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Abstract

We introduce a general method for paraconsistent reasoning in the context of classical logic.
A standard technique for paraconsistent reasoning on inconsistent classical theories is by shifting
to multiple-valued logics. We show how these multiple-valued theories can be “shifted back” to
two-valued classical theories through a polynomial transformation, and how preferential reason-
ing based on multiple-valued logic can be represented by classical circumscription-like axioms. By
applying this process we provide new ways of implementing multiple-valued paraconsistent rea-
soning. Standard multiple-valued reasoning can thus be performed through theorem provers for
classical logic, and multiple-valued preferential reasoning can be implemented using algorithms
for processing circumscriptive theories (such as DLS and SCAN).

Keywords: paraconsistent reasoning, preferential semantics, circumscription, multiple-valued
logics.

1 Introduction

It is well-known that classical logic is inappropriate for imitating “common-sense” reasoning in
general, and for reasoning with uncertainty in particular. Indeed, on one hand classical logic is
too cautious in drawing conclusions from incomplete theories. This is so since classical logic is
monotonic, thus it does not allow to retract previously drawn conclusions in light of new, more
accurate information. On the other hand, classical logic is too liberal in drawing conclusions from
inconsistent theories. This is explained by the fact that classical logic is not paraconsistent [12],
therefore everything classically follows from a contradictory set of premises.

Preferential reasoning [34] is an elegant way to overcome classical logic’s shortcoming for rea-
soning on uncertainty. It is based on the idea that in order to draw conclusions from a given theory
one should not consider all the models of that theory, but only a subset of preferred models. This
subset is usually determined according to some preference criterion, which is often defined in terms
of partial orders on the space of valuations. This method of preferring some models and disregarding



the others yields robust formalisms that allow to draw intuitive conclusions from partial knowledge.

In the context of classical logic, preferential semantics cannot help to overcome the problem of
trivial reasoning with contradictory theories. Indeed, if a certain theory has no (two-valued) models,
then it has no preferred models as well. A useful way of reasoning on contradictory classical theories
is therefore by embedding them in multiple-valued logics in general, and Belnap’s four-valued logic
[8, 9] in particular (which is the underlying multiple-valued semantics used here). There are several
reasons for using this setting. The most important ones for our purposes are the following:

e In the context of four-valued semantics it is possible to define consequence relations that are
not degenerated w.r.t. any theory (see, e.g., [3, 4, 31, 32, 35]); the fact that every theory has
a nonempty set of four-valued models implies that four-valued reasoning may be useful for
properly handling inconsistent theories. As shown e.g. in [3, 4], this indeed is the case.

e Analysis of four-valued models can be instructive to pinpoint the causes of the inconsistency
and/or the incompleteness of the theory under consideration. (See [3, 4, 8, 9] for a detailed
discussion on this property, as well as some relevant results).

However, Belnap’s four-valued logic has its own shortcomings:

e Asin classical logic, many theories have too many models, and as a consequence the entailment
relation is often too weak. In fact, since Belnap’s logic is weaker than classical logic w.r.t.
consistent theories', we are even in a worse situation than in classical logic!

A (partial) solution to this problem is by using preferential reasoning in the context of multiple-
valued logic (see, e.g., [2, 3, 4, 5, 22, 23, 31, 32]).

e At the computational level, implementing paraconsistent reasoning based on four-valued se-
mantics poses important challenges. An effective implementation of theorem provers for one
of the existing proof systems for Belnap’s logic requires a major effort. The problem is even
worse in the context of four-valued preferential reasoning, for which currently no proof systems
are known.

Our goal in this paper is to show a way in which these problems can be solved. In particu-
lar, we present a polynomial transformation back from four-valued theories to two-valued theories
such that reasoning in preferential four-valued semantics can be implemented by standard theorem
proving in two-valued logic.? Moreover, preference criteria on four-valued theories are translated
into “circumscriptive-like” formulae [28, 29], and thus paraconsistent reasoning may be automati-
cally computed by some specialized methods for compiling circumscriptive theories (such as those
described in [19, 33]), and incorporated into algorithms such as SCAN [30] and DLS [13, 14], for
reducing second-order formulae to their first-order equivalents.

!That is, everything that follows in Belnap’s four-valued logic from a given theory also classically follows from that
theory, but not vice-versa. For instance, the rule of excluded middle (either ¢ or =1 should hold for every %) and the
Disjunctive Syllogism (from v V ¢ and —¢ conclude ) are not sound in Belnap’s four-valued logic.

2Similar technique, of shifting back and forth between classical and non-classical logics, is also considered in [17],
where it is shown that it is possible to accomplish belief revision in any logic that is translatable to classical logic.



In the last part of this paper we show that our approach of representing preferential considera-
tions by higher-order formulae can be generalized to cases in which arbitrarily many truth values are
needed (such as in probabilistic reasoning or fuzzy logics). For that we use Ginsberg/Fitting’s bilat-
tices [16, 18], which are algebraic structures that naturally extend Belnap’s four-valued structure.
It is shown that within the bilattice-based semantics one can use the same methods for syntactically
representing preferences in many-valued logics.

The rest of this paper is organized as follows: in the next section we show how paraconsistent
four-valued reasoning on a logic theory can be simulated by classical reasoning on a suitably trans-
lated first order theory. In Section 3 we show, moreover, that four-valued preferential reasoning
on a logic theory can be simulated by amalgamating its translation with second-order formulae.
In Section 4 we extend these results to general multiple-valued formalisms, and in Section 5 we
conclude. 3

2 Paraconsistent classical reasoning

In order to define the reduction of paraconsistent (four-valued) reasoning to classical logic, we first
define the underlying framework for representing inconsistent (and incomplete) theories. Then we
consider a polynomial transformation of theories in this framework to “equivalent’ classical theories.
Finally, in the last part of this section we use this transformation for simulating paraconsistent
reasoning (as well as reasoning with incomplete information) by classical logic.

2.1 The underlying semantical structure

The formalism that we consider here is based on four-valued semantics. Four-valued reasoning may
be traced back to the 1950’s, where four-valued formalisms have been investigated by a number
of people, including Bialynicki-Birula [10], Rasiowa [11], and Kalman [20]. In the sequel we shall
use a corresponding four-valued algebraic structure (denoted here by FOUR), introduced later by
Belnap [8, 9]. This structure is composed of four elements FOUR = {t, f, L, T}, arranged in the
following two lattice structures:

e (FOUR, <), in which ¢ is the maximal element, f is the minimal one, and T, L are two
intermediate and incomparable elements.

e (FOUR,<g), in which T is the maximal element, 1 is the minimal one, and ¢, f are two
intermediate and incomparable elements.

Here, t and f correspond to the classical truth values. The two other truth values may intuitively be
understood as representing different cases of uncertainty: T corresponds to the contradictory truth
value (i.e., the corresponding assertion and its negation are both true), and L corresponds to an
incomplete truth value (i.e., neither the assertion nor its negation are true). This interpretation of
the meaning of the truth values will be useful in what follows for modeling paraconsistent reasoning.*

3This is a revised and an extended version of [6].
“This was also the original motivation of Belnap when he introduced FOUR. See [3, 4] for some further arguments
in favor of using this structure as a semantical background of formalisms for common-sense reasoning.



According to this interpretation, the partial order <, reflects differences in the amount of ¢ruth that
each element represents, and the partial order < reflects differences in the amount of knowledge
(or information) that each element exhibits. A double-Hasse diagram of FOUR is given in Figure
1.5

<k

I <

Figure 1: Belnap’s four-valued structure, FOUR

In what follows we shall denote by A and V the meet and join operations on (FOUR, <;), and
by ® and @ the meet and the join operations on (FOUR, <j). A negation, —, is a unary operation
on FOUR, defined by —~t=f, =f=t, - T=T, and =1 = 1. As usual in such cases, we take ¢t and T
as the designated elements in FOUR (i.e., the elements that represent true assertions).

In the rest of this paper we denote by 3. a language with a finite alphabet, in which the connec-
tives are V, A, -. These connectives correspond to the operations on FOUR with the same notations.
v and p denote arbitrary four-valued wvaluations, i.e., functions that assign a value in FOUR to every
atom in X. The extension to complex formulae in ¥ is defined in the usual way. The space of the
four-valued valuations is denoted by V*. A valuation v € V* is a model of a formula 1/ (alternatively,
v satisfies 1) if v(¢) €{t, T}. v is a model of a set I" of formulae if v is a model of every ¢ €T". The
set of the models of I' is denoted by mod(T").

2.2 An alternative representation of semantical concepts

The elements of FOUR can be represented by pairs of components from the two-valued lattice
({0,1},0 < 1) as follows: t=(1,0), f=(0,1), T=(1,1), L =(0,0). One way to understand this
representation is that a four-valued truth value (z,y) for p corresponds to a two-valued truth value
z for p and a two-valued truth value y for —p. Note that this reading is in accordance with the
original intuitive meaning of the truth values in FOUR, discussed in Section 2.1. According to this
representation, the negation operator is defined in FOUR by —(z,y) = (y, x), and the corresponding

*The lattices (FOUR, <) and (FOUR, <},) are referred to in Belnap’s papers [8, 9] as the logical lattice (L4) and
the approzimation lattice (A4), respectively, whereas the truth-values L and T as None and Both, respectively. Here
we follow the alternative way of denoting these elements, used, e.g., in [2, 3, 4, 5, 6, 15, 16].



partial orders in are represented by the following rules: for every z1,z9,y1,y2€{0, 1},

(z1,y1) <i (w2, y2) iff 21 <zp and y1>y2,  (21,y1) <k (z2,92) iff 21 <zo and y; <yo.

It follows, in particular, that in the representation by pairs of two-valued components, the basic
binary operations on FOUR are defined as follows:

(1,91) V (72,92) = (1 Vo2, y1 Ay2),  (z1,y1) A (22,2) = (11 A w2, Y1V 92),

(z1,91) @ (w2,92) = (1 Vo2, 1 Vy2),  (z1,y1) ® (72,2) = (w1 A w2, Y1 AYyo).

It is obvious that the above representation of the truth values in terms of pairs of two-valued
components implies a similar way of representing four-valued valuations; a four-valued valuation v
may represented in terms of pair of two-valued components (v1,15) by v(p) = (v1(p), v2(p)). So if,
for instance, v(p) =t, then v1(p)=1 and v»(p)=0.

Next we propose a technique to compute the truth value of a formula in four-valued logic, by
transforming it to a formula that can be evaluated in two-valued logic. This is called a splitting
transformation.

Define the scope of a negation operator — in the formula —1 as the set of all appearances of
propositional symbols in ).

Definition 2.1 Let ¢ be a formula. We say that an appearance of p in v is positive, if it appears
in the scope of an even number of negation operators in v; otherwise, it is a negative appearance.

Example 2.2 Let ¢y = —=(p V —q) V —q. Then the first appearance of ¢ in 1) is positive, and the
second appearance of ¢ in 1 is negative.

Let ¢ be a formula in a language . Denote by 1/ the formula that is obtained by substituting
every positive occurrence in v of an atomic formula p by a new predicate symbol pT, and replacing
every negative occurrence in 1 of an atomic formula p by —p~. For instance, if ¢ is the formula
of Example 2.2, then ¢ = =(=p~ V =¢t) V ==¢~. Given a theory I', we shall write I for the set
{4 | 9 €T}. The language that is obtained from ¥ by introducing these new predicate symbols will
be denoted in what follows by T*.

Given a four-valued valuation v = (v1,1,) of the atomic formulae p'in X, 7 denotes the two-
valued valuation on the atoms of X%, which interprets symbols pT as v;(p) and symbols p~ as
v2(p). Sometimes we shall “unfold” this notation and instead of 7 we shall write (p' " vy ; P~ 1),
7 is a standard two-valued interpretation of atoms in ¥* and can be extended to complex formulae
in the usual way. 6

Notation 2.3 For a valuation 7= (5" :vy; p~ :v2), denote rev(D)=(p 1 :—va; p 1 —1y).

6Clearly, the converse construction is also possible: every two-valued valuation v on ot corresponds to a unique
four-valued valuation v’ on ¥ defined, for every atom p, by v'(p)=(v(p™),v(p7)).



Proposition 2.4 Let v=(vy,15). Then v(¢) = (7(¢), ~rev(D)(y))).
Proof: The proof is rather technical; we give it in the appendix. O

Note 2.5 Proposition 2.4 shows how to represent valuations in terms of their split counterparts.
It will have a central role in showing some of the next results (e.g., Theorems 2.8 and 4.15 be-
low). Tt is interesting to note that this proposition holds also w.r.t. another (polynomial) splitting
transformation of formulae in the language, used e.g. in [6], which can be defined as follows: for a
formula 1/ in ¥ denote by 1 the formula in X%, obtained from 1) by first translating 1 to its negation
normal form, 1)’ (where the negation operator precedes atomic formulae only),” then substituting
every atomic formula p, which is not preceded by a negation, by a new predicate symbol p*, and
replacing every other atomic formula ¢ in ¢, together with _the negation that precedes it, by a new
predicate symbol ¢ . For instance, if 1) = =(r V =s), then ¢p =7~ A sT.

Proposition 2.4 holds also w.r.t. the alternative transformation (see [6] for the proof), and so all
the relevant results in the sequel can be obtained w.r.t. either one of the splitting transformations.
Here we shall use the original transformation, which is applied directly on the underlying formula
rather than on its representation in negation normal form.

2.3 Simulating four-valued reasoning by classical logic

A natural definition of a consequence relation on FOUR is the following:

Definition 2.6 Let I' be a set of formulae and 1) a formula in ¥. Denote I' =*1) if every four-valued
model of ' is a four-valued model of .

In [2] it is shown that [=* is a consequence relation in the sense of Tarski [36], and that it
is paraconsistent and compact. Moreover, as it is shown in [2, 7], |=* has a cut-free, sound and
complete Gentzen-type proof system (known as “the {A, V, =}-fragment of GBL” in [2], or “the basic
{A,V,—}-system” in [7]), which is the same as the system of “first degree entailments” in relevance
logic [1]. In fact, for formulae 1,1, ..., 1, in X, the following conditions are equivalent:

Lo, by EL 9.

2. 41,...,1¢y = 1 is provable in GBL (or in the “intuitionistic” version of it, GBLy [2])
3. 1A ... AN, — 1) is provable in the system R (or F) of Anderson and Belnap [1].

4. For every valuation v in V4, v(¢1A ... Aty) <y v(1).

In particular, the last item provides an alternative definition for |=* w.r.t. the language ¥ (cf.
Definition 2.6).

In what follows we use the pairwise representations, considered in Section 2.2, for showing that
four-valued reasoning can be simulated by classical reasoning. The justification for doing so is the
following lemma:

"It is easy to verify that as in the two-valued case, 1) and ¢’ are logically equivalent in FOUR.



Lemma 2.7 For every four-valued valuation v and a formula ¢ in 2, v(v) is designated iff 7(¢)) =1.
Proof: v(1) is designated iff v (1)) =1, iff (Proposition 2.4) 7(¢))=1. O

The following result is an immediate corollary of Lemma 2.7:
Theorem 2.8 Denote by =2 the two-valued classical consequence relation. Then I' =% iff T |=24).

It follows, therefore, that four-valued reasoning may be implemented by two-valued theorem
provers. Moreover, since I is obtained from I' in a polynomial time, the theorem above shows
that four-valued entailment in the context of Belnap’s logic is polynomially reducible to classical
entailment.

Another immediate consequence of this theorem is the next well-known result:
Corollary 2.9 In positive logic (i.e., in the language without negations), I' =44 iff I' =2 4.

Proof: Follows from Theorem 2.8 and the fact that in the language without negations I is the same
as I 0

Note 2.10 Recently and independently, Gabbay, Rodrigues and Russo [17] have provided another
way (motivated by different arguments) to simulate (basic) four-valued reasoning by classical en-
tailment. Roughly, the idea in [17] is to use a two sorted first-order language, composed of a sort for
representing formulae (in the language of A, Vv, —) and a sort for the truth-values. The language also
contains a special two-sorted binary predicate, denoted hold, where holds(1,t) intuitively means
that there is some v € V* s.t. v(¢)) > t, and holds (i), £) intuitively means that there is some v € V*
s.t. v(¢) >k f. In addition, a set A with the following axioms is considered:

Vz (holds(z,f) <> holds(—z,t)) Vz (holds(z,t) <> holds(—z, f))
VzVy (holds(zAy,t) <> holds(z,t) A holds(y,t) ) VaVy (holds(x Ay, £) < holds(z,£) V holds(y, £))
VaVy (holds(zVy,t) < holds(z,t) V holds(y,t) ) VaVy (holds(zVy,£) + holds(z,£) A holds(y, ) )

In the present notations, the following result holds (cf. Theorem 2.8):

Proposition 2.11 [17] Let I" be a set of formulae and ¢ a formula in ¥. Then:
I =44 iff AU {holds(v,t) | yET} =2 holds(i),t) and AU {—holds(vy,f) | yET} 2 —holds(¢, ).

3 Preferential reasoning

Despite the nice properties of =4, it appears that it has several drawbacks. One of which is that
=* is strictly weaker than classical logic, even for consistent theories (e.g., =% 1V —1)). Also, it
completely invalidates some intuitively justified inference rules, like the Disjunctive Syllogism: from
—p and V¢ one cannot infer 1) by using =%. Finally, the fact that = is a Tarskian consequence
relation means, in particular, that it is monotonic, and as such it is “over-cautious” in drawing
conclusions from incomplete theories.



In order to overcome these drawbacks of =%, we consider in this section a refined way of drawing
consequences from a given theory, known as preferential regsoning [34]. This is a general model
theory for non-monotonic inferences, in which the set of the semantical objects that describe a
given theory is equipped with a preference relation that intuitively reflects some preference criterion
among the given semantical objects. Inferences are then made only according to those elements
that are the most-preferred ones w.r.t. the preference relation.

In the first part of this section we quickly revise some basic concepts and notations that are
related to preferential reasoning.® Then we recall the techniques of [4] for applying preferential
reasoning in the four-valued context. In the third part of this section we show that, again, classical
logic can be used for simulating the kind of reasoning in a four-valued semantics that we are
interested in. This time, in addition to the basic theory that is converted to a classical one, (second-
order) circumscribing formulae will be used for representing the corresponding preference relations.
We conclude this section with experimental results for some simple test cases.

3.1 Preliminaries

Definition 3.1 A preferential model (w.r.t. a language X) is a triple M= (M, |=, <), where
e M is a set (of semantical objects, sometimes called states),
e |= is a relation on M x ¥ (sometimes called the satisfaction relation), and

e < is a binary relation on the elements of M (sometimes called the preference relation).

Note that Definition 3.1 is a very general one. Some formalisms make more specific assumptions
on the nature of the components of a preferential model. For instance, in the original definition of
Shoham [34], each preferential model corresponds to a theory I', the underlying semantical objects
(i.e., the elements in M) are the models of I' w.r.t. the satisfaction relation |=, and the preferential
relation < is a partial order on M.

Definition 3.2 Let M = (M, =, <) be a preferential model, " a set of formulae in a language ¥,
and me M.

a) m satisfies I' (notation: m|=T") if m =+ for every y€T.

b) m preferentially satisfies T (alternatively, m is a <-most preferred model of T') if m satisfies
I' and there is no element n € M that satisfies I', and for which n<m and m £n.

c) The set of the elements in M that preferentially satisfy I is denoted by (T, <).
Now we can define the preferential entailment relations:

Definition 3.3 Let M = (M, =, <) be a preferential model, I a set of formulae in ¥, and ¢ a
formula in 3. We say that 1 (preferentially) follows from I' (alternatively, I preferentially entails
1), if every element of (T, <) satisfies ). We denote this by I' =< 4.

8 Among the various ways of defining preferential reasoning that are given in the literature, we follow here that of
Makinson [27].



In case that M consists of the models of I', Definition 3.3 simply says that [' preferentially entails
1 if every <-preferred model of T" is a model of .

The idea that a non-monotonic deduction should be based on some preference criterion that
reflects some normality relation among the relevant semantical objects is a very natural one, and
may be traced back to [28]. Furthermore, this approach is the semantical basis of some well-known
general patterns for non-monotonic reasoning, introduced in [24, 25, 26, 27], and it is a key concept
behind many formalisms for nonmonotonic and paraconsistent reasoning, such as RI [22, 23], LPm
[31, 32], and the bilattice-based logics of [2, 5]. Our purpose in the rest of this paper is to propose
techniques of expressing some of the preferential relations used in these formalisms by formulae in
the underlying language. Next we define the framework for doing so.

3.2 Four-valued preferential reasoning

In what follows we describe some particularly useful ways of applying preferential reasoning in the
four-valued case. See [4] for a more detailed discussion on the formailsms that are obtained.

Definition 3.4 [4] Let v, u€V*. Denote:
o v <i pifv(p) < u(p) for every atom p.
o v <7y p if for every atom p, u(p)=T whenever v(p)=T.
e v <7 1y pif for every atom p, u(p) €{T, L} whenever v(p)€{T, L}.

It is easy to check that <j is a partial order and <;ty, <(7 |, are pre-orders on V4. In what
follows we shall write v <y p to denote that v <y p and p £y v; similarly for <;ry and <7 ;.

Each one of these preference orders has its own rationality: according to <y, for instance, one
prefers valuations with as minimal information as reasonably possible. This is a common criterion
for making preferences among different semantics of a given theory.? This criterion may as well be
viewed as an argumentation for consistency preserving, since as long as one keeps the amount of
information (or belief) as minimal as possible, the tendency of getting into conflicts decreases.

The pre-order <;t, states a somewhat more explicit preference of inconsistency minimization:
it prefers those valuations that minimize the amount of inconsistent assignments. The last order
given in Definition 3.4, </t |,, prefers those valuations that are as classical as possible, i.e., those
ones that assign classical truth values whenever possible.

In terms of Section 2.2, the preference criteria of Definition 3.4 may be reformulated as follows:

Lemma 3.5 Let v, u€V*. Then:

o v<p iff for every atom p, v1(p) <pi(p) and va(p) <pa(p).

9Notable examples of formalisms that are based on the idea of <;-minimization are the well-founded semantics
[37] and Fitting’s fixpoint semantics [15] for general logic programs.



o v < ) p iff for every atom p, whenever v1(p) Ava(p) =1, p1(p) Apa(p) =1 as well.

o v <7 1y iff for every atom p, whenever (v1(p)Ava(p)) V (-v1(p) A—v2(p)) =1, we have that
(11(p)Ap2(p)) V (~p1 (p) A—pa(p)) =1 as well.

Proof: Immediately follows from the corresponding definitions. O

Alternatively, the preference criteria above may be defined as follows:
Corollary 3.6 Let v, € V*. Then:

o v <y u iff whenever v;(p)=1 then p;(p)=1, for i=1,2.

o v <(T)p iff whenever v (p)=v2(p)=1 then p(p)=pa(p) =1.

o v<(7 yp iff whenever vi(p)=va(p) then 1 (p)=p2(p).

Given a set T' of formulae in ¥, the minimal elements in mod(T') w.r.t. <j are called the k-
minimal models of T'.'° Similarly, the minimal elements of mod(I") w.r.t. <{y are called the most
consistent models of T', and the minimal elements of mod(T") w.r.t. <¢T,1} are called the most
classical models of T'.

Example 3.7 Let I'={p, -pVq, ~q,7Vq}. The ten four-valued models of I" are given in Table 1.

Table 1: The elements in mod(T")

Model No.

p q r
M, — M, T 7 LT
M3 — Mg t T L ft, T
M7_M1[] T T J_,f,t,T

Thus, the k-minimal models of " are {M;, M3}, the most consistent ones are { My, M3, My, M5},
and the most classical ones are {M;, My, Ms5}.

Each one of the preference criteria considered in Definition 3.4 induces a corresponding prefer-
ential consequence relation. Next we define these relations:

Definition 3.8 [4] Let I' be a set of formulae and 1 a formula in ¥. Denote:
e I'=11 if every k-minimal model of T is a model of .

oI’ \:‘{IT}Q/) if every most consistent model of I' is a model of ).

o \:‘{H-A_}zp if every most classical model of T" is a model of .

10That is, v € mod(T') is a k-minimal model of T if there is no p € mod(T) s.t. p<pv.

10



Example 3.9 Consider again the set I' of Example 3.7, and let ©»=rV—r. Then I' \:?T’L}z/), while
DHfp and T 1#‘{1”1/).

Clearly, the consequence relations defined in 3.8 are particular cases of the preferential entailment
relations =<, defined in 3.3 (see also the note after Definition 3.3). Some important properties of
these relations are listed in the next proposition:

Proposition 3.10 [4] Denote by =2 the two-valued classical consequence relation. For every set
I of formulae and a formula 1 in ¥,

1. Tl iff TE.

2. If T is classically consistent and 1 is a formula in CNF, none of its disjunctions is a tautology,
then I’ |:‘{1T} ¢ iff T =24

3. If T is classically consistent then T’ \:%T7L}zp iff T =24.
4. 3, \:%T}, and |:%T,J_} are paraconsistent.

Note 3.11 Proposition 3.10 demonstrates the usefulness of the consequence relations considered
in Definition 3.8:

e Item 1 implies that |:i is a compact representation of =*; it is sufficient to consider only the
k-minimal models of a given theory in order to simulate reasoning with =*.

e By item 2 it follows that in order to check whether a formula classically follows from a
consistent theory I, it is sufficient to convert it to a conjunctive normal form, drop all the
conjuncts that are tautologies, and check the remaining formula only w.r.t. the most consistent
models of T

e By items 3 and 4 it follows that \:%T 1} 1s equivalent to classical logic on consistent theories
and is nontrivial w.r.t. inconsistent theories.

A more detailed discussion on the consequence relations defined in 3.8 and some related ones
appears in [4, 5]. In the next section we will show how to express the semantical considerations
behind such relations by second-order formulae.

3.3 Simulating preferential four-valued reasoning by circumscription

In this section we show that four-valued preferential entailment can be defined in terms of classical
entailment for the transformed theories augmented with circumscriptive axioms. Indeed, in order to
extend the technique of Section 2.3 to deal with preferential four-valued reasoning, we must express
that the encoded four-valued interpretation is minimal with respect to the preference relation <.
This is accomplished by introducing a circumscription axiom that expresses the preference relation
< objectively, by a formula W<. Thus, the first point to check out is how to express a semantical
preference relation < in an axiom.

11



Let p = {p1.po,...} be the set symbols of a language ¥. Define p’* as the set of symbols
{pt.p7,p3.py,-..}. To be able to express for two valuations v = (v1,15) and pu = (1, po) that
v < u by one formula, we introduce new symbols ¢ as a renaming of the symbols of p. Similar as
before, we define (% :v; ¢%:p) as the two-valued interpretation that interprets, for every i, the
symbols p; as v1(p), p; as v2(p), ¢ as p1(p) and q; as pa(p).

Definition 3.12 A preferential order < is represented by a formula ¥« (p'*, %) if for every four-
. —4

valued valuations v and p we have that v <y iff (5*:v, §%: 1) satisfies U (p ,qF).

Proposition 3.13 Let \Ilg(ﬁi, ¢7%) be a formula that represents a preferential order <. Then v is
a <-most preferred model of ¢ (that is, v € (¢, <)) iff U satisfies 1) and the following formula:

Cire<(7*) = V(@) {$(@F) — (V<(@55%) = V<(@*.77)) }-

Proof: By Corollary 2.7, v is a model of 1 iff U satisfies 1/. It remains to show that the fact that 7
satisfies Circ< is a necessary and sufficient condition for assuring that v is a <-minimal element in
the set mod(1)) of the models of 4. Indeed, 7 satisfies Circ< iff for every valuation p that satisfies
1 and for which p < v, it is also true that v < p. Thus, for every u € mod(1)), we have that

(un <v) = (v < p) (alternatively, there is no p € mod(¢) s.t. p <v), ie., ve (¢, <). |

Note 3.14 Let U (7%, 5%) = \Ilg(q'i,ﬁi)Aﬂ\PS(ﬁi,q'i),ll and denote by p* = ¢* the formula
Nz (7 =¢7) A (b7 =4;7)) Then

a) The formula Circ< of Proposition 3.13 may be rewritten as follows:
Circ<(7) = V(@) {9(@F) = —~0<(7".77) }
b) In case that < is a partial order, Circ< can be rewritten as follows:
Circ<(F) = V@) {[P@H)ANT<(@FFT) ] =55 =77}
The next theorem is an immediate corollary of Proposition 3.13:

Notation 3.15 Denote by =% the consequence relation =< (Definition 3.3), where the underlying
semantical structure is FOUR, and the set of the designated elements is D={t, T}.

Theorem 3.16 Let I' be a set of formula and 1 a formula in ¥. Let Circ< be the formula given in
Proposition 3.13 for a preferential relation <. Then I'=% ¢ iff T U Circ< =24,

Proposition 3.13 gives a general characterization in terms of “formula circumscription” [29] of the
preferred models of a given theory: given a preferential relation <, in order to express <-preferential
satisfaction of a theory, one should first formulate a corresponding formula W< that represents <,
and then integrate U< with Circ< as in Proposition 3.13. Again, this can be done in a polynomial
time.

Next we define formulae that represent the preferential relations considered above. For that, we
shall need the following notations:

17t is easy to see that for all four-valued valuations p and v, p<wv iff ((j’i o, pE :v) satisfies \I/<((j’i,ﬁi).

12



Notation 3.17 In what follows we shall write 2 <y for z—y, and z <y for (z = y)A-(y—z).12

Lemma 3.18 Let n be the number of different atomic formulae in 3. Then:

a) The preferential relation <j is represented by the following formula:
n
Vo, (5%, q /\ (0 2 ") Aoy 2 q7))-
b) The preferential relation <;y is represented by the following formula:

n
Ve (5%, /\ i APT) = (g Aay)).

c¢) The preferential relation <t |} is represented by the following formula:

n

e (3%5,d%) = N ((0FAp7) vV (o A-p7) < (67 Agy) V (=g A=) ).
i=1

Proof: We show only part (a); the proof of the other parts is similar.
v<pp = V1<i<n v(p;) <p pu(ps)
< V1<i<n vi(p;) <pi1(pi) and va(pi) <p2(pi)

& (7w, ¢Fp) satisfies \IL, ((pz+ ") A (p; 2 q;))
< (pT:v, §F:p) satisfies \I/<k( .q7F) O
By Proposition 3.13, Lemma 3.18(a), and Note 3.14(b), we have the following corollary:
Corollary 3.19 A valuation v= (1, 1») is a k-minimal model of ¢ iff ¥ satisfies ¢ and Circ<, (5'F)
where Circ<, (p'*) is the following formula: '3

3

n n

V(@) {[9@*) A N (@f 2o Al <N = TN (6" =pH) Mg =9, )]}

i=1 i=1

As in Corollary 3.19, the most consistent models and the most classical models of a given the-
ory can be represented by formulae of the form CircS{T}(ﬁi) and Circc o (7 +), obtained by
respectively integrating the formulae given in parts (b) and (c) of Lemma 3.18 with Circ<, given in
Proposition 3.13.

In what follows we consider a uniform way of representing CircS{T}(ﬁi), CircS{T’l}(ﬁi), and
some other formulae that correspond to preferential criteria like <ty and <yt ;. For this, let

2Thus, <y = (z<y) A =(y=<z).
¥Note that Circ<, (5 *) is a standard circumscriptive axiom in the sense of [28].
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A C FOUR. Detine an order relation <A on FOUR by z<ay iff & A while y€ A. A corresponding
pre-order on V* may now be defined as follows: for every v, u € V4, v <a p iff for every atom p,
the fact that v(p) € A entails that u(p) € A as well. The <a-most preferred models of I' are the
<a-minimal elements in mod(T), and T =4 1 if every <a-most preferred model of T is a model of 1.

Clearly, <;7y and <7 |} are particular cases of <a, where A={T} and A={T, L}, respec-
tively. Now, the <a-most preferred models of a given theory can be represented by a circumscriptive
formula in the following way:

Notation 3.20 For ACFOUR, let Ax(p*,p~) = V,ea Aa(p™.p7), where Ay(pT,p~) =pT A-p~,
As(pt,p7) = —pt Ap~, AL(pT,p7) = -pt A-p~, and Ar(pt,p7) =pt Ap~. M

Similar arguments as those in Lemma 3.18 show that the formula

n

U, (5%,¢%) = N (Aalpf,p7) 2 Aalgf,q)))
i=1

represents the preferential relation <. Therefore, by Proposition 3.13,

Proposition 3.21 A valuation v is a <a-preferred model of ¢ iff 7 satisfies 1) and the following
formula:

Circe (%) = V(@) { (%) = (T<u(@.57) = Vs (77,77)) ).

3.4 Experimental study

As we have already noted, all the formulae that are obtained by our method have a circumscriptive
form. It is therefore possible to apply, for instance, the formula Circ<,, given in Corollary 3.19,
in algorithms for reducing circumscriptive axioms. Below are some simple results obtained by
experimenting with such algorithm (We have used Doherty, Lukaszewicz and Szalas DLS algorithm
[13, 14], available at http://www.ida.liu.se/labs/kplab/projects/dls/circ.html). '

e Consider the theory I' = {Q(a),Q(b), "Q(a)}, where Q denotes some predicate, and a,b
are two constants. In our context, this theory is translated to I' = {Q"(a), Q" (b), Q™ (a)}.
Circumscribing T where Q* and @~ are simultaneously minimized, yields the following result:

Vz {(Q (z) =z =a) A (QT(z) = (z=aVz=0)}

It follows, then, that a is the only object for which both Q@ (z) and Q™ (z) hold (i.e., a is
the only object that is inconsistent w.r.t. @), and b is the only object for which only Q*(z)
holds. For all the other objects neither Q" (z) nor Q@ (z) holds, i.e., if ¢ ¢ {a,b} then Q(c)
corresponds to L. This indeed is exactly the k-minimal semantics of T'.

Note that the fact that for every object z different from a and b neither Q™ (z) nor Q (z)
holds means that the truth values of all the domain elements other than a or b do not matter
in order to satisfy this formula. This may be important from an analytic point of view.

Mntuitively, A, (p™,p~) expresses that v(p) = z and Aa(p™,p~) expresses that v(z) € A.

15Tn what follows we deliberately consider some very simple cases. Our experience is that for more complex theories
the output quickly becomes more complicated. Although this is useful for automated computations, it is much less
comprehensible by humans.
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e Suppose that in the previous example one wants to impose a three-valued semantics. It is
possible to do so by adding to I' the restriction 1 = Vz(Q(z) V ~Q(z)), which is translated to
b =Vz(Qt(z) VQ (z)). Circumscribing I' U {1} yields

Vo {[(QT(z) Az £ anz#b) » Q7 (2)] A [(Q7(z) Az #a) » ~Q ()] },

which has almost the same meaning as before, except that this time, the combination of this
and 1 means that if c ¢ {a,b} then either Q*(c) or Q~(c) holds, but not both. It follows,
then, that for such ¢, @Q(c) must have some classical value. Again, this corresponds to what
one expects when k-minimizing I' U {1 }.

4 Using more than four values

In this section we extend to the multiple-valued case the results obtained in the previous sections.
Essentially, we go through the same process. We start with a multiple-valued logic that may not be
paraconsistent. Then we shift to a different semantics that is based on a more complex structure of
truth values, and then show how to simulate the latter semantics by the original one. The outcome
of this process is twofold:

1. A general approach for deriving a paraconsistent logic from a general multiple-valued logic.

2. A reduction of (preferential) paraconsistent reasoning in this derived logic to object-level
reasoning in the original logic.

We thus obtain a general method for performing paraconsistent reasoning in a multi-valued logic.
This extension may serve as an evidence for the robustness of the techniques proposed in this paper.

4.1 Lattice-valued reasoning

Definition 4.1 A multiple-valued structure for a language X is a triple (£, D, Or), where L is set
of elements (“truth values”), D, is a nonempty proper subset of £, and O is a set of operations
on L that correspond to the connectives in .

In the sequel we shall assume that £ = (L, <p) is a complete lattice with a negation operator
—,16 and that D, is a filter in it, namely: it is a nonempty proper subset of L s.t. for every =,y € L,
zAy €D, iff €D, and y €Dy, Sometimes we shall assume that Dy is a prime filter in £, i.e. that
it is a filter in L s.t. for every z,y€ L, xVy€D, iff t €Dy or yeDy.

The set D, consists of the designated values of L, i.e., those that represent true assertions. By
its definition it is obvious that D, is <p-upwards closed, and so sup(L) €D, and inf(L) € D,.

6That is, for every z,y € L, x < y iff =y <1 —z, and for every € L, ==z ==z. The requirement for a complete
lattice is needed here for giving semantics to quantified formulae: for a structure with a domain E and a valuation
v, we let v(Vzy(z)) = inf<, {v(¢(e) | e€ E}; for all other purposes, it is sufficient to take distributive lattices with
negation operators.
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In what follows we further on assume that 3 is the classical propositional language where
conjunctions correspond to the meet operation in £, disjunctions corresponds to the join operation
in £, and negations correspond to the negation operator of L.

Definition 4.2 Let £ be a complete lattice, D, a prime filter in it, and I' a set of formulae in X.

a) A (multiple-valued) wvaluation v is a function that assigns an element of L to each atomic
formula. A valuation is extended to complex formulae in the standard way.

b) A valuation v satisfies a formula 1) if v(1)) €D,.

c) A valuation v is a model of I if it satisfies every formula in I". We shall continue to denote
by mod(T") the set of the models of T".

Definition 4.3 Let £ be a complete lattice and D, a prime filter in it. For a set I' of formulae and
a formula 1, denote T' [=5P£ ¢ if every model of T is a model of .

Note that classical logic is obtained from the above definitions by taking the two-valued lattice
({t, f}, f <pt) with D, = {t}. Similarly, Kleene three-valued logic [21] is obtained by taking the
three-valued lattice £ = ({¢, f, L}, <r) with D, = {¢t}. The connectives in O, correspond in this
case to the lattice operations of a lattice in which f <j | <t together with a negation operation
defined by: - f=t,—~t=f,-1=_1. Note also that both these logics are not paraconsistent.

4.2 Paraconsistent reasoning through bilattices

In order to add paraconsistent capabilities to the lattice-based logic under consideration, we use the
same methodology as in the two-valued case. The basic idea is to consider a logic in which the truth
values are not the lattice elements but are arbitrary pairs of lattice elements, rather than pairs of
{0,1}, as in the case of FOUR.

Definition 4.4 [18] Let £L=(L,<y) be a complete lattice. The structure L L=(LxL, <y, <g, )
consists of pairs of elements from L that are arranged in two lattice structures as follows:

o (LxL,<y), where (y1,y2) <; (z1,22) iff y1 <p 21 and yo >, 22

o (LxL,<), where (y1,y2) <k (z1,22) iff y1 <1 71 and yo <, 29

The unary operation — is defined on Lx L by —(z1,z2) = (22, 1).

The structure that £ ® £ forms is called a bilattice [16, 18]. As in the four-valued case, a truth
value (z,y) € £L ® £ may intuitively be understood so that z represents the amount of evidence
for an assertion, while y represents the amount of evidence against it. It is easy to verify that
the <g-minimal element of £ ® £ is (inf(L),inf(L)), the <j-maximal one is (sup(L),sup(L)), the
<;-minimal element is (inf(L),sup(L)), and the <;-maximal one is (sup(L),inf(L)).

Example 4.5 Belnap’s four-valued lattice FOUR, considered in the previous sections, is a par-
ticular case of the algebraic structures defined in 4.4, since FOUR = TWO ® TWO, where
TWO is the two-valued classical lattice. For another example, consider the three-valued lattice
THREE=({0,1,1}, 0<3<1). Figure 2 contains a double-Hasse diagram of THREE ©@ THREE.

16



(0,0)

Figure 2: THREE ©® THREE

In what follows we shall continue to use the symbols V, A, ®, and ® for denoting, respectively,
the <;-join, <;-meet, <g-join, and the <j-meet operations in £ ® L. By Definition 4.4 it follows
that these operations are computed as in FOUR, i.e., for every z1,x9,y1,y2 €L,

(1,91) V (@2, 92) = (1 V@2, y1 Ay2),  (z1,91) Aw2,y2) = (21 Axa, y1 Vi),

(z1,91) @ (w2,92) = (1 Vw2, y1 Vy2),  (z1,y1) ® (72,2) = (w1 A w2, Y1 Ayo).

As noted in Example 4.5, Definition 4.4 is a natural extension of Belnap’s four-valued structure.
The notion of the designated values in FOUR can also be generalized in a natural way in £ ® L:

Definition 4.6 [2] Let £ ® L be the bilattice defined in 4.4.

a) A bifilter D of L ® L is a nonempty proper subset of L x L, such that:
(i) xAyeD iff t€D and yeD, (ii) zQyeD iff x€D and yeD.

b) A bifilter D is called prime, if it also satisfies the following conditions:
(i) xVyeD iff teD or yeD, (i1) zdy€eD iff €D or yeD.

Given a bilattice of the form £ ® L, we fix some prime bifilter D in £ x L. This set consists
of the designated elements of L ® L. It is easy to verify that a prime bifilter of £L ® £ is upwards
closed w.r.t. both partial orders of £L ® L, thus it contains the <;- and the <jg-largest element and
does not contain the <;- and the <;-least one.

As in the lattice-valued case,(prime) bifilters are used for defining validity of formulae: a valua-
tion v on L x L is a model of a set T' of formulae if v(1)) €D for every €T

Example 4.7 The set D={t, T} of the designated elements in FOUR is indeed a prime bifilter in
FOUR (and, moreover, it is the only prime bifilter in this bilattice). In THREE © THREE there
are two prime bifilters:
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o Dy ={(Lz) | x€{0,3,1}} = {(21,2) | (#1,22) >£(1,0)}, and

o Dy ={(1.22) | 21275, 22€{0, 5, 1}} = {(1,22) | (z1,22) 25 (5,0)}-
Proposition 4.8 [5]

a) D is a bifilter in L® L iff D=D,x L, where D, is a filter in L.

b) D is a prime bifilter in £ ® L iff D=D, x L, where D is a prime filter in L.

Corollary 4.9 [5] Let zg € L, xy # inf(L). Denote: D(zo) = {(y1,v2) | v1 > ®o, y2 € L}, and
Dr(xo)={y€L | y>rzo}. Then:

a) D(zp) is a prime bifilter in £ ® L iff Dz (xp) is a prime filter in L.

b) D(sup(L)) is a prime bifilter in £ ® L iff sup(L) is join irreducible (i.e., iff z V. y =sup(L)
implies that z =sup(L) or y=sup(L)).

c¢) If the condition of item (b) is met, then D(sup(L)) is least (w.r.t. set inclusion) among the
(prime) bifilters of L ® L.

Given a billatice £® £ and a prime bifilter D in it, one may define a corresponding consequence
relation in a similar way to the lattice-valued case:

Definition 4.10 ' =*®%P4) if every £ x L-valued model of T is a £ x L-valued model of .

LOL,D

Proposition 4.11 = is paraconsistent.

Proof: Tt is easy to verify that =P does not allow trivial reasoning from inconsistent theories.
Indeed, p, ~pE~®%Pq. A counter-model assigns (sup(L),sup(L)) to p and (inf(L),sup(L)) to q. O

4.3 Simulating bilattice-valued reasoning

In the rest of this paper we fix some lattice £= (L, <) with a prime filter D,, and denote by D
the corresponding prime bifilter of the form Dy x L in £L® L. We shall show that by using the same
method as that of Section 3 for the four-valued case, it is now possible to have analogous results for
every structure of the form £ ® £ with a set of designated values D. Again, we start by standard
bilattice-valued reasoning and then, in the next section, consider the preferential case.

For every formula ) in ¥ we can obtain its “split form”, v in exactly the same way as in the
four-valued case. Also, since every valuation v on £ ® L can be represented by a pair (v1,15) of
L-valued components, then 7 is an L-valued valuation defined (just as in the four-valued case) by
v(pT) =vi(p) and U(p~) = vo(p). Again, whenever it is more convenient, we shall use the more
detailed notation (7*:vq; p~ :10) instead of just 7.

Using the notations above we can now generalize Proposition 2.4 to the case of L® L as follows:
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Proposition 4.12 Let £ be a de Morgan lattice,'” and let v = (v1, ) be a valuation on £ ® L.
Then v() = (V(¢)), ~rev(V)(¢)).

The proof of Proposition 4.12 is identical to that of Proposition 2.4, using £ ® L instead of
FOUR.

In the rest of the paper we suppose, then, that £ is a de Morgan lattice.'® Under this assumption,
the next two corollaries immediately follow from Proposition 4.12.

Corollary 4.13 Let D, be a prime filter in £, and let D =D, x L be the set of the designated
elements in £ ® £.12 For every valuation v on £ ® £ and a formula ¢ in %, v(y) €D iff 7(¢)) €Dy

Proof: v(1) is designated iff v1(¢)) €D, iff (Proposition 4.12) v(¢) € Dp. O

In particular, since by Proposition 4.8(b) every prime bifilter in £ x L is of the form D, x L,
where D is a prime filter in £, we have that whenever v(1)) is designated in £ x L, there is a prime

filter in £ with respect to which 7(v) is designated in £, and vice-versa.

Corollary 4.14 Suppose that sup(L) is join irreducible in £, and let D="D(sup(L)) be the set of
the designated elements in £ ® £.2° For every valuation v in £® £ and a formula ¢ in 3, v(¢)) €D

iff 7(1p) =sup(L).

Proof: v(1) is designated iff 14 (¢)) =sup(L), iff (Proposition 4.12) 7(¢)) =sup(L). 0

We can now extend Theorem 2.8, and show how to simulate reasoning in £ ® £ by object level
reasoning in L.

Theorem 4.15 T EXO5P o) iff T |=4:Pc o).
Proof: Follows from Corollary 4.13. -

As in the four-valued case, since in the language without negations, T is obtained just by
renaming the atomic formulae that appear in I', the following corollary immediately follows from
Theorem 4.15 (cf. Corollary 2.9):

Corollary 4.16 In positive logic, I' =595 o) iff T' |=5P¢ 4,

"That is, for every z,y€ L, ~(zVy) = =z A-y, and =(zAy) = -z V-y.

!8Tt is interesting to note that £LOL is always a de Morgan bilattice. Indeed, —[(z1, z2)V(y1, y2)] = —=(x1Vy1, T2Ay2) =
(T2 Ay2, 21 VY1) = (T2, 21) A(y2, y1) = (21, 22) A=(y1, y2).

19By Proposition 4.8, D is indeed a prime bifilter in £ ® L.

20By Corollary 4.9, D is indeed a prime bifilter in £ ® L.
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4.4 Simulating bilattice-valued preferential reasoning

We turn now to the preferential case. Again, by using the same methods as those of Section 3 for
the four-valued case, it is possible to define circumscriptive formulae for expressing multiple-valued
preferential reasoning w.r.t. a representable preference order <. This implies, in particular, that
once again we are able to reduce “meta-reasoning” (this time, in the bilattice) to object level reason-
ing (in the lattice) by axiomatizing the preferred models of a given theory in the bilattice through
formula circumscription in the lattice.

Suppose, then, that < is some preferential order among the valuations into £Lx L. Note that the
notion of a representation of < by a formula W<, defined in 3.12, can be directly extended to the
bilattice-valued case. A corresponding consequence relation can also be defined by extending the
definition of the four-valued case:

Notation 4.17 T \zﬁQE’D 1 iff every <-most preferred £ ® L-valued model of I is a £ ® L-valued
model of 1.2!

Now, for constructing the circumscribing formulae in the L-valued logic we need to have an
implication connective on L that behaves as material implication in classical logic. This is what we
define next.

Definition 4.18 Let L=(L, <) be a lattice and D/ a (prime) filter in it. For every z,y € L define:
a) x—y = sup(L) if either x €D, or y €D, otherwise z —y = inf(L).

b) z =<y =sup(L) if <y, y, otherwise z <y = inf(L).
¢) x=<y = sup(L) if <y, y, otherwise <y = inf(L). 2
Our next result extends Theorem 3.16:

Theorem 4.19 Let I' be a set of formula and 1) a formula in . Let Circ< be the formula given in
Proposition 3.13 for a preferential relation <.?*> Then I' \zﬁQE’D ¢ iff T U Circ< =£:Pe 3,

Proof: As in the proof of Theorem 3.16, the claim follows from the fact that v is a <-most preferred
model of ¢ iff T satisfies 1) (this is true by Corollary 4.13) and the fact that 7 also satisfies Circ<
(the proof of Proposition 3.13 may be used in the present case as well for showing the latter fact). O

Clearly, Theorem 4.19 may be applied only in cases that the preferential relations under con-
sideration are representable (in the sense of Definition 3.12). Next we show that all the preferential
relations that have been considered in Section 3 can be generalized to (bi)lattice-valued preferential
relations that are also representable by circumscriptive formulae.

2! Again, this is the same relation as the one defined in 3.3, together with an explicit indication that the underlying
semantics is based on £ ® £ and D.

22Note that this is a generalization of the definition of the operators with the same notations, given in Notation
3.17. In particular, when L is the two-valued lattice, — and < are the same as the classical implication.

23Where the relevant connectives are interpreted by Definition 4.18.
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Representing preference of minimal information

As in Proposition 3.19, the set of the £-minimal models of ¢ in £® L can be represented by Circ<,,
using the generalized interpretations for the relevant connectives (see Definition 4.18):

Proposition 4.20 A valuation v in £® £ is a k-minimal model of 1 iff 7(1)) € D and 7(Circ<,) =
sup(L).

Proof: The same proof as that of Proposition 3.13 holds in this case as well (where every reference
to Corollary 2.7 should be replaced by a reference to Corollary 4.13). Thus, v is a k-minimal model

of ¢ iff T(¢) €D, and U(Circ<, ) €D, where

Cire<, () = V(@) {9(@F) = (V< (§5.5%) = U<, (F5.77)) },

and
n

e, (7*.q%) = N\ (0f 2 ") A 0] 2q7).
i=1
Note also that Circ<, is defined only by operators onto {inf(L),sup(L)}. Now , since all the
operators in ¥ are closed w.r.t. this set of values, and since sup(L) € D, we have that 7(Circ<, ) €D
iff 7(Circ<,) = sup(L).
It remains to show that <j is represented by W<, . Indeed, by the way the partial order < is
defined on L x L (see Definition 4.4) and by Definition 4.18, we have that

v<pp = V1<i<nv(p;) <pppi) = V1<i<n vi(p;) <ppi(p;) and vo(p;) <r p2(p:)
— (pF:v, ¢*:p) satisfies ANy (o =g Ay <q)))
> (pt:v, ¢F:p) satisfies U, (5E,7%). -

Representing preference of most consistent interpretations

Let I ={z € LXL | z€D,~x €D} be the set of the inconsistent values in L ® L. A valuation v
is (strictly) more consistent than a valuation vy if the set of atoms p; s.t. vq(p;) € I is (strictly)
subsumed in the set of atoms p; s.t. va2(p;) €Z7. A valuation v € mod(1)) is a most consistent model
of ¢ [4, 5], if there is no other model of ¢ that is strictly more consistent than v.

By a proof that is similar to that of Proposition 4.20 one can show that the set of the most
consistent models of 1) can be represented by CircS{T}: a valuation v in £ ® £ is a most consistent

model of ¢ iff U(¢)) €D, and ¥(Circ< 1) = sup(L).

Representing preference of most classical interpretations

Let Z1 be the set of the inconsistent elements in £ ® L as in the previous case, and let 7, ={z €
LXL | 2¢D,—x¢D} be the set of the incomplete values in L® L. A valuation vy is (strictly) more
classical than a valuation vy if the set of atoms p; s.t. v1(p;) €EZT UZ, is (strictly) subsumed in the
set of atoms p; s.t. vo(p;) €ZT UZ . A valuation v€mod(v) is a most classical model of 4 [4, 5],
if there is no other model of 1 that is strictly more classical than v.
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Again, a similar proof as that of Proposition 4.20 shows that the set of the most classical models
of ¢ can be represented by Circ< . ,: a valuation v in £ © £ is a most classical model of ¢ iff

v(1) €D and v(Circ< ) = sup(L).

Particular cases in which the representations above may be used are the bilattice-based logics
introduced in [2, 3, 4, 5], and the annotated logic [35] RI, introduced in [22, 23], provided that the
underlying many-valued structure is of the form £ ©® L.

5 Summary and conclusion

A well-known way of formalizing paraconsistent reasoning is in terms of de Morgan algebras, with a
certain four-element algebra playing a pivotal role analogous to that of the two-element Boolean al-
gebra in its class. To formalize reasoning that is simultaneously paraconsistent and non-monotonic,
Belnap [8, 9] and Ginsberg [18, 19] have elaborated de Morgan algebras into bilattices. In [4] it is
shown that the four-element bilattice FOUR again plays a pivotal role. In this paper we followed
up this work, essentially motivated by computational considerations. We have shown that ques-
tions of consequence in these structures can be reduced to ones of classical consequence, by means
of polynomial translations that essentially serves to separate negated atoms from affirmed ones.
Moreover, these translations can be incorporated together with some appropriate circumscriptive
axioms to capture the notion of minimality and for representing preferential reasoning [34]. This
method also touches upon several additional aspects:

1. Tt shows that two-valued reasoning may be useful for simulating inference procedures in the
context of many-valued semantics.

2. This approach demonstrates the usefulness of circumscription not only as a general method
for non-monotonic inferential reasoning, but also as an appealing technique for implementing
paraconsistent reasoning.

3. This is another evidence for the fact that in many cases concepts that are defined in a “meta-
language” (such as preference criteria, etc.) can be expressed in the language itself (using,
e.g., higher-order formulae).

Note that although we have proposed our technique for propositional logic, it can be easily
applied to the predicate case as well. Moreover, as shown in Section 4, our approach can be
extended to many-valued (lattice-based) logics. These observations, together with item (3) above,
imply that such techniques allow a potentially wide area for practical implementations. For instance,
as we have shown above, preferential multiple-valued reasoning can be incorporated with practical
applications for automated reasoning and theorem proving.
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Appendix A. Proof of Proposition 2.4

Proposition 2.4: Let v=(vi,15). Then v(¢) = (T(4)), ~rev(D)(3)).

Proof: Recall that 7 = (" :vy ; P :12) and that rev (V) = (P :—wva; o ioy).
We first show two lemmas:

Lemma 2.4-A: rev (7)(—1)) = ().

Lemma 2.4-B: 7(—)) = rev (7)(—1).

Proof of Lemmas 2.4-A and 2.}-B: Note first that both lemmas are equivalent. Indeed, since
rev(rev (7)) = 7, by replacing 7 by rev(7) in Lemma 2.4-A we obtain Lemma 2.4-B and vice versa.

The proof is by the following induction on the structure of :

* Y =p:
rev(7)(—) = rev(7)(-p*) = ~(p'F 1 wa s §T ) (p") = awa(p) = va(p).
On the other hand,
7(=) =T(Fp) =T(=p ) = (F 5 9 we)(p) = 12(p).

® ) = —¢:
rev (7)(—1)) = rev(7)(——¢) = —rev(7)(—¢) = (by induction hypothesis) =
~T(=¢) = U(==¢) =(§) = T(==¢) = T(=¢)

* =1V

By the definition of splitting transformation and by Definition 2.1, it is obvious
that ¢1Voo = a V % and ¢y Ao = a A % Thus:

rev (7)(~¢) = ~rev(7)(¢) = ~rev(7)(¢1V2) = ~[rev(7)(
(since L is a de Morgan lattice) = ~rev (7)(¢1) A ~rev(7)(h2
rev (7)(—¢1)A rev(7)(—¢2) = (by induction hypothesis) = T(—¢p1) A T(—¢o) =

U(=¢1 A —a) =T(—¢1 A —¢pg) = (de Morgan law again) = T(—(¢1 V ¢2)) = 7(—).

$1)V rev (7)(¢2)] =
) =

e The case in which 1) =¢; A¢y is analogue to the latter case.
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Now we are ready to show the equation of Proposition 2.4. Again, we show it by an induction
on the structure of ).

o) =1p:
(7(4), ~rev(D)(4)) = (@(p*), ~rev(D)(p")) =
(v P ) (ph), ~(FFimwe; P i) (p7)) =
(v1(p), ~=12(p)) = (1(p), v2(p)) = v(¥)

® ) = —¢:
v(¢) = v(—¢) = —v(¢) = (by induction hypothesis) = =(7($), ~rev(7)(}) ) =
(~xev (7)(@), (7(F))) = (xev (7) (=), ~(7(~$))) = (by Lemmas 2.4-A and 2.4-B)
(7(=¢), ~rev(D)(=¢)) = (T(y), ~rev(7)(¥)).

* =1V

v() = v(p1 V) = v(¢1)Vr(d2) = (by induction hypothesis) =
(T(¢1), ~rev(D)(¢1)) V (T(pa), ~rev(D)(¢2)) = (by the definition on V) =
(T(p1) V(h2), ~rev(D)(h1) A ~rev(P)(h2)) = (by de Morgan law) =
(T(¢1Vd2), ~(rev(D)(¢1)V rev(7)(42))) = (T(¢1Va), ~rev(D)(¢1Ves)) =
(7(y), ~rev(7)(4))
e The case in which 1) =¢; A¢s is analogous to the latter case. O
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