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Abstract

This paper has two goals. First, we develop frameworks for logical systems which are able
to reflect not only nonmonotonic patterns of reasoning, but also paraconsistent reasoning.
Our second goal is to have a better understanding of the conditions that a useful relation
for nonmonotonic reasoning should satisfy. For this we consider a sequence of generaliza-
tions of the pioneering works of Gabbay, Kraus, Lehmann, Magidor and Makinson. These
generalizations allow the use of monotonic nonclassical logics as the underlying logic upon
which nonmonotonic reasoning may be based. Our sequence of frameworks culminates in
what we call (following Lehmann) plausible, nonmonotonic, multiple-conclusion consequence
relations (which are based on a given monotonic one). Our study yields intuitive justifica-
tions for conditions that have been proposed in previous frameworks and also clarifies the
connections among some of these systems. In addition, we present a general method for
constructing plausible nonmonotonic relations. This method is based on a multiple-valued

semantics, and on Shoham’s idea of preferential models. !

1 Introduction

Nonmonotonicity is generally considered as a desirable property in commonsense rea-
soning; Many approaches to basic problems in artificial intelligence such as belief
revision, database updating, and action planning, rely in one way or another on some
form of nonmonotonic reasoning. This led to a wide study of general patterns of non-
monotonic reasoning (see, e.g., [16, 18, 19, 24, 25, 26, 27, 28, 29, 39]). The basic idea

LA preliminary version of this paper appeared in [4].



behind most of these works is to classify nonmonotonic formalisms and to recognize
several logical properties that nonmonotonic systems should satisfy.

The logic behind most of the systems which were proposed so far is supraclas-
sical, 1.e.: every first-degree inference rule that is classically sound remains valid in
the resulting logics. As a result, the consequence relations introduced in these works
are not paraconsistent [11], that is: they are not capable of drawing conclusions from
inconsistent theories in a nontrivial way. Moreover, the basic idea behind most of the
nonmonotonic approaches is significantly different from the idea of paraconsistent rea-
soning: While the usual approaches to nonmonotonic reasoning rule out contradictions
when a new data arrives in order to maintain the consistency of a knowledge-base,
the paraconsistent approach to reasoning accepts knowledge-bases as they are, and
tolerates contradictions in them, if such exist.

Our goal in this paper is twofold. First, we want to develop frameworks for logical
systems which will be able to reflect not only nonmonotonic patterns of reasoning,
but also paraconsistent reasoning. Such systems will be useful also for reasoning
with uncertainty, conflicts, and contradictions. Our second goal is to have a better
understanding of the conditions that a plausible relation for nonmonotonic reason-
ing should satisfy. The choice of the various conditions that have been proposed in
previous works seem to us to be a little bit ad-hoc, making one wonder why certain
conditions were adopted while others (that might seem not less plausible) have been
rejected. We would like to remedy this.

To achieve these goals, we consider a sequence of generalizations of the pioneering
works of Gabbay [18], Kraus, Lehmann, Magidor [24], and Makinson [28]. These
generalizations are based on the following ideas:

e Each nonmonotonic logical system is based on some underlying monotonic one.

e The underlying monotonic logic should not necessarily be classical logic, but
should be chosen according to the intended application. If, for example, incon-
sistent data is not to be totally rejected, then an underlying paraconsistent logic
might be a better choice than classical logic.

e The more significant logical properties of the main connectives of the underlying
monotonic logic, especially conjunction and disjunction (which have crucial roles
in monotonic consequence relations), should be preserved as far as possible.

e On the other hand, the conditions that define a certain class of nonmonotonic
systems should not assume anything concerning the language of the system (in
particular, the existence of appropriate conjunction or disjunction should not
be assumed).

The rest of this work is divided into two main sections. Section 2, the major
one, is a study of nonmonotonic reasoning on the syntactical level. First we review
the basic theory introduced in [24] (Section 2.1), which is based on a classical entail-
ment relation and assumes the classical language. Then we consider nonmonotonic
relations that are based on arbitrary entailment relations (Section 2.3). The next
generalization (Section 2.4) uses Tarskian consequence relations [44] instead of just



entailment relations. Finally, we consider multiple-conclusion relations that are based
on Scott consequence relations [37, 38] (Section 2.5). For defining the latter relations
we indeed need not assume the availability of any specific connective in the under-
lying language. However, the hierarchy of relations which we consider is based first
of all on the question: What properties of the conjunction and disjunction of the
underlying monotonic logic are preserved in the nonmonotonic logic which is based
on it. Our sequence of frameworks culminates in what we call (following [25]) plau-
sible nonmonotonic consequence relations. We believe that this notion captures the
intuitive idea of “correct” nonmonotonic reasoning.

Section 3 provides a general semantical method for constructing plausible non-
monotonic consequence relations. This method is based on a combination of a lattice-
valued semantics? with Shoham’s idea of using only certain preferential models for
drawing conclusions ([40, 41]). We show that some well-known plausible nonmono-
tonic logics can be constructed using this method. Most of these logics are paracon-
sistent as well (these include some logics that we have considered in previous works

(2, 3, 5]).

2 Preferential systems from an abstract point of
view

In this section we investigate preferential reasoning from an abstract point of view.
First we briefly review the original treatments of Makinson [28] and Kraus, Lehmann,
and Magidor [24]. Then we consider several generalizations of this framework.

2.1 The standard basic theory — A general overview

The language that is considered in [24, 28] is based on the standard propositional one.
Here, < denotes the material implication (i.e., ¥ < ¢ = =9V ¢) and ~ denotes the
corresponding equivalence operator (i.e., ¥ ~¢ = (¢ = $)A(¢ —9)). The classical
propositional language, with the connectives —, V, A, <, ~, and with a propositional
constant ¢, is denoted here by ;. An arbitrary language is denoted by X. Given a
set of formulae I in a language X, we denote by A(T') the set of the atomic formulae
that occur in T, and by L(T') the corresponding set of literals.

Definition 1 [24] Let b be the classical consequence relation. A binary relation®
' between formulae in X is called cumulative if it is closed under the following
inference rules:

reflexivity: PP,

cautious monotonicity: ifYp'¢and Y~ 7, then YA 7.
cautious cut: if Yy ¢ and YAS ', then ¢ |~ 7.
left logical equivalence: ifFap~¢ and ¥ ' 7, then ¢ ' 7.
right weakening: ifFav<— ¢ and 79, then 7' ¢.

2This is a common method for dealing with inconsistent theories — see, e.g., [13, 14, 15, 20, 21,
23, 34, 35, 39, 42, 43).
3A “conditional assertion” in terms of [24].



Definition 2 [24] A cumulative relation ' is called preferential if it is closed under
the following rule:

V-introduction (Or): if "7 and ¢~ 7, then YpVP 7.

Note In order to distinguish between the rules of Definitions 1, 2, and their general-
ized versions that will be considered in the sequel, the condition above will usually be
preceded by the string “KLM?”. Also, a relation that satisfies the rules of Definition 1
[Definition 2] will sometimes be called KLM-cumulative [KLM-preferential].

The conditions above might look a little-bit ad-hoc. For example, one might ask
why <> is used on the right, while the stronger ~ is on the left. A discussion and
some justification appears in [24, 27].* A stronger intuitive justification will be given
below, using more general frameworks.

2.2 Generalizations

In the sequel we will consider several generalizations of the basic theory presented
above:

1. In their formulation, [23, 24, 28, 29] consider the classical setting, i.e.: the
basic language is that of the classical propositional calculus (£), and the basic
entailment relation is the classical one (F¢). Our first generalization concerns
with an abstraction of the syntactic components and the entailment relations
involved: Instead of using the classical entailment relation - as the basis for
definitions of cumulative nonmonotonic entailment relations, we allow the use
of any entailment relation which satisfies certain minimal conditions.

2. The next generalization is to use Tarskian consequence relations instead of en-
tailment relations (i.e. we consider the use of a set of premises rather than a
single one). These consequence relations should satisfy some minimal condi-
tions concerning the availability of certain connectives in their language. Ac-
cordingly, we consider cumulative and preferential nonmonotonic consequence
relations that are based on those Tarskian consequence relations.

3. We further extend the class of Tarskian consequence relations on which non-
monotonic relations can be based by removing almost all the conditions on the
language. The definition of the corresponding notions of a cumulative and a
preferential nonmonotonic consequence relation is generalized accordingly.

4. Our final generalization is to allow relations with multiple conclusions rather
than the single conclusion ones. Within this framework all the conditions on
the language can be removed.

2.3 Entailment relations and cautious entailment relations

In what follows %, ¢, 7 denote arbitrary formulae in a language 3, and I', A denote
finite sets of formulae in X.

4Systems that satisfy the conditions of Definitions 1, 2, as well as other related systems, are also
considered in [16, 26, 29, 39].



Definition 3 A basic entailment is a binary relation |i between formulae, that sat-
isfies the following conditions:® € 7

1R 1-reflezivity: P |i P.
1C 1-cut: if1,b|i7' and T|i¢ then ¢|i 0.

Next we generalize the propositional connectives used in the original systems:

Definition 4 Let |i be some basic entailment.

e A connective A is called a combining conjunction (w.r.t. |i) if the following
condition is satisfied: T |i1,b/\¢> iff 7 |i1,b and T |i o.

e A connective V is called a combining disjunction (w.r.t. |i) if the following

condition is satisfied: ¥V ¢ |i7' iff ¢ |i7' and ¢ |i7'.

. 1 . . .
From now on, unless otherwise stated, we assume that |- is a basic entailment,

. . . . . 1
and A is a combining conjunction w.r.t. |-.

Definition 5
e A connective V is called a A-combining disjunction (w.r.t. |i) if it is a combining
disjunction and: o A(¥V¢) |i7' iff oA |i7' and o A¢ |i7'.
e A connective D is called a A-internal implication (w.r.t. |i) if the following
condition is satisfied: TA% |i ¢ iff T |i YR
e A constant t is called a A-internal truth (w.r.t. |i) if the following condition is
satisfied: YALE ¢ iff ¥ |- 4.
Definition 6

a) A formula 7 is a conjunct of a formula ¢ if Yy =7, or if Y =1 A¢2 and 7 is a
conjunct of either ¢; or ¢,.

b) For every 1<i<n 9; is called a semiconjunction of ¥1,...,9¥n; If ¥’ and 9" are
semiconjunctions of v¥1,. .., ¥, then so is ¥’ Ay".

c) A conjunction of ¥1,.. ., v, is a semiconjunction of 41,. .., ¥ in which every #;
appears at least once as a conjunct.

Lemma 7 (Basic properties of |i and A)

5The “1” means that exactly one formula should appear on both sides of this relation.

1
61t could have been convenient to assume also that |- is closed under substitutions of equivalents,
but here we allow cases in which this is not the case.
"These conditions mean, actually, that basic entailment induces a category in which the objects

are formulae.



a) |i is monotonic: If ¢ |i7' then Y A¢ |i7' and ¢AY |i T

b) If 7 is a conjunct of ¢ then ¢ |i T

c) If ¢ is a conjunction of #1,. .., ¥, and 9’ is a semiconjunction of 11,. .., 9, then
vy

d) If ¥ and 9’ are conjunctions of ¥1,..., ¥, then ¢ and ¥’ are equivalent: ¢ |i P!
and ¥' |- 9.

e) If Y- ¢ and YAG |7 then ¥ |- 7.

Proof For part (a), suppose that ¢ |i7'. By 1-reflexivity, ¥ A¢ |i1,b/\¢>. Since A is a

combining conjunction, Y A¢ |i . A l-cut with 9 |i T yields YA |i 7. The case of
¢ A is similar.
We leave the other parts to the reader.

Notation 8 Let I'={1,...,9¥n}. Then AT and 91 A ... A ¢, will both denote any
conjunction of all the formulae in T'.

Note Because of Lemma 7 (especially part (d)), there will be no importance to the
order according to which the conjunction of elements of I' is taken in those cases
below in which we use Notation 8.

Notation 9 ¥ = ¢ = (¢ D ¢) A (¢ D ).

Lemma 10 (Basic properties of |i and D, t) Let D be a A-internal implication w.r.t.
|i and let ¢ be a A-internal truth w.r.t. |i. Then:

a) Ift|i7' then ¢>|i7'.

b) ¢ |it for every formula .

c) YAGETiIff gy

d) =g iff t -9 D¢. Also, ¥ |~ ¢ and ¢|- 9 iff t |-y =¢.

e) If T|i’¢3¢ then ¢ |i (TAY)D(TAP); IfT|i’L,bE¢ then ¢ |i (TAYY=(TAP).
f) If 41, %2 are conjunctions of the same set of formulae then ¢ |i1,b1 =1s.

g) f |- and ¥ |- D7 then ¥ |- 7.

Proof All the parts of the lemma are easily verified. We only give a proof of the
first claim of part (e): If 7 |i1,b D¢, then TAY |i ¢. By Lemma 7(a), TA9 |i 7. Thus
TAY |i7'/\¢> (combining conjunction), and so ¢ |i (TAY)D(TA¢) by part (d).

Lemma 11 Let V be a combining disjunction w.r.t. |i.



a) V is a A-combining disjunction iff the following distributive law obtains:
PA(P1VP2) - (B AY1) V(6 AYa2)
b) If |i has a A-internal implication then V is a A-combining disjunction.

Proof Part (a) is based on the facts that v |- ¥V, ¢ - ¥Vé, vAd -, and YAS |-
(see the proof of Lemma 7(a)). We leave the details to the reader. Part (b) follows

from (a), since it is easy to see that if |i has a A-internal implication then the above
distributive law holds.

Note It is easy to see that the converse of the distributive law above, i.e. that

(BAD1)V (FAY2) - A (%1 V ha)

is true whenever A and V are, respectively, a combining conjunction and a combining

disjunction w.r.t. |i.

Definition 12 Suppose that a language ¥ of a basic entailment |i contains a com-
bining conjunction A, a A-internal implication D, and a A-internal truth ¢{. A binary

1
relation |~ between formulae in ¥ is called {A, D, 1, |i}-cumu,lative if it satisfies the
following conditions:

by,

if Yoo and ¢ /o7, then YA o
if Yoo and YA o, then ¥ fo T
ift Ey=¢ and ¢ o, then ¢ .
ift E9y D and 7 ~p, then 7.

Note In our notations, a KLM-cumulative relation (Definition 1) is {A, —,t,Fa}-

cumulative.

Lemma 10(d) allows us to further generalize the notion of a cumulative relation
so that only the availability of a combining conjunction is assumed:

1
Definition 13 A binary relation |~ between formulae is called {A, |i}-cumu,lative if
it satisfies the following conditions:

1R 1-reflexivity: P }'L .

1CM 1-cautious monotonicity: if ¢ }'Lci) and l’LT, then Y A¢ l’LT.

1CC 1-cautious cut: if ¢ }'Lci) and YyA¢ l’LT, then ¢ l’LT.

1LLE 1-left logical equivalence: if |i ¢ and ¢ |i1,b and 7 l’LT, then ¢ l’LT.
1RW 1-right weakening: if ¢ |i ¢ and T }'L¢, then 7 }'Lcﬁ



1
If, in addition, V is a A-combining disjunction w.r.t. |i, and p~ satisfies the following
rule:

10r 1-V introduction: if ¢ }'LT and ¢ l’LT, then ¥ V¢ }'LT
then }'L is called {Vv, A, |i}-preferential.

Proposition 14 Let D be a A-internal implication w.r.t. |i and let ¢ be a A-internal

truth w.r.t. |i. Then a relation is {A, D, ¢, |i}—cumu1ative iff it is {A, |i}—cumu1ative.
Proof Follows easily from Lemma 10.

Note From the note after Definition 12 and the last proposition it follows that in

1
a language containing ¥, p is a KLM-preferential relation (Definition 2) iff it is
{V, A\, =, 1, Fa}-preferential.

1
Proposition 15 Every {A, |i}—cumu1ative relation |~ is an extension of its corre-

sponding basic entailment: If ¢ |i ¢ then ¢ }'Lcﬁ
Proof By 1RW of ¢ |i¢> and }'11&

1
Proposition 16 Let |~ be a {A, |i}—cumu1ative relation. Then:

1

a) A is a combining conjunction also w.r.t. T}'L’L,b/\(ﬁ iff T}'Ll,b and T}'Lcj)

1

b) If ¢t is a A-internal truth w.r.t. |i then it is also a A-internal truth w.r.t. |~
YALR$ i Y~ .

Proof . . .
a) («<): Suppose that 7~ and 7 |~ ¢. Then by 1CM, [1]: TAY ~¢. On the other
hand, by Lemma 7(c), TAYA$ |i YA¢, and so by Proposition 15, [2]: TAYAS }'L¢/\¢> A
1CC, of [1] and [2] yields 7A% ¥ A@. Another 1CC with 7 |~% yields that ¥ A,
(=): Suppose that 7 }'L P A$. By Lemma 7(c), TA(YA¢) |i 1. By Proposition 15
TA($AS) . A 1CC with 7 P A yields that 7 . Similarly, if 7 A4 then
T }'L 0.
b) By Lemma 10(b) and Proposition 15, 9 }'Lt. Now, suppose that }'L ¢. A 1CM
with ¢ }'Lt yields ¥ AL }'Lcﬁ For the converse, assume that YAt }'Lcﬁ A 1CC with 9 }'Lt

yields 4 [~ &.

Note Unlike A and ¢, in general D and V do not always remain a A-internal implica-

1
tion and a combining disjunction w.r.t . Counter-examples will be given in Section
3 (see Proposition 86 and the note that follows it).



It is possible to strengthen the conditions in Definition 13 as follows:

s-1R strong 1R: if ¢ is a conjunct of  then ~ }'L¢
s-1RW strong 1IRW: if TAY |i¢> and 7 }'11&, then T}'Lcj)

Our next goal is to show that these stronger versions are really valid for any

{A, |i}—cumu1ative relation. Moreover, each property is in fact equivalent to the
corresponding property under certain conditions, which are specified below.

Proposition 17
a) 1RW and s-1RW are equivalent in the presence of 1R and 1CC.

b) 1RW and s-1R are equivalent in the presence of 1R, 1CC, and 1LLE.

Proof
a) The fact that s-1RW implies 1RW follows from Lemma 7(a). For the converse

assume that 7AY |i ¢. By Proposition 15 (the proof of which uses only 1R and 1RW),
TAY . A 1CC with 7 e yields 7.

b) Suppose that ¥ |i ¢ and T }'L 1. From Lemma 7 it easily follows that the first
assumption entails that TA9YA¢ |i7'/\1,b and TAY |i7'/\1,b/\¢>. By s-1R, TAY A }Ld)
A 1LLE of the last three sequents yields 7A }'L ¢. Finally, by 1CC with 7 }'L¢ we
get 7 }'L ¢. In the other direction s-1R is obtained from 1RW as follows: Let ¢ be a
conjunct of 4. By Lemma 7(b) v |i1,b A 1RW with ~ }'L’y yields that v }'L¢

Corollary 18

a) s-1R and s-1RW are equivalent in the presence of 1R, 1CC, and 1LLE.
b) A relation is {A, |i}—cumu1ative if it satisfies s-1R, 1LLE, 1CM, and 1CC.

Proof Immediate from Proposition 17 and the fact that s-1R entails 1R.

2.4 Tarskian consequence relations and Tarskian cautious con-
sequence relations

The next step in our generalizations is to allow several premises on the l.h.s. of the
consequence relations.

Definition 19

a) A (ordinary) Tarskian consequence relation [44] (ter, for short) is a binary
relation F between sets of formulae and formulae, that satisfies the following
conditions: 8

8The prefix “T” denotes that these are Tarskian rules.



s-TR strong T-reflexivity: 't for every v €T
TM T-monotonicity: if PF+ and T'CT' then I'F 1.
TC T-cut: if I'1 v and T, ¢ ¢ then T'y, Tal .

b) A Tarskian cautious consequence relation (tcer, for short) is a binary relation
b between sets of formulae and formulae in a language 3, that satisfies the
following conditions:®

s-TR strong T-reflexivity: T |~ for every y €T.
TCM T-cautious monotonicity: if T~ and T~ ¢, then T, ¢ )~ ¢.
TCC T-cautious cut: if T and T, ¢ )@, then T ~¢.

Proposition 20 Any tccr p~ is closed under the following rules for every n:

TCMM™ if vty (i=1,...,7n) then T, %1, ..., Yn_1%n.
TCCM if Thvap; (3=1,...,n) and T, 1, ...%, @, then T g,

Proof We show closure under TCM™ by induction on n. The case n=1 is trivial,
and TCM! is simply TCM. Now, assume that TCCM™ is valid and T b 1; for 1 =
1,...,n+l. By induction hypothesis T', ¥1,. .., Yn_1¥n and T, Y1, ..., Y1 ¥nr1.
Hence T, %1, ..., ¥Yn ~t¥ny1 by TCM.

The proof of TCCI™ is also by induction on n. TCCI! is just TCC. Assume now that

r l"‘¢z (7': 1a .. ,’I’H—].) and I‘a ¢1, .. 'wna ¢n+1 l’vd’ By TCM[n-I—l] I‘a ¢1, .. 'a’lpn |"‘¢n+1-
A TCC of the last two sequents gives ', v¥1,...%n | ¢. Hence T |~ ¢ by induction
hypothesis.

The following definition is the multiple-assumptions analogue of Definition 4:

Definition 21 Let - be a relation between a set of formulae and a formula in a
language X.

e A connective A is called combining conjunction (w.r.t. ) if the following con-

dition is satisfied: Ty A¢ iff ' and T'F¢.

e A connective A is called internal conjunction (w.r.t. ) if the following condition

is satisfied: T,y A¢bF7 1 T, 4, pF 7.

e A connective V is called combining disjunction (w.r.t. ) if the following con-

dition is satisfied: T,y Vb7 iff T',yF7 and T', 7.

In what follows we assume that I is a tcr and A is a combining conjunction with
respect to |-.

Lemma 22 (Basic properties of - and A)
a) IfT',¢F7 then T,y APt T.

9A set of conditions which is similar to the one below was first proposed in [19], except that
instead of cautious cut Gabbay uses cut.

10



b) If T,y 7 then T', pA¢p 7.

c) If ¢ is a conjunction of ¥1,..., ¥, and ¢’ is a semiconjunction of ¥1,.. ., ¥, then
YEy'.

d) If ¥ and ¢' are conjunctions of ¥1,..., %, then ¥ and ¢’ are equivalent: v’
and ' 1.

€) If T'#0 then '+ iff ATF4.
f) A is an internal conjunction w.r.t. I-.
Proof Similar to that of Lemma 7.

Our next goal is to generalize the notion of cumulative entailment relation (Def-
inition 13). We shall first do it for consequence relations that have a combining
conjunction.

Definition 23 A tccr |~ is called {A, F}-cumulative if it satisfies the following con-
ditions:

w-TLLE weak T-left logical equivalence: if Y F¢ and ¢F ¢ and ¢ |7, then ¢|~7.
w-TRW  weak T-right weakening: if Y ¢ and 71, then 7~ ¢.
TICR T-internal conjunction reduction: for every I'#0, I' v iff AT .

If, in addition, F has a combining disjunction V, and | satisfies

TOr T-V-introduction: ifT,¢Yp7and T, ¢p7, then T, Vo or
then p~ is called {V, A, F}-preferential.
Notes

1. Because of Proposition 22 and w-TLLE, it again does not matter what conjunc-
tion of T’ is used in TICR.

2. Condition TICR is obviously equivalent to the requirement that A is an internal
conjunction w.r.t.  (see Definition 21).

Proposition 24 In the definition of {A, F}-cumulative tccr one can replace condition
s-TR with the following weaker condition:

TR T-reflexivity: P 1.

Proof Let p €. A w-T-RW of AT F 9 and AT |~ AT yields AT |~ ¢. By TICR,
T .

We now show that the concept of a {A,F}-cumulative tccr is equivalent to the

notion of {A, |i}—cumu1ative relation:

11



1
Definition 25 Let |i be a basic entailment with a combining conjunction A. Let |

be a {A, |i}—cumu1ative relation. Define two binary relations (|i)’ and ()" between
sets of formulae and formulae in a language ¥ as follows:

a) I‘(|i)’¢> iff either T'#@ and AT |i¢>, orI'=0 and ¢ |i¢> for every 1.

b) T(~)'¢ iff T#0 and AT jg. 1

Definition 26 Let - be a tcr with a combining conjunction A. Suppose that  is a
{A, F}-cumulative tccr. Define two binary relations (F)* and (j~)* between formulae
in ¥ as follows:

a) ¥ (F)* ¢ iff {y}F4.
b) ¥ (~)* ¢ iff {¢}~¢.
Proposition 27 Let |i, }'L, F, and |~ be as in the last two definitions. Then:

a) (|i)’ is a tcr for which A is a combining conjunction.

b }'L)’ is a {A, (|1 )'}-cumulative tccr.

d

)

c)
) ()* is a {A, (F)*}-cumulative entailment.
)

(
(F)* is a basic entailment for which A is a combining conjunction.
(
(

e) (F))* =

f) (M) =

g) If - is a normal ter (i.e., if V¢ ¥ ¢ then F¢), then ((F)*) =1F.

h) I T#0 then T ((p)*) ¢ it T |~ 9.

i) If V is a A-combining disjunction w.r.t. |i and }'L satisfles 1-Or, then (}'L)’ is
{V, A, F}-preferential.

j) If V is a combining disjunction w.r.t.  and |~ satisfies T-Or, then (p)* is
{V, A, E-}-preferential.

Proof All the parts of the claim are easily verified. We show parts (h) and (i) as
examples:

(h): Suppose that T'#@. Then ' ((j~)*) @ iff AT (|~)* ¢ T AT ~ ¢, iff (by TICR)
T~ g.

(i): By (b) we only need to show that (}'L)’ satisfies TOr. So assume that v1,v2,. .., Vn, ¥
(}'L)’ 7 and V1,932, Vn, @ (}'L)’ 7. Then (/\:1 1Y) AN }'L rand (Al_;7i)A ¢ }'L T
By 1-Or, ((Afoy %) A¥) V (Aiey ’yz) A @) }w 7. By Lemma 11, the note that follows
it, and 1-LLE, ((Al_; %) A (¥ V ¢) }w 7. Thus, v1,72, -« sV, Y V ¢ (}w)

1 1
108ince v is {A, |- }-cumulative, it satisfies, in particular, ILLE. Hence, the order in which the

1
conjunction of I" is taken has no importance (see Lemma 7d). Thus (j)’ is well-defined.

12



Corollary 28 Suppose that |~ is {A,Fc}-cumulative [{V, A, Fci}-preferential]. De-

fine 7 }'L ¢ il Y~ ¢p. Then w.r.t. Iy, }'L is cumulative [preferential] in the sense of
[24] (Definitions 1 and 2).

We next generalize the definition of a cumulative tccr to make it independent of
the existence of any specific connective in the language. In particular, we do not want
to assume anymore that a combining conjunction is available.

Proposition 29 Let - be a tcr, and let |~ be a tccr in the same language. The
following connections between I and |~ are equivalent:

TCum  T-cumulativity: for every I' #0, if T then T 1.

TLLE  T-left logical equivalence: if T,y F¢ andT,¢ ¢ and T',¢|~7, then T, ¢ |~ 7.
TRW T-right weakening: ifT,YF¢ and T 9, then T |~ ¢.

TMiC  T-mized cut: for every I #0, if T+ and T, | ¢, then T'|~ .

Proof We show that each property is equivalent to TCum:

TCum = TLLE: Suppose that I, ¢ and T, ¢ 1. By TCum we have that T', ¢ |~ ¢
and T, ¢ |~ 1. A T-cautious monotonicity of the first sequent with T, |~ 7 yields
T,4, ¢ ~7, and by T-cautious cut with T', ¢ |~ we are done.

TLLE = TCum: Let v €T, and suppose that I'-1. This entails that T',y1. Also,
by s-R, I, ¢ . Since I, |~ then by TLLE we have that T,y . But v€T, so
T .

TCum = TRW: Suppose that I',9¥F¢. By TCum I,y | ¢. TCC with T' |~ yields
T~ .

TRW = TCum: Suppose that I'£0 and T't. Then there exists some €T, and so
T,yF%. By s-TR, T' ), and by TRW T' 1.

TCum = TMIiC: If T is a nonempty set of assertions s.t. ', then by TCum, I' ;1.
A T-cautious cut of this sequent and T', ¢ |~ ¢ gives ' |~ ¢.

TMiC = TCum: Suppose that I' is a nonempty set of assertions and I' 4. By
T-reflexivity, T, ¢ )~ ¢, and by TMiC, T' 4.

Notes

1. If there is a formula v s.t. |~1, then one can remove the requirement I' # {} from
the definition of TCum. Indeed, suppose that 1. If ¢ then - ¢. Since the
Lh.s. of the last entailment is nonempty, then by the original version of Cum,
¥ ¢, and by TCC with 1 we have |~ ¢. The other direction is, however, not
true: Let, for instance, - be some tcr for which there exists ¥ s.t. | 1g. Define
I'¢ if TH¢ and T #0. It is easy to verify that all the conditions of Definition
19 as well as TCum are valid for this p, but £ 1q.

2. Being the “complement” of TMiC, one might consider TRW as another kind of
“mixed cut”.

Definition 30 Let - be a tcr. A tcer p~ in the same language is called -cumulative
if it satisfies any of the conditions of Proposition 29. If, in addition, - has a combining
disjunction V, and f satisfies TOr, then f is called {V,F}-preferential.
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Note Since ' for every ¢ € ', TCum implies s-TR, and so a binary relation that
satisfies TCum, TCM, and TCC is a F-cumulative tccr.

Proposition 31 Suppose that F is a tcr with a combining conjunction A. A tccr
is a {A,F}-cumulative iff it is F-cumulative. If I has also a combining disjunction V,
then | is {V, A, F}-preferential iff it is {V, F}-preferential.

For proving Proposition 31 we first show the following lemmas:

Lemma 32 Suppose that |- is a tcr with a combining conjunction A, and let |~ be a

tF-cumulative tccr. Then Al ¥ ;¢ iff 91, %2,...,¥n ¢
Proof For the proof we need two simple claims:

Claim 32-A: ¥y, %2,..., ¥u Al %i-

Proof: Clearly, ¢1, ¢2a sy wn—la wn = /\?:1 wi and ¢1, ¢2a sy wn—l /\?:1 wi F wn
NOW, since ¢1, ¢2a ceey wn—la /\?:1 w‘i l’v /\?:1 wia then by TLLEa ¢1, ¢2a ey wn l"‘
/\?:1 Pi.

Claim 32-B: Let 1<j<n. Then ', A7, ¥i |~ iff T, 9, Air, ¥i~ 6.

Proof: (=) Follows by applying TLLE on T', A7, 95, v¥; F Ay %i, and T, A7 ¥, ATy ik
¥j, and T, Ai_y vi, Niy i b é.

(<) By applying TLLE on T, A; i, ¥;F Aiey ¥i and T, Al ; ¥s, Aoy %3t 95, and
T, 5, Nizy ¥i b ¢, we get that T, AiZ; 9y, Aj_y ¥ ¢ Thus T, AL i ¢
Lemma 32 now easily follows from the above claims: If Al ¥; )¢ then by repeated
applications of Claim 32-B, Al_; ¥i,%1,%¥2,...,%n |~ ¢. A T-cautious cut with the
property of Claim 32-A yields 1, %2,...,%n b ¢. For the converse suppose that
¥1,%2, ..., %n P ¢. By T-cautious monotonicity with the property of Claim 32-A,
ANi_i i, ¥1,%2,. .., ¥a ¢, and by Claim 32-B (applied n times), A, ¥; )~ ¢.

Lemma 33 Let | be a {A,F}-cumulative relation. Then |~ satisfles TRW.

Proof Suppose that I',¢+¢. By Lemma 22(e) (AT)AYF ¢. Since ATAY ~ATAY
(s-R), then by w-TRW we have that (AT')Ay ~¢. By TICR, T, 4 |~ ¢, and a TCC
with T 1) yields that T |~ ¢.

Note In fact, we have proved a stronger claim, since in the course of the proof we
haven’t used CM and w-TLLE.

Now we can show Proposition 31:

Proof of Proposition 31 (<) Suppose that |~ is a F-cumulative tccr. It obviously
satisfles w-TLLE and w-TRW (take I' =0 and I'= {7}, respectively). Lemma 32 shows
that |~ also satisfies TICR. Thus |~ is a {A, F}-cumulative tccr.

(=) Suppose that |~ is a {A, F}-cumulative tccr. By Lemma 33 it satisfies TRW, and
so 1t 1s F-cumulative.

We leave the second part concerning V to the reader.

Corollary 34 Let |~ be a F-cumulative relation, and let A be a combining conjunc-
tion w.r.t. . Then A is a combining conjunction w.r.t. ~ as well.
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Proof For a {A,F}-cumulative relation the proof is similar to that of Proposition
16(a). Hence the claim follows from Proposition 31.

Another characterization of F-cumulative tcer which resembles more that of a
cumulative entailment (Definition 13) is given in the following proposition:

Proposition 35 A relation |~ is a F-cumulative tccr iff it satisfies TR, TCM, TCC,
TLLE and TRW.

Proof If |~ is a F-cumulative tccr then by Proposition 29 and the fact that s-TR
implies TR, it obviously has all the above properties. The converse follows from the
fact that TRW and s-TR are equivalent in the presence of TR, TCC, and TLLE. The
proof of this fact is similar to that of Proposition 17.

2.5 Scott consequence relations and Scott cautious consequence
relations
The last generalization that we consider in this section concerns with consequence

relations in which both the premises and the conclusions may contain more than one
formula.

Definition 36

a) A Scott consequence relation [37, 38] (scr, for short) is a binary relation + be-
tween sets of formulae, that satisfies the following conditions:

s-R strong reflezivity: if T N A#0 then THA.
M monotonicity: ifTHFA and TCTY, ACA' then TVF A"
C cut: if I‘ll_lp,Al and I‘z,’tp"Az then I‘l,I‘zl_Al,Az.

b) A Scott cautious consequence relation (sccr, for short) is a binary relation |~
between nonempty!! sets of formulae, that satisfies the following conditions:

s-R strong reflexivity: ifTNA#Q then T A,
CM cautious monotonicity: if T and T~ A then T, ¢~ A.
ccll  cautious 1-cut: ifT v and T, A then T A.

The following definition is a natural analogue for the multiple-conclusion case of
Definition 21:12

Definition 37 Let I be a relation between sets of formulae.

e A connective A is called combining conjunction (w.r.t. ) if the following con-

dition is satisfied: Ty A¢p, Aiff TH, A and T'H¢, A.

11 The condition of non-emptiness is just technically convenient here. It is possible to remove it
with the expense of complicating somewhat the definitions and propositions. It is preferable instead
to employ (whenever necessary) the propositional constants ¢ and f to represent the empty Lh.s.
and the empty r.h.s., respectively.

12This definition is taken from [7]. Definitions 4 and 21 are obvious adaption of it.
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e A connective A is called internal conjunction (w.r.t. ) if the following condition

is satisfied: T, Y AdFA T T, ¢, o A.

e A connective V is called combining disjunction (w.r.t. ) if the following con-

dition is satisfied: T,y Vo - A iff T,y A and T, o A.

e A connective V is called internal disjunction (w.r.t. F) if the following condition

is satisfied: Ty Ve, Aiff THy, ¢, A.

Note Again, it can be easily seen that if - is an scr then A is an internal conjunction
iff it is a combining conjunction, and similarly for V. This, however, is not true in
general.

A natural requirement from a Scott cumulative consequence relation is that its
single-conclusion counterpart will be a Tarskian cumulative consequence relation.
Such a relation should also use disjunction on the r.h.s. like it uses conjunction
on the l.h.s. The following definition formalizes these requirements.

Definition 38 Let |- be an scr with a combining disjunction V. A relation  between
nonempty finite sets of formulae is called {V, F}-cumulative scer if it is an sccr that
satisfies the following two conditions:

a) Let Fr and et be, respectively, the single-conclusion counterparts of - and |
(ie.,, Thpy iff TH{¢} and T'jopep iff T |~ {9}). Then Fr is a tcr and 7 is a

Fr-cumulative tccr.

b) For A={41,..., ¥}, denote by VA (or by 91 V...V ¥,) any disjunction of all
the formulae in A.!® Then for every A #0, |~ satisfies the following property:'*

IDR internal disjunction reduction: I'~AIff T ~VA.

Following the line of what we have done in the previous section, we next specify
conditions that are equivalent to those of Definition 38, but are independent of the
existence of any specific connective in the language. In particular, we do not want to
assume anymore that a combining disjunction is available:

Definition 39 Let I be an scr. An sccr ~ in the same language is called weakly
F-cumulative if 1t satisfies the following conditions:

Cum cumulativity: if T,A#Q and T+ A, then T b A.
RwI1 right weakening: if T,9F¢ and T4, A then T~ ¢, A.
RM right monotonicity: if T~ A then T 4, A.

Notes

1. Since I', ¥, A, Cum implies s-R, and so a binary relation that satisfies Cum,
CM, ccCltl RWH and RM, is a weakly F-cumulative sccr.

131t easily follows from (a) above and from the properties of V in |- that the order according to
which VA is taken has no importance here.

14This property is dual to the property of internal conjunction reduction (TICR, see Definition
23) of a -cumulative tccr.
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2. Any weakly F-cumulative relation satisfies the following condition:

LLE left logical equiv.: ifT,¢F¢ and T, ¢4 and T,y |~ A then T, o~ A

Indeed, by Cum on T',9 - ¢ we have that T',¢ b ¢, and CM with T',¢ |~ A
yields T',%, ¢ |~ A. Also, since T, ¢ -4 then by Cum T',¢ ~%. A CCH with

T,%, ¢ A yields T, ¢ b A.

Proposition 40 Let - and V be as in Definition 38. A relation  is a {V,F}-
cumulative sccr iff it is a weakly F-cumulative sccr.

Proof (<) Since F is an scr, 1 is obviously a tcr. Also, since |~ is a weakly -
cumulative sccr, it satisfies s-R, CM, CC[Y, and Cum, thus f~ obviously satisfies
s-TR, TCM, TCC and TCum, therefore |7 is a Fp-cumulative tccr. It remains to
show that |~ satisfies IDR: Suppose first that T'|~ VA for A#@. Since I', VAF A, then
by Cum, I, VA~ A. A CCM with T v VA yields T |~ A. For the converse, we first
show that if T'~), ¢, A then T~ 4Ve, A. Indeed, RWIH of T' v, ¢, A and T, ¢ F 4V
yields T' 9 Vé, ¢, A. Another RWM with T, ¢4V yields T' Ve, ¥V, A. Thus,
T'~v¢Vé,A. Now, by an induction on the number of formulae in A it follows that if
A#Q and T'~ A, then T'~VA.

(=) Let |~ be a {V,F}-cumulative sccr. Suppose that I’ A% @ and ' - A. Then
T'F VA. Hence T' b1 VA, and since |1 is a Fp-cumulative teer, T pop VA. Thus
T' VA, and by IDR, I' ~ A. This shows that p satisfies Cum. For RWI!, assume
that T, ¢+ ¢ and T'|~1, A. Since I is an scr and V is a combining disjunction for it,
the first assumption implies that T', yV(VA)F#V(VA). By IDR the second assumption
implies that T |~ ¢ V(VA). Hence T, ¢V (VA) b1 ¢V(VA) and T 7 ¢V (VA). By
TRW (see Proposition 29) applied to 1 we get I' b ¢V(VA). Hence T'~¢V(VA).
By IDR again, T' ¢, A. It remains to show that |~ satisfies RM. Suppose then that
'~ A and let § € A. Then '~ A, 4, and RWIU with T, §F V4§ yields T V4, A.
Using IDR it easily follows that T' |~1, 4, A, and since § € A we have that T, A.

Note A careful inspection of the proof of Proposition 40 shows that if a combining
disjunction is available for |-, then RM follows from the other conditions for a weakly
F-cumulative sccr. It follows that in this case Cum, CM, CCH, and RW suffice for
defining a weakly F-cumulative sccr.

The last proposition and its proof show, in particular, the following claim:

Corollary 41 Let - be an scr with a combining disjunction V, and let |~ be a weakly
F-cumulative sccr. Then V is an internal disjunction w.r.t. |~.

Part (a) of the following proposition shows that a similar claim about conjunction

also holds:

Proposition 42 Let F be an scr with a combining conjunction A, and let |~ be a
weakly F-cumulative sccr. Then:

a) A is an internal conjunction w.r.t. ~. ILe., |~ satisfies the following property:

ICR internal conjunction reduction: for every T'#£0, T A T AT~ A
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b) A is a “half” combining conjunction w.r.t. . Le, the following rules are valid
for p:15
T hyAg,A T hyag A

e TG A TR4A

Proof

a) The proof is similar to that of in the Tarskian case (see Lemma 32 and Note 2
after Definition 39), using A instead of ¢.

b) T'~, A is obtained by applying RW! to T 9 A, A and T,y AdFp. Similarly
for T'~ o, A.

Note Clearly, the condition ICR in part (a) of Proposition 42 is equivalent to the
following conditions:

L'y, A Lpn¢p~A
LyAghA L, A

Definition 43 Suppose that an scr F has a combining conjunction A. A weakly
F-cumulative sccr |~ is called {A, F}-cumulative if it satisfies the following condition:

Th¢,A Thon
T~ 9/, A

Corollary 44 If |- is an scr with a combining conjunction A and |~ is a {A,F}-
cumulative sccr, then A is a combining conjunction w.r.t. |~ as well.

(A (Ae

[~ Aln

Proof Follows from Proposition 42(b).

As usual, we provide an equivalent notion in which one does not have to assume
that a combining conjunction is available:

Definition 45 A weakly F-cumulative sccr p~ is called F-cumaulative if for every finite
n the following condition is satisfied:

RWI" if Thvtps, A (i=1,...,n) and T, %y,...,%nF ¢ then T g, A.

Proposition 46 Let A be a combining conjunction for . An scer p is {A,F}-
cumulative iff it is F-cumulative.

Proof We have to show that if A is a combining conjunction w.r.t. -, then RW" is
equivalent to [~ A]r. Suppose first that |~ satisfies [~ A, From T4y, A (5=1,...,n)
it follows, by [ A]r, that T ¢1A, ..., Atbp, A. From T, ¢1,...,9%, - ¢ it follows
that T, 9¥1A,...,Ah, F ¢. By a RWH on these two sequents, T' ¢, A. For the
converse, assume that T'|~%, A and T |~ ¢, A. Since T, %, ¢4 A ¢, RWI yields that

Ty Ag,A.

Corollary 47 If |- is an scr with a combining conjunction A and f~ is a F-cumulative
sccr, then A is a combining conjunction and an internal conjunction w.r.t. p~.

15The subscripts “I” and “E” in the following rules stand for “Introduction” and “Elimination”,
respectively.
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Proof By Proposition 42(a), Corollary 44, and Proposition 46.

Next we consider the dual property, i.e.: conditions for assuring that a combining
disjunction V w.r.t. an scr F will remain a combining disjunction w.r.t. a weakly
F-cumulative sccr . Our first observation is that one direction of the combining
disjunction property for |~ of V yields monotonicity of f:

Lemma 48 Suppose that V is a combining disjunction for F and |~ is a weakly
F-cumulative sccr. Suppose also that |~ satisfies the following condition:

TyVé A T, 9vép A
T YA  T,¢RA

Ve

Then p~ is (left) monotonic.

Proof Suppose that I' ~ A, and let y €. Then T,y |~ A. Since T',yFyVy we
have also T,y yV®. Hence, by CM, T,v,vVe¢ | A. By [V |~]g this implies that

Ty, ¥ ~A and so T, ¢ |~ A.

It follows that requiring [V |~|g from a weakly F-cumulative sccr is too strong.
It is reasonable, however, to require the other direction of the combining disjunction

property:

Definition 49 A weakly F-cumulative sccr |~ is called weakly {V,}-preferential if
it satisfies the following condition, (also denoted by [V |~]1):

Or left V-introduction: ifT, YA and T, ¢~ A, then T, Ve~ A.

Unlike in the Tarskian case, this time we are able to provide an equivalent condition
in which one does not have to assume that a combining disjunction is available:

Definition 50 Let - be an scr. A weakly F-cumulative sccr is called weakly -
preferential if it satisfies the following rule:

CcC cautious cut: ifThv,Aand T, ~A then T'A.

Proposition 51 Let - be an scr and let |~ be a weakly F-cumulative sccr. Then
is a weakly -preferential sccr iff for every finite n it satisfies cautious n-cut:

ccl if T, v A (i=1,...,n) and T4y, ...,%, then T~ A.

Proof (<) We have to show that |~ satisfies CC. Suppose that A={d1,...,d;} for
some k> 1. Since for every 1<i<k we have that T',d; ~ A and since by assumption
T, ¢y~ A, a cautious (k+1)-cut of these k+1 sequents with I' ), A yields that T' |~ A.
(=) Suppose that |~ satisfies CC. We show the following stronger condition by in-
duction on n:

If T, o ¥, Do and T, ¢ A (i=1,.. ., n) then T Ag, Aq,..., Ay,
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e For the case n=1, assume that T'|~ %1, Ag and T, 91 ~A;. By RM on each sequent
we have that T' 1, Ag, Ay and T, 1 |~ Ag, A;. A CC gives the desired result.
e Assume the claim for n; We prove it for n+1: Suppose that T',4; |~ A; for i =
l,.yn+1 and T b 91,.. . ¥ny1,Ao. By induction hypothesis applied to the last
sequent and T',¢; b A;, for i=1,...,n, we get ' |~ Ag, Ay,..., Ay, ¥py1. From this
and T, ¢¥ny1 P~ Apnyr we get that T Ag, Ay, ..., Apyq like in the case of n=1.

Note By Proposition 20, the single conclusion counterpart of CC®! is valid for any
sccr (not only the cumulative or preferential ones).

Proposition 52 Let - be an scr with a combining disjunction V. A weakly -
cumulative sccr p satisfies Or iff it is closed under CCI™! for every finite n.

Proof Suppose first that |~ satisfies Or. Then from I',¢; A (i =1,...,n) it
easily follows that T',91V...V¢, ) A. On the other hand, T |~ 41 V...V, follows
from T' |~ %1,...,%, by IDR and Proposition 40. Thus, I' ~ A by CCH. For the
converse, suppose that j~ is a weakly F-cumulative sccr that satisfies Ccctl for every
finite n, and suppose that T',¢ ~ A and T, ¢ |~ A. Now, since ',y -9V ¢ then by
Cum T, ¢ ¢V, and CM with T, ¢ |~ A yields [1]: T,%,9¥ V¢~ A. Similarly, since
T,¢éF9V¢ then by Cum and CM with T, ¢ ~ A we have [2]: T, ¢, ¥ Vé I~ A. Also,
since T, ¥V ¢, ¢ then by Cum, [3]: T,¥Vé b, 4. A CCPR of [1], [2], and [3] yields
VION

Corollary 53 et I be an scr with a combining disjunction V. An sccr p~ is weakly
{V, F}-preferential iff it is weakly F-preferential.

Proof By Propositions 51 and 52.

Proposition 54 Let - be an scr. Then |~ is weakly F-preferential iff it satisfies Cum,
CM, CC, and RM.

Proof One direction is obvious. For the other direction, we have to show that if |~
satisfies the above conditions then it also satisfies RW! and CCHl. For RWI, assume
that T',¢9F ¢ and T |~ ¢, A. By Cum and RM on the first assumption, T', ¢ | ¢, A.
By RM on the second assumption, T' ), ¢, A. A CC on the last two sequents yields
T'~¢, A. We leave the proof of CCHM to the reader.

Corollary 55 Let I be an scr. A relation |~ is a weakly F-preferential iff it satisfies
Cum, CM, and the following rule:

s-AC strong additive cut: ifT v, A; and T, ¢ |~ Ag then T |~ Ay, Ay

Proof Suppose first that |~ satisfies Cum, CM, and s-AC. By Proposition 54 we
have to show that |~ satisfies CC and RM. CC is obtained by taking A; = A, in
s-AC. For RM, Suppose that T'|~ A and let §€ A. Then T'|~4§, A. On the other hand,
since T',§ 6, ¢, then by Cum, I',§ |~ 4, 9. s-AC with T 4, A yields T |~ 9, A. For
the converse, suppose that ~ is a weakly F-preferential sccr for which T'|~%, A; and
I‘, ’Lp l’VAz By RM, T l’V’Lp, Al, Az and I‘, ’Lp l’VAl, Az. Thus, T l’VAl, Az, b'y CC.
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We are now ready to introduce our strongest notions of nonmonotonic Scott con-
sequence relation:

Definition 56 Let - be an scr. An sccr |~ is called F-preferential iff it satisfies Cum,
CM, CC, RM, and RWI! for every n.

Proposition 57 Let - be an scr. The following conditions are equivalent:
a) p is -preferential,
b) p~ is a F-cumulative sccr that satisfies CC,

c) p~ is a weakly F-preferential sccr that satisfies RW for every n.
The proof is left to the reader.

Proposition 58 Let - be an scr and let |~ be a F-preferential sccr.

a) A combining conjunction A w.r.t. I- is also an internal conjunction and a com-
bining conjunction w.r.t. p~.

b) A combining disjunction V w.r.t. I is also an internal disjunction and “half”
combining disjunction w.r.t. p.18

Proof Part (a) follows from Corollary 47. Part (b) follows from Corollary 41 and
Corollary 53.

cclnl (n>1) is a natural generalization of cautious cut. A dual generalization,
which seems equally natural, is given in the following rule from [25]:

I‘l"‘lﬁl,A Fl"‘¢mA, Fﬂﬁl,---ﬂﬁnl"‘A
T kA

Lccnl

Definition 59 [25] A binary relation |~ is a plausibility logic if it satisfies Inclusion
(T, ~%), CM, RM, and LCCI (n>1).

Definition 60 Let - be an scr. A relation |~ is called F-plausible if it is a k-
preferential sccr and a plausibility logic.

A more concise characterization of a -plausible relation is given in the following
proposition:

Proposition 61 Let F be an scr. A relation |~ is F-plausible iff it satisfies Cum,
CM, RM, and LCC™ for every n.

Proof Since CC is just LCCH, we only need to show the derivability for all n of
RWM™l. So assume that T' ;A (i=1,...,n) and T,%1,...,%n F ¢. By Cum and
RM this implies that T' ~ 4, ¢,A (¢ =1,...,n) and T',%1,...,%n ~ ¢, A. Hence
T |~ ¢, A follows by LCC™],

161.e., pv satisfies left V-introduction (but not necessarily left V-elimination).
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Proposition 62 Let I be an scr with a combining conjunction A. A relation p is
F-preferential iff it is F-plausible.

Proof One direction is obvious. By the last proposition, for showing the converse
we have to prove that if |~ is F-preferential and + has a combining conjunction A,
then p~ satisfies LCC™ for every finite n. This follows from Corollary 47 and the
following lemma:

Lemma 62-A: Let |~ be a F-preferential sccr, where I is an scr with a combining
conjunction A. Then [~ Ay is equivalent to LCCM

Proof: (=) T hv1,A ... T | ¥n, A then by [~A]L T 9¥1A. . An, A, Also, if
T, %1,...,%n I~ A then by ICR (see Proposition 42(a)), T, ¥1A... Ay ~A. By CC,
then, T'|~ AL

(<) Suppose that '~ 4, A and T'~ ¢, A. By RM, ' ~9, YpAd, A and T ¢, A9, A.
Also, by Cum on T, 4, ¢ I 9A¢, A we have that T, 9, ¢ b ¥A¢, A. By LCC! on these
three sequents, I' ~ 9 Ad, A

Table 1 and Figure 1 summarize the various types of Scott relations considered in
this section and their relative strengths. - is assumed there to be an scr, and Vv, A
are combining disjunction and conjunction (respectively) w.r.t. |-, whenever they are
mentioned.

Table 1: Scott relations

consequence relation

general conditions

valid conditions with A and Vv

SCCr

s-R, CM, cclll

weakly F-cumulative
scer

Cum, CM, ccCll, RWII RM

(A [A e, [Pv/\]E, [PVV]I, [~Vle

F-cumulative scer

Cum, CM, cCll, RW", RM

AT (AR Je, AR, [FAls, [~V Vs

weakly H-preferential
scer

Cum, CM, CC, RM
VMI, [~ Vs, [~ Ve,

F-preferential scer

AL [AEs [ Als,
Cum, CM, CC, RW", RM

(Ao (A e, [ Al [Pv/\]E, Vo [~V (Ve

F-plausible scer

Cum, CM, Lccl*, RM

A (A e, (Al [~ Al [V [V (Ve

scr extending -

Cum, M, C

(Ao [A e [ Al [ Al [V [V e [V (Ve

3 A semantical point of view
In this section we present a general method of constructing nonmonotonic consequence

relations of the strongest type considered in the previous section, i.e.: preferential and
plausible sccrs. Our approach is based on a multiple-valued semantics. This will allow
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weakly F-cumulative scer
L

F-cumulative

weakly @
F-preferential
scer scer

+ Rwl + CC

L
F-preferential scer
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Figure 1: Relative strength of the Scott relations

us to define in a natural way consequence relations that are not only nonmonotonic,
but also paraconsistent (i.e.: capable of reasoning with inconsistency in a nontrivial
way).

A basic idea behind our method is that of using a set of preferential models for
making inferences. Preferential models were introduced by McCarthy [30] and later
by Shoham [40, 41] as a generalization of the notion of circumscription. The essential
idea is that only a subset of models should be relevant for making inferences from a
given theory. These models are the most preferred ones according to some conditions
that can be specified syntactically by a set of (usually second-order) propositions, the
satisfaction of which yields the exact kind of preference one wants to work with.

Here we choose the preferred models according to preference criteria, specified by
preorders on the set of models of a given theory. The resulting consequence relations
are shown to be plausible Scott relations.

3.1 Multiple-valued models and Scott consequence relations

Definition 63 Let ¥ be an arbitrary propositional language. A multiple-valued
structure for T is a triple (£, F,S), where L is set of elements (“truth values”), F is
a nonempty proper subset of £, and § is a set of operations on £ that correspond to
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the connectives in X.

The set F consists of the designated values of L, 1.e.: those that represent true
assertions. In what follows we shall assume that £ contains at least the classical

values ¢, f, and that teF, f ¢ F.

Definition 64 Let (£, F,S) be a multiple-valued structure, and let T be a set of
formulae in a language X.

a) A (multiple-valued) valuation v is a function that assigns an element of £ to each
atomic formula. A valuation is extended to complex formulae in the standard
way. The set of all the valuations into £ is denoted by V.

b) A valuation v satisfies a formula ¢ (notation: v =57 4) if v(¢p) € F. The
relation =57V x X is called a satisfaction relation.

c) A valuation v is a model of T' (notation: v =57 T') if it satisfies every formula
in T. The set of the models of T' is denoted by mod(T').

Definition 65 Let (£, F,S) be a multiple-valued structure. Denote I' 5% A if every
model of T is a model of some formula in A.

Example 66 Many well-known formalisms correspond to Definition 65, especially
when a lattice structure is defined on the elements of £, and the elements of F
form a filter in this lattice. Classical logic, for instance, is obtained by taking the
two-valued lattice ({¢, f}, f <z t) with F = {t}. For Kleene three-valued logic [22]
take £ = {t, f,—} with F = {¢t}. The connectives in § correspond to the lattice
operations of a lattice in which f <y — < t together with a negation operation
defined by: —f =%, t=f,7— =—. Belnap four-valued logics [9, 10] is obtained from
L={tf,T,-}, F={t, T}, and S that contains the lattice operations of the the
four-valued lattice in which f <z (—, T)<g ¢, and a negation operation defined by:
_'f:ta _'t:fa_'_:_a_'T:T'

'_L,_?-'

Proposition 67 is an scr.

Proof Reflexivity and Monotonicity immediately follow from the definition of F5% .
For cut, assume that M € mod(T'; UT'2). In particular, M € mod(T'1), and since
D&% 4, Ay, either M =57 § for some 6 € Ay, or M =57 4. In the former case we
are done. In the latter case M € mod(T'3U{¢}) and since T'y, ¥ -5% Ay, we have that
MF5F§ for some § € A,.

Definition 68 Let (£, F,S) be a multiple-valued structure.

a) A binary operation A €S is conjunctive if for all z,y€ L, zAye F iff e € F and
yeF.

b) A binary operation V € § is disjunctive if for all z,y€ L, eVye F if e € F or
yeF.

The following result is immediate from the definitions:
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Proposition 69 Let (£, F,S) be a multiple-valued structure for a language X.

a) If A is a connective of ¥ s.t. the corresponding operation of S is conjunctive,
then A is a combining conjunction and an internal conjunction w.r.t. F57.

b) If V is a connective of X s.t. the corresponding operation of S is disjunctive,
then V is a combining disjunction and an internal disjunction w.r.t. F5%,

3.2 Preferential models and Scott cautious consequence rela-
tions

3.2.1 The relation I—ﬁ’}-

Definition 70 A preferential system in a structure (£, F,S) is a triple P = (V, 5%
, <), where V is the set of all the valuations on £, =5%€ V x £ is the satisfaction
relation defined in 64, and < is a preorder on V.

Definition 71 Let P = (V, =5%, <) be a preferential system in (£, F,S). A val-
uation M € mod(T') is a P-preferential model of T if there is no other valuation
M'emod(T') s.t. M’ <M. The set of all the preferential models of T' in P is denoted
by YT, P).

Definition 72 [29] A preferential system P is called stoppered'” if for every set of
formulae T' and every M € mod(T') there is an M'€ Y(T',P) s.t. M'<M.

Note that if V is well-founded under < (i.e., ¥ does not have an infinitely descend-
ing chain under <), then P is stoppered.

Definition 73 Let P = (V, E5%, <) be a preferential system in (£,F,S). A set
of formulae T' P-preferentially entails a set of formulae A (notation: T I—ﬁ’}- A) if

for every M € !(T',P) there is a 6 € A s.t. M 5% §.18 We say that I—ﬁ’}- is the
consequence relation'® induced by P.

Proposition 74 If P=(V, =%%, <) is a stoppered preferential system in (£, F,S),
then I—ﬁ’}- is a F5% -plausible sccr.

For proving Proposition 74 we first show the following lemma:

Lemma 75 Let P be a preferential system and let ', 'y be two sets of formulae s.t.

mod(T'1) Cmod(T'2). Then (T2, P) Nmod(T1) C (T4, P).

Proof Suppose that M € (T3, P) N mod(Ty), but M ¢ !(T'1,P). Then there is
an N € mod(T'1) s.t. N <M. But mod(T'1) C mod(T'3) so N € mod(T;), therefore
M ¢ (T3, P).

171n [24] the same property is called smoothness.

18 Note that we do not require that M € ({6}, P), or that M € {(T'U {6}, P).

19Here and in what follows we use the notion “consequence relation” in a wider sense than that
of Tarski and Scott. In particular, we don’t assume monotonicity.
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Proof (of Proposition 74) The validity of Cum immediately follows from the def-
inition of l—ﬁ’}-. This is also the case with RM. By Proposition 61 it remains to show

CM, and LCccll:
° I—ﬁ’}- satisfies cautious monotonicity:

Suppose that T' l—ﬁ’}-@b, and T l—ﬁ’}-A. Let M € (T U {¢},P). In particular, M is a
model of T'. Moreover, M € !(T',’P), since otherwise by the fact that P is stoppered,
there would have been a model N € (T, P) that is strictly <-smaller than M. Since
I‘l—ﬁ’}-@b, this N would have been a model of T' U {¢}, which is <-smaller than M — a

contradiction. Thus M € !(T',P). Now, since I‘I—ﬁ’}-A, M is a model of some § € A.
Hence T', ¢ l—ﬁ’}-A.

° I—ﬁ’}- satisfies LCCI™ for every n:

Let M € Y(T',P). If M is a model of some § € A we are done. Otherwise, since
r I—g’}- ¥, A for ¢ = 1,...n, M is a model of ¥1,...,%,. By Lemma 75, M €
T U{¢¥1,...,¥n},P). Since T, ¥1,..., ¢ l—ﬁ’}-A, there exists § € A s.t. M € mod(§)

in this case as well.

Corollary 76 Let P=(V, =57, <) be a stoppered preferential system in (£, F, S).

a) If A is a connective s.t. the corresponding operation of § is conjunctive, then A
is an internal conjunction and a combining conjunction w.r.t. l—ﬁ’}-.

b) If V is a connective s.t. the corresponding operation of § is disjunctive, then Vv
is an internal disjunction w.r.t. l—ﬁ’}-, which satisfies left V-introduction.

Proof By Propositions 74 I—ﬁ’}- is 57 _plausible, and so it is obviously a F57-
preferential sccr. The claim now follows from Proposition 58.

3.2.2 Pointwise preferential systems

Let P be a preferential system in (£, F,S). In Proposition 74 we have shown that a
sufficient condition for assuring that the consequence relation induced by P would be
a F57 _plausible sccr is that P is stoppered. However, as noted in [24] and in [29], it
is not easy to check whether this property holds. In what follows we consider another
property, which is more easily verified:

Definition 77 A preferential system P = (V, E5%, <) in (£, F, S) is called point-
wise, if there is a well-founded partial order < on £ s.t. Vv, v2 €V v < vy iff for
every atomic formula p, v1(p) <va(p).

Note If £ is finite, then a preferential system P =(V, 5%, <) in (£, F, S) is point-
wise iff there is a partial order < on L s.t. Vvi,v2 €V v < vy iff for every atomic
formula p, v1(p) <va(p).

Proposition 78 Let P be a pointwise preferential system in (£,F,S). Then P is
stoppered.
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Proof Suppose that M is some model of I'. We have to show that there is a model
Nel(T,P)st. N<XM. Solet Spy ={M; | M; isamodelof T, M; <M} andlet CC Sy
be a chain w.r.t. <. We shall show that C is bounded below in Sys, so by Zorn’s lemma
Sy has a minimal element, which is the required <-minimal model. Indeed, define
a valuation N as follows: For each atom g let N(g) =min<{M;(q) | M; €C} (N(q)
exists since C is a chain and < is well-founded). Obviously N bounds C. It remains to
show that N €Sy. Indeed, assume that ¢ €T and let A(¢)={p1,...,pn} be the set
of the atomic formulae in 4. For each 1<j<n let M,, € {M;cC | M;(p;)=N(p;)}.
Then: N(p1)= Mp, (p1),...,N(pn) = M, (pn). Since C is a chain we may assume,
without a loss of generality, that M,, >...> M, _, and so N is the same as M, on
every atom in A(v). Since M, is a model of 9, so is N. This is true for every 4 €T
and so N € Sy as required.

Theorem 79 Let P = (V, =57, <) be a pointwise preferential system in (£, F,S).
Then I—ﬁ’}- is F-% -plausible. Moreover:

a) If A is a connective with a corresponding conjunctive operation in &, then A is
. . . .. . . L,F
an internal conjunction and a combining conjunction w.r.t. 3.

b) If V is a connective with a corresponding disjunctive operation in of S is dis-
junctive, then V is an internal disjunction, which satisfies left V-introduction.

Proof By Propositions 74, 78 and Corollary 76.

3.3 Examples

Many well-known formalisms can be viewed as particular instances of the relation
defined in 73. In this section we consider some of these formalisms.

In what follows we assume L to be a lattice and not only an arbitrary set of truth
values. We further assume that the set F of the designated values is a filter on L,
and that S contains the basic lattice operations. The pair (£, F) is sometimes called
a logical lattice.?°

Note that in all the examples below the preferential systems under considera-
tion are pointwise. Thus, by Theorem 79, the induced consequence relation is F5%-
plausible.

Example 80 When taking the two-valued lattice and a degenerated preference order
<, then I—ﬁ’}- is the same as the consequence relation of classical logic. Similarly, all

the other formalisms of Example 66 are obtained from I—ﬁ’}- by taking the appropriate
multi-valued structure and a degenerated preferential order.

Example 81 — Closed Word Assumption

Consider the two-valued lattice f < ¢ with ¢ as the designated element. Define a
preferential relation < by v1 <v; if v1(p) <va(p) for every p. The preferential models
of a theory are here its minimal models, and the induced consequence relation of the
system corresponds to Reiter’s closed-world assumption [36].2!

20To simplify notations we shall omit explicit references to S in what follows.
21This can be extended to the first-order case in the usual way, in which case the preferential
models of a theory are its minimal Herbrand models.
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Example 82 — The logic LPm of Priest

Denote by F, the consequence relation of the logic LP.2% It is well known that LP
invalidates the Disjunctive Syllogism (¥, =% V ¢ t2p ¢). In [34, 35] Priest argues
that this is a drawback: a consistent theory should preserve classical conclusions.
He suggests to resolve this drawback by considering as the relevant models of a set
T only those that are minimally inconsistent. Such models assign the inconsistency
value T only to some minimal set of atomic formulae. The consequence relation that
is obtained is in our notations l—ﬁ’}-, where £ is the three-valued lattice {f,¢,T},
in which f <; T <; ¢, F = {¢, T}, and Vvi,vs € V, v; < vy iff for every atom p
v1(p) <k va(p), where the partial order < is defined by f<j T and ¢t <; T.23

Example 83 — The logic I—f’}-

The following family of multiple-valued preferential systems is considered in [3, 5].
The algebraic structures that provide their semantics are sometimes called logical
bilattices. Bilattices were introduced by Ginsberg in [20, 21] as a general framework
for a diversity of applications in Al (see also [1, 2, 8, 13, 14]). In these structures
there are two partial orders according to which the truth values are represented, and
each one of them induces a complete lattice on their common underlying structure.
One order is usually denoted by <;. It intuitively measures differences in the amount
of truth that the elements represent. The other one is usually denoted by <. It is
intuitively understood as representing differences in the amount of knowledge that
each element exhibits. According to Ginsberg ([20, 21]), the two partial orders of a
bilattice are related by a negation operation —, which is an involution w.r.t. <; (like
in many logical lattices) and an order preserving w.r.t. <j. Logical bilattices is a
family of bilattices, proposed in [1, 2], which is particularly useful for constructing
bilattice-based logics. A logical bilattice is a pair (£, F), where £ is a bilattice, and
F is a set of designated elements that form a prime bifilter in £ i.e.: a prime filter
w.r.t. both partial orders of L.

Assume now that < is well-founded, and let v1 <z v; iff for every atom p, v1(p) <j
v2(p). In the pointwise preferential system P =(V, =57, <) that is obtained, (T, <
) is the set of the <ji-minimal models of I'. In the induced consequence relation
I—ﬁ’:: one draws conclusions according to models that assume minimal knowledge
concerning the premises. The intuition behind this approach is that one should not
assume anything that is not really known.

M M L,J":‘
Here are some basic properties of I—jk :
Proposition 84 [3, 5] let (£, F) be any logical bilattice.
a) I—ﬁ’:: is paraconsistent.
b) I—ﬁ’:: is nonmonotonic.

c) Ifinfy F € F?*, and if the formulae in T, A are in X, then THSF Aiff THST A

22Kleene three-valued logic with middle element designated [22], also known as basic J3 — see, e.g.,
[12, Chap.IX] as well as [6, 31, 32, 33]. In the present notations, Fl—ip A THSF A, where £ is a
three-valued lattice defined by f<: T <:t and F={¢, T}.

23Note that the interpretation of V and A are determined by <, while < is defined using <j.

24This is true, in particular, whenever £ is finite.
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Note In Theorem 79 no connection was assumed between the lattice order that de-
fines the semantics of V and A, and the partial order that underlies <. However, in
bilattices there are strong connections between the two partial orders. As a result, the
condition of the well-foundedness of < can, in fact, be removed from the definition
of a pointwise preferential system in case (B, F) is a logical bilattice, provided that
infy, F € F. See [3] for more details.

Part (c) of the last proposition implies that in X, in order to check whether
I'F5% A it is sufficient to consider only the <j;-minimal models of I'. However, as
Proposition 84(b) shows, in the general case I—i_’:: is not equivalent to F5*. The next
proposition (86) is another evidence for that. Its proof easily provides an example for
the note after Proposition 16:

Definition 85 [7, 2] Let (£, F) be a logical [bi-]lattice. Define: a Db=bif a € F, and
aDb=t otherwise.?®

Note It is well known that in multiple-valued semantics it is usually no longer true
that every classical tautology remains valid. For instance, in Kleene three-valued logic
logic [22], as well as in Belnap 4-valued logic [9, 10], excluded middle is not valid. This
implies that when switching to multiple-valued semantics the material implication
P ¢ =1 V¢ does not act like an implication connective anymore. As the following
proposition implies, D does function like an implication in logical [bi-]lattices. Note
also that on {¢, f} the material implication <+ and the implication connective O are
identical, and both of them are generalizations of the classical implication.

Proposition 86 Let (£,F) be a logical [bi-]lattice, and let O be the connective
defined in 85. Then:

a) D is an internal implication w.r.t. F5%: T,y 5% ¢ A iff THSF 4D ¢, A.
b) D is not an internal implication w.r.t. l—?::.

Proof Part (a) immediately follows from the definition of D. For part (b), consider
Belnap four valued bilattice where f <, (T, —)<;tand — <z (¢, f) <z T and F={¢, T}
(see [9, 10] and Example 66). For atoms p,q we have that pl—ﬁ’:: —p D g (the only

<k-minimal model here assigns ¢ to p and — to ¢), while p, —-p |7‘ﬁ’::q (a counter-model
assigns T to p and — to gq). -

Note Since the <;-meet operation is obviously conjunctive in £, then by Corollary
79, the corresponding connective A is an internal conjunction and a combining con-
Jjunction w.r.t. l—ﬁ’::. Similarly, it is possible to define a <g-meet operation on £
and by Corollary 79, the corresponding connective, ®, is also an internal conjunction
and a combining conjunction w.r.t. l—ﬁ’::. By the same corollary, the connectives
V and @, which respectively correspond to the the <;-join and to the <g-join on
L, are internal disjunctions w.r.t. l—ﬁ’::. Note, however, that like in the case of D,

the connectives V and @ do not remain a combining disjunction w.r.t. l—ﬁ’::. This

25 Although we are using the same symbol (D) for denoting general implication connectives and
the specific implication operation defined above, this should not cause any conflicts in the sequel.
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follows from Lemma 48, since it is shown there that one direction of the combin-
. .. . . .. L.F . .

ing disjunction property yields monotonicity, whereas F2'” is nonmonotonic. For a
specific example that shows that [V ~]g is not valid, consider again the four-valued
bilattice mentioned in the proof of Proposition 86(b). Then (p A —p) V pl—?:: -2 f,

while (p A —p)t/57 -pD f.

Example 87 — The logic I—ﬁ’__r}-
Another useful preferential system that is based on logical bilattices is considered
in [2, 3]: Let (£, F) be a logical bilattice where £ = (L, <, <g). A subset T of L
is called an inconsistency set, if for every b€ L, beZ iff b€ Z, and be FNI iff
b, —~be F. Intuitively, T contains the elements of L that are understood as representing
inconsistent knowledge or belief. Define a partial order <z on £ by a<z bif a €
L\T and beZ. <z is trivially well-founded. In the pointwise preferential system
P = (V, 5%, <) that is obtained, (T, <z) are the models that assume minimal
inconsistency (w.r.t. I) of the premises.These models are called the Z-most consistent
models (I-mcms, for short) of T'. The intuition this time is that contradictory data
corresponds to inadequate information about the real world, and therefore should be
minimized.?®

I—ﬁ’__r}- might be viewed as a generalization of the three-valued logic LPm of Priest
(see Example 82).27 In our terms, Priest considers the inconsistency set T = {b €
L |beF,-be F}. In the 3-valued case this is the only inconsistency set, and it
consists only of T. In the general (multiple-valued) case, however, there are many
other inconsistency sets. For a more detailed comparison between the logic of I—ﬁ’__r}-
and LPm, see [3]. B

Kifer and Lozinskii [23] also propose a similar relation (denoted there kea, where
A denotes the values that are considered as representing inconsistent knowledge).
This relation is considered in the framework of annotated logics [42, 43]. See [2] for a
discussion on the similarities and the differences between I—ﬁ’__r}- and RA.

Proposition 88 [2, 3] For any logical bilattice (£, F) and an inconsistency set Z,

L,F . . .
a) |—<’__r is paraconsistent and nonmonotonic.

b) If I' and A are in the language of {—,A,V,D, f,t} and T I—ﬁ’__r}- A, then the

disjunction of the sentences in A classically follows from T'.

c) Let T be a classically consistent set in the language of {—, A, V, f,t}, and let ¥
be a formula in CNF that none of its conjuncts contains an atomic formula and
its negation. If ¢ classically follows from T, then I‘l—i’;: .

. . C.F . . . .
Again, like in the case of -2, the connectives A, ® are internal conjunctions and

.. . . “L.F . . .. .
combining conjunctions w.r.t. -3, and the connectives V, @ are internal disjunctions

C.F
w.r.t. I—j’__r .

261n [2, 3] this preferential system is defined in a somewhat different way. We omit the details
here.

27Note, however, that the three-valued structure is not a bilattice, but what is sometime called
pseudo lower-bilattice [17].
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4 Conclusion and further work

In this work we have studied logical approaches to nonmonotonic reasoning, based
on the notion of a nonmonotonic consequence relation. We considered a sequence of
generalizations of the works of Gabbay [18, 19], Makinson [28], and Kraus, Lehmann,
Magidor [24]. These generalizations allow the use of monotonic nonclassical logics
as the underlying logic upon which nonmonotonic reasoning may be based. We have
found that multiple conclusion consequence relations are the best framework for defin-
ing plausible nonmonotonic systems. Our study yields intuitive justifications for the
rules of the nonmonotonic systems mentioned above. It also clarifies the connections
among some of these systems. For instance, it relates the work in [24] to that of [25].

We have also presented a general method for constructing plausible nonmonotonic
relations. This method is based on a multiple-valued semantics, and on Shoham’s idea
of preferential models. It allows us to define in a uniform way consequence relations
that are not only nonmonotonic, but also paraconsistent.

The question whether this semantical approach also characterizes nonmonotonic
plausible consequence relations is still open. Formally, is it true that for every scr -
and a F-plausible sccr |~ there is a multiple-valued structure (£,F,S) and a (point-
wisel) preferential system P =(V, =57, <) such that for every sets of formulae T', A
in a language ¥ we have that T ~ A iff T I—ﬁ’}- A. This is a matter for a further
research. B
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