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Abstract. We introduce new kinds of semantics for abstract argumenta-
tion frameworks, in which, while all the accepted arguments are justified
(in the sense that each one of them must be defended), they may still at-
tack each other. The rationality behind such semantics is that in reality
there are situations in which contradictory arguments coexist in the same
theory, yet the collective set of accepted arguments is not trivialized, in
the sense that other arguments may still be rejected.

To provide conflict-tolerant semantics for argumentation frameworks we
extend the two standard approaches for defining coherent (conflict-free)
semantics for argumentation frameworks: the extension-based approach
and the labeling-based approach. We show that the one-to-one relation-
ship between extensions and labelings of conflict-free semantics is carried
on to a similar correspondence between the extended approaches for pro-
viding conflict-tolerant semantics. Thus, in our setting as well, these are
essentially two points of views for the same thing.

1 Introduction and Motivation

An abstract argumentation framework consists of a set of (abstract) arguments
and a binary relation that intuitively represents attacks between arguments. A
semantics for such a structure is an indication which arguments can be col-
lectively accepted. A starting point of all the existing semantics for abstract
argumentation frameworks is that their set(s) of acceptable arguments must be
conflict-free, that is: an accepted argument should not attack another accepted
argument. This means, in particular, a dismissal of any self-referring argument
and a rejection of any contradictory fragment of the chosen arguments. However,
in everyday life it is not always the case that theories are completely coherent
although each of their arguments provides a solid assertion, and so contradic-
tory sets of arguments should sometimes be accepted and tolerated. Moreover,
a removal of contradictory indications in such theories may imply a loss of in-
formation and may lead to erroneous conclusions.

In this paper, we consider a more liberal approach for argumentation se-
mantics, adhering conflicting indications (and so inconsistencies). For this, we
extend the two most standard approaches for defining semantics to abstract
argumentation frameworks as follows:



– Extension-Based Semantics. Existing semantics that are defined by this
method share two primary principles: admissibility and conflict-freeness (see,
e.g., [2, 3]). The former principle, guaranteeing that an extension Ext ‘de-
fends’ all of its elements (i.e., Ext ‘counterattacks’ each argument that at-
tacks some e ∈ Ext), is preserved also in our framework, since otherwise
acceptance of arguments would be an arbitrary choice. However, the other
principle is lifted, since – as indicated above – we would like to permit, in
some cases, conflicting arguments.

– Labeling-Based Semantics. We extend the traditional three-state labelings of
arguments (accepted, rejected, undecided – see [5, 7]) by a fourth state, so
now apart of accepting or rejecting an argument, we have two additional
states, representing two opposite reasons for avoiding a definite opinion
about the argument as hand: One (‘none’), indicating that there is too lit-
tle evidence for reaching a precise conclusion about the argument’s validity,
and the other (‘both’) indicating ‘too much’ (contradictory) evidence, i.e.,
the existence of both supportive and opposing arguments concerning the
argument under consideration.

Both of these generalized approaches are a conservative extension of the stan-
dard approaches of giving semantics to abstract argumentation systems, in the
sense that they do not exclude standard extensions or labelings, but rather offer
additional points of views to the state of affairs as depicted by the argumenta-
tion framework. This allows us to introduce a brand new family of semantics
that accommodate conflicts in the sense that internal attacks among accepted
arguments are allowed, while the set of accepted arguments is not trivialized
(i.e., it is not the case that every argument is necessarily accepted).

We introduce an extended set of criteria for selecting the most plausible
four-valued labelings for an argumentation framework. These criteria are then
justified by showing that the one-to-one relationship between extensions and
labelings obtained for conflict-free semantics (see [7]) is carried on to a similar
correspondence between the extended approaches for providing conflict-tolerant
(paraconsistent) semantics. This also shows that in the case of conflict-tolerant
semantics as well, extensions and labelings are each other’s dual.

2 Preliminaries

Let us first recall some basic definitions and useful notions regarding abstract
argumentation theory.

Definition 1. A (finite) argumentation framework [8] is a pairAF = ⟨Args, att⟩,
where Args is a finite set, the elements of which are called arguments, and att
is a binary relation on Args×Args whose instances are called attacks. When
(A,B) ∈ att we say that A attacks B (or that B is attacked by A).

Given an argumentation framework AF = ⟨Args, att⟩, in the sequel we shall
use the following notations for an argument A ∈ Args and a set of arguments
S ⊆ Args:



– The set of arguments that are attacked by A is A+ = {B ∈ Args | att(A,B)}.
– The set of arguments that attack A is A− = {B ∈ Args | att(B,A)}.

Similarly, S+ =
∪

A∈S A+ and S− =
∪

A∈S A− denote, respectively, the set of
arguments that are attacked by some argument in S and the set of arguments
that attack some argument in S. Accordingly, we denote:

– The set of arguments that are defended by S: Def(S)={A∈Args | A−⊆S+}.

Thus, an argument A is defended by S if each attacker of A is attacked by
(an argument in) S. The two primary principles of acceptable sets of arguments
are now defined as follows:

Definition 2. Let AF = ⟨Args, att⟩ be an argumentation framework.

– A set S ⊆ Args is conflict-free (with respect to AF) iff S ∩ S+ = ∅.
– A conflict-free set S ⊆ Args is admissible for AF , iff S ⊆ Def(S).

Conflict-freeness assures that no argument in the set is attacked by another
argument in the set, and admissibility guarantees, in addition, that the set is
self defendant. A stronger notion is the following:

– A conflict-free set S ⊆ Args is complete for AF , iff S = Def(S).

The principles defined above are a cornerstone of a variety of extension-
based semantics for an argumentation framework AF , i.e., formalizations of sets
of arguments that can collectively be accepted in AF (see, e.g., [8, 12]). In
what follows, we shall usually denote an extension by Ext. This includes, among
others, grounded extensions (the minimal set, with respect to set inclusion, that
is complete for AF), preferred extensions (the maximal subset of Args that is
complete for AF), stable extensions (any complete subset Ext of Args for which
Ext+ = Args\Ext), and so forth.1

An alternative way to describe argumentation semantics is based on the
concept of an argument labeling [5, 7]. The main definitions and the relevant
results concerning this approach are surveyed below.

Definition 3. Let AF = ⟨Args, att⟩ be an argumentation framework. An ar-
gument labeling is a complete function lab : Args → {in, out, undec}. We shall
sometimes write In(lab) for {A ∈ Args | lab(A) = in}, Out(lab) for {A ∈ Args |
lab(A) = out} and Undec(lab) for {A ∈ Args | lab(A) = undec}.

In essence, an argument labeling expresses a position on which arguments
one accepts (labeled in), which arguments one rejects (labeled out), and which
arguments one abstains from having an explicit opinion about (labeled undec).
Since a labeling lab of AF = ⟨Args, att⟩ can be seen as a partition of Args, we
shall sometimes write it as a triple ⟨In(lab),Out(lab),Undec(lab)⟩.
1 Common definitions of conflict-free extension-based semantics for argumentation
frameworks, different methods for computing them, and computational complexity
analysis appear, e.g., in [1, 6, 8, 9, 10, 11].



Definition 4. Consider the following conditions on a labeling lab and an argu-
ment A in a framework AF = ⟨Args, att⟩:
Pos1 If lab(A) = in, there is no B ∈ A− such that lab(B) = in.
Pos2 If lab(A) = in, for every B ∈ A− it holds that lab(B) = out.
Neg If lab(A) = out, there exists some B ∈ A− such that lab(B) = in.
Neither If lab(A) = undec, not for every B ∈ A− it holds that lab(B) = out

and there does not exist a B ∈ A− such that lab(B) = in.

Given a labeling lab of an argumentation framework ⟨Args, att⟩, we say that

– lab is conflict-free if for every A ∈ Args it satisfies conditions Pos1 and Neg,
– lab is admissible if for every A ∈ Args it satisfies conditions Pos2 and Neg,
– lab is complete if it is admissible and for every A ∈ Args it satisfies Neither.

Again, the labelings considered above serve as a basis for a variety of labeling-
based semantics that have been proposed for an argumentation framework AF ,
each one of which is a counterpart of a corresponding extension-based semantics.
This includes, for instance, the grounded labeling (a complete labeling for AF
with a minimal set of in-assignments), the preferred labeling (a complete labeling
for AF with a maximal set of in-assignments), stable labelings (any complete
labeling of AF without undec-assignments), and so forth.

The next correspondence between extensions and labelings is shown in [7]:

Proposition 1. Let AF = ⟨Args, att⟩ be an argumentation framework, CFE
the set of all conflict-free extensions of AF , and CFL the set of all conflict-
free labelings of AF . Consider the function LEAF : CFL → CFE, defined
by LEAF (lab) = In(lab) and the function ELAF : CFE → CFL, defined by
ELAF (Ext) = ⟨Ext,Ext+,Args \ (Ext ∪ Ext+)⟩. It holds that:

1. If Ext is an admissible (respectively, complete) extension, then ELAF (Ext)
is an admissible (respectively, complete) labeling.

2. If lab is an admissible (respectively, complete) labeling, then LEAF (lab) is
an admissible (respectively, complete) extension.

3. When the domain and range of ELAF and LEAF are restricted to complete
extensions and complete labelings of AF , then these functions become bijec-
tions and each other’s inverses, making complete extensions and complete
labelings one-to-one related.

3 Conflicts Tolerance

In this section we extend the two approaches considered previously in order to
define conflict-tolerant semantics for abstract argumentation frameworks. Recall
that our purpose here is twofold:

1. Introducing self-referring argumentation and avoiding information loss that
may be caused by the conflict-freeness requirement (thus, for instance, it may
be better to accept extensions with a small fragment of conflicting arguments
than, say, sticking to the empty extension).



2. Refining the undec-indication in standard labeling systems, which reflects (at
least) two totally different situations: One case is that the reasoner abstains
from having an opinion about an argument because there are no indications
whether this argument should be accepted or rejected. Another case that
may cause a neutral opinion is that there are simultaneous considerations
for and against accepting a certain argument. These two cases should be
distinguishable, since their outcomes may be different.

3.1 Four-Valued Paraconsistent Labelings

Item 2 above may serve as a motivation for the following definition:

Definition 5. Let AF = ⟨Args, att⟩ be an argumentation framework. A four-
valued labeling for AF is a complete function lab : Args → {in, out, none, both}.
We shall sometimes write None(lab) for {A ∈ Args | lab(A) = none} and
Both(lab) for {A ∈ Args | lab(A) = both}.

As before, the labeling function reflects the state of mind of the reasoner
regarding each argument in AF . The difference is, of-course, that four-valued
labelings are a refinement of ‘standard’ labelings (in the sense of Definition 3),
so that four states are allowed. Thus, we continue to denote by In(lab) the set of
arguments that one accepts and by Out(lab) the set of arguments that one rejects,
but now the set Undec(lab) is splitted to two new sets: None(lab), consisting of
arguments that may neither be accepted nor rejected, and Both(lab), consisting
of arguments who have both supportive and rejective evidences. Since a four-
valued labeling lab is a partition of Args, we sometimes write it as a quadruple
⟨In(lab),Out(lab),None(lab),Both(lab)⟩.

Definition 6. Let AF = ⟨Args, att⟩ be an argumentation framework.

– Given a set Ext ⊆ Args of arguments, the function that is induced by (or, is
associated with) Ext is the four-valued labeling pELAF (Ext) of AF ,2 defined
for every A ∈ Args as follows:

pELAF (Ext)(A) =


in if A ∈ Ext and A ̸∈ Ext+,
both if A ∈ Ext and A ∈ Ext+,
out if A ̸∈ Ext and A ∈ Ext+,
none if A ̸∈ Ext and A ̸∈ Ext+.

A four-valued labeling that is induced by some subset of Args is called a
paraconsistent labeling (or a p-labeling) of AF .

– Given a four-valued labeling lab of AF , the set of arguments that is induced
by (or, is associated with) lab is defined by

pLEAF (lab) = In(lab) ∪ Both(lab).

2 Here, pEL stands for a paraconsistent-based conversion of extensions to labelings.



The intuition behind the transformation from a labeling lab to its extension
pLEAF (lab) is that any argument for which there is some supportive indication
(i.e., it is labeled in or both) should be included in the extension (even if there
are also opposing indications). The transformation from an extension Ext to its
induced labeling function pELAF (Ext) is motivated by the aspiration to accept
the arguments in the extension by marking them as either in or both. Since Ext
is not necessarily conflict-free, two labels are required to indicate whether the
argument at hand is attacked by another argument in the extension, or not.

Definition 6 indicates a one-to-one correspondence between sets of argu-
ments of an argumentation framework and the labelings that are induced by
them. It follows that while there are 4|Args| four-valued labelings for an argu-
mentation framework AF = ⟨Args, att⟩, the number of paraconsistent labelings
(p-labelings) for AF is limited by the number of the subsets of Args, i.e., 2|Args|.

Example 1. Consider the argumentation framework AF1 of Figure 1.

Fig. 1. The argumentation framework AF1

To compute the paraconsistent labelings of AF1, note for instance that if for
some Ext ⊆ Args it holds that pELAF (Ext)(A) = in, then A ∈ Ext and A ̸∈
Ext+, which implies, respectively, that B ∈ Ext+ and B ̸∈ Ext, thus B must
be labeled out. Similarly, if A is labeled out then B must be labeled in, if A is
labeled both, B must be labeled both as well, and if A is labeled none, so B is
labeled none. These labelings correspond to the four possible choices of either
accepting exactly one of the mutually attacking arguments A and B, accepting
both of them, or rejecting both of them. In turn, each such choice is augmented
with four respective options for labeling C and D. Table 1 lists the corresponding
sixteen p-labelings of AF1.

A p-labeling may be regarded as a description of the state of affairs for any
chosen set of arguments in a framework. For instance, the second p-labeling in
Table 1 (Example 1) indicates that if {A,C,D} is the accepted set of arguments,
then B is rejected (labeled out) since it is attacked by an accepted argument,
and the status of D is ambiguous (so it is labeled both), since on one hand it is
included in the set of accepted arguments, but on the other hand it is attacked by
an accepted argument. Note, further, that choosing D as an accepted argument
in this case is somewhat arguable, since D is not defended by the set {A,C,D}.

The discussion above implies that the role of a p-labeling is indicative rather
than justificatory ; A labeling that is induced by Ext describes the role of each
argument in the framework according to Ext, but it does not justify the choice



A B C D Induced set

1 in out in out {A,C}
2 in out in both {A,C,D}
3 in out none in {A,D}
4 in out none none {A}
5 out in out in {B,D}
6 out in out none {B}
7 out in both out {B,C}
8 out in both both {B,C,D}

A B C D Induced set

9 none none in out {C}
10 none none in both {C,D}
11 none none none in {D}
12 none none none none {}
13 both both out in {A,B,D}
14 both both out none {A,B}
15 both both both out {A,B,C}
16 both both both both {A,B,C,D}

Table 1. The p-labelings of AF1

of Ext as a plausible extension for the framework. For the latter, we should pose
further restrictions on the p-labelings. This is what we do next.

Definition 7. Given an argumentation frameworkAF = ⟨Args, att⟩, a p-labeling
lab for AF is called p-admissible, if it satisfies the following rules:

pIn If lab(A) = in, for every B ∈ A− it holds that lab(B) = out.
pOut If lab(A) = out, there exists B ∈ A− such that lab(B) ∈ {in, both}.
pBoth If lab(A) = both, for every B ∈ A− it holds that lab(B) ∈ {out, both}

and there exists some B ∈ A− such that lab(B) = both.
pNone If lab(A) = none, for every B ∈ A− it holds that lab(B) ∈ {out, none}.

The constraints in Definition 7 may be strengthen as follows:

Definition 8. Given an argumentation frameworkAF = ⟨Args, att⟩, a p-labeling
lab for AF is called p-complete, if it satisfies the following rules:

pIn+ lab(A) = in iff for every B ∈ A− it holds that lab(B) = out.
pOut+ lab(A) = out iff there is B ∈ A− such that lab(B) ∈ {in, both}

and there is some B ∈ A− such that lab(B) ∈ {in, none}.
pBoth+ lab(A) = both iff for every B ∈ A− it holds that lab(B) ∈ {out, both}

and there exists some B ∈ A− such that lab(B) = both.
pNone+ lab(A) = none iff for every B ∈ A− it holds that lab(B) ∈ {out, none}

and there exists some B ∈ A− such that lab(B) = none.

Example 2. Consider again the p-labelings for AF1 (Example 1), listed in Ta-
ble 1.

– The rule pIn is violated by labelings 3, 9, 10, 11, and the rule pBoth is
violated by labelings 2, 7, 8, 10. Therefore, the p-admissible labelings in this
case are 1, 4, 5, 6, 12–16.

– Among the p-admissible labelings in the previous item, labelings 4 and 6
violate pNone+, and labelings 13–15 violate pOut+. Thus, the p-complete
labelings of AF1 are 1, 5, 12 and 16.3

3 Intuitively, these labelings represent the most plausible states corresponding to the
four possible choices of arguments among the mutually attacking A and B.



In Section 3.3 and Section 4 we shall justify the rules in Definitions 7 and 8
by showing the correspondence between p-admissible/p-complete labelings and
related extensions.

3.2 Paraconsistent Extensions

Recall that Item 1 at the beginning of Section 3 suggests that the ‘conflict-
freeness’ requirement in Definition 2 may be lifted. However, the other properties
in the same definition, implying that an argument in an extension must be
defended, are still necessary.

Definition 9. Let AF = ⟨Args, att⟩ be an argumentation framework and let
Ext ⊆ Args. We say that Ext is a paraconsistently admissible (or: p-admissible)
extension for AF if Ext ⊆ Def(Ext). Ext is a paraconsistently complete (or:
p-complete) extension for AF if Ext = Def(Ext).

Thus, every admissible (respectively, complete) extension for AF is also p-
admissible (respectively, p-complete) extension for AF , but not the other way
around.

It is well-known that every argumentation framework has at least one com-
plete extension. However, there are cases (see, e.g., the argumentation framework
AF2 in Figure 2) that the only complete extension for a framework is the empty
set. The next proposition shows that this is not the case regarding p-complete
extensions.

Fig. 2. The argumentation framework AF2

Proposition 2. Any argumentation framework has a nonempty p-complete ex-
tension.4

Example 3. The argumentation framework AF2 that is shown in Figure 2 has
two p-complete extensions: ∅ (which is also the only complete extension of AF2),
and {A,B,C}.
4 Due to lack of space proofs are omitted.



3.3 Relating Paraconsistent Extensions and Labelings

We are now ready to consider the extension-based semantics induced by para-
consistent labelings. We show, in particular, that as in the case of (conflict-free)
complete labelings and (conflict-free) complete extensions, there is a one-to-one
correspondence between them, thus they represent two equivalent approaches
for giving conflict-tolerant semantics to abstract argumentation frameworks.

Proposition 3. If Ext is a p-admissible extension of AF then pELAF (Ext) is
a p-admissible labeling of AF .

Proposition 4. If lab is a p-admissible labeling of AF then pLEAF (lab) is a
p-admissible extension for AF .

Proposition 5. Let AF = ⟨Args, att⟩ be an argumentation framework.

– For every p-admissible labeling lab for AF , pELAF (pLEAF (lab)) = lab.
– For every p-admissible extension Ext of AF , pLEAF (pELAF (Ext)) = Ext.

By Propositions 3, 4, and 5, we conclude the following:

Corollary 1. The functions pELAF and pLEAF , restricted to the p-admissible
labelings and the p-admissible extensions of AF , are bijective, and are each
other’s inverse.

It follows that p-admissible extensions and p-admissible labelings are, in
essence, different ways of describing the same thing (see also Figure 3 below).

Note 1. In a way, the correspondence between p-admissible extensions and p-
admissible labelings of an argumentation framework is tighter than the corre-
spondence between (conflict-free) admissible extensions and (conflict-free) ad-
missible labelings, as depicted in [7] (see Section 2). Indeed, as indicated in [7],
admissible labelings and admissible extensions have a many-to-one relationship:
each admissible labeling is associated with exactly one admissible extension,
but an admissible extension may be associated with several admissible label-
ings. For instance, in the argumentation framework AF1 of Figure 1 (Exam-
ple 1), lab1 = ⟨{B}, {A,C}, {D}⟩ and lab2 = ⟨{B}, {A}, {C,D}⟩ are different
admissible labelings that are associated with the same admissible extension {B}.
Note that, viewed as four-valued labelings into {in, out, none}, only lab1 is p-
admissible, since lab2 violates pNone. Indeed, the p-admissible extension {B}
is associated with exactly one p-admissible labeling (number 6 in Table 1), as
guaranteed by the last corollary.

Let us now consider p-complete labelings.

Proposition 6. If Ext is a p-complete extension of AF then pELAF (Ext) is a
p-complete labeling of AF .

Proposition 7. If lab is a p-complete labeling of AF then pLEAF (lab) is a
p-complete extension for AF .



Proposition 8. Let AF be an argumentation framework.

– For every p-complete labeling lab for AF , pELAF (pLEAF (lab)) = lab.
– For every p-complete extension Ext of AF , pLEAF (pELAF (Ext)) = Ext.

By Propositions 6, 7, and 8, we conclude the following:

Corollary 2. The functions pELAF and pLEAF , restricted to the p-complete
labelings and the p-complete extensions of AF , are bijective, and are each other’s
inverse.

It follows that p-complete extensions and p-complete labelings are different
ways of describing the same thing (see also Figure 3). This is in correlation with
the results for conflict-free semantics, according to which there is a one-to-one re-
lationship between complete extensions and complete labelings (Proposition 1).

Example 4. Consider again the framework AF1 of Example 1.

1. By Example 2 and Propositions 4, the p-admissible extensions of AF1 are
induced by labelings 1, 4, 5, 6, 12–16 in Table 1, i.e., {A,C}, {A}, {B,D},
{B}, ∅, {A,B,D}, {A,B}, {A,B,C}, and {A,B,C,D} (respectively).

2. By Example 2 and Propositions 7, the p-complete extensions of AF1 are
those that are induced by labelings 1, 5, 12 and 16 in Table 1, namely
{A,C}, {B,D}, ∅, and {A,B,C,D} (respectively).

4 From Conflict-Tolerant to Conflict-Free Semantics

In this section we show that the variety of ‘standard’ semantics for argumentation
frameworks, based on conflict-free extensions and conflict-free labeling functions,
are still available in our conflict-tolerant setting. First, we consider admissible
extensions (Definition 2) and admissible labelings (Definition 4).

Proposition 9. Let lab be a p-admissible labeling for an argumentation frame-
work AF . If lab is into {in, out, none},5 then it is admissible.

As Note 1 shows, the converse of the last proposition does not hold. Indeed,
as indicated by Caminada and Gabbay [7], there is a many-to-one relationship
between admissible labelings and admissible extensions. On the other hand, by
the next proposition (together with Corollary 2), there is a one-to-one relation-
ship between both-free p-admissible labelings and admissible extensions.

Proposition 10. Let AF = ⟨Args, att⟩ be an argumentation framework. Then

1. If lab is a both-free p-admissible labeling for AF , then pLEAF (lab) is an
admissible extension of AF .

2. If Ext is an admissible extension of AF then pELAF (Ext) is a both-free
p-admissible labeling for AF .

5 In which case lab is called ‘both-free’.



Let us now consider complete extensions and complete labelings. The next
two propositions are the analogue, for complete labelings and complete exten-
sions, of Propositions 9 and 10:

Proposition 11. Let lab be a p-complete labeling for an argumentation frame-
work AF . If lab is into {in, out, none}, then it is complete.

Proposition 12. Let AF = ⟨Args, att⟩ be an argumentation framework. Then

1. If lab is a both-free p-complete labeling for AF , then pLEAF (lab) is a com-
plete extension of AF .

2. If Ext is a complete extension of AF then pELAF (Ext) is a both-free p-
complete labeling for AF .

Proposition 13. Let AF be an argumentation framework. Then lab is a com-
plete labeling for AF iff it is a both-free p-complete labeling for AF .

Figure 3 summarizes the relations between the conflict-free semantics and
the conflict-tolerant semantics considered so far (the arrows in the figure denote
“is-a” relationships, and the double-arrows denote one-to-one relationships).

Fig. 3. Conflict-free and conflict-tolerant semantics

By Proposition 13, a variety of conflict-free, extension-based (Dung-style)
semantics for abstract argumentation frameworks may be defined in terms of
both-free p-complete labelings. For instance,



– Ext is a grounded extension of AF iff it is induced by a both-free p-complete
labeling lab of AF such that there is no both-free p-complete labeling lab′

of AF with In(lab′) ⊂ In(lab).

– Ext is a preferred extension of AF iff it is induced by a both-free p-complete
labeling lab of AF such that there is no both-free p-complete labeling lab′

of AF with In(lab) ⊂ In(lab′).

– Ext is a semi-stable extension of AF iff it is induced by a both-free p-
complete labeling lab of AF such that there is no both-free p-complete la-
beling lab′ of AF with None(lab′) ⊂ None(lab).

– Ext is a stable extension of AF iff it is induced by a both-free p-complete
labeling lab of AF such that None(lab) = ∅.

By the last item, stable extensions correspond to {both, none}-free p-complete
labelings:

Corollary 3. Let AF = ⟨Args, att⟩ be an argumentation framework.

1. If lab is a {both, none}-free p-complete labeling for AF , then pLEAF (lab) is
a stable extension of AF .

2. If Ext is a stable extension of AF , then pELAF (Ext) is a {both, none}-free
p-complete labeling for AF .

Example 5. Consider again the framework AF1 of Example 1.

1. By Proposition 12, the complete extensions of AF1 are induced by the both-
free p-complete labelings, i.e., {A,C}, {B,D} and ∅ (which are the both-free
labelings among those mentioned in Items 2 of Examples 2 and 4).

2. By Corollary 3, the stable extensions of AF1 are those induced by the
none-free labelings among the labeling in the previous item, i.e., {A,C} and
{B,D}.

5 Conclusion

We have introduced a four-valued approach to provide conflict-tolerant semantics
for abstract argumentation frameworks. Such an approach may be beneficial for
several reasons:

– From a purely theoretical point of view, we have shown that the correla-
tion between the labeling-based approach and the extension-based approach
to argumentation theory is preserved also when conflict-freeness is aban-
don. Interestingly, as indicated in Note 1, in our framework this correlation
holds also between admissibility-based labelings and admissibility-based ex-
tensions, which is not the case in the conflict-free setting of [7].

– From a more pragmatic point of view, new types of semantics are introduced,
which accommodate conflicts, yet they are not trivialized by inconsistency.
It is shown that this setting is not a substitute of standard (conflict-free)
semantics, but rather a generalized framework, offering an option for inter-
attacks when such attacks make sense or are unavoidable.



– Conflicts handling in argumentation systems turns out to be more evasive
than what it looks like at first sight. In fact, conflicts may implicitly arise even
in conflict-free semantics, because such semantics simulate binary attacks
and not collective conflicts (this is demonstrated in the last example of [2]).
In this respect, the possibility of having conflicts is not completely ruled
out even in some conflict-free semantics (such as CF2 and stage semantics;
see [2]), and our approach may be viewed as an explication of this possibility.

Our setting may be related to other settings that to the best of our knowl-
edge have not been connected so far to argumentation theory. For instance,
the resemblance to Belnap’s well-known four-valued framework for computer-
ized reasoning [4] is evident. Moreover, the use of four-valued labelings suggests
that the four-valued signed systems, used in [1] for representing conflict-free se-
mantics of argumentation frameworks, may be incorporated for representing the
conflict-tolerant semantics in this paper. We leave this for a future work.

Acknowledgement Martin Caminada is thanked for useful discussions on top-
ics related to this paper.
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