relation j=� (De�nition 3.3), where the underlyingsemanti
al stru
ture is FOUR, and the set of the designated elements is D=ft;>g.Theorem 3.16 Let � be a set of formula and  a formula in �. Let Cir
� be the formula given inProposition 3.13 for a preferential relation �. Then � j=4� i� � [ Cir
� j=2 .Proposition 3.13 gives a general 
hara
terization in terms of \formula 
ir
ums
ription" [29℄ of thepreferred models of a given theory: given a preferential relation �, in order to express �-preferentialsatisfa
tion of a theory, one should �rst formulate a 
orresponding formula 	� that represents �,and then integrate 	� with Cir
� as in Proposition 3.13. Again, this 
an be done in a polynomialtime.Next we de�ne formulae that represent the preferential relations 
onsidered above. For that, weshall need the following notations:11It is easy to see that for all four-valued valuations � and �, �<� i� (~q � :�; ~p � :�) satis�es 	<(~q �; ~p �).12



Notation 3.17 In what follows we shall write x�y for x!y, and x�y for (x!y)^:(y!x).12Lemma 3.18 Let n be the number of di�erent atomi
 formulae in �. Then:a) The preferential relation �k is represented by the following formula:	�k(~p �; ~q �) = n̂i=1 ((p+i � q+i ) ^ (p�i � q�i )):b) The preferential relation �f>g is represented by the following formula:	�f>g(~p �; ~q �) = n̂i=1 ((p+i ^p�i ) � (q+i ^q�i )):
) The preferential relation �f>;?g is represented by the following formula:	�f>g(~p �; ~q �) = n̂i=1 ( ((p+i ^p�i ) _ (:p+i ^:p�i )) � ((q+i ^q�i ) _ (:q+i ^:q�i )) ):Proof: We show only part (a); the proof of the other parts is similar.��k� () 81� i�n �(pi) �k �(pi)() 81� i�n �1(pi)��1(pi) and �2(pi)��2(pi)() (~p � :�; ~q � :�) satis�es Vni=1 ((p+i � q+i ) ^ (p�i � q�i ))() (~p � :�; ~q � :�) satis�es 	�k(~p �; ~q �) 2By Proposition 3.13, Lemma 3.18(a), and Note 3.14(b), we have the following 
orollary:Corollary 3.19 A valuation �=(�1; �2) is a k-minimal model of  i� � satis�es  and Cir
�k(~p �),where Cir
�k(~p �) is the following formula: 138(~q �) f [  (~q �) ^ n̂i=1 ((q+i � p+i ) ^ (q�i � p�i )) ℄ ! [ n̂i=1 ((q+i = p+i ) ^ (q�i = p�i )) ℄ gAs in Corollary 3.19, the most 
onsistent models and the most 
lassi
al models of a given the-ory 
an be represented by formulae of the form Cir
�f>g(~p �) and Cir
�f>;?g(~p �), obtained byrespe
tively integrating the formulae given in parts (b) and (
) of Lemma 3.18 with Cir
�, given inProposition 3.13.In what follows we 
onsider a uniform way of representing Cir
�f>g(~p �), Cir
�f>;?g(~p �), andsome other formulae that 
orrespond to preferential 
riteria like �f>g and �f>;?g. For this, let12Thus, x�y = (x�y)^ :(y�x).13Note that Cir
�k(~p �) is a standard 
ir
ums
riptive axiom in the sense of [28℄.13



��FOUR. De�ne an order relation <� on FOUR by x<� y i� x 62� while y2�. A 
orrespondingpre-order on V4 may now be de�ned as follows: for every �; � 2 V4, � �� � i� for every atom p,the fa
t that �(p) 2� entails that �(p) 2� as well. The ��-most preferred models of � are the��-minimal elements inmod(�), and � j=4� if every ��-most preferred model of � is a model of  .Clearly, �f>g and �f>;?g are parti
ular 
ases of ��, where �= f>g and �= f>;?g, respe
-tively. Now, the ��-most preferred models of a given theory 
an be represented by a 
ir
ums
riptiveformula in the following way:Notation 3.20 For ��FOUR, let ��(p+; p�) = Wx2� �x(p+; p�), where �t(p+; p�) = p+ ^:p�,�f (p+; p�) = :p+ ^ p�, �?(p+; p�) = :p+ ^ :p�, and �>(p+; p�) = p+ ^ p�. 14Similar arguments as those in Lemma 3.18 show that the formula	��(~p �; ~q �) = n̂i=1 ( ��(p+i ; p�i ) � ��(q+i ; q�i ) )represents the preferential relation ��. Therefore, by Proposition 3.13,Proposition 3.21 A valuation � is a ��-preferred model of  i� � satis�es  and the followingformula: Cir
��(~p �) = 8(~q �) f  (~q �) ! (	��(~q �; ~p �)! 	��(~p �; ~q �) ) g:3.4 Experimental studyAs we have already noted, all the formulae that are obtained by our method have a 
ir
ums
riptiveform. It is therefore possible to apply, for instan
e, the formula Cir
�k , given in Corollary 3.19,in algorithms for redu
ing 
ir
ums
riptive axioms. Below are some simple results obtained byexperimenting with su
h algorithm (We have used Doherty, Lukaszewi
z and Szalas DLS algorithm[13, 14℄, available at http://www.ida.liu.se/labs/kplab/proje
ts/dls/
ir
.html). 15� Consider the theory � = fQ(a); Q(b);:Q(a)g, where Q denotes some predi
ate, and a; bare two 
onstants. In our 
ontext, this theory is translated to � = fQ+(a); Q+(b); Q�(a)g.Cir
ums
ribing � where Q+ and Q� are simultaneously minimized, yields the following result:8x f (Q�(x)! x = a) ^ (Q+(x)! (x = a _ x = b)) g:It follows, then, that a is the only obje
t for whi
h both Q+(x) and Q�(x) hold (i.e., a isthe only obje
t that is in
onsistent w.r.t. Q), and b is the only obje
t for whi
h only Q+(x)holds. For all the other obje
ts neither Q+(x) nor Q�(x) holds, i.e., if 
 62 fa; bg then Q(
)
orresponds to ?. This indeed is exa
tly the k-minimal semanti
s of �.Note that the fa
t that for every obje
t x di�erent from a and b neither Q+(x) nor Q�(x)holds means that the truth values of all the domain elements other than a or b do not matterin order to satisfy this formula. This may be important from an analyti
 point of view.14Intuitively, �x(p+; p�) expresses that �(p) = x and ��(p+; p�) expresses that �(x) 2 �.15In what follows we deliberately 
onsider some very simple 
ases. Our experien
e is that for more 
omplex theoriesthe output qui
kly be
omes more 
ompli
ated. Although this is useful for automated 
omputations, it is mu
h less
omprehensible by humans. 14



� Suppose that in the previous example one wants to impose a three-valued semanti
s. It ispossible to do so by adding to � the restri
tion  = 8x(Q(x)_:Q(x)), whi
h is translated to = 8x(Q+(x) _Q�(x)). Cir
ums
ribing � [ f g yields8x f [(Q+(x) ^ x 6= a ^ x 6= b)! :Q�(x)℄ ^ [(Q�(x) ^ x 6= a)! :Q+(x)℄ g;whi
h has almost the same meaning as before, ex
ept that this time, the 
ombination of thisand  means that if 
 62 fa; bg then either Q+(
) or Q�(
) holds, but not both. It follows,then, that for su
h 
, Q(
) must have some 
lassi
al value. Again, this 
orresponds to whatone expe
ts when k-minimizing � [ f g.4 Using more than four valuesIn this se
tion we extend to the multiple-valued 
ase the results obtained in the previous se
tions.Essentially, we go through the same pro
ess. We start with a multiple-valued logi
 that may not bepara
onsistent . Then we shift to a di�erent semanti
s that is based on a more 
omplex stru
ture oftruth values, and then show how to simulate the latter semanti
s by the original one. The out
omeof this pro
ess is twofold:1. A general approa
h for deriving a para
onsistent logi
 from a general multiple-valued logi
.2. A redu
tion of (preferential) para
onsistent reasoning in this derived logi
 to obje
t-levelreasoning in the original logi
.We thus obtain a general method for performing para
onsistent reasoning in a multi-valued logi
.This extension may serve as an eviden
e for the robustness of the te
hniques proposed in this paper.4.1 Latti
e-valued reasoningDe�nition 4.1 A multiple-valued stru
ture for a language � is a triple (L;DL;OL), where L is setof elements (\truth values"), DL is a nonempty proper subset of L, and OL is a set of operationson L that 
orrespond to the 
onne
tives in �.In the sequel we shall assume that L = (L;�L) is a 
omplete latti
e with a negation operator:,16 and that DL is a �lter in it, namely: it is a nonempty proper subset of L s.t. for every x; y2L,x^y2DL i� x2DL and y2DL. Sometimes we shall assume that DL is a prime �lter in L, i.e. thatit is a �lter in L s.t. for every x; y2L, x_y2DL i� x2DL or y2DL.The set DL 
onsists of the designated values of L, i.e., those that represent true assertions. Byits de�nition it is obvious that DL is �L-upwards 
losed, and so sup(L)2DL and inf(L) 62DL.16That is, for every x; y 2 L, x �L y i� :y �L :x, and for every x 2 L, ::x=x. The requirement for a 
ompletelatti
e is needed here for giving semanti
s to quanti�ed formulae: for a stru
ture with a domain E and a valuation�, we let �(8x (x)) = inf�tf�( (e) j e2Eg; for all other purposes, it is suÆ
ient to take distributive latti
es withnegation operators. 15



In what follows we further on assume that � is the 
lassi
al propositional language where
onjun
tions 
orrespond to the meet operation in L, disjun
tions 
orresponds to the join operationin L, and negations 
orrespond to the negation operator of L.De�nition 4.2 Let L be a 
omplete latti
e, DL a prime �lter in it, and � a set of formulae in �.a) A (multiple-valued) valuation � is a fun
tion that assigns an element of L to ea
h atomi
formula. A valuation is extended to 
omplex formulae in the standard way.b) A valuation � satis�es a formula  if �( )2DL.
) A valuation � is a model of � if it satis�es every formula in �. We shall 
ontinue to denoteby mod(�) the set of the models of �.De�nition 4.3 Let L be a 
omplete latti
e and DL a prime �lter in it. For a set � of formulae anda formula  , denote � j=L;DL if every model of � is a model of  .Note that 
lassi
al logi
 is obtained from the above de�nitions by taking the two-valued latti
e(ft; fg; f <L t) with DL = ftg. Similarly, Kleene three-valued logi
 [21℄ is obtained by taking thethree-valued latti
e L= (ft; f;?g;�L) with DL = ftg. The 
onne
tives in OL 
orrespond in this
ase to the latti
e operations of a latti
e in whi
h f <L?<L t together with a negation operationde�ned by: :f= t;:t=f;:?=?. Note also that both these logi
s are not para
onsistent.4.2 Para
onsistent reasoning through bilatti
esIn order to add para
onsistent 
apabilities to the latti
e-based logi
 under 
onsideration, we use thesame methodology as in the two-valued 
ase. The basi
 idea is to 
onsider a logi
 in whi
h the truthvalues are not the latti
e elements but are arbitrary pairs of latti
e elements, rather than pairs off0; 1g, as in the 
ase of FOUR.De�nition 4.4 [18℄ Let L=(L;�L) be a 
omplete latti
e. The stru
ture L�L=(L�L;�t;�k;:)
onsists of pairs of elements from L that are arranged in two latti
e stru
tures as follows:� (L�L;�t), where (y1; y2) �t (x1; x2) i� y1 �L x1 and y2 �L x2� (L�L;�k), where (y1; y2) �k (x1; x2) i� y1 �L x1 and y2 �L x2The unary operation : is de�ned on L�L by :(x1; x2) = (x2; x1).The stru
ture that L�L forms is 
alled a bilatti
e [16, 18℄. As in the four-valued 
ase, a truthvalue (x; y) 2 L � L may intuitively be understood so that x represents the amount of eviden
efor an assertion, while y represents the amount of eviden
e against it. It is easy to verify thatthe �k-minimal element of L � L is (inf(L); inf(L)), the �k-maximal one is (sup(L); sup(L)), the�t-minimal element is (inf(L); sup(L)), and the �t-maximal one is (sup(L); inf(L)).Example 4.5 Belnap's four-valued latti
e FOUR, 
onsidered in the previous se
tions, is a par-ti
ular 
ase of the algebrai
 stru
tures de�ned in 4.4, sin
e FOUR = T WO � T WO, whereT WO is the two-valued 
lassi
al latti
e. For another example, 
onsider the three-valued latti
eT HREE=(f0; 12 ; 1g; 0< 12<1). Figure 2 
ontains a double-Hasse diagram of T HREE �T HREE .16
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Figure 2: T HREE � T HREEIn what follows we shall 
ontinue to use the symbols _;^;�, and 
 for denoting, respe
tively,the �t-join, �t-meet, �k-join, and the �k-meet operations in L � L. By De�nition 4.4 it followsthat these operations are 
omputed as in FOUR, i.e., for every x1; x2; y1; y22L,(x1; y1) _ (x2; y2) = (x1 _ x2; y1 ^ y2); (x1; y1) ^ (x2; y2) = (x1 ^ x2; y1 _ y2);(x1; y1)� (x2; y2) = (x1 _ x2; y1 _ y2); (x1; y1)
 (x2; y2) = (x1 ^ x2; y1 ^ y2):As noted in Example 4.5, De�nition 4.4 is a natural extension of Belnap's four-valued stru
ture.The notion of the designated values in FOUR 
an also be generalized in a natural way in L� L:De�nition 4.6 [2℄ Let L� L be the bilatti
e de�ned in 4.4.a) A bi�lter D of L� L is a nonempty proper subset of L�L, su
h that:(i) x^y2D i� x2D and y2D, (ii) x
y2D i� x2D and y2D.b) A bi�lter D is 
alled prime, if it also satis�es the following 
onditions:(i) x_y2D i� x2D or y2D, (ii) x�y2D i� x2D or y2D.Given a bilatti
e of the form L � L, we �x some prime bi�lter D in L � L. This set 
onsistsof the designated elements of L � L. It is easy to verify that a prime bi�lter of L � L is upwards
losed w.r.t. both partial orders of L� L, thus it 
ontains the �t- and the �k-largest element anddoes not 
ontain the �t- and the �k-least one.As in the latti
e-valued 
ase,(prime) bi�lters are used for de�ning validity of formulae: a valua-tion � on L� L is a model of a set � of formulae if �( )2D for every  2�.Example 4.7 The set D=ft;>g of the designated elements in FOUR is indeed a prime bi�lter inFOUR (and, moreover, it is the only prime bi�lter in this bilatti
e). In T HREE � T HREE thereare two prime bi�lters: 17



� D1 = f(1; x) j x2f0; 12 ; 1gg = f(x1; x2) j (x1; x2)�k (1; 0)g, and� D2 = f(x1; x2) j x1� 12 ; x22f0; 12 ; 1gg = f(x1; x2) j (x1; x2)�k (12 ; 0)g:Proposition 4.8 [5℄a) D is a bi�lter in L� L i� D=DL�L, where DL is a �lter in L.b) D is a prime bi�lter in L� L i� D=DL�L, where DL is a prime �lter in L.Corollary 4.9 [5℄ Let x0 2 L, x0 6= inf(L). Denote: D(x0) = f(y1; y2) j y1 �L x0; y2 2 Lg, andDL(x0)=fy2L j y�Lx0g. Then:a) D(x0) is a prime bi�lter in L� L i� DL(x0) is a prime �lter in L.b) D(sup(L)) is a prime bi�lter in L � L i� sup(L) is join irredu
ible (i.e., i� x _L y = sup(L)implies that x=sup(L) or y=sup(L)).
) If the 
ondition of item (b) is met, then D(sup(L)) is least (w.r.t. set in
lusion) among the(prime) bi�lters of L� L.Given a billati
e L�L and a prime bi�lter D in it, one may de�ne a 
orresponding 
onsequen
erelation in a similar way to the latti
e-valued 
ase:De�nition 4.10 � j=L�L;D if every L�L-valued model of � is a L�L-valued model of  .Proposition 4.11 j=L�L;D is para
onsistent.Proof: It is easy to verify that j=L�L;D does not allow trivial reasoning from in
onsistent theories.Indeed, p;:p 6j=L�L;D q. A 
ounter-model assigns (sup(L); sup(L)) to p and (inf(L); sup(L)) to q. 24.3 Simulating bilatti
e-valued reasoningIn the rest of this paper we �x some latti
e L= (L;�L) with a prime �lter DL, and denote by Dthe 
orresponding prime bi�lter of the form DL�L in L�L. We shall show that by using the samemethod as that of Se
tion 3 for the four-valued 
ase, it is now possible to have analogous results forevery stru
ture of the form L � L with a set of designated values D. Again, we start by standardbilatti
e-valued reasoning and then, in the next se
tion, 
onsider the preferential 
ase.For every formula  in � we 
an obtain its \split form",  in exa
tly the same way as in thefour-valued 
ase. Also, sin
e every valuation � on L � L 
an be represented by a pair (�1; �2) ofL-valued 
omponents, then � is an L-valued valuation de�ned (just as in the four-valued 
ase) by�(p+) = �1(p) and �(p�) = �2(p). Again, whenever it is more 
onvenient, we shall use the moredetailed notation (~p + :�1 ; ~p � :�2) instead of just �.Using the notations above we 
an now generalize Proposition 2.4 to the 
ase of L�L as follows:18



Proposition 4.12 Let L be a de Morgan latti
e,17 and let � = (�1; �2) be a valuation on L � L.Then �( ) = (�( );:rev(�)( )).The proof of Proposition 4.12 is identi
al to that of Proposition 2.4, using L � L instead ofFOUR.In the rest of the paper we suppose, then, that L is a de Morgan latti
e.18 Under this assumption,the next two 
orollaries immediately follow from Proposition 4.12.Corollary 4.13 Let DL be a prime �lter in L, and let D = DL�L be the set of the designatedelements in L� L.19 For every valuation � on L� L and a formula  in �, �( )2D i� �( )2DL.Proof: �( ) is designated i� �1( )2DL, i� (Proposition 4.12) �( )2DL. 2In parti
ular, sin
e by Proposition 4.8(b) every prime bi�lter in L � L is of the form DL�L,where DL is a prime �lter in L, we have that whenever �( ) is designated in L�L, there is a prime�lter in L with respe
t to whi
h �( ) is designated in L, and vi
e-versa.Corollary 4.14 Suppose that sup(L) is join irredu
ible in L, and let D=D(sup(L)) be the set ofthe designated elements in L�L.20 For every valuation � in L�L and a formula  in �, �( )2Di� �( )=sup(L).Proof: �( ) is designated i� �1( )=sup(L), i� (Proposition 4.12) �( )=sup(L). 2We 
an now extend Theorem 2.8, and show how to simulate reasoning in L�L by obje
t levelreasoning in L.Theorem 4.15 � j=L�L;D  i� � j=L;DL  .Proof: Follows from Corollary 4.13. 2As in the four-valued 
ase, sin
e in the language without negations, � is obtained just byrenaming the atomi
 formulae that appear in �, the following 
orollary immediately follows fromTheorem 4.15 (
f. Corollary 2.9):Corollary 4.16 In positive logi
, � j=L�L;D  i� � j=L;DL  .17That is, for every x; y2L, :(x_y) = :x^:y, and :(x^y) = :x_:y.18It is interesting to note that L�L is always a de Morgan bilatti
e. Indeed, :[(x1; x2)_(y1; y2)℄=:(x1_y1; x2^y2)=(x2^y2; x1_y1)=(x2; x1)^(y2; y1)=:(x1; x2)^:(y1; y2).19By Proposition 4.8, D is indeed a prime bi�lter in L �L.20By Corollary 4.9, D is indeed a prime bi�lter in L �L.
19



4.4 Simulating bilatti
e-valued preferential reasoningWe turn now to the preferential 
ase. Again, by using the same methods as those of Se
tion 3 forthe four-valued 
ase, it is possible to de�ne 
ir
ums
riptive formulae for expressing multiple-valuedpreferential reasoning w.r.t. a representable preferen
e order �. This implies, in parti
ular, thaton
e again we are able to redu
e \meta-reasoning" (this time, in the bilatti
e) to obje
t level reason-ing (in the latti
e) by axiomatizing the preferred models of a given theory in the bilatti
e throughformula 
ir
ums
ription in the latti
e.Suppose, then, that � is some preferential order among the valuations into L�L. Note that thenotion of a representation of � by a formula 	�, de�ned in 3.12, 
an be dire
tly extended to thebilatti
e-valued 
ase. A 
orresponding 
onsequen
e relation 
an also be de�ned by extending thede�nition of the four-valued 
ase:Notation 4.17 � j=L�L;D�  i� every �-most preferred L�L-valued model of � is a L�L-valuedmodel of  .21Now, for 
onstru
ting the 
ir
ums
ribing formulae in the L-valued logi
 we need to have animpli
ation 
onne
tive on L that behaves as material impli
ation in 
lassi
al logi
. This is what wede�ne next.De�nition 4.18 Let L=(L;�L) be a latti
e and DL a (prime) �lter in it. For every x; y2L de�ne:a) x!y = sup(L) if either x 62DL or y2DL, otherwise x!y = inf(L).b) x�y = sup(L) if x�L y, otherwise x�y = inf(L).
) x�y = sup(L) if x<L y, otherwise x�y = inf(L). 22Our next result extends Theorem 3.16:Theorem 4.19 Let � be a set of formula and  a formula in �. Let Cir
� be the formula given inProposition 3.13 for a preferential relation �.23 Then � j=L�L;D�  i� � [ Cir
� j=L;DL  .Proof: As in the proof of Theorem 3.16, the 
laim follows from the fa
t that � is a �-most preferredmodel of  i� � satis�es  (this is true by Corollary 4.13) and the fa
t that � also satis�es Cir
�(the proof of Proposition 3.13 may be used in the present 
ase as well for showing the latter fa
t). 2Clearly, Theorem 4.19 may be applied only in 
ases that the preferential relations under 
on-sideration are representable (in the sense of De�nition 3.12). Next we show that all the preferentialrelations that have been 
onsidered in Se
tion 3 
an be generalized to (bi)latti
e-valued preferentialrelations that are also representable by 
ir
ums
riptive formulae.21Again, this is the same relation as the one de�ned in 3.3, together with an expli
it indi
ation that the underlyingsemanti
s is based on L � L and D.22Note that this is a generalization of the de�nition of the operators with the same notations, given in Notation3.17. In parti
ular, when L is the two-valued latti
e, ! and � are the same as the 
lassi
al impli
ation.23Where the relevant 
onne
tives are interpreted by De�nition 4.18.20



Representing preferen
e of minimal informationAs in Proposition 3.19, the set of the k-minimal models of  in L�L 
an be represented by Cir
�k ,using the generalized interpretations for the relevant 
onne
tives (see De�nition 4.18):Proposition 4.20 A valuation � in L�L is a k-minimal model of  i� �( )2DL and �(Cir
�k) =sup(L).Proof: The same proof as that of Proposition 3.13 holds in this 
ase as well (where every referen
eto Corollary 2.7 should be repla
ed by a referen
e to Corollary 4.13). Thus, � is a k-minimal modelof  i� �( )2DL and �(Cir
�k)2DL, whereCir
�k(~p �) = 8(~q �) f  (~q �) ! (	�k(~q �; ~p �)! 	�k(~p �; ~q �) ) g;and 	�k(~p �; ~q �) = n̂i=1 ((p+i � q+i ) ^ (p�i � q�i )):Note also that Cir
�k is de�ned only by operators onto finf(L); sup(L)g. Now , sin
e all theoperators in � are 
losed w.r.t. this set of values, and sin
e sup(L)2DL, we have that �(Cir
�k)2DLi� �(Cir
�k) = sup(L).It remains to show that �k is represented by 	�k . Indeed, by the way the partial order �k isde�ned on L�L (see De�nition 4.4) and by De�nition 4.18, we have that��k� () 81� i�n �(pi)�k�(pi) () 81� i�n �1(pi)�L�1(pi) and �2(pi)�L�2(pi)() (~p � :�; ~q � :�) satis�es Vni=1 ((p+i � q+i ) ^ (p�i � q�i ))() (~p � :�; ~q � :�) satis�es 	�k(~p �; ~q �): 2Representing preferen
e of most 
onsistent interpretationsLet I>=fx2L�L j x2D;:x2Dg be the set of the in
onsistent values in L � L. A valuation �1is (stri
tly) more 
onsistent than a valuation �2 if the set of atoms pi s.t. �1(pi)2I> is (stri
tly)subsumed in the set of atoms pj s.t. �2(pj)2I>. A valuation �2mod( ) is a most 
onsistent modelof  [4, 5℄, if there is no other model of  that is stri
tly more 
onsistent than �.By a proof that is similar to that of Proposition 4.20 one 
an show that the set of the most
onsistent models of  
an be represented by Cir
�f>g: a valuation � in L� L is a most 
onsistentmodel of  i� �( )2DL and �(Cir
�f>g) = sup(L).Representing preferen
e of most 
lassi
al interpretationsLet I> be the set of the in
onsistent elements in L � L as in the previous 
ase, and let I?= fx2L�L j x 62D;:x 62Dg be the set of the in
omplete values in L�L. A valuation �1 is (stri
tly) more
lassi
al than a valuation �2 if the set of atoms pi s.t. �1(pi)2I> [I? is (stri
tly) subsumed in theset of atoms pj s.t. �2(pj)2I> [ I?. A valuation �2mod( ) is a most 
lassi
al model of  [4, 5℄,if there is no other model of  that is stri
tly more 
lassi
al than �.21



Again, a similar proof as that of Proposition 4.20 shows that the set of the most 
lassi
al modelsof  
an be represented by Cir
�f>;?g: a valuation � in L � L is a most 
lassi
al model of  i��( )2DL and �(Cir
�f>;?g) = sup(L).Parti
ular 
ases in whi
h the representations above may be used are the bilatti
e-based logi
sintrodu
ed in [2, 3, 4, 5℄, and the annotated logi
 [35℄ RI, introdu
ed in [22, 23℄, provided that theunderlying many-valued stru
ture is of the form L� L.5 Summary and 
on
lusionA well-known way of formalizing para
onsistent reasoning is in terms of de Morgan algebras, with a
ertain four-element algebra playing a pivotal role analogous to that of the two-element Boolean al-gebra in its 
lass. To formalize reasoning that is simultaneously para
onsistent and non-monotoni
,Belnap [8, 9℄ and Ginsberg [18, 19℄ have elaborated de Morgan algebras into bilatti
es. In [4℄ it isshown that the four-element bilatti
e FOUR again plays a pivotal role. In this paper we followedup this work, essentially motivated by 
omputational 
onsiderations. We have shown that ques-tions of 
onsequen
e in these stru
tures 
an be redu
ed to ones of 
lassi
al 
onsequen
e, by meansof polynomial translations that essentially serves to separate negated atoms from aÆrmed ones.Moreover, these translations 
an be in
orporated together with some appropriate 
ir
ums
riptiveaxioms to 
apture the notion of minimality and for representing preferential reasoning [34℄. Thismethod also tou
hes upon several additional aspe
ts:1. It shows that two-valued reasoning may be useful for simulating inferen
e pro
edures in the
ontext of many-valued semanti
s.2. This approa
h demonstrates the usefulness of 
ir
ums
ription not only as a general methodfor non-monotoni
 inferential reasoning, but also as an appealing te
hnique for implementingpara
onsistent reasoning.3. This is another eviden
e for the fa
t that in many 
ases 
on
epts that are de�ned in a \meta-language" (su
h as preferen
e 
riteria, et
.) 
an be expressed in the language itself (using,e.g., higher-order formulae).Note that although we have proposed our te
hnique for propositional logi
, it 
an be easilyapplied to the predi
ate 
ase as well. Moreover, as shown in Se
tion 4, our approa
h 
an beextended to many-valued (latti
e-based) logi
s. These observations, together with item (3) above,imply that su
h te
hniques allow a potentially wide area for pra
ti
al implementations. For instan
e,as we have shown above, preferential multiple-valued reasoning 
an be in
orporated with pra
ti
alappli
ations for automated reasoning and theorem proving.A
knowledgementWe thank the anonymous referees for many useful 
omments.22
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 programs.Journal of the ACM 38(3), pp. 620{650, 1991.Appendix A. Proof of Proposition 2.4Proposition 2.4: Let �=(�1; �2). Then �( ) = (�( ); :rev(�)( )).Proof: Re
all that � = (~p + :�1 ; ~p � :�2) and that rev(�) = (~p + ::�2 ; ~p � ::�1).We �rst show two lemmas:Lemma 2.4-A: rev(�)(: ) = �(: ).Lemma 2.4-B: �(: ) = rev(�)(: ).Proof of Lemmas 2.4-A and 2.4-B: Note �rst that both lemmas are equivalent. Indeed, sin
erev(rev(�)) = �, by repla
ing � by rev(�) in Lemma 2.4-A we obtain Lemma 2.4-B and vi
e versa.The proof is by the following indu
tion on the stru
ture of  :�  = p: rev(�)(: ) = rev(�)(:p+) = :(~p + ::�2 ; ~p � ::�1)(p+) = ::�2(p) = �2(p).On the other hand,�(: ) = �(:p) = �(::p�) = (~p + :�1 ; ~p � :�2)(p�) = �2(p).�  = :�: rev(�)(: ) = rev(�)(::�) = :rev(�)(:�) = (by indu
tion hypothesis) =:�(:�) = �(::�) = �(�) = �(::�) = �(: ).�  = �1_�2: By the de�nition of splitting transformation and by De�nition 2.1, it is obviousthat �1_�2 = �1 _ �2 and �1^�2 = �1 ^ �2. Thus:rev(�)(: ) = :rev(�)( ) = :rev(�)(�1_�2) = :[rev(�)(�1)_ rev(�)(�2)℄ =(sin
e L is a de Morgan latti
e) = :rev(�)(�1) ^ :rev(�)(�2) =rev(�)(:�1)^ rev(�)(:�2) = (by indu
tion hypothesis) = �(:�1) ^ �(:�2) =�(:�1 ^ :�2) = �(:�1 ^ :�2) = (de Morgan law again) = �(:(�1 _ �2)) = �(: ).� The 
ase in whi
h  =�1^�2 is analogue to the latter 
ase.25



Now we are ready to show the equation of Proposition 2.4. Again, we show it by an indu
tionon the stru
ture of  .�  = p: (�( ); :rev(�)( )) = (�(p+); :rev(�)(p+)) =((~p + :�1 ; ~p � :�2)(p+); :(~p + ::�2 ; ~p � ::�1)(p+)) =(�1(p); ::�2(p)) = (�1(p); �2(p)) = �( ).�  = :�: �( ) = �(:�) = :�(�) = (by indu
tion hypothesis) = :( �(�); :rev(�)(�) ) =(:rev(�)(�); (�(�))) = (rev(�)(:�); :(�(:�))) = (by Lemmas 2.4-A and 2.4-B)(�(:�); :rev(�)(:�)) = (�( ); :rev(�)( )).�  = �1_�2: �( ) = �(�1_�2) = �(�1)_�(�2) = (by indu
tion hypothesis) =(�(�1); :rev(�)(�1)) _ (�(�2); :rev(�)(�2)) = (by the de�nition on _) =(�(�1) _ �(�2); :rev(�)(�1) ^ :rev(�)(�2)) = (by de Morgan law) =(�(�1_�2); :(rev(�)(�1)_ rev(�)(�2))) = (�(�1_�2); :rev(�)(�1_�2)) =(�( ); :rev(�)( )).� The 
ase in whi
h  =�1^�2 is analogous to the latter 
ase. 2
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