An Algorithmic Approach to Recover
Inconsistent Knowledge-bases

Ofer Arieli

Department of Computer Science, K.U.Leuven
Celestijnenlaan 200A, B-3001 Heverlee, Belgium
arieli@cs.kuleuven.ac.be

Abstract. We consider an algorithmic approach for revising inconsist-
ent data and restoring its consistency. This approach detects the “spoiled”
part of the data (i.e., the set of assertions that cause inconsistency), de-
letes it from the knowledge-base, and then draws classical conclusions
from the “recovered” information. The essence of this approach is its
coherence with the original (possibly inconsistent) data: On one hand
it is possible to draw classical conclusions from any data that is not
related to the contradictory information, while on the other hand, the
only inferences allowed by this approach are those that do not contradict
any former conclusion. This method may therefore be used by systems
that restore consistent information and are obliged to their resource of
information. Common examples of this case are diagnostic procedures
that analyse faulty components of malfunction devices, and database
management systems that amalgamate distributed knowledge-bases.

1 Motivation

In this paper we introduce an algorithmic approach to revise inconsistent inform-
ation and restore its consistency. This approach (sometimes called “coherent”
[5], or “conservative” [15]) considers contradictory data as useless, and uses only
a consistent part of the original information for making inferences. To see the
rationality behind this approach consider, for instance, the following set of pro-
positional assertions:

KB = {pa -p, 7pVg, T, _'TVS}'

Since —p is true in KB, so is =pVgq (even if ¢ is false), and so a plausible infer-
ence mechanism should not apply here the Disjunctive Syllogism to p and —pVgq.
Intuitively, this is so since the information regarding p is contradictory, and so
one should not rely on it for drawing inferences. On the other hand, applying
the Disjunctive Syllogism to {r, =7V s} may be justified by the fact that this
subset of formulae should not be affected by the inconsistency in KB, therefore
inference rules that are classically valid can be applied to it.

The two major goals of coherent approaches in general, and our formalism
in particular, are therefore the following;:

a) Detect and isolate “spoiled” parts of the knowledge-base, i.e.: Remove from
the knowledge-base subsets of assertions that cause inconsistency,

b) Draw classical conclusions in a non-trivial way from any data that is not re-
lated to the contradictory information. Such inferences should be semantic-
ally coherent with the original data, that is: Only inferences that do not
contradict any previously drawn conclusions are allowed.

For achieving the goals above we consider an algorithmic approach that is
based on a four-valued semantics [3,4]. Using a multiple-valued semantics is a
common way to overcome the shortcomings of classical calculus (see, e.g., [3,6, 7,
12-14]), and as we shall see in what follows, four-valued semantics is particularly
suitable for our purpose.

A similar algorithmic approach for recovering stratified knowledge-base, which
is also based on a four-valued semantics, was introduced in [1,2]. Here we gener-
alize and improve that approach in the sense that we consider a better search en-
gine, and provide and algorithm that recovers arbitrary knowledge-bases rather
than only stratified ones.

2 Background

2.1 Belnap four-valued lattice

Our method is based on Belnap’s well-known algebraic structure, introduced
in [3,4]. This structure consists of four truth values: the classical ones (¢, f), a
truth value (L) that intuitively represents lack of information, and a truth value
(T) that may intuitively be understood as representing contradictions. These
four elements are simultaneously ordered in two distributive lattices. In one of
them, denoted by Ls=({t,f, T, L1}, <;), f is the <;-minimal element, ¢ is the
<;-maximal one, and L, T are two intermediate values that are incomparable.
The partial order of this lattice may be intuitively understood as representing
differences in the amount of ¢truth of each element. In the other lattice, denoted
by Ay=({t,f,T,L},<k), L is the <y-minimal element, T is the <j-maximal
one, and ¢, f are two intermediate values. The partial order <; of this lattice
intuitively represents differences in the amount of knowledge (or information)
that each element exhibits. We denote Belnap four-valued structure together
with its two partial orders by FOUR (see Figure 1).

As usual, we shall denote the <;-meet and the <;-join of FOUR by A and
V, respectively. In addition, we shall denote by — the involution operation on
<4, for which = T=T and - L =1.

2.2 Knowledge-bases: syntax and semantics

The language we use here is the standard propositional one, based on the propos-
itional constants ¢, f, T, 1, and the connectives V, A, = that correspond, respect-
ively, to the join, meet, and the negation operations w.r.t. <;. Atomic formulae

Fig. 1. Belnap lattice, FOUR

are denoted by p, g, literals (i.e., atomic formulae or their negations) are denoted
by I, and complex formulae are denoted by v, ¢. Given a set S of formulae, we
shall write A(S) to denote the set of the atomic formulae that occur in S, and
L(S) to denote the set of the literals that occur in S (A and £ denote, respect-
ively, the set of atomic formulae and the set of literals in the language). The
complement of a literal [is denoted by I. An atomic formula p € A(S) is called
a positive (negative) fact of S if p€ S (-p€S). The set of all the (positive and
negative) facts in S is denoted by Facts(S).

The various semantic notions are defined on FOUR as natural generaliza-
tions of similar classical ones: A wvaluation v is a function that assigns a truth
value in FOUR to each atomic formula. Any valuation is extended to complex
formulae in the obvious way. The set of the four-valued valuations is denoted by
V. A valuation v satisfies ¢ iff v(¢p) € {t, T}. t and T are called the designated
elements of FOUR. A valuation that satisfies every formula in a given set S of
formulae is a model of S. A model of S will usually be denoted by M or N. The
set of all the models of S is denoted by mod(S).

The formulae that will be considered here are clauses, i.e.: disjunctions of
literals. The following useful property of clauses is easily shown by an induction
on the structure of clauses:

Lemma 1. Let ¢ be a clause and v a valuation. Then v(y) € {¢, T} iff there is
some l€ L(¢) s.t. v(1)e{t, T}

A finite set of clauses is called a knowledge-base, and is denoted by KB.
As the following lemma shows, representing formulae in a clause form does not
reduce the generality.

Lemma 2. [1] For every formula v there is a finite set S of clauses such that
for every valuation v, v(¢p) € {T,t} iff v(¢)€{T,t} for every p€S.

Given a certain knowledge-base KB, we consider the <j-minimal elements in
mod(KB). These models reflect the intuition that one should not assume what
is not really represented in KB.

Definition 1. Let vy, 05 € V.

a) vy is k-smaller than vy iff for every atom p, v;(p) <r va(p).
b) vemod(KB) is a k-minimal model of KB if there is no other model of KB
that is k-smaller than v.

Ezxample 1. Consider the following knowledge-base:
KB ={p, =q, -pVq, -pVh, qVrVs, qV-rV-s, hvr, hVs}

The (k-minimal) models of KB are given in Table 1 below. We shall use KB for
the demonstrations in the sequel.

Table 1. The (k-minimal) models of KB

Model No. P q h r s k-minimal
M, t T t 1L 1 +
My — My t T t 4L f,t, T

Ms — Mg t T t frt, T |L, fit, T

M7 — Ms2 t T T L, ft, T|L, f,t, T

Mss T f 1 t T +
VEN T f 1 T t +
M3s T f 1 T T

Mg T f f t T

Ms7 — Mss T f f T t, T

Mg T f t 1L T +
Mo T f t f t +
My, T f t f T

My T f t t f +
Mys T f t t T

Maa T f t T 1 +
M45 - M47 T f t T f7 t: T

Mays T f T 4L T

Mg — Mso T f T f t, T

Msi — Ms|| T f T t fiT

Ms3 — Mse T f T T L, £, T

M7 T T L t t T
Mg T T 1 t T

Msg — Mgo T T 1 T t, T

M1 — Mea T T f t, T t, T

Mes — Mso T T t L, ft, T|L, ft, T

Mz — Mg T T T |\L,ft, T|L, f,t, T

The k-minimal models of KB will have an important role in the recovery
process of KB. This may be justified by the fact that as long as one keeps
the amount of information as minimal as possible, the tendency of getting into
conflicts decreases.

2.3 Recovered knowledge-bases

Definition 2. Let v€V. Denote: I(v)={p€ A | v(p)=T}. Usually we shall be
interested in the assignments of v w.r.t. a specific knowledge-base. In such cases
we shall consider the following set: I(v, KB)={pe A(KB) | v(p)=T}.

As we have noted above, by “recovering a knowledge-base” we mean to turn
it (in a plausible way) to a consistent one. That is:

Definition 3. A valuation v is consistent if I(v)=0. A knowledge-base is con-
sistent if it has a consistent model.

Proposition 1. [1,2] A knowledge-base is consistent iff it is classically consist-
ent.

The recovery process is based on the following notion:

Definition 4. A recovered knowledge-base KB' of a knowledge-base KB is a
subset of KB with a consistent model M’ s.t. there is a (not necessarily consist-

ent) model M of KB, for which M'(p)=M(p) for every pe A(KB').

Ezample 2. The set {p} is a recovered knowledge-base of KBy ={p, q, ~q}, but
it is not a recovered knowledge-base of KBy = {p, -p}. This example demon-
strates the fact that in order to recover a given inconsistent knowledge-base,
it is not sufficient to find some of its (maximal) consistent subset(s), but it
is necessary to ensure that the subset under consideration would semantically
correspond to the original, inconsistent data; In our case, {p} does not recover
KB, even though it is a classically consistent subset of KB5, just because of the
fact that this set contradicts an information (—p) that is explicitly stated in the
original knowledge-base. Therefore, the “semantical correspondence” property is
not preserved in this case.!

Given an inconsistent knowledge-base KB, the idea is to choose one of its re-
covered knowledge-bases and to treat this set as the relevant knowledge-base for
deducing classical inferences. Next we show that the set of recovered knowledge-
bases of KB may be easily constructed from the set of its models:

Definition 5. Let v€V. The set that is associated with v is defined as follows:
KB, ={¢€ KB | v(¢p)=t and A(¢) N I(v, KB)=0}.

! Keeping this “semantical correspondence” to the original information is one of the
main differences between the present formalism and some other formalisms for restor-
ing consistency (see, e.g., [5,6,9]).

The set KB, corresponds to the (maximal) fragment of KB that can be inter-
preted in a consistent way by v. Elimination of pieces of “inadequate” informa-
tion in order to get a more “robust” representation of the “intended” knowledge
is a common method in belief revision and argumentative reasoning (see, e.g.,
[5.6,9]).

Proposition 2. [1] Every set that is associated with a model of KB is a re-
covered knowledge-base of KB.

Proposition 2 implies that usually there will be a lot of ways to recover a given
inconsistent knowledge-base. By what we have noted above, plausible candidates
of being the “best” recovered knowledge-base of KB would be those sets that
are associated with some k-minimal model of KB.?

Definition 6. A set SC KB is a preferred recovered knowledge-base of KB if
it is a maximal set that is associated with some k-minimal model of KB.

Ezample 3. Consider again the knowledge-base KB of Example 1. In the nota-
tions of Table 1, the subsets of KB that are associated with its k-minimal models
are the following;:

KBy, ={p, -pVh, hVr, hV s},

KB, = {—q, hVvr},

KB, ={—q, hV s},

KB, = {—q, hVvr},

KB, ={—q, gqVrVs, qV-rV-s, hVr hV s}
KBy, ={—q, qVrVs, qV-rV-s, hVr hVs}
KBu,, ={—q, hV s},

KB, ={hVr, hV s}

Thus, the preferred recovered knowledge-bases are KBy, and KBy, =KBay,, -

3 Recovery of inconsistent knowledge-bases

In this section we introduce an algorithm for recovering inconsistent knowledge-
bases, and consider some of its properties.

Definition 7. Let KB be a knowledge-base, and let v be a four-valued partial
valuation defined on (a subset of) A(KB). The dilution of KB w.r.t. v (notation:
KB |v) is constructed from KB by the following transformations:

1. Deleting every ¢ € KB that contains either ¢, T, or a literal I s.t. v(I) € {¢, T},
2. Removing from every formula that remains in KB every occurrence of f, L,
and every occurrence of a literal [such that v(1)€{f, L}.

% See [2] for some other preference criteria for choosing recovered knowledge-base.

The intuition behind the dilution process resembles, in a way, that of the
Gelfond-Lifschitz transformation [8]: Any data that has no effect on the rest
of the process is eliminated. Thus, for instance, if a literal [in a formula) is
assigned a designated value, then Lemma 1 assures that eventually ¢ would also
have a designated value, no matter what would be the values of the elements in
L(1)\ {I}. Hence, these elements can be disregarded in the rest of the construc-
tion, as indeed indicated by item (1) of Definition 7. The rationality behind item
(2) of the same definition is similar.

Figure 2 contains a pseudo-code of the recovery algorithm. * 4 As we show
in Theorems 1 and 2 below, given a certain knowledge-base KB as an input, the
algorithm provides the valuations needed for constructing the preferred recovered
knowledge-bases of KB.

It is easy to verify that the algorithm indeed halts for every knowledge-base.
This is so since knowledge-bases are finite, and since for every set S of clauses
and every partial valuation v on A(S), we have that A(S |v)CA(S).

Ezample 4. Figure 3 below demonstrates the execution of the algorithm on the
knowledge-base B of the canonical example (1 and 3). In this figure we denote
by p:x the fact that an atom p is assigned a value x.

In the notations of Table 1, the two leftmost paths in the tree of Figure 3
produce the k-minimal model M7, and the other paths produce the k-minimal
models M,y and M4s.5 As noted in Example 3, these are exactly the models
with whom the preferred recovered knowledge-bases of KB are associated. By
Theorem 2, these are all the preferred recovered knowledge-bases of KB.

Proposition 3. Let v be a four-valued valuation produced by the algorithm of
Figure 2 for a given knowledge-base KB. Then v is a model of KB.

Proof: Let ¢ € KB. By Definition 7 and the specifications of the algorithm in
Figure 2, it is obvious that at some stage of the algorithm %) is eliminated from
the set of clauses as a result of a dilution on this set. Note that a formula cannot
be eliminated by successively removing every literal of it according to condition
(2) of Definition 7, since the last literal that remains must be assigned a des-
ignated value. Thus there must be some I € £(¢) that is assigned a designated
value. By Lemma 1, then, v(¢) € {t, T}, and so v € mod(KB). O

3 The first parameter of the first call to Recover is the dilution of KB w.r.t. the empty
valuation. This is so in order to take care of the propositional constants that appear
in KB (for instance, if pV f € KB then pe KB|0).

* If the knowledge-base under consideration contains clauses that are logically equi-
valent to f or L (e.g., fVL1), then in KB |0 such clauses will become empty. One
can easily handle such degenerated cases by adding to the algorithm a line that
terminates its execution once an empty clause is detected.

® Later on we shall take care of the redundancy.

input: A knowledge-base KB.

Mods = Recover(KBl0, 0);

do (VM € Mods) {
KBy = {¢€ KB | =3p € A(KB) such that M(p) = T};
output (KBy) ;

}

procedure Recover(S,v)
/¥ S = a finite set of clauses, v = the valuation constructed so far */

{
if (S == () then return(v) /* v is a k-minimal model of KB */
pos = {p€A(S) | peS }; /* the positive facts in S */
neg = {p€A(S) | -p€ S }; /* the negative facts in S */
if (pos Uneg == 0) {
do (Vp € A(S)) {
pick p;
if (p €L£(S)) then Recover(S U {p}, v);
if (—p €L(S)) then Recover(S U {-p}, v);
}
}
do (Vp € (pos Nneg)) {
pick p;
ulp) = T;
s' =5 |u;
do (Vq # p such that g €.A(S) \ A(S"))
u(q) = L;
Recover(S', v U u);
}
do (Vp € (pos Uneg) \ (pos Nneg)) {
pick p;
if (p € pos) then u(p) =t else u(p) = f;
s' =5 lu;
do (Vq # p such that g €.A(S) \ A(S"))
ulq) = L;
Recover(S', vupu;
}
}

Fig. 2. An algorithm for recovering knowledge-bases

*x = pruning
(see below)

{p, 7q, -pV q, "pV h, qVrVs, qV-rV-s, hVr, hVs}

{h, hvr, hVs} {¢, ~q, ¢V rV s} p:T
h:st_,lr: q:z,_i:l {rvs, -rvV-s, hVr, hVs}
0 0
* * * *
h:t rt r.f| s:t s: f
{‘!S7]‘L\/S} {"T‘a h\/T’}
{s, h, hV s} {r, h, hvr}

0 0 0 0 0 0 0 0

Fig. 3. Execution of the algorithm w.r.t. the canonical example

The next proposition indicates that the valuations produced by the algorithm
of Figure 2 assign designated truth values only to a minimal amount of literals
(no more literals than what is really necessary for providing a model for KB). In
a sense, this means that a minimal amount of knowledge (or belief) is assumed.

Proposition 4. Let v be a four-valued valuation produced by the algorithm of
Figure 2 for a given knowledge-base KB. Then v is a choice function on KB:
For every ¢ € KB there is exactly one literal [€ L(1) s.t. v(I) is designated.

Proof: The proof is by an easy inspection on the execution of the algorithm.
Consider some 9 € KB. Suppose that it is eliminated at the i-th inductive call
to Recover. Then all the literals I € £(v)) for which v() is defined until the i-th
recursive call to Recover has the property that v(l) = f (otherwise ¥ would have
already been eliminated). Then there is some ! € £(¢)) (which is chosen during
the i-th execution of Recover), for which v(l) € {¢, T}, and after the next dilu-
tion 9 is eliminated, i.e.: all the rest of the literals in £(%)) are assigned L. It
follows, then, that every clause has a unique literal that is assigned a designated
value by v. O

Here is another evidence to the fact that only a minimal knowledge is assumed
by the valuations produced by our algorithm:

Theorem 1. Let v be a four-valued valuation produced by the algorithm of
Figure 2 for a given knowledge-base KB. Then v is a k-minimal model of KB.

Proof: First, by Proposition 3, v is a model of KB. It remains to show, then,
that v is a k-minimal among the models of KB. For that consider the following
set of knowledge-bases:
KBy = KBl®, KB = KB;lv;

where v; (¢ > 0) is the partial valuation determined during the i-th recursive
call to Recover.® Now, let us first assume that there is at least one (positive or
negative) fact in KB (i.e., there is a literal € £L(KB) s.t. € KB). We show that
v is a k-minimal model of KB by an induction on the number n of the recursive
calls to Recover that are required for creating v.

— n=0: ¥y may assign T only to a literal I s.t. l€ KB and I € KB, while all the
other elements in A(KB) are assigned L. In this case T is the only possible
value for [, and so v is k-minimal. The same argument is true for any literal
ls.t. 1€ KB and ¢ KB (for that I, v(I)=t). Tt is also obviously true for all
the literals that are assigned 1.

—n > 1: Let M be a model of KB. We show that M «£; v. Let M; be the
reduction of M to A(KBj), and suppose first that M; is a model of KB;. By
the induction hypothesis v; is a k-minimal model of KBy, thus there exists
p€ A(KBy), s.t. Mi(p) £ v1(p), therefore M £ v. The other possibility is
that M; is not a model of KBj. In this case there must be a clause 1, € KB,

S Thus, if the algorithm terminates after n recursive calls to Recover, then v = UL, vi.

s.t. Mq(¢1) €4{t, T}. Since M is a model of KB, then by Lemma 1 there is
at € KB and an l € L(¢) s.t. M(1) € {¢t, T}, and {I} U L(¢1) C L(¢). But
then v(l) € {t, T} (Otherwise, v is eliminated in the dilution of KB and so
11 € KBy), while M (1) € {t, T}. It follows that M (I) £, v(l), therefore M £ v

in this case also.

To conclude, it remains to handle the case where there are no facts in KB.
In this case our algorithm operates on KB’ = KBU{l} for some | € L(KB).
But now there is a fact in KB’, and so by what we have shown above our al-
gorithm produces a k-minimal model for KB’. Denote this model by v'. We
have to show that »' is also a k-minimal model of KB. Indeed, v’ is clearly a
model of KB. Let M be some other model of KB. If M(l) € {t, T} then M is
a model of KB’ and so M £ v'. Otherwise, M (I) € {f, L}. Consider the subset
of formulae of KB in which [appears as a literal: KB(l)={y € KB | l€ L(%)}.
Since | € L(KB), it follows that KB(l) # 0. Moreover, since we assume that
there are no facts in KB, in particular [¢ KB and | ¢ KB, thus KB(l) Z {l,1}.
Now, by the definition of ' as a valuation that is produced by our algorithm,
for every p € A(KB(l)) s.t. p#1, we have that v/(p) = L. (Such p exist since
KB(1)#0 and KB(l)Z {l,1}. These atoms are assigned L since all the formulae
in KB(l) are removed after the first dilution of KB’). Now, since we assumed
that M(l) € {f, L}, then by Lemma 1 there must exist some py € A(KB(l))
s.t. M(po) €{t, T} (Otherwise Vip € KB(l) M ()& {t, T} and so M cannot be a
model of KB). Thus M (po) >r L =v'(po) and once again we have that M £, v'. O

Using Theorem 1 we can now show that the algorithm indeed properly re-
covers inconsistent knowledge-bases.

Theorem 2. For a given knowledge-base KB, the algorithm of Figure 2 pro-
duces all the valuations v, for which KB, is a preferred recovered knowledge-base

of KB.

Proof: By Theorem 1, if v is obtained by our algorithm, then KB, is an element
of the following set:

2 ={KBj | M is a k-minimal model of KB}.

It remains to show, therefore, that the algorithm produces valuations v;, for
which KB, are the mazimal elements of (2. Indeed, given a k-minimal model
M of KB, we show that the algorithm produces a valuation v s.t. I(v, KB) C
I(M, KB), and therefore KB); CKB,.

As in Theorem 1, we denote by v; the partial valuation that is determined
during stage i of the algorithm (thus, if the algorithm terminates after n stages,
then » =U,1;), and M; is the reduction of M to the literals on which v; is
defined. Also, we use the following notations: KBy = KB | @, and for every 7 >0,
KB, = KB; | v;. Now, suppose first that Facts(KBg) # @ (i.e., there is some
[positive or negative] fact in KBy). If {I,1} C Facts(KBy) for some literal 1, set
vo(l)=T (note that in this case necessarily M (l)=T as well, since M is a model

of KB and so it must assign T to all the facts of KB that are both positive and
negative). Otherwise, choose some | € Facts(KBy) s.t. M(l) =t (such a literal
must exist, since M is a model of KB and so it must assign designated values to
the facts of KBy), and set vo(l) =t. If Facts(KBg) is empty, then if there is some
le L(KBy) s.t. M(l)=t set vo(l) =t as well. Otherwise, pick some [€ L(KBy)
s.t. M(l) = L and set vp(l) =t (there must be such a literal, since otherwise
Vie L(KBy) M(1)e{T, f} and since Facts(KBy)=10, this implies that M is not
k-minimal, since one can easily construct a model of KB which is k-smaller than
M by changing one of the f-assignments of M to L, or one of the T-assignments
of M to t). Now, in order to determine vy we follow a similar procedure, this time
for KBy: If Facts(KBy)# ® then if {I,1} C Facts(KB) for some [, set v (1)=T
(note that in this case necessarily M (l) =T as well, since by the construction
of vy, we have that KB, = KB | v, C KB | My, and so {I,1} C KB | M, as well,
which means that M must assign [the value T in order to be a model of KB).
Otherwise, if there is some I € Facts(KBy) s.t. M(l) =1t set v1(I) =1t as well.
Otherwise, pick some ! € Facts(KB;) s.t. M(l) € L (again, such an [must exists.
Otherwise, by the same reasons considered above, we will have a contradiction
to the fact that M is a k-minimal model of KB), and set v (1) =t. The procedure
in case that Facts(KB;)=0 is the same as the one in case that Facts(KBg)=10.

Now, repeat the same process until for some n, KB, becomes empty. Let
v=U?_,v;. The following two facts are easily verified:

1. In the process of creating v we followed the execution of the algorithm along
one path of its search tree. Hence v is obtained by our algorithm when KB
is given as its input.

2. It v(l)=T then M(l)=T as well (see the notes whenever v;(1)=T).

By (2), I(v, KB)CI(M,KB), and so KB); C KB, . Thus, by (1), an output v of
the algorithm corresponds to a preferred recovered knowledge-base KB, of KB.
O

Clearly, large knowledge-bases that contain a lot of contradictory information
may be recovered in many different ways. Therefore, computing all the preferred
recovered knowledge-bases in such cases might require a considerable amount
of running time. It is worth noting, however, that arbitrary recovery of a given
knowledge-base KB (i.e., producing some preferred recovered knowledge-base of
KB) obtains quite easily. This is so since the execution time for producing the
first output (valuation) is bounded by O(|L(KB)|-|KB|); A construction of the
first output requires no more than |L(KB)| calls to Recover (as there are no
more than |£(KB)| picked literals), and each call takes no more than O(|KB|)
running time.

We conclude this section with some notes on practical ways to reduce the
execution time of the algorithm.

A. Pruning of the search tree

Let us consider once again the search tree of Figure 3. Denote the paths in this
tree from the leftmost righthand by 1,...,12. Clearly, paths 1 and 2 yield the
same result. Similarly, the same valuation is produced in paths 3,6,7,11,12, and
the remaining paths in the search tree also yield the same valuation. It is possible
to avoid such duplications by performing a backtracking once we find out that
we are constructing a valuation which is the same as another valuation that has
already been produced before. Indeed, note that a path 7 in the search three of
the algorithm corresponds to a sequence of partial valuations v¢, v}, ..., Vi” that
are constructed along its nodes. Thus, if we denote by A(KB)[u] the elements of
A(KB) on which the partial valuation p is defined, then it is possible to terminate
the j-th flow of the algorithm (terminology: to prune the j-th subtree) at stage
m iff there is a flow i <j, s.t. Ui~ A(KB)[vi] = U, A(KB)[v}].

Ezample 5. In Figure 3 the pruning locations (in paths 2, 5-12) are marked with
an asterisk. Thus, only paths 1, 3, and 4 of the search tree are not pruned. They
yield, respectively, the k-minimal models My, Mys, and My of KB.7

Obviously, the pruning consideration might drastically improve the search
mechanism of the algorithm. The tradeoff is that for checking the pruning con-
dition we have to use much more memory space, since the algorithm has to keep
tracks to valuations that correspond to previous search flows.

B. Handling unrelated information

There are many cases in which a new information should not affect any previous
conclusion.? In such cases a plausible mechanism of belief revision should not re-
tract any previous conclusion. Therefore, the general expectation is that in these
cases the computational complexity of adding the new data to the knowledge-
base and computing its new consequences would be relatively low. Detecting
those cases and finding an appropriate methodology to handle them is sometime
called “the irrelevance problem”. In the next proposition we show that in cases
where a totally irrelevant information arrives, it is possible to avoid executing the
recovery algorithm; The new data can safely be added to any preferred recovered
knowledge-base without damaging any of its properties.

Proposition 5. Let KBy and KB, be two subsets of a knowledge-base KB that
satisfy the following conditions:

(a) KBy UKBy=KB, (b) A(KB;)N A(KBy)=0,” (c) KB; is consistent.

" As noted in Example 3, these are exactly the models with whom the prefered re-
covered knowledge-bases of B are associated.

& This is the case, for instance, where there is no evidence of any relation between the
new data and the old one.

? In case that conditions (a) and (b) are satisfied we say that KB; and KBs are a
partition of KB.

If S is a preferred recovered knowledge-base of KB, then SU KB is a preferred
recovered knowledge-base of KB.

Proof: For the proof we need the following result:

Lemma 5-A: [1,2] For every model M of a knowledge-base KB there is a k-
minimal model M’ of KB s.t. M'<; M .10

Suppose now that S is a preferred recovered knowledge-base of KB5. Then it is
associated with some k-minimal model v5 of KBs, i.e. S=(KBs),,. Also, since
KB, is classically consistent, it has a classical model, denote it v;. Now, consider
a valuation v that is defined for every atomic formula p as follows:

1/1() lf EA(KBl)
”(p)—{w(i) it pe A(KBy)

Since A(KB;) N A(KB3) =0, v is well defined. It is also easy to see that v is a
model of KB, and that KB, =(KBs),,U(KBy),, = SUKB;. By Lemma 5-A there
is a k-minimal model M of KB s.t. M <jv. In particular, I(M, KB)CI(v, KB),
and so KB, C KBy;. But KB, =S U KBy, and since S is a maximal recovered
knowledge-base of KBy, KB, must be a maximal recovered knowledge-base of
KB. Thus KB); = KB, =S U KB, is a maximal recovered knowledge-base of KB
and it is associated with a k-minimal model of KB. Hence S U KB, is indeed a
preferred recovered knowledge-base of KB. O

Note that an immediate consequence of Proposition 5 is that in case that
KB is classically consistent, then KB itself is the (only) preferred recovered
knowledge-base, as indeed one expects.

Ezample 6. Consider again our canonical example (1, 3, 4). Let KB' = KB U
{u,=vVw}. The prefered recovered knowledge-bases of KB’ are simply obtained
by adding {u, ~vVw} to each prefered recovered knowledge-base of K£B. I.e., the
preferred recovered knowledge-bases of KB’ are {p, ~pVh, hvr, hVs, u, ~vVw}
and {~q, qVrVs, ¢gV-rV-as, hVr, hVs, u, ~vVw}.

It follows that in many cases it is possible to drastically reduce the execution
time of the algorithm: If the knowledge-base under consideration can be parti-
tioned into two subsets such that one of them is classically consistent, then in
order to recover the knowledge-base it is sufficient to activate the algorithm only
on the inconsistent subset, and then to add the consistent set to every preferred
recovered knowledge-base that is obtained by the algorithm.

4 Conclusion

In this work we have introduced a simple algorithmic method for restoring the
consistency of inconsistent knowledge-bases. Restoration of consistent data is a

10 This property is sometimes called smoothness [10] or stopperdness [11].

key concept in many applications, such as model-base diagnostic systems, data-
base management systems for distributed (and possibly contradicting) sources of
information, and pre-processing phases of procedures for a (classical) automated
deduction. In all these areas, then, the techniques discusses in this paper may
be useful.

We have addressed here the propositional case in which our algorithm can
easily be implemented in practice. Its computational complexity in the general
case, and further practical considerations for an efficient handling of first-order
languages, remain to be studied.

Acknowledgement

I would like to thank the anonymous referees for their helpful comments. This
work is supported by the Visiting Postdoctoral Fellowship FWO Flanders.

References

1. O.Arieli, A.Avron. Four-valued diagnoses for stratified knowledge-bases. Proc.
CSL’96, Selected Papers (D.Van-Dalen, M.Bezem, editors), Springer Verlag, LNCS
No.1258, pages 1-17, 1997.

2. O.Arieli, A.Avron. A model theoretic approach to recover consistent data from in-
consistent knowledge-bases. Journal of Automated Reasoning 22(3), pages 263-309,
1999.

3. N.D.Belnap. A useful four-valued logic. Modern Uses of Multiple-Valued Logic
(G.Epstein, J.M.Dunn, editors), Reidel Publishing Company, pages 7-37, 1977.

4. N.D.Belnap. How computer should think. Contemporary Aspects of Philosophy
(G.Ryle, editor), Oriel Press, pages 30-56, 1977.

5. S.Benferhat, D.Dubois, H.Prade. How to infer from inconsistent beliefs without
revising? Proc. IJCAT’'95, pages 1449-1455, 1995.

6. D.Dubois, J.Lang, H.Prade. Possibilistic logic. Handbook of Logic in Artificial
Intelligence and Logic Programming (D.Gabbay, C.Hogger, J.Robinson, editors),
Oxford Science Publications, pages 439-513, 1994.

7. M.Fitting. Kleene’s three-valued logics and their children. Fundamenta Informat-
icae 20, pages 113-131, 1994.

8. M.Gelfond, V.Lifschitz. The stable model semantics for logic programmaing. Proc.
of the 5th Logic Programming Symp. (R.Kowalski, K.Browen, editors) MIT Press,
Cambridge, MA, pages 1070-1080, 1988.

9. M.Ginsberg. Counterfactuals. Artificial Intelligence 30(1), pages 35-79, 1986.

10. S.Kraus, D.Lehmann, M.Magidor. Nonmonotonic reasoning, preferential models
and cumulative logics. Artificial Intelligence 44(1-2), pages 167-207, 1990.

11. D.Makinson. General patterns in nonmonotonic reasoning. Handbook of Logic in
Artificial Intelligence and Logic Programming 3 (D.Gabbay, C.Hogger, J.Robinson,
editors), Oxford Science Publishers, pages 35-110, 1994.

12. J.Pearl. Reasoning under uncertainty. Annual Review of Computer Science 4, pages
37-72, 1989.

13. G.Priest. Minimally Inconsistent LP. Studia Logica 50, pages 321-331, 1991.

14. V.S.Subrahmanian. Mechanical proof procedures for many valued lattice-based logic
programming. Journal of Non-Classical Logic 7, pages 7-41, 1990.

15. G.Wagner. Vivid logic. Springer-Verlag, LNAI No.764, 1994.

