
An Algorithmic Approach to RecoverInconsistent Knowledge-basesOfer ArieliDepartment of Computer Science, K.U.LeuvenCelestijnenlaan 200A, B-3001 Heverlee, Belgiumarieli@cs.kuleuven.ac.beAbstract. We consider an algorithmic approach for revising inconsist-ent data and restoring its consistency. This approach detects the \spoiled"part of the data (i.e., the set of assertions that cause inconsistency), de-letes it from the knowledge-base, and then draws classical conclusionsfrom the \recovered" information. The essence of this approach is itscoherence with the original (possibly inconsistent) data: On one handit is possible to draw classical conclusions from any data that is notrelated to the contradictory information, while on the other hand, theonly inferences allowed by this approach are those that do not contradictany former conclusion. This method may therefore be used by systemsthat restore consistent information and are obliged to their resource ofinformation. Common examples of this case are diagnostic proceduresthat analyse faulty components of malfunction devices, and databasemanagement systems that amalgamate distributed knowledge-bases.1 MotivationIn this paper we introduce an algorithmic approach to revise inconsistent inform-ation and restore its consistency. This approach (sometimes called \coherent"[5], or \conservative" [15]) considers contradictory data as useless, and uses onlya consistent part of the original information for making inferences. To see therationality behind this approach consider, for instance, the following set of pro-positional assertions: KB = fp; :p; :p_q; r; :r_sg:Since :p is true in KB, so is :p_q (even if q is false), and so a plausible infer-ence mechanism should not apply here the Disjunctive Syllogism to p and :p_q.Intuitively, this is so since the information regarding p is contradictory, and soone should not rely on it for drawing inferences. On the other hand, applyingthe Disjunctive Syllogism to fr; :r_sg may be justi�ed by the fact that thissubset of formulae should not be a�ected by the inconsistency in KB, thereforeinference rules that are classically valid can be applied to it.The two major goals of coherent approaches in general, and our formalismin particular, are therefore the following:



a) Detect and isolate \spoiled" parts of the knowledge-base, i.e.: Remove fromthe knowledge-base subsets of assertions that cause inconsistency,b) Draw classical conclusions in a non-trivial way from any data that is not re-lated to the contradictory information. Such inferences should be semantic-ally coherent with the original data, that is: Only inferences that do notcontradict any previously drawn conclusions are allowed.For achieving the goals above we consider an algorithmic approach that isbased on a four-valued semantics [3, 4]. Using a multiple-valued semantics is acommon way to overcome the shortcomings of classical calculus (see, e.g., [3, 6, 7,12{14]), and as we shall see in what follows, four-valued semantics is particularlysuitable for our purpose.A similar algorithmic approach for recovering strati�ed knowledge-base, whichis also based on a four-valued semantics, was introduced in [1, 2]. Here we gener-alize and improve that approach in the sense that we consider a better search en-gine, and provide and algorithm that recovers arbitrary knowledge-bases ratherthan only strati�ed ones.2 Background2.1 Belnap four-valued latticeOur method is based on Belnap's well-known algebraic structure, introducedin [3, 4]. This structure consists of four truth values: the classical ones (t; f), atruth value (?) that intuitively represents lack of information, and a truth value(>) that may intuitively be understood as representing contradictions. Thesefour elements are simultaneously ordered in two distributive lattices. In one ofthem, denoted by L4 = (ft; f;>;?g;�t), f is the �t-minimal element, t is the�t-maximal one, and ?;> are two intermediate values that are incomparable.The partial order of this lattice may be intuitively understood as representingdi�erences in the amount of truth of each element. In the other lattice, denotedby A4 = (ft; f;>;?g;�k), ? is the �k-minimal element, > is the �k-maximalone, and t; f are two intermediate values. The partial order �k of this latticeintuitively represents di�erences in the amount of knowledge (or information)that each element exhibits. We denote Belnap four-valued structure togetherwith its two partial orders by FOUR (see Figure 1).As usual, we shall denote the �t-meet and the �t-join of FOUR by ^ and_, respectively. In addition, we shall denote by : the involution operation on�t, for which :>=> and :?=?.2.2 Knowledge-bases: syntax and semanticsThe language we use here is the standard propositional one, based on the propos-itional constants t; f;>;?, and the connectives _;^;: that correspond, respect-ively, to the join, meet, and the negation operations w.r.t. �t. Atomic formulae
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Fig. 1. Belnap lattice, FOURare denoted by p; q, literals (i.e., atomic formulae or their negations) are denotedby l, and complex formulae are denoted by  ; �. Given a set S of formulae, weshall write A(S) to denote the set of the atomic formulae that occur in S, andL(S) to denote the set of the literals that occur in S (A and L denote, respect-ively, the set of atomic formulae and the set of literals in the language). Thecomplement of a literal l is denoted by l. An atomic formula p2A(S) is calleda positive (negative) fact of S if p2S (:p2S). The set of all the (positive andnegative) facts in S is denoted by Facts(S).The various semantic notions are de�ned on FOUR as natural generaliza-tions of similar classical ones: A valuation � is a function that assigns a truthvalue in FOUR to each atomic formula. Any valuation is extended to complexformulae in the obvious way. The set of the four-valued valuations is denoted byV . A valuation � satis�es  i� �( )2ft;>g. t and > are called the designatedelements of FOUR. A valuation that satis�es every formula in a given set S offormulae is a model of S. A model of S will usually be denoted by M or N . Theset of all the models of S is denoted by mod(S).The formulae that will be considered here are clauses, i.e.: disjunctions ofliterals. The following useful property of clauses is easily shown by an inductionon the structure of clauses:Lemma 1. Let  be a clause and � a valuation. Then �( )2ft;>g i� there issome l2L( ) s.t. �(l)2ft;>g.A �nite set of clauses is called a knowledge-base, and is denoted by KB.As the following lemma shows, representing formulae in a clause form does notreduce the generality.Lemma 2. [1] For every formula  there is a �nite set S of clauses such thatfor every valuation �, �( )2f>; tg i� �(�)2f>; tg for every �2S.



Given a certain knowledge-baseKB, we consider the �k-minimal elements inmod(KB). These models re
ect the intuition that one should not assume whatis not really represented in KB.De�nition 1. Let �1; �22V .a) �1 is k-smaller than �2 i� for every atom p, �1(p)�k �2(p).b) �2mod(KB) is a k-minimal model of KB if there is no other model of KBthat is k-smaller than �.Example 1. Consider the following knowledge-base:KB = fp; :q; :p _ q; :p _ h; q _ r _ s; q _ :r _ :s; h _ r; h _ sgThe (k-minimal) models of KB are given in Table 1 below. We shall use KB forthe demonstrations in the sequel.Table 1. The (k-minimal) models of KBModel No. p q h r s k-minimalM1 t > t ? ? +M2 { M4 t > t ? f; t;>M5 { M16 t > t f; t;> ?; f; t;>M17 { M32 t > > ?; f; t;> ?; f; t;>M33 > f ? t > +M34 > f ? > t +M35 > f ? > >M36 > f f t >M37 { M38 > f f > t;>M39 > f t ? > +M40 > f t f t +M41 > f t f >M42 > f t t f +M43 > f t t >M44 > f t > ? +M45 { M47 > f t > f; t;>M48 > f > ? >M49 { M50 > f > f t;>M51 { M52 > f > t f;>M53 { M56 > f > > ?; f; t;>M57 > > ? t t +M58 > > ? t >M59 { M60 > > ? > t;>M61 { M64 > > f t;> t;>M65 { M80 > > t ?; f; t;> ?; f; t;>M81 { M96 > > > ?; f; t;> ?; f; t;>



The k-minimal models of KB will have an important role in the recoveryprocess of KB. This may be justi�ed by the fact that as long as one keepsthe amount of information as minimal as possible, the tendency of getting intocon
icts decreases.2.3 Recovered knowledge-basesDe�nition 2. Let �2V . Denote: I(�)=fp2A j �(p)=>g. Usually we shall beinterested in the assignments of � w.r.t. a speci�c knowledge-base. In such caseswe shall consider the following set: I(�;KB)=fp2A(KB) j �(p)=>g.As we have noted above, by \recovering a knowledge-base" we mean to turnit (in a plausible way) to a consistent one. That is:De�nition 3. A valuation � is consistent if I(�)=;. A knowledge-base is con-sistent if it has a consistent model.Proposition 1. [1, 2] A knowledge-base is consistent i� it is classically consist-ent.The recovery process is based on the following notion:De�nition 4. A recovered knowledge-base KB0 of a knowledge-base KB is asubset of KB with a consistent model M 0 s.t. there is a (not necessarily consist-ent) model M of KB, for which M 0(p)=M(p) for every p2A(KB0).Example 2. The set fpg is a recovered knowledge-base of KB1= fp; q;:qg, butit is not a recovered knowledge-base of KB2 = fp;:pg. This example demon-strates the fact that in order to recover a given inconsistent knowledge-base,it is not su�cient to �nd some of its (maximal) consistent subset(s), but itis necessary to ensure that the subset under consideration would semanticallycorrespond to the original, inconsistent data; In our case, fpg does not recoverKB2 even though it is a classically consistent subset of KB2, just because of thefact that this set contradicts an information (:p) that is explicitly stated in theoriginal knowledge-base. Therefore, the \semantical correspondence" property isnot preserved in this case.1Given an inconsistent knowledge-baseKB, the idea is to choose one of its re-covered knowledge-bases and to treat this set as the relevant knowledge-base fordeducing classical inferences. Next we show that the set of recovered knowledge-bases of KB may be easily constructed from the set of its models:De�nition 5. Let �2V . The set that is associated with � is de�ned as follows:KB� = f 2KB j �( )= t and A( ) \ I(�;KB)=;g:1 Keeping this \semantical correspondence" to the original information is one of themain di�erences between the present formalism and some other formalisms for restor-ing consistency (see, e.g., [5, 6, 9]).



The setKB� corresponds to the (maximal) fragment ofKB that can be inter-preted in a consistent way by �. Elimination of pieces of \inadequate" informa-tion in order to get a more \robust" representation of the \intended" knowledgeis a common method in belief revision and argumentative reasoning (see, e.g.,[5, 6, 9]).Proposition 2. [1] Every set that is associated with a model of KB is a re-covered knowledge-base of KB.Proposition 2 implies that usually there will be a lot of ways to recover a giveninconsistent knowledge-base. By what we have noted above, plausible candidatesof being the \best" recovered knowledge-base of KB would be those sets thatare associated with some k-minimal model of KB.2De�nition 6. A set S�KB is a preferred recovered knowledge-base of KB ifit is a maximal set that is associated with some k-minimal model of KB.Example 3. Consider again the knowledge-base KB of Example 1. In the nota-tions of Table 1, the subsets of KB that are associated with its k-minimal modelsare the following:KBM1 = fp; :p _ h; h _ r; h _ sg,KBM33 = f:q; h _ rg,KBM34 = f:q; h _ sg,KBM39 = f:q; h _ rg,KBM40 = f:q; q _ r _ s; q _ :r _ :s; h _ r; h _ sg,KBM42 = f:q; q _ r _ s; q _ :r _ :s; h _ r; h _ sg,KBM44 = f:q; h _ sg,KBM57 = fh _ r; h _ sg.Thus, the preferred recovered knowledge-bases are KBM1 and KBM40=KBM42 .3 Recovery of inconsistent knowledge-basesIn this section we introduce an algorithm for recovering inconsistent knowledge-bases, and consider some of its properties.De�nition 7. Let KB be a knowledge-base, and let � be a four-valued partialvaluation de�ned on (a subset of) A(KB). The dilution of KB w.r.t. � (notation:KB #�) is constructed from KB by the following transformations:1. Deleting every  2KB that contains either t, >, or a literal l s.t. �(l)2ft;>g,2. Removing from every formula that remains in KB every occurrence of f , ?,and every occurrence of a literal l such that �(l)2ff;?g.2 See [2] for some other preference criteria for choosing recovered knowledge-base.



The intuition behind the dilution process resembles, in a way, that of theGelfond{Lifschitz transformation [8]: Any data that has no e�ect on the restof the process is eliminated. Thus, for instance, if a literal l in a formula  isassigned a designated value, then Lemma 1 assures that eventually  would alsohave a designated value, no matter what would be the values of the elements inL( ) n flg. Hence, these elements can be disregarded in the rest of the construc-tion, as indeed indicated by item (1) of De�nition 7. The rationality behind item(2) of the same de�nition is similar.Figure 2 contains a pseudo-code of the recovery algorithm. 3 4 As we showin Theorems 1 and 2 below, given a certain knowledge-base KB as an input, thealgorithm provides the valuations needed for constructing the preferred recoveredknowledge-bases of KB.It is easy to verify that the algorithm indeed halts for every knowledge-base.This is so since knowledge-bases are �nite, and since for every set S of clausesand every partial valuation � on A(S), we have that A(S #�)�A(S).Example 4. Figure 3 below demonstrates the execution of the algorithm on theknowledge-base KB of the canonical example (1 and 3). In this �gure we denoteby p :x the fact that an atom p is assigned a value x.In the notations of Table 1, the two leftmost paths in the tree of Figure 3produce the k-minimal model M1, and the other paths produce the k-minimalmodels M40 and M42.5 As noted in Example 3, these are exactly the modelswith whom the preferred recovered knowledge-bases of KB are associated. ByTheorem 2, these are all the preferred recovered knowledge-bases of KB.Proposition 3. Let � be a four-valued valuation produced by the algorithm ofFigure 2 for a given knowledge-base KB. Then � is a model of KB.Proof: Let  2KB. By De�nition 7 and the speci�cations of the algorithm inFigure 2, it is obvious that at some stage of the algorithm  is eliminated fromthe set of clauses as a result of a dilution on this set. Note that a formula cannotbe eliminated by successively removing every literal of it according to condition(2) of De�nition 7, since the last literal that remains must be assigned a des-ignated value. Thus there must be some l2L( ) that is assigned a designatedvalue. By Lemma 1, then, �( )2 ft;>g, and so �2mod(KB). 23 The �rst parameter of the �rst call to Recover is the dilution of KB w.r.t. the emptyvaluation. This is so in order to take care of the propositional constants that appearin KB (for instance, if p_f 2KB then p2KB #;).4 If the knowledge-base under consideration contains clauses that are logically equi-valent to f or ? (e.g., f_?), then in KB # ; such clauses will become empty. Onecan easily handle such degenerated cases by adding to the algorithm a line thatterminates its execution once an empty clause is detected.5 Later on we shall take care of the redundancy.



input: A knowledge-base KB.Mods = Recover(KB#;, ;);do (8M 2 Mods) fKBM = f 2 KB j :9p 2A(KB) such that M(p) = >g;output(KBM);gprocedure Recover(S,�)/* S = a finite set of clauses, � = the valuation constructed so far */f if (S == ;) then return(�) /* � is a k-minimal model of KB */pos = fp 2A(S) | p 2 S g; /* the positive facts in S */neg = fp 2A(S) | :p 2 S g; /* the negative facts in S */if (pos [ neg == ;) fdo (8p 2A(S)) fpick p;if (p 2L(S)) then Recover(S [ fpg, �);if (:p 2L(S)) then Recover(S [ f:pg, �);ggdo (8p 2 (pos \ neg)) fpick p;�(p) = >;S0 = S # �;do (8q 6= p such that q 2A(S) n A(S0))�(q) = ?;Recover(S0, � [ �);gdo (8p 2 (pos [ neg) n (pos \ neg)) fpick p;if (p 2 pos) then �(p) = t else �(p) = f;S0 = S # �;do (8q 6= p such that q 2A(S) n A(S0))�(q) = ?;Recover(S0, � [ �);gg Fig. 2. An algorithm for recovering knowledge-bases



f:q; q; h; q _ r _ s; q _ :r _ :s; h _ r; h _ sg
fh; h _ r; h _ sg fq; :q; q _ r _ sg

frg
;;

fp; :p; :p _ h; r _ s; :r _ :s; h _ r; h _ sg
fp; :q; :p _ q; :p _ h; q _ r _ s; q _ :r _ :s; h _ r; h _ sg

; ; ; ;

fr _ s; :r _ :s; h _ r; h _ sg
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? = pruning(see below)

h : t p : >
s : f? ? ? ? ?

?
?

s : t
h : t; r : ?

r : t
Fig. 3. Execution of the algorithm w.r.t. the canonical example



The next proposition indicates that the valuations produced by the algorithmof Figure 2 assign designated truth values only to a minimal amount of literals(no more literals than what is really necessary for providing a model for KB). Ina sense, this means that a minimal amount of knowledge (or belief) is assumed.Proposition 4. Let � be a four-valued valuation produced by the algorithm ofFigure 2 for a given knowledge-base KB. Then � is a choice function on KB:For every  2KB there is exactly one literal l2L( ) s.t. �(l) is designated.Proof: The proof is by an easy inspection on the execution of the algorithm.Consider some  2KB. Suppose that it is eliminated at the i-th inductive callto Recover. Then all the literals l2L( ) for which �(l) is de�ned until the i-threcursive call to Recover has the property that �(l)=f (otherwise  would havealready been eliminated). Then there is some l 2L( ) (which is chosen duringthe i-th execution of Recover), for which �(l)2ft;>g, and after the next dilu-tion  is eliminated, i.e.: all the rest of the literals in L( ) are assigned ?. Itfollows, then, that every clause has a unique literal that is assigned a designatedvalue by �. 2Here is another evidence to the fact that only a minimal knowledge is assumedby the valuations produced by our algorithm:Theorem 1. Let � be a four-valued valuation produced by the algorithm ofFigure 2 for a given knowledge-base KB. Then � is a k-minimal model of KB.Proof: First, by Proposition 3, � is a model of KB. It remains to show, then,that � is a k-minimal among the models of KB. For that consider the followingset of knowledge-bases:KB0 = KB #;; KBi+1 = KBi #�iwhere �i (i � 0) is the partial valuation determined during the i-th recursivecall to Recover.6 Now, let us �rst assume that there is at least one (positive ornegative) fact in KB (i.e., there is a literal l2L(KB) s.t. l2KB). We show that� is a k-minimal model of KB by an induction on the number n of the recursivecalls to Recover that are required for creating �.{ n=0: �0 may assign > only to a literal l s.t. l2KB and l2KB, while all theother elements in A(KB) are assigned ?. In this case > is the only possiblevalue for l, and so � is k-minimal. The same argument is true for any literall s.t. l2KB and l 62KB (for that l, �(l)= t). It is also obviously true for allthe literals that are assigned ?.{ n � 1: Let M be a model of KB. We show that M 6<k �. Let M1 be thereduction ofM to A(KB1), and suppose �rst thatM1 is a model of KB1. Bythe induction hypothesis �1 is a k-minimal model of KB1, thus there existsp2A(KB1), s.t. M1(p) 6�k �1(p), therefore M 6<k �. The other possibility isthat M1 is not a model of KB1. In this case there must be a clause  12KB16 Thus, if the algorithm terminates after n recursive calls to Recover, then �=Sni=1 �i.



s.t. M1( 1) 62 ft;>g. Since M is a model of KB, then by Lemma 1 there isa  2KB and an l 2 L( ) s.t. M(l) 2 ft;>g, and flg [ L( 1)�L( ). Butthen �(l) 62 ft;>g (Otherwise,  is eliminated in the dilution of KB and so 1 62KB1), whileM(l)2ft;>g. It follows thatM(l) 6<k �(l), thereforeM 6<k �in this case also.To conclude, it remains to handle the case where there are no facts in KB.In this case our algorithm operates on KB0 = KB[flg for some l 2 L(KB).But now there is a fact in KB0, and so by what we have shown above our al-gorithm produces a k-minimal model for KB0. Denote this model by �0. Wehave to show that �0 is also a k-minimal model of KB. Indeed, �0 is clearly amodel of KB. Let M be some other model of KB. If M(l) 2 ft;>g then M isa model of KB0 and so M 6<k �0. Otherwise, M(l)2ff;?g. Consider the subsetof formulae of KB in which l appears as a literal: KB(l)=f 2KB j l2L( )g.Since l 2 L(KB), it follows that KB(l) 6= ;. Moreover, since we assume thatthere are no facts in KB, in particular l 62KB and l 62KB, thus KB(l) 6� fl; lg.Now, by the de�nition of �0 as a valuation that is produced by our algorithm,for every p 2 A(KB(l)) s.t. p 6= l, we have that �0(p) = ?. (Such p exist sinceKB(l) 6=; and KB(l) 6�fl; lg. These atoms are assigned ? since all the formulaein KB(l) are removed after the �rst dilution of KB0). Now, since we assumedthat M(l) 2 ff;?g, then by Lemma 1 there must exist some p0 2 A(KB(l))s.t. M(p0)2ft;>g (Otherwise 8 2KB(l) M( ) 62ft;>g and so M cannot be amodel ofKB). ThusM(p0)>k?=�0(p0) and once again we have thatM 6<k �0. 2Using Theorem 1 we can now show that the algorithm indeed properly re-covers inconsistent knowledge-bases.Theorem 2. For a given knowledge-base KB, the algorithm of Figure 2 pro-duces all the valuations �, for whichKB� is a preferred recovered knowledge-baseof KB.Proof: By Theorem 1, if � is obtained by our algorithm, then KB� is an elementof the following set:
 = fKBM j M is a k-minimal model of KBg:It remains to show, therefore, that the algorithm produces valuations �j , forwhich KB�j are the maximal elements of 
. Indeed, given a k-minimal modelM of KB, we show that the algorithm produces a valuation � s.t. I(�;KB)�I(M;KB), and therefore KBM �KB� .As in Theorem 1, we denote by �i the partial valuation that is determinedduring stage i of the algorithm (thus, if the algorithm terminates after n stages,then � = [ni=1�i), and Mi is the reduction of M to the literals on which �i isde�ned. Also, we use the following notations: KB0=KB #;, and for every i�0,KBi+1 =KBi # �i. Now, suppose �rst that Facts(KB0) 6= ; (i.e., there is some[positive or negative] fact in KB0). If fl; lg�Facts(KB0) for some literal l, set�0(l)=> (note that in this case necessarilyM(l)=> as well, sinceM is a model



of KB and so it must assign > to all the facts of KB that are both positive andnegative). Otherwise, choose some l 2 Facts(KB0) s.t. M(l) = t (such a literalmust exist, sinceM is a model of KB and so it must assign designated values tothe facts of KB0), and set �0(l)=t. If Facts(KB0) is empty, then if there is somel 2L(KB0) s.t. M(l) = t set �0(l) = t as well. Otherwise, pick some l 2L(KB0)s.t. M(l) = ? and set �0(l) = t (there must be such a literal, since otherwise8l2L(KB0) M(l)2f>; fg and since Facts(KB0)=;, this implies that M is notk-minimal, since one can easily construct a model of KB which is k-smaller thanM by changing one of the f -assignments ofM to ?, or one of the >-assignmentsofM to t). Now, in order to determine �1 we follow a similar procedure, this timefor KB1: If Facts(KB1) 6= ; then if fl; lg�Facts(KB1) for some l, set �1(l)=>(note that in this case necessarily M(l) => as well, since by the constructionof �0, we have that KB1=KB # �0�KB #M0, and so fl; lg�KB #M0 as well,which means that M must assign l the value > in order to be a model of KB).Otherwise, if there is some l 2 Facts(KB1) s.t. M(l) = t set �1(l) = t as well.Otherwise, pick some l2Facts(KB1) s.t. M(l)2? (again, such an l must exists.Otherwise, by the same reasons considered above, we will have a contradictionto the fact thatM is a k-minimal model of KB), and set �1(l)= t. The procedurein case that Facts(KB1)=; is the same as the one in case that Facts(KB0)=;.Now, repeat the same process until for some n, KBn becomes empty. Let�=[ni=1�i. The following two facts are easily veri�ed:1. In the process of creating � we followed the execution of the algorithm alongone path of its search tree. Hence � is obtained by our algorithm when KBis given as its input.2. If �(l)=> then M(l)=> as well (see the notes whenever �i(l)=>).By (2), I(�;KB)�I(M;KB), and so KBM�KB� . Thus, by (1), an output � ofthe algorithm corresponds to a preferred recovered knowledge-base KB� of KB.2 Clearly, large knowledge-bases that contain a lot of contradictory informationmay be recovered in many di�erent ways. Therefore, computing all the preferredrecovered knowledge-bases in such cases might require a considerable amountof running time. It is worth noting, however, that arbitrary recovery of a givenknowledge-baseKB (i.e., producing some preferred recovered knowledge-base ofKB) obtains quite easily. This is so since the execution time for producing the�rst output (valuation) is bounded by O(jL(KB)j � jKBj); A construction of the�rst output requires no more than jL(KB)j calls to Recover (as there are nomore than jL(KB)j picked literals), and each call takes no more than O(jKBj)running time.We conclude this section with some notes on practical ways to reduce theexecution time of the algorithm.



A. Pruning of the search treeLet us consider once again the search tree of Figure 3. Denote the paths in thistree from the leftmost righthand by 1; : : : ; 12. Clearly, paths 1 and 2 yield thesame result. Similarly, the same valuation is produced in paths 3,6,7,11,12, andthe remaining paths in the search tree also yield the same valuation. It is possibleto avoid such duplications by performing a backtracking once we �nd out thatwe are constructing a valuation which is the same as another valuation that hasalready been produced before. Indeed, note that a path i in the search three ofthe algorithm corresponds to a sequence of partial valuations �i0; �i1; : : : ; �ini thatare constructed along its nodes. Thus, if we denote by A(KB)[�] the elements ofA(KB) on which the partial valuation � is de�ned, then it is possible to terminatethe j-th 
ow of the algorithm (terminology: to prune the j-th subtree) at stagem i� there is a 
ow i<j, s.t. Smk=1A(KB)[�ik] = Smk=1A(KB)[�jk ].Example 5. In Figure 3 the pruning locations (in paths 2, 5{12) are marked withan asterisk. Thus, only paths 1, 3, and 4 of the search tree are not pruned. Theyyield, respectively, the k-minimal models M1, M42, and M40 of KB.7Obviously, the pruning consideration might drastically improve the searchmechanism of the algorithm. The tradeo� is that for checking the pruning con-dition we have to use much more memory space, since the algorithm has to keeptracks to valuations that correspond to previous search 
ows.B. Handling unrelated informationThere are many cases in which a new information should not a�ect any previousconclusion.8 In such cases a plausible mechanism of belief revision should not re-tract any previous conclusion. Therefore, the general expectation is that in thesecases the computational complexity of adding the new data to the knowledge-base and computing its new consequences would be relatively low. Detectingthose cases and �nding an appropriate methodology to handle them is sometimecalled \the irrelevance problem". In the next proposition we show that in caseswhere a totally irrelevant information arrives, it is possible to avoid executing therecovery algorithm; The new data can safely be added to any preferred recoveredknowledge-base without damaging any of its properties.Proposition 5. Let KB1 and KB2 be two subsets of a knowledge-baseKB thatsatisfy the following conditions:(a) KB1 [KB2=KB, (b) A(KB1) \ A(KB2)=;,9 (c) KB1 is consistent.7 As noted in Example 3, these are exactly the models with whom the prefered re-covered knowledge-bases of KB are associated.8 This is the case, for instance, where there is no evidence of any relation between thenew data and the old one.9 In case that conditions (a) and (b) are satis�ed we say that KB1 and KB2 are apartition of KB.



If S is a preferred recovered knowledge-base of KB2, then S[KB1 is a preferredrecovered knowledge-base of KB.Proof: For the proof we need the following result:Lemma 5-A: [1, 2] For every model M of a knowledge-base KB there is a k-minimal model M 0 of KB s.t. M 0�kM .10Suppose now that S is a preferred recovered knowledge-base of KB2. Then it isassociated with some k-minimal model �2 of KB2, i.e. S=(KB2)�2 . Also, sinceKB1 is classically consistent, it has a classical model, denote it �1. Now, considera valuation � that is de�ned for every atomic formula p as follows:�(p) = ��1(p) if p2A(KB1)�2(p) if p2A(KB2)Since A(KB1) \ A(KB2)=;, � is well de�ned. It is also easy to see that � is amodel ofKB, and thatKB�=(KB2)�2[(KB1)�1 =S[KB1. By Lemma 5-A thereis a k-minimal model M of KB s.t. M�k �. In particular, I(M;KB)�I(�;KB),and so KB� �KBM . But KB� =S [KB1, and since S is a maximal recoveredknowledge-base of KB2, KB� must be a maximal recovered knowledge-base ofKB. Thus KBM =KB�=S[KB1 is a maximal recovered knowledge-base of KBand it is associated with a k-minimal model of KB. Hence S [KB1 is indeed apreferred recovered knowledge-base of KB. 2Note that an immediate consequence of Proposition 5 is that in case thatKB is classically consistent, then KB itself is the (only) preferred recoveredknowledge-base, as indeed one expects.Example 6. Consider again our canonical example (1, 3, 4). Let KB0 = KB [fu;:v_wg. The prefered recovered knowledge-bases of KB0 are simply obtainedby adding fu;:v_wg to each prefered recovered knowledge-base of KB. I.e., thepreferred recovered knowledge-bases of KB0 are fp; :p_h; h_r; h_s; u; :v_wgand f:q; q _ r _ s; q _ :r _ :s; h _ r; h _ s; u; :v _ wg.It follows that in many cases it is possible to drastically reduce the executiontime of the algorithm: If the knowledge-base under consideration can be parti-tioned into two subsets such that one of them is classically consistent, then inorder to recover the knowledge-base it is su�cient to activate the algorithm onlyon the inconsistent subset, and then to add the consistent set to every preferredrecovered knowledge-base that is obtained by the algorithm.4 ConclusionIn this work we have introduced a simple algorithmic method for restoring theconsistency of inconsistent knowledge-bases. Restoration of consistent data is a10 This property is sometimes called smoothness [10] or stopperdness [11].
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