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behind most of these works is to classify nonmonotonic formalisms and to recognizeseveral logical properties that nonmonotonic systems should satisfy.The logic behind most of the systems which were proposed so far is supraclas-sical , i.e.: every �rst-degree inference rule that is classically sound remains valid inthe resulting logics. As a result, the consequence relations introduced in these worksare not paraconsistent [11], that is: they are not capable of drawing conclusions frominconsistent theories in a nontrivial way. Moreover, the basic idea behind most of thenonmonotonic approaches is signi�cantly di�erent from the idea of paraconsistent rea-soning: While the usual approaches to nonmonotonic reasoning rule out contradictionswhen a new data arrives in order to maintain the consistency of a knowledge-base,the paraconsistent approach to reasoning accepts knowledge-bases as they are, andtolerates contradictions in them, if such exist.Our goal in this paper is twofold. First, we want to develop frameworks for logicalsystems which will be able to reect not only nonmonotonic patterns of reasoning,but also paraconsistent reasoning. Such systems will be useful also for reasoningwith uncertainty, conicts, and contradictions. Our second goal is to have a betterunderstanding of the conditions that a plausible relation for nonmonotonic reason-ing should satisfy. The choice of the various conditions that have been proposed inprevious works seem to us to be a little bit ad-hoc, making one wonder why certainconditions were adopted while others (that might seem not less plausible) have beenrejected. We would like to remedy this.To achieve these goals, we consider a sequence of generalizations of the pioneeringworks of Gabbay [18], Kraus, Lehmann, Magidor [24], and Makinson [28]. Thesegeneralizations are based on the following ideas:� Each nonmonotonic logical system is based on some underlying monotonic one.� The underlying monotonic logic should not necessarily be classical logic, butshould be chosen according to the intended application. If, for example, incon-sistent data is not to be totally rejected, then an underlying paraconsistent logicmight be a better choice than classical logic.� The more signi�cant logical properties of the main connectives of the underlyingmonotonic logic, especially conjunction and disjunction (which have crucial rolesin monotonic consequence relations), should be preserved as far as possible.� On the other hand, the conditions that de�ne a certain class of nonmonotonicsystems should not assume anything concerning the language of the system (inparticular, the existence of appropriate conjunction or disjunction should notbe assumed).The rest of this work is divided into two main sections. Section 2, the majorone, is a study of nonmonotonic reasoning on the syntactical level. First we reviewthe basic theory introduced in [24] (Section 2.1), which is based on a classical entail-ment relation and assumes the classical language. Then we consider nonmonotonicrelations that are based on arbitrary entailment relations (Section 2.3). The nextgeneralization (Section 2.4) uses Tarskian consequence relations [44] instead of just2



entailment relations. Finally, we consider multiple-conclusion relations that are basedon Scott consequence relations [37, 38] (Section 2.5). For de�ning the latter relationswe indeed need not assume the availability of any speci�c connective in the under-lying language. However, the hierarchy of relations which we consider is based �rstof all on the question: What properties of the conjunction and disjunction of theunderlying monotonic logic are preserved in the nonmonotonic logic which is basedon it. Our sequence of frameworks culminates in what we call (following [25]) plau-sible nonmonotonic consequence relations. We believe that this notion captures theintuitive idea of \correct" nonmonotonic reasoning.Section 3 provides a general semantical method for constructing plausible non-monotonic consequence relations. This method is based on a combination of a lattice-valued semantics2 with Shoham's idea of using only certain preferential models fordrawing conclusions ([40, 41]). We show that some well-known plausible nonmono-tonic logics can be constructed using this method. Most of these logics are paracon-sistent as well (these include some logics that we have considered in previous works[2, 3, 5]).2 Preferential systems from an abstract point ofviewIn this section we investigate preferential reasoning from an abstract point of view.First we briey review the original treatments of Makinson [28] and Kraus, Lehmann,and Magidor [24]. Then we consider several generalizations of this framework.2.1 The standard basic theory { A general overviewThe language that is considered in [24, 28] is based on the standard propositional one.Here, ,! denotes the material implication (i.e.,  ,!� = : _�) and � denotes thecorresponding equivalence operator (i.e.,  � � = ( ,!�)^(� ,! )). The classicalpropositional language, with the connectives :, _, ^, ,!, �, and with a propositionalconstant t, is denoted here by �cl. An arbitrary language is denoted by �. Given aset of formulae � in a language �, we denote by A(�) the set of the atomic formulaethat occur in �, and by L(�) the corresponding set of literals.De�nition 1 [24] Let `cl be the classical consequence relation. A binary relation3j�0 between formulae in �cl is called cumulative if it is closed under the followinginference rules:reexivity:  j�0 .cautious monotonicity: if  j�0� and  j�0 � , then  ^� j�0� .cautious cut: if  j�0� and  ^� j�0� , then  j�0 � .left logical equivalence: if `cl �� and  j�0 � , then � j�0� .right weakening: if `cl ,!� and � j�0 , then � j�0�.2This is a common method for dealing with inconsistent theories | see, e.g., [13, 14, 15, 20, 21,23, 34, 35, 39, 42, 43].3A \conditional assertion" in terms of [24]. 3



De�nition 2 [24] A cumulative relation j�0 is called preferential if it is closed underthe following rule:_-introduction (Or): if  j�0 � and � j�0 � , then  _� j�0 � .Note In order to distinguish between the rules of De�nitions 1, 2, and their general-ized versions that will be considered in the sequel, the condition above will usually bepreceded by the string \KLM". Also, a relation that satis�es the rules of De�nition 1[De�nition 2] will sometimes be called KLM-cumulative [KLM-preferential].The conditions above might look a little-bit ad-hoc. For example, one might askwhy ,! is used on the right, while the stronger � is on the left. A discussion andsome justi�cation appears in [24, 27].4 A stronger intuitive justi�cation will be givenbelow, using more general frameworks.2.2 GeneralizationsIn the sequel we will consider several generalizations of the basic theory presentedabove:1. In their formulation, [23, 24, 28, 29] consider the classical setting, i.e.: thebasic language is that of the classical propositional calculus (�cl), and the basicentailment relation is the classical one (`cl). Our �rst generalization concernswith an abstraction of the syntactic components and the entailment relationsinvolved: Instead of using the classical entailment relation `cl as the basis forde�nitions of cumulative nonmonotonic entailment relations, we allow the useof any entailment relation which satis�es certain minimal conditions.2. The next generalization is to use Tarskian consequence relations instead of en-tailment relations (i.e. we consider the use of a set of premises rather than asingle one). These consequence relations should satisfy some minimal condi-tions concerning the availability of certain connectives in their language. Ac-cordingly, we consider cumulative and preferential nonmonotonic consequencerelations that are based on those Tarskian consequence relations.3. We further extend the class of Tarskian consequence relations on which non-monotonic relations can be based by removing almost all the conditions on thelanguage. The de�nition of the corresponding notions of a cumulative and apreferential nonmonotonic consequence relation is generalized accordingly.4. Our �nal generalization is to allow relations with multiple conclusions ratherthan the single conclusion ones. Within this framework all the conditions onthe language can be removed.2.3 Entailment relations and cautious entailment relationsIn what follows  ; �; � denote arbitrary formulae in a language �, and �;� denote�nite sets of formulae in �.4Systems that satisfy the conditions of De�nitions 1, 2, as well as other related systems, are alsoconsidered in [16, 26, 29, 39]. 4



De�nition 3 A basic entailment is a binary relation j1� between formulae, that sat-is�es the following conditions:5 6 71R 1-reexivity:  j1� .1C 1-cut: if  j1�� and � j1�� then  j1��.Next we generalize the propositional connectives used in the original systems:De�nition 4 Let j1� be some basic entailment.� A connective ^ is called a combining conjunction (w.r.t. j1�) if the followingcondition is satis�ed: � j1� ^� i� � j1� and � j1��.� A connective _ is called a combining disjunction (w.r.t. j1�) if the followingcondition is satis�ed:  _� j1�� i�  j1�� and � j1�� .From now on, unless otherwise stated, we assume that j1� is a basic entailment,and ^ is a combining conjunction w.r.t. j1�.De�nition 5� A connective _ is called a ^-combining disjunction (w.r.t. j1�) if it is a combiningdisjunction and: �^( _�) j1�� i� �^ j1�� and �^� j1�� .� A connective � is called a ^-internal implication (w.r.t. j1�) if the followingcondition is satis�ed: �^ j1�� i� � j1� ��.� A constant t is called a ^-internal truth (w.r.t. j1�) if the following condition issatis�ed:  ^t j1�� i�  j1��.De�nition 6a) A formula � is a conjunct of a formula  if  = � , or if  = �1^�2 and � is aconjunct of either �1 or �2.b) For every 1� i�n  i is called a semiconjunction of  1;: : :;  n; If  0 and  00 aresemiconjunctions of  1;: : :;  n then so is  0^ 00.c) A conjunction of  1;: : :;  n is a semiconjunction of  1;: : :;  n in which every  iappears at least once as a conjunct.Lemma 7 (Basic properties of j1� and ^)5The \1" means that exactly one formula should appear on both sides of this relation.6It could have been convenient to assume also that j1� is closed under substitutions of equivalents,but here we allow cases in which this is not the case.7These conditions mean, actually, that basic entailment induces a category in which the objectsare formulae. 5



a) j1� is monotonic: If  j1�� then  ^� j1�� and �^ j1�� .b) If � is a conjunct of  then  j1�� .c) If  is a conjunction of  1;: : :;  n and  0 is a semiconjunction of  1;: : :;  n then j1� 0.d) If  and  0 are conjunctions of  1;: : :;  n then  and  0 are equivalent:  j1� 0and  0 j1� .e) If  j1�� and  ^� j1�� then  j1�� .Proof For part (a), suppose that  j1�� . By 1-reexivity,  ^� j1� ^�. Since ^ is acombining conjunction,  ^� j1� . A 1-cut with  j1� � yields  ^� j1� � . The case of�^ is similar.We leave the other parts to the reader.Notation 8 Let �=f 1; : : : ;  ng. Then ^� and  1 ^ : : :^  n will both denote anyconjunction of all the formulae in �.Note Because of Lemma 7 (especially part (d)), there will be no importance to theorder according to which the conjunction of elements of � is taken in those casesbelow in which we use Notation 8.Notation 9  � � = ( � �) ^ (� �  ):Lemma 10 (Basic properties of j1� and �, t) Let � be a ^-internal implication w.r.t.j1� and let t be a ^-internal truth w.r.t. j1�. Then:a) If t j1�� then � j1�� .b)  j1� t for every formula  .c)  ^� j1�� i� � j1� �� .d)  j1�� i� t j1� ��. Also,  j1�� and � j1� i� t j1� ��.e) If � j1� �� then t j1� (�^ )� (�^�); If � j1� �� then t j1�(�^ )� (�^�).f) If  1;  2 are conjunctions of the same set of formulae then t j1� 1� 2.g) If  j1�� and  j1���� then  j1�� .Proof All the parts of the lemma are easily veri�ed. We only give a proof of the�rst claim of part (e): If � j1� ��, then �^ j1��. By Lemma 7(a), �^ j1�� . Thus�^ j1��^� (combining conjunction), and so t j1�(�^ )� (�^�) by part (d).Lemma 11 Let _ be a combining disjunction w.r.t. j1�.6



a) _ is a ^-combining disjunction i� the following distributive law obtains:� ^ ( 1 _  2) j1� (� ^  1) _ (� ^  2)b) If j1� has a ^-internal implication then _ is a ^-combining disjunction.Proof Part (a) is based on the facts that  j1� _�, � j1� _�,  ^� j1� , and  ^� j1��(see the proof of Lemma 7(a)). We leave the details to the reader. Part (b) followsfrom (a), since it is easy to see that if j1� has a ^-internal implication then the abovedistributive law holds.Note It is easy to see that the converse of the distributive law above, i.e. that(� ^  1) _ (� ^  2) j1� � ^ ( 1 _ 2)is true whenever ^ and _ are, respectively, a combining conjunction and a combiningdisjunction w.r.t. j1�.De�nition 12 Suppose that a language � of a basic entailment j1� contains a com-bining conjunction ^, a ^-internal implication �, and a ^-internal truth t. A binaryrelation j1� between formulae in � is called f^;�; t; j1�g-cumulative if it satis�es thefollowing conditions: j1� .if  j1�� and  j1�� , then  ^� j1�� .if  j1�� and  ^� j1�� , then  j1�� .if t j1� �� and  j1�� , then � j1�� .if t j1� �� and � j1� , then � j1��.Note In our notations, a KLM-cumulative relation (De�nition 1) is f^; ,!; t;`clg-cumulative.Lemma 10(d) allows us to further generalize the notion of a cumulative relationso that only the availability of a combining conjunction is assumed:De�nition 13 A binary relation j1� between formulae is called f^; j1�g-cumulative ifit satis�es the following conditions:1R 1-reexivity:  j1� .1CM 1-cautious monotonicity: if  j1�� and  j1�� , then  ^� j1�� .1CC 1-cautious cut: if  j1�� and  ^� j1�� , then  j1�� .1LLE 1-left logical equivalence: if  j1�� and � j1� and  j1�� , then � j1�� .1RW 1-right weakening: if  j1�� and � j1� , then � j1��.7



If, in addition, _ is a ^-combining disjunction w.r.t. j1�, and j1� satis�es the followingrule: 1Or 1-_ introduction: if  j1�� and � j1�� , then  _� j1��then j1� is called f_;^; j1�g-preferential .Proposition 14 Let � be a ^-internal implication w.r.t. j1� and let t be a ^-internaltruth w.r.t. j1�. Then a relation is f^;�; t; j1�g-cumulative i� it is f^; j1�g-cumulative.Proof Follows easily from Lemma 10.Note From the note after De�nition 12 and the last proposition it follows that ina language containing �cl, j1� is a KLM-preferential relation (De�nition 2) i� it isf_;^; ,!; t;`clg-preferential.Proposition 15 Every f^; j1�g-cumulative relation j1� is an extension of its corre-sponding basic entailment: If  j1�� then  j1��.Proof By 1RW of  j1�� and  j1� .Proposition 16 Let j1� be a f^; j1�g-cumulative relation. Then:a) ^ is a combining conjunction also w.r.t. j1�: � j1� ^� i� � j1� and � j1��.b) If t is a ^-internal truth w.r.t. j1� then it is also a ^-internal truth w.r.t. j1�: ^t j1�� i�  j1��.Proofa) ((): Suppose that � j1� and � j1��. Then by 1CM, [1]: �^ j1��. On the otherhand, by Lemma 7(c), �^ ^� j1� ^�, and so by Proposition 15, [2]: �^ ^� j1� ^�. A1CC, of [1] and [2] yields �^ j� ^�. Another 1CC with � j1� yields that � j1� ^�.()): Suppose that � j1�  ^�. By Lemma 7(c), � ^( ^�) j1�  . By Proposition 15� ^( ^�) j1� . A 1CC with � j1� ^� yields that � j1� . Similarly, if � j1� ^� then� j1��.b) By Lemma 10(b) and Proposition 15,  j1� t. Now, suppose that  j1� �. A 1CMwith  j1� t yields  ^t j1��. For the converse, assume that  ^t j1��. A 1CC with  j1� tyields  j1��.Note Unlike ^ and t, in general � and _ do not always remain a ^-internal implica-tion and a combining disjunction w.r.t j1�. Counter-examples will be given in Section3 (see Proposition 86 and the note that follows it).8



It is possible to strengthen the conditions in De�nition 13 as follows:s-1R strong 1R: if  is a conjunct of  then  j1� .s-1RW strong 1RW: if �^ j1�� and � j1� , then � j1��.Our next goal is to show that these stronger versions are really valid for anyf^; j1�g-cumulative relation. Moreover, each property is in fact equivalent to thecorresponding property under certain conditions, which are speci�ed below.Proposition 17a) 1RW and s-1RW are equivalent in the presence of 1R and 1CC.b) 1RW and s-1R are equivalent in the presence of 1R, 1CC, and 1LLE.Proofa) The fact that s-1RW implies 1RW follows from Lemma 7(a). For the converseassume that �^ j1��. By Proposition 15 (the proof of which uses only 1R and 1RW),�^ j1��. A 1CC with � j1� yields � j1��.b) Suppose that  j1� � and � j1�  . From Lemma 7 it easily follows that the �rstassumption entails that �^ ^� j1��^ and �^ j1� �^ ^�. By s-1R, �^ ^� j1��.A 1LLE of the last three sequents yields �^ j1� �. Finally, by 1CC with � j1� weget � j1��. In the other direction s-1R is obtained from 1RW as follows: Let  be aconjunct of . By Lemma 7(b)  j1� . A 1RW with  j1� yields that  j1� .Corollary 18a) s-1R and s-1RW are equivalent in the presence of 1R, 1CC, and 1LLE.b) A relation is f^; j1�g-cumulative if it satis�es s-1R, 1LLE, 1CM, and 1CC.Proof Immediate from Proposition 17 and the fact that s-1R entails 1R.2.4 Tarskian consequence relations and Tarskian cautious con-sequence relationsThe next step in our generalizations is to allow several premises on the l.h.s. of theconsequence relations.De�nition 19a) A (ordinary) Tarskian consequence relation [44] (tcr , for short) is a binaryrelation ` between sets of formulae and formulae, that satis�es the followingconditions: 88The pre�x \T" denotes that these are Tarskian rules.9



s-TR strong T-reexivity: �` for every  2�.TM T-monotonicity: if �` and ���0 then �0` .TC T-cut: if �1` and �2;  `� then �1;�2`�.b) A Tarskian cautious consequence relation (tccr , for short) is a binary relationj� between sets of formulae and formulae in a language �, that satis�es thefollowing conditions:9s-TR strong T-reexivity: � j� for every  2�.TCM T-cautious monotonicity: if � j� and � j��, then �;  j��.TCC T-cautious cut: if � j� and �;  j��, then � j��.Proposition 20 Any tccr j� is closed under the following rules for every n:TCM[n] if � j� i (i=1;: : :; n) then �;  1; : : : ;  n�1 j� n.TCC[n] if � j� i (i=1;: : :; n) and �;  1; : : : n j��, then � j��.Proof We show closure under TCM[n] by induction on n. The case n=1 is trivial,and TCM[2] is simply TCM. Now, assume that TCC[n] is valid and � j�  i for i =1; : : : ; n+1. By induction hypothesis �;  1; : : : ;  n�1 j� n and �;  1; : : : ;  n�1 j� n+1.Hence �;  1; : : : ;  n j� n+1 by TCM.The proof of TCC[n] is also by induction on n. TCC[1] is just TCC. Assume now that� j� i (i=1; : : : ; n+1) and �;  1; : : : n;  n+1 j��. By TCM[n+1] �;  1; : : : ;  n j� n+1.A TCC of the last two sequents gives �;  1; : : : n j� �. Hence � j� � by inductionhypothesis.The following de�nition is the multiple-assumptions analogue of De�nition 4:De�nition 21 Let ` be a relation between a set of formulae and a formula in alanguage �.� A connective ^ is called combining conjunction (w.r.t. `) if the following con-dition is satis�ed: �` ^� i� �` and �`�.� A connective ^ is called internal conjunction (w.r.t. `) if the following conditionis satis�ed: �;  ^�`� i� �;  ; �`� .� A connective _ is called combining disjunction (w.r.t. `) if the following con-dition is satis�ed: �;  _�`� i� �;  `� and �; �`� .In what follows we assume that ` is a tcr and ^ is a combining conjunction withrespect to `.Lemma 22 (Basic properties of ` and ^)a) If �;  `� then �;  ^�`� .9A set of conditions which is similar to the one below was �rst proposed in [19], except thatinstead of cautious cut Gabbay uses cut. 10



b) If �;  `� then �; �^ `� .c) If  is a conjunction of  1;: : :;  n and  0 is a semiconjunction of  1;: : :;  n then ` 0.d) If  and  0 are conjunctions of  1;: : :;  n then  and  0 are equivalent:  ` 0and  0` .e) If � 6=; then �` i� ^�` .f) ^ is an internal conjunction w.r.t. `.Proof Similar to that of Lemma 7.Our next goal is to generalize the notion of cumulative entailment relation (Def-inition 13). We shall �rst do it for consequence relations that have a combiningconjunction.De�nition 23 A tccr j� is called f^;`g-cumulative if it satis�es the following con-ditions:w-TLLE weak T-left logical equivalence: if  `� and �` and  j�� , then � j�� .w-TRW weak T-right weakening: if  `� and � j� , then � j��.TICR T-internal conjunction reduction: for every � 6=;, � j� i� ^� j� .If, in addition, ` has a combining disjunction _, and j� satis�esTOr T-_-introduction: if �;  j�� and �; � j�� , then �;  _� j��then j� is called f_;^;`g-preferential .Notes1. Because of Proposition 22 and w-TLLE, it again does not matter what conjunc-tion of � is used in TICR.2. Condition TICR is obviously equivalent to the requirement that ^ is an internalconjunction w.r.t. j� (see De�nition 21).Proposition 24 In the de�nition of f^;`g-cumulative tccr one can replace conditions-TR with the following weaker condition:TR T-reexivity:  j� .Proof Let  2 �. A w-T-RW of ^� `  and ^� j� ^� yields ^� j�  . By TICR,� j� .We now show that the concept of a f^;`g-cumulative tccr is equivalent to thenotion of f^; j1�g-cumulative relation: 11



De�nition 25 Let j1� be a basic entailment with a combining conjunction ^. Let j1�be a f^; j1�g-cumulative relation. De�ne two binary relations (j1�)0 and (j1�)0 betweensets of formulae and formulae in a language � as follows:a) �(j1�)0� i� either � 6=; and ^� j1��, or �=; and  j1�� for every  .b) �(j1�)0� i� � 6=; and ^� j1��. 10De�nition 26 Let ` be a tcr with a combining conjunction ^. Suppose that j� is af^;`g-cumulative tccr. De�ne two binary relations (`)� and (j�)� between formulaein � as follows:a)  (`)� � i� f g`�.b)  (j�)� � i� f g j��.Proposition 27 Let j1�, j1�, `, and j� be as in the last two de�nitions. Then:a) (j1�)0 is a tcr for which ^ is a combining conjunction.b) (j1�)0 is a f^; (j1�)0g-cumulative tccr.c) (`)� is a basic entailment for which ^ is a combining conjunction.d) (j�)� is a f^; (`)�g-cumulative entailment.e) ((j1�)0)� = j1�.f) ((j1�)0)� = j1�.g) If ` is a normal tcr (i.e., if 8  `� then `�), then ((`)�)0 = `.h) If � 6=; then � ((j�)�)0  i� � j�  .i) If _ is a ^-combining disjunction w.r.t. j1� and j1� satis�es 1-Or, then (j1�)0 isf_;^;`g-preferential.j) If _ is a combining disjunction w.r.t. ` and j� satis�es T-Or, then (j�)� isf_;^; j1�g-preferential.Proof All the parts of the claim are easily veri�ed. We show parts (h) and (i) asexamples:(h): Suppose that � 6=;. Then � ((j�)�)0  i� ^� (j�)� � i� ^� j� �, i� (by TICR)� j��.(i): By (b) we only need to show that (j1�)0 satis�es TOr. So assume that 1; 2; : : : ; n;  (j1�)0 � and 1; 2; : : : ; n; � (j1�)0 � . Then (Vni=1 i) ^  j1� � and (Vni=1 i) ^ � j1� � .By 1-Or, ((Vni=1 i) ^  ) _ ((Vni=1 i) ^ �) j1� � . By Lemma 11, the note that followsit, and 1-LLE, ((Vni=1 i) ^ ( _ �) j1� � . Thus, 1; 2; : : : ; n;  _ � (j1�)0 � .10Since j1� is f^; j1�g-cumulative, it satis�es, in particular, 1LLE. Hence, the order in which theconjunction of � is taken has no importance (see Lemma 7d). Thus (j1�)0 is well-de�ned.12



Corollary 28 Suppose that j� is f^;`clg-cumulative [f_;^;`clg-preferential]. De-�ne  j1� � i�  j� �. Then w.r.t. �cl, j1� is cumulative [preferential] in the sense of[24] (De�nitions 1 and 2).We next generalize the de�nition of a cumulative tccr to make it independent ofthe existence of any speci�c connective in the language. In particular, we do not wantto assume anymore that a combining conjunction is available.Proposition 29 Let ` be a tcr, and let j� be a tccr in the same language. Thefollowing connections between ` and j� are equivalent:TCum T-cumulativity: for every � 6=;, if �` then � j� .TLLE T-left logical equivalence: if �;  `� and �; � ` and �;  j�� , then �; � j�� .TRW T-right weakening: if �;  `� and � j� , then � j��.TMiC T-mixed cut: for every � 6=;, if �` and �;  j� �, then � j��.Proof We show that each property is equivalent to TCum:TCum) TLLE: Suppose that �;  `� and �; �` . By TCum we have that �;  j��and �; � j�  . A T-cautious monotonicity of the �rst sequent with �;  j� � yields�;  ; � j�� , and by T-cautious cut with �; � j� we are done.TLLE ) TCum: Let  2�, and suppose that �` . This entails that �;  ` . Also,by s-R, �;  `. Since �;  j� then by TLLE we have that �;  j� . But  2�, so� j� .TCum ) TRW: Suppose that �;  `�. By TCum �;  j��. TCC with � j� yields� j��.TRW ) TCum: Suppose that � 6=; and �` . Then there exists some 2�, and so�; ` . By s-TR, � j�, and by TRW � j� .TCum) TMiC: If � is a nonempty set of assertions s.t. �` , then by TCum, � j� .A T-cautious cut of this sequent and �;  j� � gives � j��.TMiC ) TCum: Suppose that � is a nonempty set of assertions and � `  . ByT-reexivity, �;  j� , and by TMiC, � j� .Notes1. If there is a formula  s.t. j� , then one can remove the requirement � 6=; fromthe de�nition of TCum. Indeed, suppose that j� . If `� then  `�. Since thel.h.s. of the last entailment is nonempty, then by the original version of Cum, j��, and by TCC with j� we have j��. The other direction is, however, nottrue: Let, for instance, ` be some tcr for which there exists  0 s.t. `  0. De�ne� j�� if �`� and � 6=;. It is easy to verify that all the conditions of De�nition19 as well as TCum are valid for this j�, but 6j� 0.2. Being the \complement" of TMiC, one might consider TRW as another kind of\mixed cut".De�nition 30 Let ` be a tcr. A tccr j� in the same language is called `-cumulativeif it satis�es any of the conditions of Proposition 29. If, in addition, ` has a combiningdisjunction _, and j� satis�es TOr, then j� is called f_;`g-preferential .13



Note Since �` for every  2�, TCum implies s-TR, and so a binary relation thatsatis�es TCum, TCM, and TCC is a `-cumulative tccr.Proposition 31 Suppose that ` is a tcr with a combining conjunction ^. A tccr j�is a f^;`g-cumulative i� it is `-cumulative. If ` has also a combining disjunction _,then j� is f_;^;`g-preferential i� it is f_;`g-preferential.For proving Proposition 31 we �rst show the following lemmas:Lemma 32 Suppose that ` is a tcr with a combining conjunction ^, and let j� be a`-cumulative tccr. Then Vni=1  i j�� i�  1;  2; : : : ;  n j��.Proof For the proof we need two simple claims:Claim 32-A:  1;  2; : : : ;  n j�Vni=1  i.Proof: Clearly,  1;  2; : : : ;  n�1;  n ` Vni=1  i and  1;  2; : : : ;  n�1Vni=1 i `  n.Now, since  1;  2; : : : ;  n�1;Vni=1 i j� Vni=1 i, then by TLLE,  1;  2; : : : ;  n j�Vni=1  i.Claim 32-B: Let 1�j�n. Then �;Vni=1  i j�� i� �;  j;Vni=1  i j��.Proof: ()) Follows by applyingTLLE on �;Vni=1  i;  j `Vni=1  i, and �;Vni=1 i;Vni=1  i` j , and �;Vni=1  i;Vni=1 i j��.(() By applying TLLE on �;Vni=1  i;  j `Vni=1  i and �;Vni=1  i;Vni=1  i;` j, and�,  j, Vni=1  i j��, we get that �, Vni=1  i, Vni=1  i j��. Thus �, Vni=1  i j��.Lemma 32 now easily follows from the above claims: If Vni=1  i j�� then by repeatedapplications of Claim 32-B, Vni=1  i;  1;  2; : : : ;  n j� �. A T-cautious cut with theproperty of Claim 32-A yields  1;  2; : : : ;  n j� �. For the converse suppose that 1;  2; : : : ;  n j� �. By T-cautious monotonicity with the property of Claim 32-A,Vni=1  i;  1;  2; : : : ;  n j��, and by Claim 32-B (applied n times), Vni=1  i j��.Lemma 33 Let j� be a f^;`g-cumulative relation. Then j� satis�es TRW.Proof Suppose that �;  `�. By Lemma 22(e) (^�)^ `�. Since ^�^ j�^�^ (s-R), then by w-TRW we have that (^�)^ j� �. By TICR, �;  j� �, and a TCCwith � j� yields that � j��.Note In fact, we have proved a stronger claim, since in the course of the proof wehaven't used CM and w-TLLE.Now we can show Proposition 31:Proof of Proposition 31 (() Suppose that j� is a `-cumulative tccr. It obviouslysatis�es w-TLLE and w-TRW (take �=; and �=f�g, respectively). Lemma 32 showsthat j� also satis�es TICR. Thus j� is a f^;`g-cumulative tccr.()) Suppose that j� is a f^;`g-cumulative tccr. By Lemma 33 it satis�es TRW, andso it is `-cumulative.We leave the second part concerning _ to the reader.Corollary 34 Let j� be a `-cumulative relation, and let ^ be a combining conjunc-tion w.r.t. `. Then ^ is a combining conjunction w.r.t. j� as well.14



Proof For a f^;`g-cumulative relation the proof is similar to that of Proposition16(a). Hence the claim follows from Proposition 31.Another characterization of `-cumulative tccr which resembles more that of acumulative entailment (De�nition 13) is given in the following proposition:Proposition 35 A relation j� is a `-cumulative tccr i� it satis�es TR, TCM, TCC,TLLE and TRW.Proof If j� is a `-cumulative tccr then by Proposition 29 and the fact that s-TRimplies TR, it obviously has all the above properties. The converse follows from thefact that TRW and s-TR are equivalent in the presence of TR, TCC, and TLLE. Theproof of this fact is similar to that of Proposition 17.2.5 Scott consequence relations and Scott cautious consequencerelationsThe last generalization that we consider in this section concerns with consequencerelations in which both the premises and the conclusions may contain more than oneformula.De�nition 36a) A Scott consequence relation [37, 38] (scr , for short) is a binary relation ` be-tween sets of formulae, that satis�es the following conditions:s-R strong reexivity: if � \� 6=; then �`�.M monotonicity: if �`� and ���0, ���0 then �0`�0.C cut: if �1` ;�1 and �2;  `�2 then �1;�2`�1;�2.b) A Scott cautious consequence relation (sccr , for short) is a binary relation j�between nonempty11 sets of formulae, that satis�es the following conditions:s-R strong reexivity: if � \� 6=; then � j��.CM cautious monotonicity: if � j� and � j�� then �;  j��.CC[1] cautious 1-cut: if � j� and �;  j�� then � j��.The following de�nition is a natural analogue for the multiple-conclusion case ofDe�nition 21:12De�nition 37 Let ` be a relation between sets of formulae.� A connective ^ is called combining conjunction (w.r.t. `) if the following con-dition is satis�ed: �` ^�;� i� �` ;� and �`�;�.11The condition of non-emptiness is just technically convenient here. It is possible to remove itwith the expense of complicating somewhat the de�nitions and propositions. It is preferable insteadto employ (whenever necessary) the propositional constants t and f to represent the empty l.h.s.and the empty r.h.s., respectively.12This de�nition is taken from [7]. De�nitions 4 and 21 are obvious adaption of it.15



� A connective ^ is called internal conjunction (w.r.t. `) if the following conditionis satis�ed: �;  ^�`� i� �;  ; �`�.� A connective _ is called combining disjunction (w.r.t. `) if the following con-dition is satis�ed: �;  _� ` � i� �;  `� and �; �`�.� A connective _ is called internal disjunction (w.r.t. `) if the following conditionis satis�ed: �` _�;� i� �` ; �;�.Note Again, it can be easily seen that if ` is an scr then ^ is an internal conjunctioni� it is a combining conjunction, and similarly for _. This, however, is not true ingeneral.A natural requirement from a Scott cumulative consequence relation is that itssingle-conclusion counterpart will be a Tarskian cumulative consequence relation.Such a relation should also use disjunction on the r.h.s. like it uses conjunctionon the l.h.s. The following de�nition formalizes these requirements.De�nition 38 Let ` be an scr with a combining disjunction _. A relation j� betweennonempty �nite sets of formulae is called f_;`g-cumulative sccr if it is an sccr thatsatis�es the following two conditions:a) Let `T and j�T be, respectively, the single-conclusion counterparts of ` and j�(i.e., �`T i� �`f g and � j�T i� � j�f g). Then `T is a tcr and j�T is a`T-cumulative tccr.b) For �=f 1; : : : ;  ng, denote by _� (or by  1 _ : : :_ n) any disjunction of allthe formulae in �.13 Then for every � 6=;, j� satis�es the following property:14IDR internal disjunction reduction: � j�� i� � j�_�.Following the line of what we have done in the previous section, we next specifyconditions that are equivalent to those of De�nition 38, but are independent of theexistence of any speci�c connective in the language. In particular, we do not want toassume anymore that a combining disjunction is available:De�nition 39 Let ` be an scr. An sccr j� in the same language is called weakly`-cumulative if it satis�es the following conditions:Cum cumulativity: if �;� 6=; and �`�, then � j��.RW[1] right weakening: if �;  `� and � j� ;� then � j��;�.RM right monotonicity: if � j�� then � j� ;�.Notes1. Since �;  ` ;�, Cum implies s-R, and so a binary relation that satis�es Cum,CM, CC[1], RW[1], and RM, is a weakly `-cumulative sccr.13It easily follows from (a) above and from the properties of _ in ` that the order according towhich _� is taken has no importance here.14This property is dual to the property of internal conjunction reduction (TICR, see De�nition23) of a `-cumulative tccr. 16



2. Any weakly `-cumulative relation satis�es the following condition:LLE left logical equiv.: if �;  `� and �; �` and �;  j�� then �; � j��Indeed, by Cum on �;  ` � we have that �;  j� �, and CM with �;  j� �yields �;  ; � j��. Also, since �; � `  then by Cum �; � j�  . A CC[1] with�;  ; � j�� yields �; � j��.Proposition 40 Let ` and _ be as in De�nition 38. A relation j� is a f_;`g-cumulative sccr i� it is a weakly `-cumulative sccr.Proof (() Since ` is an scr, `T is obviously a tcr. Also, since j� is a weakly `-cumulative sccr, it satis�es s-R, CM, CC[1], and Cum, thus j�T obviously satis�ess-TR, TCM, TCC and TCum, therefore j�T is a `T-cumulative tccr. It remains toshow that j� satis�es IDR: Suppose �rst that � j�_� for � 6=;. Since �;_�`�, thenby Cum, �;_� j��. A CC[1] with � j�_� yields � j��. For the converse, we �rstshow that if � j� ; �;� then � j� _�;�. Indeed, RW[1] of � j� ; �;� and �;  ` _�yields � j� _�; �;�. Another RW[1] with �; �` _� yields � j� _�;  _�;�. Thus,� j� _�;�. Now, by an induction on the number of formulae in � it follows that if� 6=; and � j��, then � j�_�.()) Let j� be a f_;`g-cumulative sccr. Suppose that �;� 6= ; and � ` �. Then� ` _�. Hence � `T _�, and since j�T is a `T-cumulative tccr, � j�T _�. Thus� j�_�, and by IDR, � j��. This shows that j� satis�es Cum. For RW[1], assumethat �;  `� and � j� ;�. Since ` is an scr and _ is a combining disjunction for it,the �rst assumption implies that �;  _(_�)`�_(_�). By IDR the second assumptionimplies that � j�  _(_�). Hence �;  _(_�) `T �_(_�) and � j�T  _(_�). ByTRW (see Proposition 29) applied to j�T we get � j�T�_(_�). Hence � j��_(_�).By IDR again, � j��;�. It remains to show that j� satis�es RM. Suppose then that� j�� and let � 2�. Then � j��; �, and RW[1] with �; � ` _� yields � j� _�;�.Using IDR it easily follows that � j� ; �;�, and since �2� we have that � j� ;�.Note A careful inspection of the proof of Proposition 40 shows that if a combiningdisjunction is available for `, then RM follows from the other conditions for a weakly`-cumulative sccr. It follows that in this case Cum, CM, CC[1], and RW[1] su�ce forde�ning a weakly `-cumulative sccr.The last proposition and its proof show, in particular, the following claim:Corollary 41 Let ` be an scr with a combining disjunction _, and let j� be a weakly`-cumulative sccr. Then _ is an internal disjunction w.r.t. j�.Part (a) of the following proposition shows that a similar claim about conjunctionalso holds:Proposition 42 Let ` be an scr with a combining conjunction ^, and let j� be aweakly `-cumulative sccr. Then:a) ^ is an internal conjunction w.r.t. j�. I.e., j� satis�es the following property:ICR internal conjunction reduction: for every � 6=;, � j�� i� ^� j��17



b) ^ is a \half" combining conjunction w.r.t. j�. I.e, the following rules are validfor j�:15 [j�^]E � j�  ^�;�� j�  ;� � j�  ^�;�� j� �;�Proofa) The proof is similar to that of in the Tarskian case (see Lemma 32 and Note 2after De�nition 39), using � instead of �.b) � j� ;� is obtained by applying RW[1] to � j� ^�;� and �;  ^�` . Similarlyfor � j��;�.Note Clearly, the condition ICR in part (a) of Proposition 42 is equivalent to thefollowing conditions:[^j�]I �;  ; � j� ��;  ^ � j� � [^j�]E �;  ^ � j� ��;  ; � j� �De�nition 43 Suppose that an scr ` has a combining conjunction ^. A weakly`-cumulative sccr j� is called f^;`g-cumulative if it satis�es the following condition:[j�^]I � j�  ;� � j� �;�� j�  ^�;�Corollary 44 If ` is an scr with a combining conjunction ^ and j� is a f^;`g-cumulative sccr, then ^ is a combining conjunction w.r.t. j� as well.Proof Follows from Proposition 42(b).As usual, we provide an equivalent notion in which one does not have to assumethat a combining conjunction is available:De�nition 45 A weakly `-cumulative sccr j� is called `-cumulative if for every �niten the following condition is satis�ed:RW[n] if � j� i;� (i=1; : : : ; n) and �;  1; : : : ;  n`� then � j��;�.Proposition 46 Let ^ be a combining conjunction for `. An sccr j� is f^;`g-cumulative i� it is `-cumulative.Proof We have to show that if ^ is a combining conjunction w.r.t. `, then RW[n] isequivalent to [j�^]I. Suppose �rst that j� satis�es [j�^]I. From � j� i;� (i=1;: : :; n)it follows, by [j� ^]I, that � j�  1^; : : : ;^ n;�. From �;  1; : : : ;  n ` � it followsthat �;  1^; : : : ;^ n ` �. By a RW[1] on these two sequents, � j� �;�. For theconverse, assume that � j� ;� and � j� �;�. Since �;  ; �` ^�, RW[2] yields that� j� ^ �;�.Corollary 47 If ` is an scr with a combining conjunction ^ and j� is a `-cumulativesccr, then ^ is a combining conjunction and an internal conjunction w.r.t. j�.15The subscripts \I" and \E" in the following rules stand for \Introduction" and \Elimination",respectively. 18



Proof By Proposition 42(a), Corollary 44, and Proposition 46.Next we consider the dual property, i.e.: conditions for assuring that a combiningdisjunction _ w.r.t. an scr ` will remain a combining disjunction w.r.t. a weakly`-cumulative sccr j�. Our �rst observation is that one direction of the combiningdisjunction property for j� of _ yields monotonicity of j�:Lemma 48 Suppose that _ is a combining disjunction for ` and j� is a weakly`-cumulative sccr. Suppose also that j� satis�es the following condition:[_j�]E �;  _� j� ��;  j� � �;  _� j� ��; � j� �Then j� is (left) monotonic.Proof Suppose that � j��, and let  2 �. Then �;  j��. Since �;  ` _ wehave also �;  j� _ . Hence, by CM, �; ; _ j��. By [_ j�]E this implies that�; ;  j�� and so �;  j��.It follows that requiring [_ j�]E from a weakly `-cumulative sccr is too strong.It is reasonable, however, to require the other direction of the combining disjunctionproperty:De�nition 49 A weakly `-cumulative sccr j� is called weakly f_;`g-preferential ifit satis�es the following condition, (also denoted by [_j�]I):Or left _-introduction: if �;  j�� and �; � j��, then �;  _� j��.Unlike in the Tarskian case, this time we are able to provide an equivalent conditionin which one does not have to assume that a combining disjunction is available:De�nition 50 Let ` be an scr. A weakly `-cumulative sccr is called weakly `-preferential if it satis�es the following rule:CC cautious cut : if � j� ;� and �;  j�� then � j��.Proposition 51 Let ` be an scr and let j� be a weakly `-cumulative sccr. Then j�is a weakly `-preferential sccr i� for every �nite n it satis�es cautious n-cut :CC[n] if �;  i j�� (i=1; : : : ; n) and � j� 1; : : : ;  n then � j��.Proof (() We have to show that j� satis�es CC. Suppose that �=f�1;: : :; �kg forsome k�1. Since for every 1� i�k we have that �; �i j�� and since by assumption�;  j��, a cautious (k+1)-cut of these k+1 sequents with � j� ;� yields that � j��.()) Suppose that j� satis�es CC. We show the following stronger condition by in-duction on n:If � j� 1;: : :;  n;�0 and �;  i j��i (i=1;: : :; n) then � j��0;�1;: : :;�n:19



� For the case n=1, assume that � j� 1;�0 and �;  1 j��1. By RM on each sequentwe have that � j� 1;�0;�1 and �;  1 j��0;�1. A CC gives the desired result.� Assume the claim for n; We prove it for n+1: Suppose that �;  i j� �i for i =1;: : :; n+1 and � j�  1;: : :;  n+1;�0. By induction hypothesis applied to the lastsequent and �;  i j��i, for i= 1;: : :; n, we get � j��0;�1;: : :;�n;  n+1. From thisand �;  n+1 j��n+1 we get that � j��0;�1; : : : ;�n+1 like in the case of n=1.Note By Proposition 20, the single conclusion counterpart of CC[n] is valid for anysccr (not only the cumulative or preferential ones).Proposition 52 Let ` be an scr with a combining disjunction _. A weakly `-cumulative sccr j� satis�es Or i� it is closed under CC[n] for every �nite n.Proof Suppose �rst that j� satis�es Or. Then from �;  i j� � (i = 1; : : : ; n) iteasily follows that �;  1_ : : :_ n j��. On the other hand, � j� 1_ : : :_ n followsfrom � j�  1; : : : ;  n by IDR and Proposition 40. Thus, � j�� by CC[1]. For theconverse, suppose that j� is a weakly `-cumulative sccr that satis�es CC[n] for every�nite n, and suppose that �;  j�� and �; � j��. Now, since �;  `  _� then byCum �;  j� _�, and CM with �;  j�� yields [1]: �;  ;  _� j��. Similarly, since�; �` _� then by Cum and CM with �; � j�� we have [2]: �; �;  _� j��. Also,since �;  _�` ; � then by Cum, [3]: �;  _� j� ; �. A CC[2] of [1], [2], and [3] yields�;  _� j��.Corollary 53 et ` be an scr with a combining disjunction _. An sccr j� is weaklyf_;`g-preferential i� it is weakly `-preferential.Proof By Propositions 51 and 52.Proposition 54 Let ` be an scr. Then j� is weakly `-preferential i� it satis�es Cum,CM, CC, and RM.Proof One direction is obvious. For the other direction, we have to show that if j�satis�es the above conditions then it also satis�es RW[1] and CC[1]. For RW[1], assumethat �;  ` � and � j� ;�. By Cum and RM on the �rst assumption, �;  j� �;�.By RM on the second assumption, � j� ; �;�. A CC on the last two sequents yields� j��;�. We leave the proof of CC[1] to the reader.Corollary 55 Let ` be an scr. A relation j� is a weakly `-preferential i� it satis�esCum, CM, and the following rule:s-AC strong additive cut : if � j�  ;�1 and �;  j� �2 then � j� �1;�2Proof Suppose �rst that j� satis�es Cum, CM, and s-AC. By Proposition 54 wehave to show that j� satis�es CC and RM. CC is obtained by taking �1 = �2 ins-AC. For RM, Suppose that � j�� and let �2�. Then � j��;�. On the other hand,since �; � ` �;  , then by Cum, �; � j� �;  . s-AC with � j� �;� yields � j� ;�. Forthe converse, suppose that j� is a weakly `-preferential sccr for which � j� ;�1 and�;  j��2. By RM, � j� ;�1;�2 and �;  j��1;�2. Thus, � j��1;�2, by CC.20



We are now ready to introduce our strongest notions of nonmonotonic Scott con-sequence relation:De�nition 56 Let ` be an scr. An sccr j� is called `-preferential i� it satis�es Cum,CM, CC, RM, and RW[n] for every n.Proposition 57 Let ` be an scr. The following conditions are equivalent:a) j� is `-preferential,b) j� is a `-cumulative sccr that satis�es CC,c) j� is a weakly `-preferential sccr that satis�es RW[n] for every n.The proof is left to the reader.Proposition 58 Let ` be an scr and let j� be a `-preferential sccr.a) A combining conjunction ^ w.r.t. ` is also an internal conjunction and a com-bining conjunction w.r.t. j�.b) A combining disjunction _ w.r.t. ` is also an internal disjunction and \half"combining disjunction w.r.t. j�.16Proof Part (a) follows from Corollary 47. Part (b) follows from Corollary 41 andCorollary 53.CC[n] (n� 1) is a natural generalization of cautious cut. A dual generalization,which seems equally natural, is given in the following rule from [25]:LCC[n] � j�  1;� : : : � j�  n;�; �;  1; : : : ;  n j� �� j� �De�nition 59 [25] A binary relation j� is a plausibility logic if it satis�es Inclusion(�;  j� ), CM, RM, and LCC[n] (n�1).De�nition 60 Let ` be an scr. A relation j� is called `-plausible if it is a `-preferential sccr and a plausibility logic.A more concise characterization of a `-plausible relation is given in the followingproposition:Proposition 61 Let ` be an scr. A relation j� is `-plausible i� it satis�es Cum,CM, RM, and LCC[n] for every n.Proof Since CC is just LCC[1], we only need to show the derivability for all n ofRW[n]. So assume that � j� i;� (i= 1; : : : ; n) and �;  1; : : : ;  n ` �. By Cum andRM this implies that � j�  i; �;� (i = 1; : : : ; n) and �;  1; : : : ;  n j� �;�. Hence� j��;� follows by LCC[n].16I.e., j� satis�es left _-introduction (but not necessarily left _-elimination).21



Proposition 62 Let ` be an scr with a combining conjunction ^. A relation j� is`-preferential i� it is `-plausible.Proof One direction is obvious. By the last proposition, for showing the conversewe have to prove that if j� is `-preferential and ` has a combining conjunction ^,then j� satis�es LCC[n] for every �nite n. This follows from Corollary 47 and thefollowing lemma:Lemma 62-A: Let j� be a `-preferential sccr, where ` is an scr with a combiningconjunction ^. Then [j�^]I is equivalent to LCC[n].Proof: ()) If � j� 1;� : : : � j�  n;� then by [j�^]I, � j� 1^: : :^ n;�. Also, if�;  1;: : :;  n j�� then by ICR (see Proposition 42(a)), �;  1^ : : :^ n j��. By CC,then, � j��.(() Suppose that � j� ;� and � j��;�. By RM, � j� ;  ^�;� and � j��;  ^ ;�.Also, by Cum on �;  ; � `  ^�;� we have that �;  ; � j� ^�;�. By LCC[2] on thesethree sequents, � j� ^�;�.Table 1 and Figure 1 summarize the various types of Scott relations considered inthis section and their relative strengths. ` is assumed there to be an scr, and _, ^are combining disjunction and conjunction (respectively) w.r.t. `, whenever they arementioned. Table 1: Scott relationsconsequence relation general conditionsvalid conditions with ^ and _sccr s-R, CM, CC[1]weakly `-cumulative Cum, CM, CC[1], RW[1], RMsccr [^j�]I, [^j�]E, [j�^]E, [j�_]I, [j�_]E`-cumulative sccr Cum, CM, CC[1], RW[n], RM[^j�]I, [^j�]E, [j�^]I, [j�^]E, [j�_]I, [j�_]Eweakly `-preferential Cum, CM, CC, RMsccr [^j�]I, [^j�]E, [j�^]E, [_j�]I, [j�_]I, [j�_]E,`-preferential sccr Cum, CM, CC, RW[n], RM[^j�]I, [^j�]E, [j�^]I, [j�^]E, [_j�]I, [j�_]I, [j�_]E`-plausible sccr Cum, CM, LCC[n], RM[^j�]I, [^j�]E, [j�^]I, [j�^]E, [_j�]I, [j�_]I, [j�_]Escr extending ` Cum, M, C[^j�]I, [^j�]E, [j�^]I, [j�^]E, [_j�]I, [_j�]E, [j�_]I, [j�_]E3 A semantical point of viewIn this section we present a general method of constructing nonmonotonic consequencerelations of the strongest type considered in the previous section, i.e.: preferential andplausible sccrs. Our approach is based on a multiple-valued semantics. This will allow22



uweakly `-cumulative sccr u`-cumulativesccruweakly`-preferentialsccr u`-preferential sccru`-plausible sccruAn scr that extends `
�������������� HHHHHHHHHHHHHjHHHHHHHHHHHHj �������������?6?(if a combining conjunction is available)+ RW[n]+ CC + CC+ RW[n]

+ LCC[n]+ MFigure 1: Relative strength of the Scott relationsus to de�ne in a natural way consequence relations that are not only nonmonotonic,but also paraconsistent (i.e.: capable of reasoning with inconsistency in a nontrivialway).A basic idea behind our method is that of using a set of preferential models formaking inferences. Preferential models were introduced by McCarthy [30] and laterby Shoham [40, 41] as a generalization of the notion of circumscription. The essentialidea is that only a subset of models should be relevant for making inferences from agiven theory. These models are the most preferred ones according to some conditionsthat can be speci�ed syntactically by a set of (usually second-order) propositions, thesatisfaction of which yields the exact kind of preference one wants to work with.Here we choose the preferred models according to preference criteria, speci�ed bypreorders on the set of models of a given theory. The resulting consequence relationsare shown to be plausible Scott relations.3.1 Multiple-valued models and Scott consequence relationsDe�nition 63 Let � be an arbitrary propositional language. A multiple-valuedstructure for � is a triple (L;F ;S), where L is set of elements (\truth values"), F isa nonempty proper subset of L, and S is a set of operations on L that correspond to23



the connectives in �.The set F consists of the designated values of L, i.e.: those that represent trueassertions. In what follows we shall assume that L contains at least the classicalvalues t; f , and that t2F , f 62F .De�nition 64 Let (L;F ;S) be a multiple-valued structure, and let � be a set offormulae in a language �.a) A (multiple-valued) valuation � is a function that assigns an element of L to eachatomic formula. A valuation is extended to complex formulae in the standardway. The set of all the valuations into L is denoted by V.b) A valuation � satis�es a formula  (notation: � j=L;F  ) if �( ) 2 F . Therelation j=L;F2V�� is called a satisfaction relation.c) A valuation � is a model of � (notation: � j=L;F �) if it satis�es every formulain �. The set of the models of � is denoted by mod(�).De�nition 65 Let (L;F ;S) be a multiple-valued structure. Denote �`L;F� if everymodel of � is a model of some formula in �.Example 66 Many well-known formalisms correspond to De�nition 65, especiallywhen a lattice structure is de�ned on the elements of L, and the elements of Fform a �lter in this lattice. Classical logic, for instance, is obtained by taking thetwo-valued lattice (ft; fg; f <L t) with F = ftg. For Kleene three-valued logic [22]take L = ft; f;?g with F = ftg. The connectives in S correspond to the latticeoperations of a lattice in which f <L ? <L t together with a negation operationde�ned by: :f= t;:t=f;:?=?. Belnap four-valued logics [9, 10] is obtained fromL = ft; f;>;?g, F = ft;>g, and S that contains the lattice operations of the thefour-valued lattice in which f <L (?;>)<L t, and a negation operation de�ned by::f= t;:t=f;:?=?;:>=>.Proposition 67 `L;F is an scr.Proof Reexivity and Monotonicity immediately follow from the de�nition of `L;F .For cut, assume that M 2 mod(�1[�2). In particular, M 2 mod(�1), and since�1`L;F  ;�1, either M j=L;F � for some �2�1, or M j=L;F  . In the former case weare done. In the latter case M 2mod(�2[f g) and since �2;  `L;F�2, we have thatM `L;F � for some �2�2.De�nition 68 Let (L;F ;S) be a multiple-valued structure.a) A binary operation 42S is conjunctive if for all x; y2L, x4y2F i� x2F andy2F .b) A binary operation r2S is disjunctive if for all x; y2L, xry2F i� x2F ory2F .The following result is immediate from the de�nitions:24



Proposition 69 Let (L;F ;S) be a multiple-valued structure for a language �.a) If ^ is a connective of � s.t. the corresponding operation of S is conjunctive,then ^ is a combining conjunction and an internal conjunction w.r.t. `L;F .b) If _ is a connective of � s.t. the corresponding operation of S is disjunctive,then _ is a combining disjunction and an internal disjunction w.r.t. `L;F .3.2 Preferential models and Scott cautious consequence rela-tions3.2.1 The relation `L;F�De�nition 70 A preferential system in a structure (L;F ;S) is a triple P=(V; j=L;F;�), where V is the set of all the valuations on L, j=L;F2 V �� is the satisfactionrelation de�ned in 64, and � is a preorder on V.De�nition 71 Let P = (V; j=L;F ;�) be a preferential system in (L;F ;S). A val-uation M 2 mod(�) is a P-preferential model of � if there is no other valuationM 02mod(�) s.t. M 0�M . The set of all the preferential models of � in P is denotedby !(�;P).De�nition 72 [29] A preferential system P is called stoppered17 if for every set offormulae � and every M 2mod(�) there is an M 02 !(�;P) s.t. M 0�M .Note that if V is well-founded under � (i.e., V does not have an in�nitely descend-ing chain under �), then P is stoppered.De�nition 73 Let P = (V; j=L;F ;�) be a preferential system in (L;F ;S). A setof formulae � P-preferentially entails a set of formulae � (notation: � `L;F� �) iffor every M 2 !(�;P) there is a � 2 � s.t. M j=L;F �.18 We say that `L;F� is theconsequence relation19 induced by P.Proposition 74 If P=(V; j=L;F ;�) is a stoppered preferential system in (L;F ;S),then `L;F� is a `L;F -plausible sccr.For proving Proposition 74 we �rst show the following lemma:Lemma 75 Let P be a preferential system and let �1;�2 be two sets of formulae s.t.mod(�1)�mod(�2). Then !(�2;P) \mod(�1) � !(�1;P).Proof Suppose that M 2 !(�2;P) \ mod(�1), but M 62 !(�1;P). Then there isan N 2mod(�1) s.t. N �M . But mod(�1) � mod(�2) so N 2mod(�2), thereforeM 62 !(�2;P).17In [24] the same property is called smoothness.18Note that we do not require that M2 !(f�g;P), or that M2 !(�[ f�g;P).19Here and in what follows we use the notion \consequence relation" in a wider sense than thatof Tarski and Scott. In particular, we don't assume monotonicity.25



Proof (of Proposition 74) The validity of Cum immediately follows from the def-inition of `L;F� . This is also the case with RM. By Proposition 61 it remains to showCM, and LCC[n]:� `L;F� satis�es cautious monotonicity:Suppose that � `L;F�  , and � `L;F� �. Let M 2 !(� [ f g;P). In particular, M is amodel of �. Moreover, M 2 !(�;P), since otherwise by the fact that P is stoppered,there would have been a model N 2 !(�;P) that is strictly �-smaller than M . Since�`L;F�  , this N would have been a model of �[f g, which is �-smaller than M { acontradiction. Thus M 2 !(�;P). Now, since �`L;F� �, M is a model of some �2�.Hence �;  `L;F� �.� `L;F� satis�es LCC[n] for every n:Let M 2 !(�;P). If M is a model of some � 2 � we are done. Otherwise, since� `L;F�  i;� for i = 1;: : :n, M is a model of  1; : : : ;  n. By Lemma 75, M 2!(� [ f 1; : : : ;  ng;P). Since �;  1; : : : ;  n`L;F� �, there exists �2� s.t. M 2mod(�)in this case as well.Corollary 76 Let P=(V; j=L;F ;�) be a stoppered preferential system in (L;F ;S).a) If ^ is a connective s.t. the corresponding operation of S is conjunctive, then ^is an internal conjunction and a combining conjunction w.r.t. `L;F� .b) If _ is a connective s.t. the corresponding operation of S is disjunctive, then _is an internal disjunction w.r.t. `L;F� , which satis�es left _-introduction.Proof By Propositions 74 `L;F� is `L;F -plausible, and so it is obviously a `L;F -preferential sccr. The claim now follows from Proposition 58.3.2.2 Pointwise preferential systemsLet P be a preferential system in (L;F ;S). In Proposition 74 we have shown that asu�cient condition for assuring that the consequence relation induced by P would bea `L;F -plausible sccr is that P is stoppered. However, as noted in [24] and in [29], itis not easy to check whether this property holds. In what follows we consider anotherproperty, which is more easily veri�ed:De�nition 77 A preferential system P = (V; j=L;F ;�) in (L;F ;S) is called point-wise, if there is a well-founded partial order � on L s.t. 8�1; �2 2 V �1 � �2 i� forevery atomic formula p, �1(p)��2(p).Note If L is �nite, then a preferential system P=(V; j=L;F ;�) in (L;F ;S) is point-wise i� there is a partial order � on L s.t. 8�1; �2 2 V �1 � �2 i� for every atomicformula p, �1(p)��2(p).Proposition 78 Let P be a pointwise preferential system in (L;F ;S). Then P isstoppered. 26



Proof Suppose that M is some model of �. We have to show that there is a modelN 2 !(�;P) s.t. N �M . So let SM =fMi jMi is a model of �; Mi�Mg and letC�SMbe a chain w.r.t. �. We shall show that C is bounded below in SM , so by Zorn's lemmaSM has a minimal element, which is the required �-minimal model. Indeed, de�nea valuation N as follows: For each atom q let N (q)=min�fMi(q) j Mi 2Cg (N (q)exists since C is a chain and � is well-founded). Obviously N bounds C. It remains toshow that N 2SM . Indeed, assume that  2� and let A( )=fp1; : : : ; png be the setof the atomic formulae in  . For each 1�j�n let Mpj 2fMi2C j Mi(pj)=N (pj)g.Then: N (p1) =Mp1 (p1); : : : ; N (pn) =Mpn (pn). Since C is a chain we may assume,without a loss of generality, that Mp1 � : : :�Mpn , and so N is the same as Mpn onevery atom in A( ). Since Mpn is a model of  , so is N . This is true for every  2�and so N 2SM as required.Theorem 79 Let P = (V; j=L;F ;�) be a pointwise preferential system in (L;F ;S).Then `L;F� is `L;F -plausible. Moreover:a) If ^ is a connective with a corresponding conjunctive operation in S, then ^ isan internal conjunction and a combining conjunction w.r.t. `L;F� .b) If _ is a connective with a corresponding disjunctive operation in of S is dis-junctive, then _ is an internal disjunction, which satis�es left _-introduction.Proof By Propositions 74, 78 and Corollary 76.3.3 ExamplesMany well-known formalisms can be viewed as particular instances of the relationde�ned in 73. In this section we consider some of these formalisms.In what follows we assume L to be a lattice and not only an arbitrary set of truthvalues. We further assume that the set F of the designated values is a �lter on L,and that S contains the basic lattice operations. The pair (L;F) is sometimes calleda logical lattice.20Note that in all the examples below the preferential systems under considera-tion are pointwise. Thus, by Theorem 79, the induced consequence relation is `L;F -plausible.Example 80 When taking the two-valued lattice and a degenerated preference order�, then `L;F� is the same as the consequence relation of classical logic. Similarly, allthe other formalisms of Example 66 are obtained from `L;F� by taking the appropriatemulti-valued structure and a degenerated preferential order.Example 81 { Closed Word AssumptionConsider the two-valued lattice f < t with t as the designated element. De�ne apreferential relation � by �1��2 if �1(p)��2(p) for every p. The preferential modelsof a theory are here its minimal models, and the induced consequence relation of thesystem corresponds to Reiter's closed-world assumption [36].2120To simplify notations we shall omit explicit references to S in what follows.21This can be extended to the �rst-order case in the usual way, in which case the preferentialmodels of a theory are its minimal Herbrand models.27



Example 82 { The logic LPm of PriestDenote by `3LP the consequence relation of the logic LP.22 It is well known that LPinvalidates the Disjunctive Syllogism ( ;: _ � 6`3LP �). In [34, 35] Priest arguesthat this is a drawback: a consistent theory should preserve classical conclusions.He suggests to resolve this drawback by considering as the relevant models of a set� only those that are minimally inconsistent . Such models assign the inconsistencyvalue > only to some minimal set of atomic formulae. The consequence relation thatis obtained is in our notations `L;F� , where L is the three-valued lattice ff; t;>g,in which f <t > <t t, F = ft;>g, and 8�1; �2 2 V, �1 � �2 i� for every atom p�1(p)�k �2(p), where the partial order �k is de�ned by f <k> and t<k>.23Example 83 { The logic `L;FkThe following family of multiple-valued preferential systems is considered in [3, 5].The algebraic structures that provide their semantics are sometimes called logicalbilattices. Bilattices were introduced by Ginsberg in [20, 21] as a general frameworkfor a diversity of applications in AI (see also [1, 2, 8, 13, 14]). In these structuresthere are two partial orders according to which the truth values are represented, andeach one of them induces a complete lattice on their common underlying structure.One order is usually denoted by �t. It intuitively measures di�erences in the amountof truth that the elements represent. The other one is usually denoted by �k. It isintuitively understood as representing di�erences in the amount of knowledge thateach element exhibits. According to Ginsberg ([20, 21]), the two partial orders of abilattice are related by a negation operation :, which is an involution w.r.t. �t (likein many logical lattices) and an order preserving w.r.t. �k. Logical bilattices is afamily of bilattices, proposed in [1, 2], which is particularly useful for constructingbilattice-based logics. A logical bilattice is a pair (L;F), where L is a bilattice, andF is a set of designated elements that form a prime bi�lter in L i.e.: a prime �lterw.r.t. both partial orders of L.Assume now that �k is well-founded, and let �1�k �2 i� for every atom p, �1(p)�k�2(p). In the pointwise preferential system P=(V; j=L;F ;�k) that is obtained, !(�;�k) is the set of the �k-minimal models of �. In the induced consequence relation`L;F�k one draws conclusions according to models that assume minimal knowledgeconcerning the premises. The intuition behind this approach is that one should notassume anything that is not really known.Here are some basic properties of `L;F�k :Proposition 84 [3, 5] let (L;F) be any logical bilattice.a) `L;F�k is paraconsistent.b) `L;F�k is nonmonotonic.c) If infk F2F24, and if the formulae in �;� are in �cl, then �`L;F� i� �`L;F�k �.22Kleene three-valued logic with middle element designated [22], also known as basic J3 { see, e.g.,[12, Chap.IX] as well as [6, 31, 32, 33]. In the present notations, �`3LP� if �`L;F �, where L is athree-valued lattice de�ned by f <t><t t and F=ft;>g.23Note that the interpretation of _ and ^ are determined by �t, while � is de�ned using �k.24This is true, in particular, whenever L is �nite.28



Note In Theorem 79 no connection was assumed between the lattice order that de-�nes the semantics of _ and ^, and the partial order that underlies �. However, inbilattices there are strong connections between the two partial orders. As a result, thecondition of the well-foundedness of �k can, in fact, be removed from the de�nitionof a pointwise preferential system in case (B;F) is a logical bilattice, provided thatinfkF 2F . See [3] for more details.Part (c) of the last proposition implies that in �cl, in order to check whether� `L;F � it is su�cient to consider only the �k-minimal models of �. However, asProposition 84(b) shows, in the general case `L;F�k is not equivalent to `L;F . The nextproposition (86) is another evidence for that. Its proof easily provides an example forthe note after Proposition 16:De�nition 85 [7, 2] Let (L;F) be a logical [bi-]lattice. De�ne: a�b=b if a2F , anda�b= t otherwise.25Note It is well known that in multiple-valued semantics it is usually no longer truethat every classical tautology remains valid. For instance, in Kleene three-valued logiclogic [22], as well as in Belnap 4-valued logic [9, 10], excluded middle is not valid. Thisimplies that when switching to multiple-valued semantics the material implication ,!�=: _� does not act like an implication connective anymore. As the followingproposition implies, � does function like an implication in logical [bi-]lattices. Notealso that on ft; fg the material implication ,! and the implication connective � areidentical, and both of them are generalizations of the classical implication.Proposition 86 Let (L;F) be a logical [bi-]lattice, and let � be the connectivede�ned in 85. Then:a) � is an internal implication w.r.t. `L;F : �;  `L;F �;� i� �`L;F  ��;�.b) � is not an internal implication w.r.t. `L;F�k .Proof Part (a) immediately follows from the de�nition of �. For part (b), considerBelnap four valued bilattice where f <t (>;?)<t t and?<k (t; f)<k> and F=ft;>g(see [9, 10] and Example 66). For atoms p; q we have that p `L;F�k :p� q (the only�k-minimalmodel here assigns t to p and ? to q), while p;:p 6`L;F�k q (a counter-modelassigns > to p and ? to q).Note Since the �t-meet operation is obviously conjunctive in L, then by Corollary79, the corresponding connective ^ is an internal conjunction and a combining con-junction w.r.t. `L;F�k . Similarly, it is possible to de�ne a �k-meet operation on Land by Corollary 79, the corresponding connective, 
, is also an internal conjunctionand a combining conjunction w.r.t. `L;F�k . By the same corollary, the connectives_ and �, which respectively correspond to the the �t-join and to the �k-join onL, are internal disjunctions w.r.t. `L;F�k . Note, however, that like in the case of �,the connectives _ and � do not remain a combining disjunction w.r.t. `L;F�k . This25Although we are using the same symbol (�) for denoting general implication connectives andthe speci�c implication operation de�ned above, this should not cause any conicts in the sequel.29



follows from Lemma 48, since it is shown there that one direction of the combin-ing disjunction property yields monotonicity, whereas `L;F�k is nonmonotonic. For aspeci�c example that shows that [_ j�]E is not valid, consider again the four-valuedbilattice mentioned in the proof of Proposition 86(b). Then (p ^ :p) _ p`L;F�k :p�f ,while (p ^ :p) 6`L;F�k :p�f .Example 87 { The logic `L;F�IAnother useful preferential system that is based on logical bilattices is consideredin [2, 3]: Let (L;F) be a logical bilattice where L = (L;�t;�k). A subset I of Lis called an inconsistency set , if for every b 2 L, b 2 I i� :b 2 I, and b 2 F \ I i�b;:b2F . Intuitively, I contains the elements of L that are understood as representinginconsistent knowledge or belief. De�ne a partial order �I on L by a <I b if a 2L n I and b 2 I. �I is trivially well-founded. In the pointwise preferential systemP = (V; j=L;F ;�I) that is obtained, !(�;�I) are the models that assume minimalinconsistency (w.r.t. I) of the premises.These models are called the I-most consistentmodels (I-mcms, for short) of �. The intuition this time is that contradictory datacorresponds to inadequate information about the real world, and therefore should beminimized.26`L;F�I might be viewed as a generalization of the three-valued logic LPm of Priest(see Example 82).27 In our terms, Priest considers the inconsistency set I = fb 2L j b 2 F ;:b 2 Fg. In the 3-valued case this is the only inconsistency set, and itconsists only of >. In the general (multiple-valued) case, however, there are manyother inconsistency sets. For a more detailed comparison between the logic of `L;F�Iand LPm, see [3].Kifer and Lozinskii [23] also propose a similar relation (denoted there j��, where� denotes the values that are considered as representing inconsistent knowledge).This relation is considered in the framework of annotated logics [42, 43]. See [2] for adiscussion on the similarities and the di�erences between `L;F�I and j��.Proposition 88 [2, 3] For any logical bilattice (L;F) and an inconsistency set I,a) `L;F�I is paraconsistent and nonmonotonic.b) If � and � are in the language of f:;^;_;�; f; tg and � `L;F�I �, then thedisjunction of the sentences in � classically follows from �.c) Let � be a classically consistent set in the language of f:;^;_; f; tg, and let  be a formula in CNF that none of its conjuncts contains an atomic formula andits negation. If  classically follows from �, then �`L;F�I  .Again, like in the case of `L;F�k , the connectives ^, 
 are internal conjunctions andcombining conjunctions w.r.t. `L;F�I , and the connectives _, � are internal disjunctionsw.r.t. `L;F�I .26In [2, 3] this preferential system is de�ned in a somewhat di�erent way. We omit the detailshere.27Note, however, that the three-valued structure is not a bilattice, but what is sometime calledpseudo lower-bilattice [17]. 30



4 Conclusion and further workIn this work we have studied logical approaches to nonmonotonic reasoning, basedon the notion of a nonmonotonic consequence relation. We considered a sequence ofgeneralizations of the works of Gabbay [18, 19], Makinson [28], and Kraus, Lehmann,Magidor [24]. These generalizations allow the use of monotonic nonclassical logicsas the underlying logic upon which nonmonotonic reasoning may be based. We havefound that multiple conclusion consequence relations are the best framework for de�n-ing plausible nonmonotonic systems. Our study yields intuitive justi�cations for therules of the nonmonotonic systems mentioned above. It also clari�es the connectionsamong some of these systems. For instance, it relates the work in [24] to that of [25].We have also presented a general method for constructing plausible nonmonotonicrelations. This method is based on a multiple-valued semantics, and on Shoham's ideaof preferential models. It allows us to de�ne in a uniform way consequence relationsthat are not only nonmonotonic, but also paraconsistent.The question whether this semantical approach also characterizes nonmonotonicplausible consequence relations is still open. Formally, is it true that for every scr `and a `-plausible sccr j� there is a multiple-valued structure (L;F ;S) and a (point-wise?) preferential system P=(V; j=L;F ;�) such that for every sets of formulae �;�in a language � we have that � j� � i� � `L;F� �. This is a matter for a furtherresearch.AcknowledgmentThis research was supported by The Israel Science Foundation founded by The IsraelAcademy of Sciences and Humanities.References[1] O.Arieli, A.Avron. Logical bilattices and inconsistent data. Proc. 9th IEEE An-nual Symp. on Logic in Computer Science (LICS'94). IEEE Press, pages 468{476,1994.[2] O.Arieli, A.Avron. Reasoning with logical bilattices. Journal of Logic, Language,and Information, Vol.5, No.1, pages 25{63, 1996.[3] O.Arieli, A.Avron. The value of the four values. Arti�cial Intelligence, Vol.102,No.1, pages 97{141, 1998.[4] O.Arieli, A.Avron. Nonmonotonic and paraconsistent reasoning: From basic en-tailments to plausible relations. Proc. 5th European Conference on Symbolic andQuantitative Approaches to Reasoning with Uncertainty (ecsqaru'99). LectureNotes in AI No.1638 (A.Hunter, S.Parsons { Eds.), Springer-Verlag, pages 11{21, 1999.[5] O.Arieli, A.Avron. Bilasttices and paraconsistency. Forthcomming in: Frontiersin Paraconsistent Logic (D.Batens, J.P.Van-Bendegem, C.Mortensen, G.Priest {Eds.). Kings Colledge Publications and Research Studies Press.31
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